Skip to main content Accessibility help
×
Home
Central Simple Algebras and Galois Cohomology
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 120
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This book is the first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields. Starting from the basics, it reaches such advanced results as the Merkurjev-Suslin theorem. This theorem is both the culmination of work initiated by Brauer, Noether, Hasse and Albert and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, but no homological algebra, the book covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi-Brauer varieties, residue maps and, finally, Milnor K-theory and K-cohomology. The last chapter rounds off the theory by presenting the results in positive characteristic, including the theorem of Bloch-Gabber-Kato. The book is suitable as a textbook for graduate students and as a reference for researchers working in algebra, algebraic geometry or K-theory.

Reviews

'The presentation of material is reader-friendly, arguments are clear and concise, exercises at the end of every chapter are original and stimulating, the appendix containing some basic notions from algebra and algebraic geometry is helpful. To sum up, the book under review can be strongly recommended to everyone interested in the topic.'

Source: Zentralblatt MATH

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.