Skip to main content Accessibility help
×
Home
Biological Materials Science
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 22
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Taking a unique materials science approach, this text introduces students to the basic concepts and applications of materials and biomedical engineering and prepares them for the challenges of the new interdisciplinary field of biomaterials science. Split into three sections - Basic Biology Principles, Biological Materials, and Bioinspired Materials and Biomimetics - it presents biological materials along with the structural and functional classification of biopolymers, bioelastomers, foams, and ceramic composites. More traditional biomimetic designs such as Velcro are then discussed in conjunction with new developments that mimic the structure of biological materials at the molecular level, mixing nanoscale with biomolecular designs. Bioinspired design of materials and structures is also covered. Focused presentations of biomaterials are presented throughout the text in succinct boxes, emphasising biomedical applications, whilst the basic principles of biology are explained, so no prior knowledge is required. The topics are supported by approximately 500 illustrations, solved problems, and end-of-chapter exercises.

Reviews

'The union of the physical and biological sciences is in many respects one of the most exciting yet challenging aspects of scientific endeavor today. Nowhere is this more in evidence than in the area of biological materials science and engineering where many materials scientists struggle with the complex puzzle of biological form and function while biologists in turn have to deal with the invariably highly quantitative nature of the physical sciences and engineering. With this book, Meyers and Chen have delivered a true tour de force which takes the reader in clear and precise text from cells to virus-produced Li-ion batteries. This book is a must read for undergraduates, graduates and researchers alike in the rapidly expanding fields of biological, bioinspired and biomaterials science.'

Robert Ritchie - Lawrence Berkeley National Laboratory

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Aaron, B. B. and Gosline, J. M. (1981) Elastin as a random-network elastomer: a mechanical and optical analysis of single elastin fibers. Biopolymers 20: 1247–1260.
Achrai, B. and Wagner, H. D. (2013) Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. Acta. Biomater. 9: 5890–5902.
Addadi, L. and Weiner, S. (1985) Interaction between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc. Natl. Acad. Sci. USA 82: 4110–4114.
Addadi, L., Moradian, J., Shay, E., Maroudas, N. G., and Weiner, S. (1987) A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc. Natl. Acad. Sci. USA 84: 2732–2736.
Addadi, L., Raz, S., and Weiner, S. (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater. 15: 959–970.
Addadi, L., Joester, D., Nudelman, F., and Weiner, S. (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem. Eur. J. 12: 980–987.
Adharapurapu, R. R., Jiang, F., and Vecchio, K. S. (2006) Dynamic fracture of bovine bone. Mater. Sci. Eng. C 26: 1325–1332.
Aizenberg, J. (2010) New nanofabrication strategies: inspired by biomineralization. MRS Bull. 35: 323–330.
Aizenberg, J. and Hendler, G. (2004) Designing efficient microlens arrays: lessons from nature. J. Mater. Chem. 14: 2066–2072.
Aizenberg, J., Weaver, J. C., Thanawala, M. S., Sundar, V. C., Morse, D. E., and Fratzl, P. (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309: 275–278.
Aladin, D. M., Cheung, K. M., Ngan, A. H. et al. (2010) Nanostructure of collagen fibrils in human nucleus pulposus and its correlation with macroscale tissue mechanics. J. Orthop. Res. 28: 497–502.
Alexander, N. J. (1970) Composition of α-and β-keratin in reptiles. Cell. Tissue Res. 110: 153–165.
Alexander, N. J. and Fahrenbach, W. F. (1969) The dermal chromatophores of Anolis carolinensis (Reptilia, Iguanidae). Am. J. Anat. 126: 41–55.
Alexander, N. J. and Parakkal, P. F. (1969) Formation of α- and β-type keratin in lizard epidermis during the molting cycle. Cell. Tissue Res. 101: 72–87.
Almqvist, N., Thomson, N. H., Smith, B. L., Stucky, G. D., Morse, D. E., and Hansma, P. K. (1999) Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 7: 37–43.
Altman, G. H., Diaz, F., Jakuba, C. et al. (2003) Silk-based biomaterials. Biomater. 24: 401–416.
Argon, A. S. (1972) Fracture of Composites. Treatise of Materials Science and Technology. New York: Academic Press, p. 1.
Arias, J. L. and Fernández, M. S. (2003) Biomimetic processes through the study of mineralized shells. Mater. Charact. 50: 189–195.
Armbrust, E. V., Berges, J. A., Bowler, C. et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86.
Armstrong, W. P. (1979) Nature’s hitchhikers. Environ. Southwest 486: 20–23.
Arruda, E. M. and Boyce, M. C. (1993) A three-dimensional model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41: 389–412.
Arzt, E. (2006) Biological and artificial attachment devices: lessons for materials scientists from flies and geckos. Mater. Sci. Eng. C 26: 1245–1250.
Arzt, E., Gorb, S., and Spolenek, R. (2003) From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 100: 10603–10606.
Ashby, M. F. (1989) On the engineering properties of materials. Acta Metal. 37: 1273–1293.
Ashby, M. F. (1992) Materials Selection in Mechanical Design. Oxford: Butterworth–Heinemann.
ASTM E399–09e2 Standard test method for linear elastic plane strain fracture toughness KIc of metallic materials.
Atkins, A. G. (2009) The Science and Engineering of Cutting. Oxford: Butterworth–Heinemann.
Autumn, K., Liang, Y. A., Hsieh, S. T. et al. (2000) Adhesive force of a single gecko foot-hair. Nature 405: 681–684.
Autumn, K., Sitti, M., Liang, Y. A. et al. (2002) Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 99: 12252–12256.
Aveston, J., Cooper, G. A., and Kelly, A. (1971) Single and multiple fracture. In Proc. Conf. Properties of Fiber Composites. Guildford: IPC Science and Technology Press, pp. 15–26.
Baer, E., Hiltner, A., and Morgan, R. J. (1992) Biological and synthetic hierarchical composites. Phys. Today 45: 60–67.
Baillie, C. and Fitford, R. (1996) The three-dimensional composite structure of cow hoof wall. Biomimetics 4: 1–22.
Baillie, C., Southam, C., Buxtin, A., and Pavan, P. (2000) Structure and properties of bovine hoof horn. Appl. Composite Lett. 9: 107–115.
Bain, C. D. and Whitesides, G. M. (1998) Molecular-level control over surface order in self-assembled monolayer films of thiols on gold. Science 240: 62–63.
Ballarini, R., Kaycan, R., Ulm, F -J., Belytschko, T., and Heuer, A. H. (2005) Biological structures mitigate catastrophic fracture through various strategies. Int. J. Fracture 135: 187–197.
Bao, G. and Suresh, S. (2003) Cell and molecular mechanics of biological materials. Nature Mater. 2: 715–725.
Barnes, W. J. P. (2007) Functional morphology and design constraints of smooth adhesive pads. MRS Bull. 32: 479–485.
Barnes, W. J. P., Perez-Goodwyn, P., and Gorb, S. N. (2005) Mechanical properties of the toe pads of the tree frog, Litoria caerulea. Comp. Biochem. Physiol. A 141: S145.
Barnes, W. J. P., Oines, C., and Smith, J. M. (2006) Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and shape. J. Comp. Physiol. A 192: 1179–1191.
Barthelat, F., Li, C. M., Comi, C., and Espinosa, H. D. (2006) Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21: 1977–1986.
Barthlott, W. (1990) Scanning electron microscopy of the epidermal surface in plants. In Claugher, D., ed. Application of the Scanning EM in Taxonomy and Functional Morphology, Systematics Association Special Volume. Oxford: Clarendon Press, pp. 69–94.
Barthlott, W. and Ehler, N. (1977) Raster-Elektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten. Tropische und subtropische Pflanzenwelt (Akad. Wiss. Lit. Mainz) 19: 110.
Barthlott, W. and Neinhuis, C. (1997) The purity of sacred lotus or escape from contamination in biological surfaces. Planta 202: 1–8.
Bartol, I. K., Gharib, M., Weihs, D., Webb, P. W., Hove, J. R., and Gordon, M. S. (2003) Hydrodynamic stability of swimming in ostraciid fishes: role of the carapace in the smooth trunkfish Lactophrys triqueter (Teleostei: Ostraciidae). J. Exp. Biol. 206: 725–744.
Bartol, I. K., Gharib, M., Webb, P. W., Weihs, D., and Gordon, M. S. (2005) Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes. J. Exp. Biol. 208: 327–344.
Bechtle, S., Ang, S. F., and Schneider, G. A. (2010) On the mechanical properties of hierarchically structured biological materials. Biomater. 31: 6378–6385.
Behiri, J. C. and Bonfield, W. (1980) Crack velocity dependence of longitudinal fracture in bone. J. Mater. Sci. 15: 1841–1849.
Belcher, A. M. (1996) Spatial and temporal resolution of interfaces: phase transitions and isolation of three families of proteins in calcium carbonate-based biocomposite materials. Unpublished Ph.D. Thesis, University of California, Santa Barbara.
Belcher, A. M. and Gooch, E. E. (1998) In Bauerlein, E., ed. Biomineralization. Weinheim: Wiley-VCH.
Belcher, A. M., Wui, X. H., Christensen, R. J., Hansma, P. K., Stucky, G. D., and Morse, D. E. (1996) Control of crystal phase switching and orientation by soluble mollusk-shell proteins. Nature 381: 56–58.
Belcher, A. M., Hansma, P. K., Stucky, G. D., and Morse, D. E. (1997) First steps in harnessing the potential of biomineralization as a route to new high-performance composite materials. Acta Mater. 46: 733–736.
Bell, E. C. and Gosline, J. M. (1996) Mechanical design of mussel byssus: material yield enhances attachment strength. J. Exp. Biol. 199: 1005–1017.
Ben-Yosef, E., Levy, T. E., Higham, T., Najjar, M., and Tauxe, L. (2010) The beginning of Iron Age copper production in the southern Levant: new evidence from Khirbat al-Jariya, Faynan, Jordan. Antiquity 84: 724–746.
Bereiter-Hahn, J., Matoltsy, A. G., and Richards, K. S., eds. (1986) Biology of the Integument, Vol. 2: Vertebrates. Berlin: Springer-Verlag.
Berglin, M. and Gatenholm, P. (2003) The barnacle adhesive plaque: morphological and chemical differences as a response to substrate properties. Colloids Surf. 28: 107–117.
Berling, J. and Rechberger, M. (2007) Knives as sharp as rat’s teeth. Fraunhofer Institute for Environmental, Safety and Energy Technology, Research News 1, Topic 3, .
Bertram, J. E. A. and Gosline, J. M. (1986) Fracture toughness design in horse hoof keratin. J. Exp. Biol. 125: 29–47.
Bertram, J. E. A. and Gosline, J. M. (1987) Functional design of horse hoof keratin: the modulation of mechanical properties through hydration effects. J. Exp. Biol. 130: 121–136.
Best, S. M., Porter, A. E., Thian, E. S., and Huang, J. (2008) Bioceramics: past, present and for the future. J. Euro. Ceramic Soc. 28: 1319–1327.
Bevelander, G. and Nakahara, H. (1969) An electron microscope study of formation of nacreous layer in shell of certain bivalve molluscs. Calcif. Tiss. Res. 3: 84–87.
Bigliana, L. U., Pollock, R. G., Soslowsky, L. J., Flatow, E. L., Pawluk, R. J., and Mow, V. C. (1992) Tensile properties of the inferior glenohumeral ligament. J. Orthop. Res. 10: 187–197.
Bilitch, M., Lau, F. Y. K., and Cosby, R. S. (1967) Recent advances in artificial pacemakers. Calif. Med. 107: 164–170.
Bini, F., Marinozzi, A., Marinozzi, F., and Patanè, F. (2002) Microtensile measurements of single trabeculae stiffness in human femur. J. Biomech. 35: 1515–1519.
Birchall, J. D. and Thomas, N. L. (1983) On the architecture and function of cuttlefish bone. J. Mater. Sci. 18: 2081–2086.
Black, J. and Hastings, G. W. (1998) Handbook of Biomaterials Properties. London: Chapman and Hall.
Bledzki, A. K. and Gassan, J. (1999) Composites reinforced with cellulose based fibres. Prog. Polymer Sci. 24: 221–274.
Boal, D. (2012) Mechanics of the Cell, 2nd edn. Cambridge: Cambridge University Press.
Bodde, S. G., Meyers, M. A., and McKittrick, J. (2011) Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco). J. Mech. Behav. Biomed. Mater. 4: 723–732.
Bonfield, W. and Datta, P. K. (1974) Young’s modulus of compact bone. J. Biomech. 7: 147–149.
Bonser, R. H. C. (1995) Melanin and the abrasion resistance of feathers. The Condor 95: 590–591.
Bonser, R. H. C. (2001) The mechanical performance of medullary foam from feathers. J. Mater. Sci. Lett. 20: 941–942.
Bonser, R. H. C. and Purslow, P. P. (1995) The Young’s modulus of feather keratin. J. Exp. Biol. 198: 1029–1033.
Bonser, R. H. C. and Witter, M. S. (1993) Indentation hardness of the bill keratin of the European starling. The Condor 95: 736–738.
Boskey, A. (2003) Bone mineral crystal size. Osteoporos. Int. 14: 16–21.
Bouligand, Y. (1970) Aspects ultrastructuraux de la calcification chez les Crabes. 7th Int. Cong. Electron Microscopy, Grenoble, France, 31 Aug. 1970, pp. 105–106.
Bouligand, Y. (1972) Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tiss. Cell 4: 189–217.
Bowden, N., Tamerler, A., Carbech, J., and Whitesides, G. M. (1997) Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276: 233–235.
Brånemark, P. I. (1972a) Rehabilitation with intra-osseous anchorage of dental prosthesis. Tandlakartidningen 844: 662–663.
Brånemark, P. I. (1972b) Rehabilitation with a denture anchored to the jawbone. Lakartidningen 69: 4813–4814.
Brånemark, P. I. and Breine, U. (1964) Formation of bone marrow in isolated segment of rib periosteum in rabbit and dog. Blut 10: 236–252.
Brånemark, P. I. and Eriksson, E. (1972) Method for studying qualitative and quantitative changes of blood flow in skeletal muscle. Acta Physiol. Scand. 84: 284–288.
Brånemark, P. I., Breine, U., Johansson, B., and Roylance, P. J. (1964) Regeneration on bone marrow. Acta Anat. 59: 1–46.
Bricteux-Grègoire, S., Florkin, M., and Grègoire, C. H. (1968) Prism conchiolin of modern or fossil molluscan shells: an example of protein paleization. Comp. Biochem. Physiol. 24: 567–572.
Brink, D. J. and van der Berg, N. G. (2004) Structural colours from feathers of the bird Bostrychia hagedash. J. Phys. D: Appl. Phys. 37: 813–818.
Brodkorb, P. (1955) Number of feathers and weights of various systems in a bald eagle. Wilson Bull. 67: 142.
Brown, C. H. (1975) Structural Materials in Animals. London: Pitman.
Brown, S. (1997) Metal-recognition by repeating polypeptides. Natl. Biotechnol. 15: 269–272.
Bruet, B. J. F., Qi, H. J., Boyce, M. C. et al. (2005) Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20: 2400–2419.
Bruet, B. J. F., Song, J., Boyce, M. C., and Ortiz, C. (2008) Materials design principles of ancient fish armor. Nat. Mater. 7: 748–756.
Brush, A. H. (1986) Tissue specific protein heterogeneity in keratin structures. Biochem. Syst. Ecol. 14: 547–551.
Brush, A. H. and Wyld, J. A. (1982) Molecular organization of avian epidermal structures. Comp. Biochem. Physiol. B 73: 313–325.
Budiansky, B. (1983) Micromech. 16: 3–12.
Buehler, M. J. (2008) Hierarchical nanomechanics of collagen fibrils: atomistic and molecular modeling. In Fratzl, P., ed. Collagen: Structure and Mechanics. New York: Springer.
Buehler, M. J. and Wong, S. Y. (2007) Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys. J. 93: 37–43.
Buhler, P. (1972) Sandwich structures in the skull capsules of various birds: the principles of light-weight structures in organisms. Inf. Inst. Lightweight Struct. (Stuttgart) 4: 39–50.
Bulter, D. L., Grood, E. S., Noyes, F. R., Zernicke, R. F., and Brackett, K. (1984) Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J. Biomach. 17: 579–596.
Burgess, S. C., King, A., and Hyde, R. (2006) An analysis of optimal structural feathers in the peacock tail feather. Opt. Laser Technol. 38: 329–334.
Burke, J. F., Yannas, I. V., Quinby, W. C., Bondoc, C. C., and Jung, W. K. (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 194: 413–428.
Burr, D. B., Schaffler, M. B., and Frederickson, R. G. (1988) Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J. Biomech. 21: 939–945.
Butler, M. and Johnson, A. S. (2004) Are melanized feather barbs stronger?J. Exp. Biol. 207: 285–293.
Byrom, D. (1991) Biomaterials: Novel Materials from Biological Sources. New York: Macmillan.
Calvert, P. (1994) Strategies for biomimetic mineralization. Scripta Met. 31: 977–982.
Cameron, G. J., Wess, T. J., and Bonser, R. H. C. (2003) Young’s modulus varies with differential orientation of keratin in feathers. J. Struct. Biol. 143: 118–123.
Cao, J. (2002) Is the α-β transition of keratin a transition of α-helices to β-pleated sheets? II Synchroton investigation for stretched single specimens. J. Molec. Struct. 607: 69–75.
Carlton, F. C. (1903) The color changes in the skin of the so-called Florida Chameleon. Anolis carolinensis Cuv. Proc. Am. Acad. Arts Sci. 39: 259–276.
Carroll, M. and Holt, A. C. (1972) Suggested modification of the P-α model for porous materials. J. Appl. Phys. 43: 759–761.
Cartwright, J. H. E. and Checa, A. G. (2007) The dynamics of nacre self-assembly. J. R. Soc. Interface 4: 491–504.
Cha, J. N., Shimizu, K., Zhou, Y. et al. (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. USA 96: 361–365.
Cha, J. N., Stucky, G. D., Morse, D. E., and Deming, T. J. (2000) Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403: 289–292.
Chazal, J., Tangguy, A., Bourges, M. et al. (1985) Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J. Biomech. 18: 167–176.
Checa, A. G., Cartwright, J. H., and Willinger, M. G. (2009) The key role of the surface membrane in why gastropod nacre grows in towers. Proc. Natl. Acad. Sci USA 106: 38–43.
Chen, B., Peng, X., Wang, J. G., and Wu, X. (2004) Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite. Ceram. Intl. 30: 2011–2014.
Chen, I., Chen, P. -Y., Meyers, M. A., and McKittrick, J. (2011) Armadillo armor: mechanical testing and microstructural evaluation. J. Mech. Behav. Biomed. Mater. 4: 713–722.
Chen, I. H., Yang, W., and Meyers, M. A. (2014) Alligator osteoderms: mechanical behavior and hierarchical structure, MSEC 35: 441–448.
Chen, P. -Y., Lin, A. Y. M., McKittrick, J., and Meyers, M. A. (2008a) Structure and mechanical properties of crab exoskeleton. Acta Biomater. 4: 587–596.
Chen, P. -Y., Lin, A. Y. M., Lin, Y. S. et al. (2008b) Structure and mechanical properties of selected biological materials. J. Mech. Behav. Biomed. Mater. 1: 208–226.
Chen, P. -Y., Lin, A. Y. M., Lin, Y. S. et al. (2008c) Structural biological materials: overview of current research. JOM 60: 23–32.
Chen, P. -Y., Stokes, A. G., and McKittrick, J. (2009) Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). Acta Biomater. 5: 693–706.
Chen, P. -Y., McKittrick, J., and Meyers, M. A. (2012) Biological materials: functional adaptations and bioinspired designs. Prog. Mater. Sci. 57: 1492–1704.
Chernova, O. F. (2005) Polymorphism of the architectonics of definitive contour feathers. Doklady Akademii Nauk 404: 280–285.
Clark, C. and Petrie, L. (2007) Fracture toughness of bovine claw horn cattle with and without vertical fissures. Veterinary J. 173: 541–547.
Clutton-Brock, T. H. (1982) The function of antlers. Behavior 79: 108–124.
Cohen, M., Kear, B. H., and Mehrabian, R., eds. (1980) Rapid Solidification Processing: Principles and Technologies. Baton Rouge, LA: Claitor’s Publishing Division, p. 1.
Corning, W. R. and Biewener, A. A. (1998) In vivo strains in pigeon flight feather shafts: implications for structural design. J. Exp. Biol. 201: 3057–3065.
Coulombe, P. A. and Omary, M. B. (2002) ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell. Biol. 14: 110–122.
Coulombe, P. A., Bousquet, O., Ma, L., Yamada, S., and Wirtz, D. (2000) The ‘ins’ and ‘outs’ of intermediate filament organization. Trends Cell. Biol. 10: 420–428.
Crenshaw, D. G. (1980) Design and materials of feather shafts: very light, rigid structures. Symp. Soc. Exp. Biol. 34: 485–486.
Cribb, B. W., Stewart, A., Huang, H. et al. (2008) Insect mandibles – comparative mechanical properties and links with metal incorporation. Naturwissenschaft. 95: 17–23.
Cribb, B. W., Lin, C. -L., Rintoul, L., Rasch, R., Hasenpusch, J., and Huang, H. (2010) Hardness in arthropod exoskeletons in the absence of transition metals. Acta Biomater. 6: 3152–3156.
Crne, M., Sharma, V., Blair, J., Park, J. O., Summers, C. J., and Srinivasarao, M. (2011) Biomimicry of optical microstructures of Papilo palinurus. EPL 93: 14001(1–4).
Cubo, J. and Casinos, A. (2000) Incidence and mechanical significance of pneumatization in the long bones of birds. Zool. J. Linnean Soc. 130: 499–510.
Cunniff, P. M., Fossey, S. A., Auerbach, M. A. et al. (1944) Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polymer Adv. Technol. 5: 401–410.
Currey, J. D. (1976) Further studies on mechanical properties of mollusk shell material. J. Zool. 180: 445–453.
Currey, J. D. (1977) Mechanical properties of mother-of-pearl in tension. Proc. R. Soc. Lond. B 196: 443–463.
Currey, J. D. (1979) Mechanical properties of bone tissues with greatly differing functions. J. Biomech. 12: 313–319.
Currey, J. D. (1980) Mechanical properties of mollusc shell. In Vincent, J. F. V. and Currey, J. D., eds. The Mechanical Properties of Biological Materials, Symp. Soc. Exp. Biol. 34. Cambridge: Cambridge University Press, pp. 73–87.
Currey, J. D. (1984a) Effects of differences in mineralization on the mechanical properties of bone. Phil. Trans. R. Soc. Lond. B 304: 509–518.
Currey, J. D. (1984b) The Mechanical Adaptations of Bones. Princeton, NJ: Princeton University Press.
Currey, J. D. (1989) Strain rate dependence of the mechanical properties of reindeer antler and the cumulative damage model of bone fracture. J. Biomech. 22: 469–475.
Currey, J. D. (1999) The design of mineralized hard tissues for their mechanical functions. J. Exp. Biol. 202: 3285–3294.
Currey, J. D. (2002) Bones: Structure and Mechanics. Princeton, NJ: Princeton University Press.
Currey, J. D. (2010) Mechanical properties and adaptations of some less familiar bony tissues. J. Mech. Behav. Biomed. Mater. 3: 357–372.
Currey, J. D. and Alexander, R. M. (1985) The thickness of the walls of tubular bones. J. Zool. A 206: 453–468.
Currey, J. D. and Brear, K. (1992) Fractal analysis of compact bone and antler fracture surfaces. Biomimetics 1: 103–118.
Currey, J. D. and Kohn, A. J. (1976) Fracture in crossed-lamellar structure of conus shells. J. Mater. Sci. 11: 1615–1623.
Currey, J. D. and Taylor, J. D. (1974) The mechanical behaviour of some molluscan hard tissues. J. Zool. Lond. 173: 395–406.
Currey, J. D., Nash, A., and Bonfield, W. (1982) Calcified cuticle in the stomatopod smashing limb. J. Mater. Sci. 17: 1939–1944.
Currey, J. D., Brear, K., and Zioupos, P. (1996) The effects of aging and changes in mineral content in degrading the toughness of human femora. J. Biomech. 29: 257–260.
Currey, J. D., Zioupos, P., Davis, A., and Casinos, A. (2001) Mechanical properties of nacre and highly mineralized bone. Proc. R. Soc. Lond. B 268: 107–111.
Dai, Z. and Yang, Z. (2010) Macro-/micro-structures of elytra, mechanical properties of the biomaterial and the coupling strength between elytra in beetles. J. Bionic Eng. 7: 6–12.
Dao, M., Lim, C. T., and Suresh, S. (2003) Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51: 2259–2280.
Dao, M., Li, J., and Suresh, S. (2006) Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. C 26: 1232–1244.
Davis, P. G. (1998) The bioerosion of bird bones. Intl. J. Osteoarch. 7: 388–401.
Dawson, M. A. and Gibson, L. J. (2007) Optimization of cylindrical shells with compliant cores. Intl. J. Solids Struct. 44: 1145–1160.
de Leeuw, N. H. and Parker, S. C. (1998) Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach. J. Phys. Chem. B 102: 2914–2922.
De Villiers, J. P. R. (1971) Crystal structures of aragonite, strontianite, and witherite. Am. Mineral. 56: 758–767.
Del Campo, A., Greiner, C., Alvarez, I., and Arzt, E. (2007) Patterned surfaces with pillars with 3D tip geometry mimicking bioattachment devices. Adv. Mater. 19: 1973–1977.
Denny, M. (1976) The physical properties of spider’s silk and their role in the design of orb-webs. J. Exp. Biol. 65: 483–506.
Deville, S., Saiz, E., Natta, R. K., and Tomsia, A. P. (2006a) Freezing as a path to build complex composites. Science 311: 515–518.
Deville, S., Saiz, E., and Tomsia, A. P. (2006b) Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomater. 27: 5480–5489.
Diamond, J. M. (1986) How great white sharks, saber-toothed cats and soldiers kill. Nature 322: 773–774.
Dickinson, M. (2008) Mechanical properties of an arthropod exoskeleton – nanoindentation of the beetle Scarites subterraneus. HysitronTM Nanoindetation Application Note.
Donovan, D. A. and Carefoot, T. H. (1997) Locomotion in the abalone Haliotis kamtschatkana: pedal morphology and cost of transport. J. Exp. Biol. 200: 1145–1153.
Downing, S. W., Spitzer, R. H., Salo, W. L., Downing, J. S., Saidel, L. J., and Koch, E. A. (1981) Threads in the hagfish slime gland thread cells: organization, biochemical features, and length. Science 212: 326–328.
Downing, S. W., Spitzer, R. H., Koch, E. A., and Salo, W. L. (1984) The hagfish slime gland thread cell. I. A unique cellular system for the study of intermediate filaments and intermediate filament-microtubule interactions. J. Cell. Biol. 98: 653–669.
Druhala, M. and Feughelman, M. (1974) Dynamic mechanical loss in keratin at low temperatures. Colloid Polymer Sci. 252: 381–391.
Dumont, E. R. (2010) Bone density and the lightweight skeletons of birds. Proc. Roy. Soc. B 277: 2193–2198.
Easterling, K. E., Harrysson, R., Gibson, L. J., and Ashby, M. F. (1982) On the mechanics of balsa and other woods. Proc. Roy. Soc. A 383: 31–41.
Ehrlich, H. and Worch, H. (2007) Collagen, a huge matrix in glass sponge flexible spicules of the meter-long Hyalonema sieboldi. In Baüerlein, E., Behrens, P., and Epple, M., eds. Handbook of Biomineralization. Weinheim: Wiley–VCH, chap. 3.
Ehrlich, H., Maldonado, M., Spindler, K. D. et al. (2007a) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J. Exp. Zool. B Mol. Dev. Evol. 308: 347–356.
Ehrlich, H., Krautter, M., Hanke, T. et al. (2007b) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J. Exp. Zool. B Mol. Dev. Evol. 308: 473–483.
Elias, C. N. (2011) Factors affecting the success of dental implants. In Turkyilmaz, I., ed. Implant Dentistry – A Rapidly Evolving Practice. Rijeka: InTech.
Elias, C. N., Lima, J. H. C., Valiev, R., and Meyers, M. A. (2008) Biomedical applications of titanium and its alloys. JOM 60: 46–49.
Elias, C. N., Meyers, M. A., Valiev, R. Z., and Monteiro, S. N. (2013) Ultrafine grained titanium for biomedical applications: an overview of performance. J. Mater. Res. Technol. 2: 340–350.
Elices, M. (2000) Structural Biological Materials: Design and Structure-Property Relationships. Oxford: Pergamon.
Elices, M., Perez-Rigueiro, J., Plaza, G. R., and Guinea, G. V. (2005) J. Metals 57: 60–66.
Elvin, C. M., Carr, A. G., Huson, M. G. et al. (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437: 999–1002.
Ennos, R. (2012) Solid Biomechanics. Princeton, NJ: Princeton University Press.
Erben, H. K. (1972) On the structure and growth of the nacreous tablets in gastropods. Biomineral. 7: 14–27.
Ernst, V. V. (1973a) The digital pads of the tree frog Hyla cinerea. I. The epidermis. Tissue Cell 5: 83–96.
Ernst, V. V. (1973b) The digital pads of the tree frog Hyla cinerea. II. The mucous glands. Tissue Cell 5: 97–104.
Escoffier, C., de Rigal, J., Rochefort, A., Vasselet, R., Lévêque1, J. -L., and Agache, P. G. (1989) Age-related mechanical properties of human skin: an in vivo study. J. Invest. Dermatol. 93: 353–357.
Evans, A. G. and Charles, E. A. (1976) Fracture toughness determination by indentation. J. Am. Ceramic Soc. 59: 371–372.
Evans, A. G., Suo, Z., Wang, R. Z., Aksay, I. A., He, M. Y., and Hutchinson, J. W. (2001a) Model for the robust mechanical behavior of nacre. J. Mater. Res. 16: 2475–2493.
Evans, A. G., Hutchinson, J. W., Fleck, N. A., Ashby, M. F., and Wadley, H. N. G. (2001b) The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46: 309–327.
Falini, G., Albeck, S., Weiner, S., and Addadi, L. (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271: 67–69.
Fantner, G. E., Hassenkam, T., Kindt, J. H. et al. (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Mater. 4: 612–616.
Fecchio, R. S., Seki, Y., Bodde, S. G. et al. Mechanical behavior of prosthesis in toucan beak (Ramphastos toco). Mater. Sci. Eng. C 30: 460–464.
Fernholm, B. (1981) Thread cells from the slime glands of hagfish (Myxinidae). Acta Zool. 62: 137–145.
Feughelman, M. (1997) Mechanical Properties and Structure of α-Keratin Fibres: Wool, Human Hair and Related Fibres. Sydney: University of New South Wales Press.
Filshie, B. K. and Rogers, G. E. (1962) An electron microscope study of the fine structure of feather keratin. J. Cell. Biol. 13: 1–12.
Fine, M. E. and Marcus, H. L. (1994) Materials science and engineering, an educational discipline. Annu. Rev. Mater. Sci. 24: 1–17.
Fischmeister, H. and Arzt, E. (1982) Densification of powders by particle deformation. Powder Metall. 26: 82–88.
Fisher, T. E., Oberhauser, A. F., Carrion-Vazquez, M., Marszalek, P. E., and Fernandez, J. M. (1999) The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24: 379–384.
Fleck, N. A., Deng, L., and Budiansky, B. (1995) Prediction of kink width in compressed fiber composites. J. Appl. Mech. 62: 329–337.
Flory, P. J. (1956) Theory of elastic mechanisms in fibrous proteins. J. Am. Chem. Soc. 78: 5222–5235.
Flory, P. J. (1964) Principles of Polymer Chemistry. New York: Cornell University Press.
Flynn, C. E., Lee, S. -W., Peelle, B. R., and Belcher, A. M. (2003) Viruses as vehicles for growth, organization, and assembly of materials. Acta Mater. 51: 5867–5880.
Forbes, P. (2007) The Gecko’s Foot. London: Fourth Estate.
Franck, A., Cocquyt, G., Simoens, P., and De Belie, N. (2006) Biomechanical properties of bovine claw horn. Biosys. Eng. 93: 459–467.
Franke, O., Göken, M., Meyers, M. A., Durst, K., and Hodge, A. M. (2011) Dynamic nanoindentation of articular porcine cartilage. Mater. Sci. Eng. C 31: 789–795.
Franzblau, C. (1971) Elastin. In Florkin, M. and Stotz, E. H., eds. Comparative Biochemistry. Amsterdam: Elsevier, pp. 659–712.
Fraser, R. D. and MacRae, T. P. (1980) Molecular structure and mechanical properties of keratin. In Vincent, J. F. V. and Currey, J. D., eds. The Mechanical Properties of Biological Materials, Symposium of the Society of Experimental Biology. Cambridge: Cambridge University Press, pp. 211–246.
Fraser, R. D. B. and Parry, D. A. D. (1996) The molecular structure of reptilian keratin. Int. J. Biol. Macro. 19: 207–211.
Fraser, R. D. B., MacRae, T. P., and Rogers, G. E. (1972) Keratins: Their Composition, Structure, and Biosynthesis. Springfield: Thomas.
Fraser, R. D., MacRae, T. P., Parry, D. A., and Suzuki, E. (1986) Intermediate filaments in alpha keratins. Proc. Natl. Acad. Sci. USA 83: 1179–1183.
Fratzl, P., ed. (2008) Collagen: Structure and Mechanics. New York: Springer.
Fratzl, P. and Weinkamer, R. (2007) Nature’s hierarchical materials. Prog. Mater. Sci. 52: 1263–1334.
Fratzl, P., Groschner, M., Vogl, G., Plenk, H., Eschberger, J., and Fratzl-Zelman, N. (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J. Bone Miner. Res. 7: 329–334.
Fratzl, P., Misof, K., Zizak, I., Rapp, G., Amenitsch, H., and Bernstorff, S. (1998) Fibrillar structure and mechanical properties of collagen. J. Struct. Biol. 122: 119–122.
Fratzl, P., Gupta, H. S., Paschalis, E. P., and Roschger, P. (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. Mater. Chem. 14: 2115–2123.
Frazzetta, T. H. (1988) The mechanics of cutting and the form of shark teeth (Chondrichthyes, Elasmobranchii). Zoomorphol. 108: 93–107.
Frenkel, M. J. and Gillespie, J. M. (1976) The proteins of the keratin component of bird’s beaks. Austral. J. Biol. Sci. 29: 467–479.
Fritz, M. and Morse, D. E. (1998) The formation of highly organized biogenic polymer/ceramic composite materials: the high-performance microaluminate of molluscan nacre. Curr. Opin. Colloid Int. Sci. 3: 55–62.
Fritz, M., Belcher, A. M., Radmacher, M. et al. (1994) Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 371: 49–51.
Fu, G., Valiyaveettil, S., Wopenka, B., and Morse, D. E. (2005) CaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. Biomacromol. 6: 1289–1298.
Fudge, D. S. and Gosline, J. M. (2004) Molecular design of the alpha-keratin composite: insights from a matrix-free model, hagfish slime threads. Proc. Roy. Soc. Lond. B 271: 291–299.
Fudge, D. S., Gardner, K. H., Forsyth, V. T., Riekel, C., and Gosline, J. M. (2003) The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys. J. 85: 2015–2027.
Fudge, D. S., Levy, N., Chiu, S., and Gosline, J. M. (2005) Composition, morphology and mechanics of hagfish slime. J. Exp. Biol. 208: 4613–4625.
Fung, Y. C. (1967) Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213: 1532–1544.
Fung, Y. C. (1990) Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer-Verlag.
Fung, Y. C. (1993) Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. New York: Springer.
Fung, Y. C. (1997) Biomechanics: Circulation, 2nd edn. New York: Springer-Verlag.
Gao, H. J. (2006) Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fracture 138: 101–137.
Gao, H. J. and Klein, P. A. (1998) Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J. Mech. Phys. Solids 46: 187–218.
Gao, H. J., Ji, B. H., Jäger, I. L., Arzt, E., and Fratzl, P. (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 100: 5597–5600.
Gao, Y., Ellery, A., Jaddou, M., and Vincent, J. (2006) Deployable wood wasp drill for planetary subsurface sampling. IEEEAC Paper #1591, Version 1, IEEE, pp. 1–8.
Garcia, A. (2005) Get a grip: integrins in cell-biomaterial interactions. Biomater. 26: 7525–7529.
Garrido, M. A., Elices, M., Viney, C., and Perez-Riguerio, J. (2002) The variability and interdependence of spider drag line tensile properties. Polymer 43: 4495–4502.
Gathercole, L. J. and Keller, A. (1975) Light microscopic waveforms in collagenous tissues and their structural implications. In Atkins, E. D. T., ed. Structure of Fibrous Biopolymers. London: Butterworth.
Gautieri, A., Ionita, M., Silvestri, D. et al. (2010) Computer-aided molecular modeling and experimental validation of water permeability properties in biosynthetic materials. J. Comput. Theor. Nanos. 7: 1287–1293.
Gautieri, A., Vesentini, S., Redaelli, A., and Buehler, M. J. (2011) Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano. Lett. 11: 757–766.
Geim, A. K., Dubonos, S. V., Grigorieva, I. V., Nvoselov, K. S., Zhukov, A. A., and Shapoval, S. Y. (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2: 461–463.
Ghiradella, H. (1991) Light and colour on the wing: structural colours in butterflies and moths. Appl. Opt. 30: 3492–3500.
Gibson, L. J. and Ashby, M. F. (1988) Cellular Solids, 1st edn. Oxford: Pergamon Press Ltd.
Gibson, L. J. and Ashby, M. F. (1997) Cellular Solids: Structure and Properties, 2nd edn. Cambridge: Cambridge University Press.
Gibson, L. J., Ashby, M. F., and Harley, B. A. (2010) Cellular Materials in Nature and Medicine. Cambridge: Cambridge University Press.
Giraud-Guille, M. M. (1984) Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16: 75–92.
Giraud-Guille, M. M. (1990) Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy. J. Structur. Biol. 103: 232–240.
Giraud-Guille, M. M. (1998) Plywood structures in nature. Curr. Opin. Solid State Mater. Sci. 3: 221–228.
Giraud-Guille, M. M. and Bouligand, Y. (1995) Crystal growth in a chitin matrix: the study of calcite development in the crab cuticle. In Karnicki, Z. S., ed. Chitin World. Bremerhaven: Wirtschaftsverlag NW, pp. 136–144.
Goffredi, S. K., Warén, A., Orphan, V. J., Van Dover, C. L., and Vrijenhoek, R. C. (2004) Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl. Environ. Microbiol. 70: 3082–3090.
Gordon, J. E. and Jeronimidis, G. (1980) Composites with high work of fracture. Phil. Trans. Roy. Soc. Lond. A 297: 545–550.
Gosline, J. M., Denny, M. W., and DeMont, M. E. (1984) Spider silk as rubber. Nature 309: 551–552.
Gosline, J. M., DeMont, M. E., and Denny, M. W. (1986) The structure and properties of spider silk. Endeavour 10: 37–43.
Gosline, J. M., Guerette, P. A., Ortlepp, C. S., and Savage, K. N. (1999) The mechanical design of spider silks. J. Exp. Biol. 202: 3295–3303.
Gray, W. R., Sandberg, L. B., and Forster, J. A. (1973) Molecular model for elastin structure and function. Nature 246: 461–466.
Green, D. M. (1979) Tree frog toe pads: comparative surface morphology using scanning electron microscopy. Can. J. Zool. 57: 2033–2046.
Green, D. M. and Simon, P. (1986) Digital microstructure in ecologically diverse sympatric microhylid frogs, genera Cophixalus and Sphenophryne (Amphibia: Anura) Papua New Guinea. Austral. J. Zool. 34: 135–145.
Grègoire, C. (1957) Topography of the organic components in mother-of pearl. J. Biophys. Biochem. Cytol. 3: 797–808.
Grègoire, C. (1961) Structure of the conchiolin cases of the prisms in Mytilus edulis linne. J. Biophys. Biochem. Cytol. 9: 395–400.
Grègoire, C., Duchateau, G., and Florkin, M. (1954) La trame protidique des nacres. Experientia 10: 37–40.
Greiner, C., del Campo, A., and Artz, E. (2007) Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. Langmuir 23: 3495–3502.
Greiner, C., Arzt, E., and del Campo, A. (2009) Hierarchical gecko-like adhesives. Adv. Mater. 21: 479–482.
Griel, P., Lifka, T., and Kaindl, A. (1998) Biomorphic cellular silicon carbide ceramics from wood: I. J. Eur. Ceram. Soc. 18: 1961–1973.
Gronau, G., Krishnaji, S. T., Kinahan, M. E. et al. (2012) A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomater. 33: 8240–8255.
Grunkemeier, G., Rahimtoola, S., Starr, A., and Braunwald, E. (2002) Atlas of Heart Diseases, Vol. 11. New York: Springer, chap. 13.
Guvendiren, M., Brassa, D. A., Messersmith, P. B., and Shull, R. (2009) Adhesion of DOPA-functionalized model membranes to hard and soft surfaces. J. Adhesion 9: 631–645.
Hall, S. J. (2003) Basic Biomechanics, 4th edn. Boston, MA: McGraw-Hill.
Hamilton, W. J. and Selly, M. K. (1976) Fog basking by the Namib Desert beetle, Onymacris unguicularis. Nature 262: 284–285.
Hamm, C. E., Merkel, R., Springer, O. et al. (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421: 841–843.
Hanna, G. and Barnes, W. J. P. (1991) Adhesion and detachment of the toe pads of treefrogs. J. Exp. Biol. 155: 103–125.
Hansma, H. G., Pietrasanta, L. I., Auerbach, I. D., Sorenson, C., Golan, R., and Holden, P. A. (2000) Probing biopolymers with the atomic force microscope: a review. J. Biomater. Sci. Polymer Ed. 11: 675–683.
Hansma, P. K., Fantner, G. E., Kindt, J. H., et al. (2005) Sacrificial bonds in the interfibrillar matrix of bone. J. Musculoskel. Neuron. Inter. 5: 313–315.
Harley, B. A., Lynn, A. K., Wissner-Gross, Z., Bonfield, W., Yannas, I. V., and Gibson, L. J. (2010) Design of a multiphase osteochondral scaffold II: fabrication of a mineralized collagen-GAG scaffold. J. Biomed. Mater. Res. 92: 1066–1077.
Hassenkarm, T., Fantner, G. E., Cutroni, J. A., Weaver, J. C., Morse, D. E., and Hansma, P. K. (2004) High-resolution AFM imaging of intact and fracture trabecular bone. Bone 35: 4–10.
Hayes, W. C. and Carter, D. R. (1976) Postyield behavior of subchondral trabecular bone. J. Biomed. Mater. Res. Symp. 7: 537–544.
Hearle, J. W. S. (2000) A critical review of the structural mechanics of wool and hair fibres. Int. J. Biol. Macromol. 27: 123–138.
Helle, A. S., Easterling, K. E., and Ashby, M. F. (1985) Hot isostatic pressing diagrams: new developments. Acta Metall. 33: 2163–2174.
Hench, L. L. (1991) Bioceramics – from concept to clinic. J. Am. Ceram. Soc. 74: 1487–1510.
Hench, L. L. (1999) Bioactive glasses and glass-ceramics. Bioceram. 293: 37–63.
Hench, L. L. (2006) The story of Bioglass®. J. Mater. Sci. Mater. Med. 17: 967–978.
Henshaw, J. (1971) Antlers – the unbrittle bones of contention. Nature 231: 469.
Hepburn, H. R., Joffe, I., Green, N., and Nelson, K. J. (1975) Mechanical properties of a crab shell. Comp. Biochem. Physiol. 50: 551–554.
Hernandez, C. J., Tang, S. Y., Baumbach, B. M. et al. (2005) Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone 37: 825–832.
Herrick, W. C., Kingsbury, H. B., and Lou, D. Y. S. (1978) A study of the normal range of strain, strain rate and stiffness of tendon. J. Biomed. Mater. Res. 12: 877–894.
Hershey, A. D. and Chase, M. (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36: 39–56.
Heuer, A. H., Kink, D. J., Laraia, V. J. et al. (1992) Innovative materials processing strategies: a biomimetic approach. Science 255: 1098–1105.
Heywood, B. and Mann, S. (1994) Template directed nucleation and growth of inorganic materials. Adv. Mater. 6: 9–19.
Hieronymus, T. L., Witmer, L. M., and Ridgely, R. C. (2006) Structure of white rhinoceros (Ceratotherium simum) horn investigated by x-ray computed tomography and histology with implications for growth and external form. J. Morphol. 267: 1172–1176.
Hight, T. K. and Brandeau, J. F. (1983) Mathematical modeling of the stress-strain-strain rate behavior of bone using the Ramberg-Osgood equation. J. Biomech. 16: 445–450.
Hildebrand, M. (2003) Biological processing of nanostructured silica in diatoms. Pro. Org. Coat. 47: 256–266.
Hildebrand, M. (2005) Prospects of manipulating diatom silica nanostructure. J. Nanosci. Nanotech. 5: 146–157.
Hildebrand, M. (2008) Diatoms, biomineralization processes, and genomics. Chem. Rev. 108: 4855–4874.
Hildebrand, M., York, E., Kelz, J. I. et al. (2006) Nanoscale control of silica morphology and three-dimensional structure during diatom cell wall formation. J. Mater. Res. 21: 2689–2698.
Hill, A. V. (1938) The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. Lond. B 126: 136–195.
Hillerton, J. E. and Vincent, J. F. V. (1982) The specific location of zinc in insect mandibles. J. Exp. Biol. 101: 333–366.
Hillerton, J. E., Reynolds, S. E., and Vincent, J. F. V. (1982) On the indentation hardness of insect cuticle. J. Exp. Biol. 96: 45–52.
Holl, S. M., Hansen, D., Waite, J. H., and Shaefer, J. (1993) Solid-state NMR analysis of crosslinking in mussel protein glue. Arch. Biochem. Biophys. 302: 255–258.
Homsy, C. (1970) Biocompatibility in selection of materials for implantation. I. Biomed. Mater. Res. 4: 341–356.
Hörnschemeyer, T., Beutel, R. G., and Pasop, F. (2002) Head structures of Priacma serrata Leconte (Coleptera, Archostemata) inferred from x-ray tomography. J. Morphol. 252: 298–314.
Hou, D. F., Zhou, G. S., and Zheng, M. (2004) Conch shell structure and its effect on mechanical behaviors. Biomater. 25: 751–756.
Huang, J., Wang, X., and Wang, Z. L. (2006) Controlled replication of butterfly wings for achieving tunable photonic properties. Nano. Lett. 6: 2325–2331.
Huang, T. J., Brough, B., Ho, C. -M. et al. (2004) A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 85: 5391–5393.
Huber, G., Mantz, H., Spolenak, R. et al. (2005) Proc. Natl. Acad. Sci. USA 102: 16293–16296.
Hughes, P. M. (1987) Insect cuticular growth layers seen under the scanning electron microscope: a new display method. Tissue Cell 19: 705–712.
Ikeshoji, T. (1993) The Interface Between Mosquitoes and Humans. Tokyo: University of Tokyo Press (in Japanese).
Ikoma, T., Kobayashi, H., Tanaka, J., Wals, D., and Mann, S. (2003) Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J. Structur. Biol. 142: 327–333.
Imbeni, V., Nalla, R. K., Bosi, C., Kinney, J. H., and Ritchie, R. O. (2003) In vitro fracture toughness of human dentin. J. Biomed. Mater. Res. A 66: 1–9.
Imbeni, V., Kruzic, J. J., Marshall, G. W., Marshall, S. J., and Ritchie, R. O. (2005) The dentin–enamel junction and the fracture of human teeth. Nature Mater. 4: 229–232.
Jackson, A. P., Vincent, J. F. V., and Turner, R. M. (1988) The mechanical design of nacre. Proc. R. Soc. Lond. B 234: 415–440.
Jackson, A. P., Vincent, J. F. V., and Turner, R. M. (1989) A physical model of nacre. Comp. Sci. Tech. 36: 225–266.
Jackson, D. A., Symons, R. H., and Berg, P. (1972) Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 69: 2904–2909.
Jackson, S. A., Cartwright, A. G., and Lewis, D. (1978) The morphology of bone mineral crystals. Calcif. Tissue Res. 25: 217–222.
Jaenisch, R. and Mintz, B. (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc. Natl. Acad. Sci. 71: 1250–1254.
Jäger, I. and Fratzl, P. (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79: 1737–1746.
Jelf, P. M. and Fleck, N. A. (1992) Compression failure mechanisms in unidirectional composites. J. Comp. Mater. 26: 2706–2726.
Jeronimidis, G. (1976) The work of fracture of wood in relation to its structure. In Baas, P., Bolton, A. J., and Catling, D. M., eds. Wood Structure in Biological and Technological Research. Leiden: The University Press, pp. 253–265.
Jeronimidis, G. (1980) Wood, one of nature’s challenging composites. Symp. Soc. Exp. Biol. 34: 169–182.
Ji, B. H. and Gao, H. J. (2004) Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solid 52: 1963–1990.
Ji, B. H. and Gao, H. J. (2010) Mechanical properties of biological composites. Ann. Rev. Mater. Res. 40: 77–100.
Ji, B. H., Gao, H. J., and Hsia, K. J. (2004) How do slender mineral crystals resist buckling in biological materials?Phil. Mag. Lett. 84: 631–641.
Joffe, I., Hepburn, H. R., Nelson, K. J., and Green, N. (1975) Mechanical properties of a crustacean exoskeleton. Comp. Biochem. Physiol. A 50: 545–549.
Johnson, K. L., Kendall, K., and Roberts, A. D. (1971) Surface energy and the contact of elastic solids. Proc. Roy. Soc. Lond. 324: 301–313.
Johnson, W., Soden, P. D., and Trueman, E. R. (1972) A study in jet propulsion: an analysis of the motion of the squid, Loligo vulgaris. Exp. Biol. 56: 155–165.
Kahler, G. A., Fisher, F. M., and Sass, R. L. (1976) The chemical composition and mechanical properties of the hinge ligament in bivalve mollusks. Biol. Bull. 151: 161–181.
Kamat, S., Su, X., Ballarini, R., and Heuer, A. H. (2000) Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405: 1036–1040.
Kamat, S., Kessler, H., Ballarini, R., Nassirou, M., and Heuer, A. H. (2004) Fracture mechanisms of the Strombus gigas conch shell: II – micromechanics analyses of multiple cracking and large-scale crack bridging. Acta Materialia 52: 2395–2406.
Kaplan, D. and McGrath, K. (1997) Protein-Based Materials. Boston, MA: Birkhäuser.
Kaplan, D. L., Lombardi, S. J., Muller, W. S., and Fossey, S. A. (1991) In Byrom, D., ed. Biomaterials: Novel Materials from Biological Sources. New York: Stockton Press.
Kaplan, D., Adams, W. W., Farmen, B., and Viney, C. (1994) Silk: biology, structure, properties, and genetics. Am. Chem. Soc. Symp. 544: 2–16.
Karam, G. N. and Gibson, L. J. (1994) Biomimicking of animal quills and plant stems: natural cylindrical shells with foam cores. Mater. Sci. Eng. C 2: 113–132.
Karam, G. N. and Gibson, L. J. (1995a) Elastic buckling of cylindrical shells with elastic cores I: Analysis. Intl. J. Solids Struct. 32: 1259–1283.
Karam, G. N. and Gibson, L. J. (1995b) Elastic buckling of cylindrical shells with elastic cores II: Experiments. Intl. J. Solids Struct. 32, 1285–1306.
Kasapi, M. A. and Gosline, J. M. (1996) Strain-rate-dependent mechanical properties of the equine hoof wall. J. Exp. Biol. 199: 1133–1146.
Kasapi, M. A. and Gosline, J. M. (1997) Design complexity and fracture control in the equine hoof wall. J. Exp. Biol. 200: 1639–1659.
Kasapi, M. A. and Gosline, J. M. (1998) Exploring the possible functions of equine hoof wall tubules. Equine Vet. J. 26: 10–14.
Kasapi, M. A. and Gosline, J. M. (1999) Micromechanics of the equine hoof wall: optimizing crack control and material stiffness through modulation of the properties of keratin. J. Exp. Biol. 202: 377–391.
Katz, J. L. (1971) Hard tissue as a composite material. 1. Bounds on elastic behavior. J. Biomech. 4: 455–473.
Kelly, R. E. and Rice, R. V. (1967) Abductin: a rubber-like protein from the internal triangular hinge ligament of pectin. Science 155: 208–210.
Keten, S., Xu, Z. P., Ihle, B., and Buehler, M. J. (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nature Mater. 9: 359–367.
Khanuja, S. (1991) Processing of laminated B4C-polymer laminated composites. M.S. Thesis, University of Washington.
Kisailus, D., Truong, Q., Amemiya, Y., Weaver, J. C., and Morse, D. E. (2006) Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc. Natl. Acad. Sci. 103: 5652–5657.
Kitchener, A. (1987a) Fracture toughness of horns and a reinterpretation of the horning behaviour of bovids. J. Zool. 213: 621–639.
Kitchener, A. (1987b) Effect of water on the linear viscoelasticity of horn sheath keratin. J. Mater. Sci. Lett. 6: 321–322.
Kitchener, A. (1988) An analysis of the forces of fighting of the blackbuck (Antilope cervicapra) and the bighorn sheep (Ovis canadensis) and the mechanical design of horns of bovids. J. Zool. 214: 1–20.
Kitchener, A. C. (1991) The evolution and mechanical design of horns and antlers. In Rayner, J. M. V. and Wootton, R. J., eds. Biomechanics and Evolution. Cambridge: Cambridge University Press, pp. 229–253.
Kitchener, A. C. (2000) Fighting and the mechanical design of horns and antlers. In Domenici, P. and Blake, R. W., eds. Biomechanics in Animal Behavior. Oxford: BIOS Scientific Publishers, pp. 291–314.
Kitchener, A. and Vincent, J. F. V. (1987) Composite theory and the effect of water on the stiffness of horn keratin. J. Mater. Sci. 22: 1385–1389.
Kobayashi, I. (1969) Internal microstructure of shell of bivalve mollusks. Am. Zool. 9: 633–672.
Kobayashi, I. and Samata, T. (2006) Bivalve shell structure and organic matrix. Mater. Sci. Eng. C 26: 692–698.
Koch, K., Bhushan, B., and Barthlott, W. (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog. Mater. Sci. 54: 137–178.
Koester, K. J., Ager, J. W., and Ritchie, R. O. (2008) The true toughness of human cortical bone measured with realistic short cracks. Nature Mater. 7: 672–676.
Kohr, E. (2001) Chitin: Fulfilling a Biomaterials Promise. Oxford: Elsevier Science.
Kokubo, T. (1991) Bioactive glass ceramics: properties and applications. Biomater. 12: 155–163.
Kolle, M., Salgard-Cunha, P. M., Scherer, M. R. J. et al. (2010) Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nature Nanotech. 5: 511–515.
Krajewska, B. (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microbiol. Tech. 35: 126–139.
Krauss, S., Monsonego-Orman, E., Zelzer, E., Fratzl, P., and Shahar, R. (2009) Mechanical function of a complex three-dimensional suture joining the bony elements in the shell of the red-eared slider turtle. Adv. Mater. 21: 407–412.
Krishnaji, S. T., Huang, W., Rabotyagova, O. et al. (2011) Thin film assembly of spider silk-like block copolymers. Langmuir 27: 1000–1008.
Kruzic, J. J., Nalla, R. K., Kinney, J. H., and Ritchie, R. O. (2003) Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. Biomater. 24: 5209–5221.
Kuhn-Spearing, L. F., Kessler, H., Chateau, E., Ballarin, R., Heuer, A. H., and Spearing, S. M. (1996) Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates. J. Mater. Sci. 31: 6583–6594.
Kulchin, Y. N., Bezverbny, A. V., Bukin, O. A. et al. (2009) Optical and nonlinear optical properties of sea glass sponge spicules. Prog. Molec. Subcell. Biol. 47: 315–340.
Kulin, R. M., Chen, P. -Y., Jiang, F., McKittrick, J., and Vecchio, K. S. (2010) Dynamic fracture resilience of elk antler: biomimetic inspiration for improved crashworthiness. JOM 62: 41–46.
Kulin, R. M., Chen, P. -Y., Jiang, F., and Vecchio, K. S. (2011) A study of the dynamic compressive behavior of elk antler. Mater. Sci. Eng. C 31: 1030–1041.
Kustandi, T. S., Low, H. Y., Teng, J. H., Rodrizuez, I., and Yin, R. (2009) Mimicking domino-like photonic nanostructures on butterfly wings. Small 5: 574–578.
Laraia, V. J. and Heuer, A. H. (1989) Novel composite microstructure and mechanical behavior of mollusk shell. J. Am. Ceram. Soc. 72: 2177–2179.
Launey, M. E., Munch, E., Alsem, D. H. et al. (2009) Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57: 2919–2932.
Launey, M. E., Buehler, M. J., and Ritchie, R. O. (2010a) On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40: 25–53.
Launey, M. E., Chen, P. -Y., McKittrick, J., and Ritchie, R. O. (2010b) Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater. 6: 1505–1514.
Lawrence, C., Vukusic, P., and Sambles, J. R. (2002) Grazing-incidence iridescence from a butterfly wing. Appl. Opt. 41: 437–441.
Lee, G. Y. H. and Lim, C. T. (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol. 25: 111–118.
Lee, H. (2010) Biomaterials: intelligent glue. Nature 465: 298–299.
Lee, H., Dellatore, S. M., Mille, W. M., and Messersmith, P. B. (2007a) Mussel-inspired surface chemistry for multifunctional coatings. Science 318: 426–430.
Lee, H., Lee, B. P., and Messersmith, P. B. (2007b) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448: 338–341.
Lee, S., Reyante, B., Tsukasa, T. et al. (2011) Impact testing of structural biological materials. Mater. Sci. Eng. C 31: 730–739.
Lee, S. W., Mao, C. B., Flynn, C. E., and Belcher, A. M. (2002) Ordering of quantum dots using genetically engineered viruses. Science 296: 892–895.
Lee, Y. J., Yi, H., Kang, K. et al. (2009) Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324: 1051–1055.
Levi, C., Barton, J. L., Guillemet, C., Le Bras, E., and Jehuede, P. J. (1989) A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. Mater. Sci. Lett. 8: 337–339.
Levi, K., Weber, R. J., Do, J. Q., and Dauskardt, R. H. (2009) Drying stresses and damage in human stratum corneum. Inl. J. Cosmet. Sci. 32: 276–293.
Levi, K., Kwan, A., Rhines, A. S., Gorcea, M., Moore, D. J., and Dauskardt, R. H. (2011) Effect of glycerin on drying stresses in human stratum corneum. J. Dermatol. Sci. 61: 129–131.
Levi-Kalisman, Y., Falini, G., Addadi, L., and Weiner, S. (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using Cryo-TEM. J. Struct. Biol. 135: 8–17.
Levy, T. E., Najjar, M., and Higham, T. (2010) Ancient texts and archaeology revisited radiocarbon and Biblical dating in the southern Levant. Antiquity 84: 834–847.
Li, V. C., Stang, H., and Krenchel, H. (1993) Micromechanics of crack bridging in fibre-reinforced concrete. Mater. Struct. 26: 486–494.
Liao, J., Yang, L., Grashow, J., and Sacks, M. (2005) Molecular orientation of collagen in intact planar connective tissues under biaxial stretch. Acta Biomater. 1: 45–54.
Lichtenegger, H. C., Schöberl, T., Bartl, M. H., Waite, H., and Stucky, G. D. (2002) High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science 298: 389–392.
Lim, C. T. (2006) Single cell mechanics study of the human disease malaria. J. Biomech. Sci. Eng. 1: 82–92.
Lim, C. T., Dao, M., Suresh, S., Sow, C. H., and Chew, K. T. (2004) Large deformation of living cells using laser traps. Acta Mater. 52: 1837–1845.
Lim, C. T., Zhou, E. H., Li, A., Vedula, S. R. K., and Fu, H. X. (2006a) Experimental techniques for single cell and single molecule biomechanics. Mater. Sci. Eng. C 26: 1278–1288.
Lim, C. T., Zhou, E. H., and Quek, S. T. (2006b) Mechanical models for living cells – a review. J. Biomech. 39: 195–216.
Lin, A. and Meyers, M. A. (2005) Growth and structure in abalone shell. Mater. Sci. Eng. A 390: 27–41.
Lin, A. Y. M. and Meyers, M. A. (2009) Interfacial shear strength in abalone nacre. J. Mech. Behav. Biomed. Mater. 2: 607–612.
Lin, A. Y. M, Meyers, M. A., and Vecchio, K. S. (2006) Mechanical properties and structure of Strombus gigas, Tridacna gigas and Haliotis rufescens sea shells: a comparative study. Mater. Sci. Eng. C 26: 1380–1389.
Lin, A. Y. M., Chen, P. -Y., and Meyers, M. A. (2008) The growth of nacre in the abalone shell. Acta Biomater. 4: 131–138.
Lin, A. Y. M., Brunner, R., Chen, P. -Y., Talke, F. E., and Meyers, M. A. (2009) Underwater adhesion of abalone: the role of van der Waals and capillary forces. Acta Mater. 57: 4178–4185.
Lin, K. L., Chen, L., and Chang, J. (2012) Fabrication of dense hydroxyapatite nanobioceramics with enhanced mechanical properties via two-step sintering process. Int. J. Appl. Ceramic Tech. 9: 479–485.
Lin, Y. S., Wei, C. T., Olevsky, E. A., and Meyers, M. A. (2011) Mechanical properties and laminate structure of Arapaima gigas scale. J. Mech. Behav. Biomed. Mater. 4: 1145–1156.
Lincoln, G. A. (1972) The role of antlers in the behaviour of red deer. J. Exp. Zool. 182: 233–249.
Lincoln, G. A. (1992) Biology of antlers. J. Zool. Lond. 226: 517–528.
Lingham-Soliar, T., Bonser, R. H. C., and Wesley-Smith, J. (2009) Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering. Proc. Roy. Soc. B 277: 1161–1168.
Lopez, M. I., Chen, P. -Y., McKittrick, J., and Meyers, M. A. (2011) Growth of nacre in abalone: seasonal and feeding effects. Mater. Sci. Eng. C 31: 238–245.
Lowenstam, H. A. (1962) Magnetite in denticle capping in recent chitons (polyplacophora). Bull. Geol. Soc. Am. 73: 435.
Lowenstam, H. A. (1981) Minerals formed by organisms. Science 211: 1126–1131.
Lowenstam, H. A. and Weiner, S. (1989) On Biomineralization. New York: Oxford University Press.
Lucas, G. L., Cooke, F. W., and Friis, E. A. (1999) A Primer on Biomechanics. New York: Springer.
Lucchinetti, E., Thomann, D., and Danuser, G. (2000) Review: micromechanical testing of bone trabeculae-potentials and limitations. J. Mater. Sci. 35: 6057–6064.
Lynn, A. K., Nakamura, T., Patel, N. et al. (2005) Composition-controlled nanocomposites of apatite and collagen incorporating silicon as an osseopromotive agent. J. Biomed. Mater. Res. A 74: 447–453.
Ma, M., Vijayan, K., Hiltner, A., Baer, E., and Im, J. (1990a) Thickness effects in microlayer composites of polycarbonate and poly-(styrene-acrylonitrile). J. Mater. Sci. 25: 2039–2046.
Ma, M., Im, J., Hiltner, A., and Baer, E. (1990b) Fatigue crack propagation of polycarbonate and poly-(styrene-acrylonitrile). J. Appl. Poly. Sci. 40: 669–684.
Magdans, U. and Gies, H. (2004) Single crystal structure analysis of sea urchin spine calcites: systematic investigations of the Ca/Mg distribution as a function of habitat of the sea urchin and the sample location in the spine. Eur. J. Mineral. 16: 261–268.
Mahdavi, A., Ferreira, L., Sundback, C. et al. (2008) Biodegradable and biocompatible gecko inspired adhesive. Proc. Natl. Acad. Sci. USA 105: 2307–2312.
Mahoney, E., Holt, A., Swain, M., and Kilpatrick, N. (2010) The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J. Dentistry 28: 589–594.
Malik, C. L., Gibeling, J. C., Martin, R. B., and Stover, S. M. (2003) Equine cortical bone exhibits rising R-curve fracture mechanics. J. Biomech. 36: 191–198.
Mann, S. (1988) Molecular recognition in biomineralization. Nature 332: 119–124.
Mann, S. (2001) Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press.
Mann, S., Archibald, D. D., Didymus, J. M. et al. (1993) Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261: 1286–1292.
Manne, S. and Aksay, I. A. (1997) Thin films and nanolaminates incorporating organic/inorganic interfaces. Curr. Opin. Sol. State Mater. Sci. 2: 358–364.
Marin, F. and Luquet, G. (2005) Molluscan biomineralization: the proteinaceous shell constituents of Pinna nobilis L. Mater. Sci. Eng. C 25: 105–111.
Mark, R. E. (1967) Cell Wall Mechanics of Wood Tracheids. New Haven: Yale University Press.
Marks, R. and Plewig, G. (1983) Stratum Corneum. New York: Springer-Verlag.
Marshall, C. and Gillespie, J. M. (1977) The keratin proteins of wool, horn and hoof from sheep. Austr. J. Bio. Sci. 30: 389–400.
Martin, R. B. and Burr, D. B. (1982) A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage. J. Biomech. 15: 137–139.
Matonis, V. A. (1964) Elastic behavior of low density rigid foams in structural applications. Soc. Plast. Eng. J. 20: 1024–1030.
Mayer, G. (2005) Rigid biological systems as models for synthetic composites. Science 310: 1144–1147.
Mayer, G. (2006) New classes of tough composite materials – lessons from natural rigid biological systems. Mater. Sci. Eng. C 26: 1261–1268.
Mayer, G. and Sarikaya, M. (2002) Rigid biological composite materials: structural examples for biomimetic design. Exp. Mech. 42: 395–403.
McAllister, A. and Channing, L. (1983) Comparisons of toe pads of some Southern African climbing frogs. S. Afr. J. Zool. 18: 110–114.
McBride, E. D. (1938) Absorbable metal in bone surgery: a further report on the use of magnesium alloys. J. Am. Med. Assoc. 111: 2464–2467.
McElhaney, J. H. (1966) Dynamic response of bone and muscle tissue. J. Appl. Physiol. 21: 1231–1236.
McKittrick, J., Chen, P. -Y., Tombolato, L. et al. (2010) Energy absorbent natural materials and bio-inspired design strategies: a review. Mater. Sci. Eng. C 30: 331–342.
McKittrick, J., Chen, P. -Y., Bodde, S. G., Yang, W., Novitskaya, E. E., and Meyers, M. A. (2012) The structure, functions, and mechanical properties of keratin. JOM 64: 449–468.
Meldrum, F. C. and Ludwigs, S. (2007) Template-directed control of crystal morphologies. Macromol. Biosci. 7: 152–162.
Melnick, C. A., Chen, S., and Mecholsky, J. J. (1996) Hardness and toughness of exoskeleton material in the stone crab Menippe mercenaria. J. Mater. Res. 11: 2903–2907.
Melvin, J. W. and Evans, F. G. (1973) Crack propagation in bone. ASME Biomaterials Symp. Detroit, MI 1973.
Menezes, G. C., Elias, C. N., Attias, M., and Silva-Filho, F. C. (2003) Osteoblast adhesion onto titanium dental implants. Acta Microsc. 12: 13–19.
Menig, R., Meyers, M. H., Meyers, M. A., and Vecchio, K. S. (2000) Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater. 48: 2383–2398.
Menig, R., Meyers, M. H., Meyers, M. A., and Vecchio, K. S. (2001) Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells. Mater. Sci. Eng. A 297: 203–211.
Mercer, E. H. (1961) Keratin and Keratinization: An Essay in Molecular Biology. New York: Pergamon Press.
Meyers, M. A. and Chawla, K. C. (2009) Mechanical Behavior of Materials, 2nd edn. Cambridge: Cambridge University Press.
Meyers, M. A., Lin, A. Y. M., Seki, Y., Chen, P. -Y., Kad, B. K., and Bodde, S. (2006) Structural biological composites: an overview. JOM 58: 35–41.
Meyers, M. A., Lin, A. Y. M., Chen, P. -Y., and Muyco, J. (2008a) Mechanical strength of abalone nacre: role of the soft organic layer. J. Mech. Behav. Biomed. Mater. 1: 76–85.
Meyers, M. A., Chen, P. -Y., Lin, A. Y. M., and Seki, Y. (2008b) Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53: 1–206.
Meyers, M. A., Lin, A. Y. M., Lin, Y. S., Olevsky, E. A., and Georgalis, S. (2008c) The cutting edge: sharp biological materials. JOM 60: 21–26.
Meyers, M. A., Lim, C. T., Li, A. et al. (2010) The role of organic layer in abalone nacre. Mater. Sci. Eng. C 29: 2398–2410.
Meyers, M. A., Chen, P. -Y., Lopez, M. I., Seki, Y., and Lin, A. Y. M. (2011) Biological materials: a materials science approach. J. Mech. Behav. Biomed. Mater. 4: 626–657.
Meyers, M. A., Lin, Y. S., Olevsky, E. A., and Chen, P. -Y. (2012) Battle in the Amazon: Arapaima versus Piranha. Adv. Eng. Mater. 14: B1–B10.
Meyers, M. A., McKittrick, J., and Chen, P. -Y. (2013) Structural biological materials: critical mechanics-materials connections. Science 339: 773–779.
Milwich, M., Speck, T., Speck, O., Stegmaier, T., and Planck, H. (2006) Biomimetics and technical textiles: solving engineering problems with the help of nature’s wisdom. Am. J. Botany 93: 1455–1465.
Miserez, A., Schneberk, T., Sun, C., Zok, F. W., and Waite, J. H. (2008) The transition from stiff to compliant materials in squid beaks. Science 319: 1816–1819.
Miserez, A., Weaver, J. C., Pedersen, P. B. et al. (2009a) Microstructural and biochemical characterization of the nanoporous sucker rings from Dosidicus gigas. Adv. Mater. 21: 401–406.
Miserez, A., Wasko, S. S., Carpenter, C. F., and Waite, J. H. (2009b) Non-entropic and reversible long-range deformation of an encapsulating bioelastomer. Nature Mater. 8: 910–916.
Mitchison, T. J. and Cramer, L. P. (1996) Actin-based cell motility and cell locomotion. Cell 84: 371–379.
Moir, B. G. (1990) Comparative-studies of fresh and aged Tridacna gigas shell – preliminary investigations of a reported technique for pretreatment of tool material. J. Archaeol. Sci. 17: 329–345.
Montagna, W. and Parakkal, P. F. (1974) The Structure and Function of Skin, 3rd edn. New York: Academic Press.
Monteiro, S. N., Lopes, F. P. D., Barbosa, A. P., Bevitori, A. B., Da Silva, I. L. A., and Da Costa, L. L. (2011a) Natural lignocellulosic fibers as engineering materials – an overview. Metall. Mater. Trans. 42a: 2963–2974.
Monteiro, S. N., Satyanarayana, K. G., Ferreira, A. S., Nascimento, D. O. C., and Lopes, F. P. D. (2011b) Selection of high strength natural fibers. Revista Matéria 15: 488–505.
Mooney, M. (1940) A theory of large elastic deformation. J. Appl. Phys. 11: 582–592.
Morais, L. S., Glaucio, G., Serra, G. C. et al. (2007) Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release. Acta Biomater. 3: 331–339.
Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., and Ritchie, R. O. (2008) Tough, bio-inspired hybrid materials. Science 322: 1516–1520.
Murr, L. E. and Ramirez, D. A. (2012) The microstructure of the cultured freshwater pearl. JOM 64: 469–474.
Nachemson, A. and Evans, J. H. (1968) Some mechanical properties of the third human lumbar interlaminar ligament (ligamen tum flavum). J. Biomech. 1: 211–220.
Nakahara, H. (1991) Nacre formation in bivalve and gastropod mollusks. In Suga, S. and Nakahara, H., eds. Mechanisms and Phylogeny of Mineralization in Biological Systems. New York: Springer, pp. 343–350.
Nakahara, H., Kakei, M., and Bevelander, G. (1982) Electron microscopic and amino acid studies on the outer and inner shell layers of Haliotis rufescens. Venus Jpn. J. Malac. 41: 33–46.
Nalla, R. K., Kinney, J. H., and Ritchie, R. O. (2003a) Mechanistic fracture criteria for the failure of human cortical bone. Nature Mater. 2: 164–168.
Nalla, R. K., Kinney, J. H., and Ritchie, R. O. (2003b) Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomater. 24: 3955–3968.
Nalla, R. K., Kruzic, J. J., Kinney, J. H., and Ritchie, R. O. (2004) On the origin of the toughness of mineralized tissue: microcracking or crack bridging?Bone 34: 790–798.
Nalla, R. K., Kruzic, J. J., Kinney, J. H., and Ritchie, R. O. (2005) Mechanistic aspects of fracture and R-curve behavior of human cortical bone. Biomater. 26: 217–231.
Nalla, R. K., Kruzic, J. J., Kinney, J. H., Balooch, M., Ager, J. W., and Ritchie, R. O. (2006a) Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Mater. Sci. Eng. C 26: 1251–1260.
Nalla, R. K., Kinney, J. H., Tomsia, A. P., and Ritchie, R. O. (2006b) Role of alcohol in the fracture resistance of teeth. J. Dent. Res. 85: 1022–1026.
Nam, K. T., Kim, D. W., Yoo, P. J. et al. (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312: 886–888.
Nassau, K. (1998) Color for Science, Art, and Technology. New York: Elsevier.
Nassau, K. (2001) The Physics and Chemistry of Color, 2nd edn. New York: Wiley.
Nelson, D. L. and Cox, M. M. (2005) Lehninger Principles of Biochemistry, 4th edn. New York: W.H. Freeman.
Nevell, T. P. and Zeronian, S. H. (1985) Cellulose Chemistry and its Applications. New York: Wiley.
Neville, A. C. (1975) Biology of the Arthropod Cuticle. New York: Springer-Verlag.
Neville, A. C. (1993) Biology of Fibrous Composites. Cambridge: Cambridge University Press.
Nicolis, G. and Prigogine, I. (1989) Exploring Complexity. New York: W. H. Freeman.
Nikolov, S., Petrov, M., Lymperakis, L. et al. (2010) Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. Adv. Mater. 22: 519–526.
Novitskaya, E., Chen, P. Y., Lee, S., et al. (2011) Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomater. 7: 3170–3177.
Nudelman, F., Gotliv, B. A., Addadi, L., and Weiner, S. (2006) Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol. 153: 176–187.
Nuzzo, R. G. and Allara, D. L. (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105: 4481–4483.
Ogden, R. W. (1972) Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids. Proc. Roy. Soc. Lond. A 326: 565–584.
Oka, K., Aoyagi, S., Hashiguchi, G., Isono, Y., and Fujita, H. (2002) Fabrication of a micro needle for a trace blood test. Proc. Sensor. Actuat. A 97–98: 478–485.
Olson, G. B. and Hartman, H. (1982) Martensite and life: displacive transformations as biological processes. J. de Phys. 43: (C4) 855–865.
Olson, P. and Watabe, N. (1980) Studies on formation and resorption of fish scales. Cell Tissue Res. 211: 303–316.
Onozato, H. and Watabe, N. (1979) Studies on fish scale formation and resorption. Cell Tissue Res. 201: 409–422.
Orme, C. A., Noy, A., Wierzbicki, A. et al. (2001) Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411: 775–779.
Oxlund, H., Manschot, J., and Viidik, A. (1988) The role of elastin in the mechanical properties of skin. J. Biomech. 3: 213–218.
Ozin, G. A., Manners, I., Fournier-Bidoz, S., and Arsenault, A. (2005) Dream nanomachines. Adv. Mater. 17: 3011–3018.
Pabisch, S., Puchegger, S., Kirchner, H. O. K., Weiss, I. M., and Peterlik, H. (2010) Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. Alba. J. Struct. Biol. 172: 270–275.
Papir, Y. S., Hsu, K. H., and Wildnauer, R. H. (1975) The mechanical properties of stratum corneum: I. The effect of water and ambient temperature on the tensile properties of newborn rat stratum corneum. Biochim. Biophys. Acta 399: 170–180.
Park, A. C. and Baddiel, C. B. (1972) Rheology of stratum corneum. Part I. A molecular interpretation of the stress-strain curve. J. Soc. Cosmet. Chem. 23: 3–12.
Park, J. and Lakes, R. S. (2007) Biomaterials: An introduction, 3rd edn. New York: Springer.
Parker, A. R. and Lawrence, C. R. (2001) Water capture from desert fogs by a Namibian beetle. Nature 414: 33–34.
Parry, D. A. D. and North, A. C. T. (1998) Hard α-keratin intermediate filament chains: substructure of the N- and C-terminal domains and the predicted structure and function of the C-terminal domains of type I and type II chains. J. Struct. Biol. 122: 67–75.
Patek, S. N., Baio, J. E., Fisher, B. L., and Suarez, A. V. (2006) Multifunctionality and mechanical origins: ballistic jaw propulsion in trap-jaw ants. Proc. Natl. Acad. Sci. 103: 12787–12792.
Pautard, F. G. E. (1963) Mineralization of keratin and its comparison with the enamel matrix. Nature 199: 531–535.
Peattie, A. M. and Full, R. J. (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc. Natl. Acad. Sci. USA 104: 18595.
Pek, Y. S., Spector, M., Yanna, I. V., and Gibson, L. J. (2004) Degradation of a collagen-chondroitin-6 sulfate matrix by collagenase and chondroitinase. Biomater. 25: 472–482.
Peña, E., Martinsh, P., Mascarenhas, T. et al. (2011) Mechanical characterization of the softening behavior of human vaginal tissue. J. Mech. Behav. Biomed. 4: 275–283.
Perez-Rigueiro, J., Viney, C., Llorca, J., and Elices, M. (2000) Mechanical properties of silkworm silk in liquid media. J. Appl. Polymer Sci. 75: 1270–1277.
Pins, G. D., Christiansen, D. L., Patel, R., and Silver, F. H. (1977) Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys. J. 73: 2164–2172.
Pollock, R. G., Soslowsky, L. J., Bigliani, L. U., Flatow, E. L., and Mow, V. C. (1990) The mechanical properties of the inferior glenohumeral ligament. Trans. Orthop. Res. Soc. 15: 510.
Potyrailo, R. A., Ghiradella, H., Vertiatchikh, A., Dovidenko, K., Cournoyer, J. R., and Olson, E. (2007) Morpho butterfly wing scales demonstrate highly selective vapor response. Nature Photon. 1: 123–128.
Poulsen, N., Sumper, M., and Kröger, N. (2003) Biosilica formation diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc. Natl. Acad. Sci. 100: 12075–12080.
Presser, V., Schultheiβ, S., Berthold, C., and Nickel, K. G. (2009) Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression. J. Bionic Eng. 6: 203–213.
Preston, R. D. (1974) The Physical Biology of Plant Cell Walls. London: Chapman and Hall.
Prigogine, I. (1962) Non Equilibrium Statistical Mechanics. New York: Wiley-Interscience.
Pruitt, L. A. and Chakravartula, A. M. (2011) Mechanics of Biomaterials. Cambridge: Cambridge University Press.
Prum, R. O. (1999) Development and evolutionary origin of feathers. J. Exp. Zool. 285: 291–306.
Purslow, P. P. (1983) Measurement of the fracture toughness of extensible connective tissues. J. Mater. Sci. 18: 3591–3598.
Purslow, P. P. and Vincent, J. F. V. (1978) Mechanical properties of primary feathers from the pigeon. J. Exp. Biol. 72: 251–260.
Qian, J. and Gao, H. (2006) Scaling effects of wet adhesion in biological attachment systems. Acta Biomater. 2: 51–58.
Qin, X. X., Coyne, K. J., and Waite, J. H. (1997) Tough tendons: mussel byssus has collagen with silk-like domains. J. Biol. Chem. 272: 32623–32627.
Quicke, D. L. J., Wyeth, P., Fawke, J. D., Basibuyuk, H. H., and Vincent, J. F. V. (1998) Manganese and zinc in the ovipositors and mandibles of hymenopterous insects. Zool. J. Linn. Soc. 124: 387–396.
Raabe, D., Al-Sawalmih, A., Romano, P. et al. (2005a) Mater. Sci. Forum 495–497: 1665–1674.
Raabe, D., Romano, P., Sachs, C. et al. (2005b) Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J. Crystal Growth 283: 1–7.
Raabe, D., Sachs, C., and Romano, P. (2005c) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53: 4281–4292.
Raabe, D., Romano, P., Sachs, C. et al. (2006) Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater. Sci. Eng. A 421: 143–153.
Rabin, B. H., Williamson, R. L., and Suresh, S. (1995) Fundamentals of residual stresses in joints between dissimilar material. Mater. Res. Soc. Bull. 20: 37–39.
Rabotyagova, O. S., Cebe, P., and Kaplan, D. L. (2011) Protein-based block copolymers. Biomacromol. 12: 269–289.
Ratner, B. D., Hoffman, A. S., Schoen, F. J., and Lemons, J. E. (2005) Biomaterials Science: An Introduction to Materials in Medicine. New York: Academic Press.
Regan, B. C., Aloni, S., Jensen, K., Ritchie, R. O., and Zettl, A. (2005) Nanocrystal-powered nanomotor. Nano Lett. 5: 1730–1733.
Ren, D., Meyers, M. A., Zhou, B., and Feng, Q. (2013) Comparative study of carp otolith hardness: lapillus and asteriscus. Mater. Sci. Eng. C 33: 1876–1881.
Rhee, H., Horstemeyer, M. F., Hwang, Y., Lim, H., El Kadiri, H., and Trim, W. (2009) A study on the structure and mechanical behavior of the Terrapene carolina carapace: a pathway to design bio-inspired synthetic composites. Mater. Sci. Eng. C 29: 2333–2339.
Rhee, H., Horstemeyer, M. F., and Ramsay, A. (2011) A study on the structure and mechanical behavior of the Dasypus novemcinctus shell. Mater. Sci. Eng. C 31: 363–369.
Rho, J. Y., Kuhn-Spearing, L., and Zioupos, P. (1998) Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20: 92–103.
Rinaudo, M. (2006) Chitin and chitosan: properties and applications. Prog. Polymer Sci. 31: 603–632.
Ritchie, R. O. (1988) Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding. Mater. Sci. Eng. A 103: 15–28.
Ritchie, R. O. (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fracture 100: 55–83.
Ritchie, R. O., Kinney, J. H., Kruzic, J. J., and Nalla, R. K. (2006) Cortical bone fracture. In Akay, M., ed. Wiley Encyclopedia of Biomedical Engineering. Hoboken, NJ: John Wiley & Sons Inc., pp. 1–18.
Rivlin, R. S. and Saunders, D. W. (1951) Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Phil. Trans. Roy. Soc. Lond. A 243: 251–288.
Rogers, G. J., Milthorpe, B. K., Muratore, A., and Schindhelma, K. (1990) Measurement of the mechanical properties of the ovine anterior cruciate ligament bone-ligament-bone complex: a basis for prosthetic evaluation. Biomater. 11: 89–96.
Rohrlich, S. T. and Rubin, R. W. (1975) Biochemical characterization of crystals from the dermal iridophores of a chameleon Anolis carolinensis. J. Cell. Biol. 66: 635–645.
Romano, P., Fabritius, H., and Raabe, D. (2007) The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater. 3: 301–309.
Rosewater, J. R. (1965) The family Tridacnidae in the Indo-Pacific. Indo-Pacific Mollusca 1: 347–396.
Rudall, K. M. (1955) The distribution of collagen and chitin. Symp. Soc. Exp. Biol. 9: 49–71.
Ruibal, R. and Ernst, V. (1965) The structure of the digital setae of lizards. J. Morphol. 117: 271–293.
Runnegar, B. and Bengtson, S. (1992) Origin of hard parts: early skeletal fossils. In Briggs, D. E. G. and Crowther, P. R., eds. Palaeobiology: A Synthesis. Oxford: Wiley-Blackwell, pp. 24–29.
Ryan, S. D. and Williams, J. L. (1989) Tensile testing of rodlike trabeculae excised from bovine femoral bone. J. Biomech. 22: 351–355.
Ryder, M. L. (1962) Structure of the rhinoceros horn. Nature 193: 1199–1201.
Sachs, C., Fabritius, H., and Raabe, D. (2006a) Hardness and elastic properties of dehydrated cuticle from the lobster. J. Mater. Res. 21: 1987–1995.
Sachs, C., Fabritius, H., and Raabe, D. (2006b) Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation. J. Structur. Biol. 155: 409–425.
Sacks, M. (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. Trans. ASME 125: 280–287.
Sahni, V., Blackledge, T. A., and Dhinojwala, A. (2010) Viscoelastic solids explain spider web stickiness. Nature Commun. 1: 19.
Saito, A., Miyamura, Y., Nakajima, M. et al. (2006) Reproduction of the Morpho blue by nanocasting lithography. J. Vac. Sci. Tech. B 24: 3248–3251.
Sanchez, C., Arribart, H., and Giraud-Guille, M. M. (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Mater. 4: 277–288.
Sandhage, K. H., Dickerson, M. B., Huseman, P. M. et al. (2002) Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14: 429–433.
Sarikaya, M. (1994) An introduction to biomimetics: a structural viewpoint. Micros. Res. Tech. 27: 360–375.
Sarikaya, M. and Aksay, I. A. (1992) Nacre of abalone shell: a natural multifunctional nanolaminated ceramic-polymer composite material. In Case, S. T., ed. Results and Problems in Cell Differentiation – Biopolymers. Berlin: Springer-Verlag, pp. 1–26.
Sarikaya, M., Gunnison, K. E., Yasrebi, M., and Aksay, I. A. (1990) Mechanical property-microstructural relationships in abalone shell. In Rieke, P. C., Calvert, P. D., and Alper, M., eds. Materials Synthesis Utilizing Biological Processes, MRS Symp. Proc. Vol. 174. Pittsburgh, PA: Materials Research Society, pp. 109–116.
Sarikaya, M., Fong, H., Sunderland, N. et al. (2001) Biomimetic model of a sponge – spicular optical fiber-mechanical properties and structure. J. Mater. Res. 16: 1420–1428.
Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K., and Baneyx, F. (2003) Molecular biomimetics: nanotechnology through biology. Nature Mater. 2: 577–585.
Sasaki, N. and Odajima, S. (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech. 29: 1131–1136.
Sass, R. L. and Vidale, R. (1957) Interatomic distances and thermal anisotropy in sodium nitrate and calcite. Acta Crystall. 10: 567–570.
Schäffer, T. E., Zanetti, C. I., Proksch, R. et al. (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges?Chem. Mater. 9: 1731–1740.
Schillinger, M., Sabet, S., Loewe, C. et al. (2006) Balloon angioplasty versus implantation of Nitinol stents in the superficial femoral artery. New Engl. J. Med. 354: 1879–1888.
Schneider, A. S., Heiland, B., Peter, N. J., Guth, C., Arzt, E., and Weiss, I. M. (2012) Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: implications for the limits of biological control over the growth mode of abalone sea shells. BMC Biophys. 5: 19.
Schofield, R. M. S., Nesson, M. H., and Richardson, K. A. (2002) Tooth hardness increases with zinc-content in mandibles of young adult leaf-cutter ants. Naturwissenschaft. 89: 579–583.
Schultz, H. (2006) Sea Urchins. Hemdingen: Heinke & Peter Schutz Partner.
Schultz, J. T., Tompkins, R. G., and Burke, J. F. (2000) Artificial skin. Annu. Rev. Med. 51: 231–244.
Schwenzer, B., Gomm, J. R., and Morse, D. E. (2006) Substrate-induced growth of nanostructured zinc oxide films at room temperature using concepts of biomimetic catalysis. Langmuir 22: 9829–9831.
Schwinger, G., Zanger, K., and Greven, H. (2001) Structure and mechanical aspects of the skin of Bufo marinus (Anura, Amphibia). Tissue Cell 33: 541–547.
Seeman, N. C. and Belcher, A. M. (2002) Emulating biology: building nanostructures from the bottom up. Proc. Natl. Acad. Sci. USA 99: 6451–6455.
Seki, Y., Schneider, M. S., and Meyers, M. A. (2005) Structure and mechanical behavior of a toucan beak. Acta Mater. 53: 5281–5296.
Seki, Y., Kad, B., Benson, D., and Meyers, M. A. (2006) The toucan beak: structure and mechanical response. Mater. Sci. Eng. C 26: 1412–1420.
Seki, Y., Bodde, S. G., and Meyers, M. A. (2010) Toucan and hornbill beaks: comparative study. Acta Biomater. 6: 331–343.
Seki, Y., Mackey, M., and Meyers, M. A. (2012) Structure and micro-computed tomography-based finite element modeling of toucan beak. J. Mech. Behav. Biomed. Mater. 9: 1–8.
Selden, P. A. (1989) Orb-web weaving spiders in the early Cretaceous. Nature 340: 711–712.
Serra, G., Morais, L. S., Elias, C. N. et al. (2010) Sequential bone healing of immediately loaded mini-implants: histomorphometric and fluorescence analysis. Am. J. Orthodont. Dentofac. Orthop. 137: 80–90.
Sethi, S., Ge, L., Ajayan, P. M., and Dhinojwala, A. (2008) Gecko-inspired carbon nanotube based self cleaning adhesives. Nano. Lett. 8: 822–825.
Sethman, I., Hinrichs, R., Wörheide, G., and Putnis, A. (2006) Nano-cluster composite structure of calcitic sponge spicules – a case study of basic characteristics of biominerals. J. Inorg. Biochem. 100: 88–96.
Shadwick, R. E., Russell, A. P., and Lauff, R. F. (1992) The structure and mechanical design of rhinoceros dermal armour. Phil. Trans. Roy. Soc. Lond. B 337: 419–428.
Shear, W. A., Palmer, J. M., Coddington, J. A., and Bonamo, P. M. (1989) A devonian spinneret: early evidence of spiders and silk use. Science 246: 479–481.
Shen, X., Belcher, A. M., Hansma, P. K., Stucky, G. D., and Morse, D. E. (1997) Molecular cloning and characterization of Lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J. Biol. Chem. 272: 32472–32481.
Shen, Z. L., Dodge, M. R., Kahn, H. et al. (2008) Stress-strain experiments on individual collagen fibrils. Biophys. J. 95: 3956–3963.
Shen, Z. L., Kahn, H., Ballarini, R., and Eppelli, S. J. (2011) Viscoelastic properties of isolated collagen fibrils. Biophys. J. 100: 3008–3015.
Shepherd, S. A., Avalos-Borja, M., and Ortiz Quintanilla, M. (1995) Towards a chronology of Haliotis fulgens, with a review of abalone shell microstructure. Mar. Freshwater Res. 46: 607–615.
Shergold, E. A., Norman, A., Fleck, N. A., and Radford, D. (2006) The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int. J. Impact Engng. 32: 1384–1402.
Sherrard, K. M. (2000) Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol. Bull. 198: 404–414.
Sikoryn, T. A. and Hukins, D. W. L. (1990) Mechanism of failure of the ligamentum flavum of the spine during in vitro tensile tests. J. Orthop. Res. 8: 586–591.
Silyn-Roberts, H. and Sharp, R. M. (1988) Crystal growth and the role of the organic network in eggshell biomineralization. Proc. R. Soc. Lond. B 227: 303–324.
Simkiss, K. and Wilbur, K. M. (1989) Biomineralization: Cell Biology and Mineral Deposition. San Diego: Academic Press.
Sitti, M. and Fearing, R. S. (2003) Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J. Adhes. Sci. Tech. 17: 1055–1073.
Skalak, R. J., Farrow, D. A., and Hoger, A. J. (1997) Kinematics of surface growth. J. Math. Biol. 35: 869–907.
Skedros, J. G., Durand, P., and Bloebaum, R. D. (1995) Hypermineralized peripheral lamellae in primary osteons of deer antler: potential functional analogues of cement lines in mammalian secondary bone. J. Bone Min. Res. 10 (Suppl. 1): 441.
Smeathers, J. E. and Vincent, J. F. V. (1979) Mechanical properties of mussel byssus threads. J. Mollusc. Stud. 49: 219–230.
Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315–1317.
Snead, M. L., Zhu, D., Lei, Y. et al. (2006) Protein self-assembly creates a nanoscale device for biomineralization. Mater. Sci. Eng. C 26: 1296–1300.
Song, F., Bai, X. H., and Bai, Y. I. (2002) Microstructure and characteristics in the organic matrix layers of nacre. J. Mater. Res. 17: 1567–1570.
Song, F., Soh, A. K., and Bai, Y. L. (2003) Structural and mechanical properties of the organic matrix of nacre. Biomater. 24: 3623–3631.
Song, J., Ortiz, C., and Boyce, M. C. (2011) Threat-protection mechanics of an armored fish. J. Mech. Behav. Biomed. Mater. 4: 699–712.
Sonntag, R., Reinders, J., and Kretzer, J. P. (2012) What’s next? Alternative materials for articulation in total joint replacement. Acta Biomater. 8: 2434–2441.
Soong, R. K., Bachand, G. D., Neves, H. P., Olkhovets, A. G., Craighead, H. G., and Montemagno, C. D. (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290: 1555–1558.
Spolenak, R., Gorb, S., Gao, H., and Arzt, E. (2005a) Effects of contact shape on the scaling of biological attachments. Proc. Roy. Soc. A 461: 305–319.
Spolenak, R., Gorb, S., and Arzt, E. (2005b) Adhesion design maps for bio-inspired attachment systems. Acta Biomater. 1: 5–13.
Srinivasan, A. V., Haritos, G. K., and Hedberg, F. L. (1991) Biomimetics: advancing man-made materials through guidance from nature. Appl. Mech. Rev. 44: 463–482.
Stoeckel, D., Pelton, A., and Duering, T. (2004) Self-expanding Nitinol stents – material and design consideration. Eur. Radiol. 14: 292–301.
Studart, A. R. (2012) Towards high-performance bioinspired composites. Adv. Mater. 24: 5024–5044.
Su, X., Belcher, A. M., Zaremba, C. M., Morse, D. E., Stucky, G. D., and Heuer, A. H. (2002) Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone “flat pearls”. Chem. Mater. 14: 3106–3117.
Sun, C.-Y., and Chen, P.-Y. (2013) Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms. Acta Biomater. 9: 9049–9064.
Sundar, V. C., Yablon, A. D., Grazul, J. L., Han, M., and Aizenberg, J. (2003) Fibre-optical features of a glass sponge. Nature 424: 899–900.
Suresh, S. (2007) Biomechanics and biophysics of cancer cells. Acta Biomater. 3: 413–438.
Suresh, S., Spatz, J., Mills, J. P. et al. (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1: 15–30.
Swartz, S. M., Bennett, M. E., and Carrier, D. R. (1992) Wing bone stresses in free flying bats and the evolution of skeletal design for flight. Nature 359: 726–729.
Syn, C. K., Lesuer, D. R., Wolfenstine, J., and Sherby, O. D. (1993) Layer thickness effect on ductile tensile fracture of ultrahigh carbon steel-brass laminates. Met. Trans. A 24: 1647–1653.
Tamerler, C. and Sarikaya, M. (2007) Molecular biomimetics: utilizing nature’s molecular ways to practical engineering. Acta Biomater. 3: 289–299.
Tamerler, C. and Sarikaya, M. (2008) Molecular biomimetics: genetic synthesis, assembly, and formation of materials using peptides. MRS Bull. 33: 504–510.
Tang, Z., Kotov, N. A., Magonov, S., and Ozturk, B. (2003) Nanostructured artificial nacre. Nature Mater. 2: 413–419.
Taylor, A. M., Bonser, R. H. C., and Farrent, J. W. (2004) The influence of hydration on the tensile and compressive properties of avian keratinous tissues. J. Mater. Sci. 39: 939–942.
Taylor, J. D. and Layman, M. (1972) The mechanical properties of bivalve (Mollusca) shell structures. Palaeontol. 15: 73–87.
Taylor, J. R. A. and Patek, S. N. (2010) Ritualized fighting and biological armor: the impact mechanics of the mantis shrimp’s telson. J. Exp. Biol. 213: 3496–3504.
Teilhard de Chardin, P. (1970) Le Phénomène Humain. Paris: Seuil.
Teng, H. H., Dove, P. M., Orme, C. A., and De Yoreo, J. J. (1998) Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science 282: 724–727.
Thompson, D. W. (1917) On Growth and Form. Cambridge: Cambridge University Press.
Thompson, D. W. (1968) On Growth and Form, 2nd edn., reprinted. Cambridge: Cambridge University Press.
Thompson, J. B., Kindt, J. H., Drake, B., Hansma, H. G., Morse, D. E., and Hansma, P. K. (2001) Bone indentation recovery time correlates with bone reforming time. Nature 414: 773–775.
Thornton, P. H. and Magee, C. L. (1975a) The deformation of aluminum foams. Met. Trans. 6A:1253–1263.
Thornton, P. H. and Magee, C. L. (1975b) Deformation characteristics of zinc foam. Met. Trans. 6A: 1801–1807.
Tirrell, M., ed. (1994) Hierarchical Structures in Biology as a Guide for New Materials. Committee on Synthetic Hierarchical Structures, Commission on Engineering and Technical Systems, National Research Council. Washington D.C.: The National Academies Press, NMAB–464.
Tombolato, L., Novitskaya, E. E., Chen, P.-Y., Sheppard, F. A., and McKittrick, J. (2010) Microstructure, elastic and fracture properties of horn keratin. Acta Biomater. 6: 319–330.
Tong, W., Glimcher, M. J., Katz, J. L., Kuhn, L., and Eppell, S. J. (2003) Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif. Tiss. Int. 72: 592–598.
Toohey, K. S., Sottos, N. R., Lewis, J. A., Moore, J. S., and White, S. R. (2007) Self-healing materials with microvascular networks. Nature Mater. 6: 581–585.
Torre, C. (1948) Theorie und Verhalten zusammengepresster Pulver. Berg.-u Huttenmann. Monatsch. Montan. Hochschule Leoben 93: 62.
Torres, F. G., Troncoso, O. P., Nakamatsu, J., Grande, C. J., and Gomez, C. M. (2008) Characterization of the nanocomposite laminate structure occurring in fish scales from Arapaima gigas. Mater. Sci. Eng. C 28: 1276–1283.
Traeger, R. K. (1967) Physical properties of rigid polyurethane foams. J. Cell. Plast. 3: 405–418.
Traub, W., Arad, T., and Weiner, S. (1989) Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc. Natl. Acad. Sci. USA 86: 9822–9826.
Treloar, L. R. G. (1944) Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40: 59–70.
Treloar, L. R. G. (1975) The Physics of Rubber Elasticity, 3rd edn. Oxford: Oxford University Press.
Trim, W., Horstemeyer, M. F., Rhee, H. et al. (2011) The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn. Acta Biomater. 7: 1228–1240.
Trueman, E. R. and Hodgson, A. N. (1990) The fine structure and function of the foot of Nassarius krausslanus, a gastropod moving by ciliary locomotion. J. Moll. Stud. 56: 221–228.
Ugural, A. C. and Fenster, S. K. (1981) Advanced Strength and Applied Elasticity, 2nd SI edn. New York: Elsevier.
Urry, D. W., Harris, R. D., Long, M. M., and Prasad, K. U. (1986) Polytetrapeptide of elastin: temperature-correlated elastomeric force and structure development. Int. J. Peptide Protein Res. 28: 649–660.
Utsunomiya, H., Koh, H., Miyamoto, J., Skai, T. (2008) High strength porous copper by cold extrusion. Adv. Eng. Mater. 10: 826–829.
Vaccaro, E. and Waite, J. H. (2001) Yield and post-yield behavior of mussel byssal thread: a self-healing biomolecular material. Biomacromol. 2: 906–911.
Vashishth, D. (2004) Rising crack-growth-resistance behavior in cortical bone: implication for toughness measurements. J. Biomech. 37: 943–946.
Vashishth, D., Behiri, J. C., and Bonfield, W. (1997) Crack growth resistance in cortical bone: concept of microcrack toughening. J. Biomech. 10: 763–769.
Vashishth, D., Tanner, K. E., and Bonfield, W. (2000) Contribution, development and morphology of microcracking in cortical bone during crack propagation. J. Biomech. 33: 1169–1174.
Vashishth, D., Tanner, K. E., and Bonfield, W. (2003) Experimental validation of a microcracking-based toughening mechanism for cortical bone. J. Biomech. 36: 121–124.
Veedu, V. P., Cao, A., Li, X. et al. (2006) Multifunctional composites using reinforced laminate with carbon-nantube forests. Nature Mater. 5: 457–462.
Verbrugge, J. (1934) Le matériel métallique résorbable en chirurgie asseuse. La Presse Medicale 23: 460–465.
Vincent, J. F. V. (1990) Structural Biomaterials, rev. edn. Princeton, NJ: Princeton University Press.
Vincent, J. F. V. (1991) Structural Biomaterials. Princeton, NJ: Princeton University Press.
Vincent, J. F. V. (2002) Survival of the cheapest. Mater. Today 5: 28–41.
Vincent, J. F. V. and Currey, J. D., eds. (1980) The Mechanical Properties of Biological Materials, Symposia of the Society for Experimental Biology, no. 34. Cambridge: Cambridge University Press.
Vincent, J. F. V. and King, M. J. (1995) The mechanism of drilling by wood wasp ovipositors. Biomimetics 3: 187–201.
Vincent, J. F. V. and Mann, D. L. (2002) Systematic technology transfer from biology to engineering. Phil. Trans. Roy. Soc. Lond. A 360: 159–173.
Vincent, J. F. V. and Wegst, U. G. K. (2004) Design and mechanical properties of insect cuticle. Arthropod Struct. Develop. 33: 187–199.
Vogel, H. G. (1972) Influence of age, treatment with corticosteroids and strain rate on mechanical properties of rat skin. Biochim. Biophys. Acta 286: 79–83.
Vollrath, F. (2000) Strength and structure of spiders’ silks. Rev. Mol. Biotechnol. 74: 67–83.
Vukusic, P. and Sambles, J. R. (2003) Photonic structures in biology. Nature 424: 852–855.
Wada, K. (1958) The crystalline structure on the nacre of pearl oyster shell. Bull. Jpn. Soc. Sci. Fish 24: 422–427.
Wada, K. (1959) On the arrangement of aragonite crystals in the inner layer of the nacre. Bull. Jpn. Soc. Sci. Fish 25: 342–345.
Wagner, I. P., Hood, D. M., and Hogan, H. A. (2001) Comparison of bending modulus and yield strength between outer stratum medium and stratum medium zone alba in equine hooves. Am. J. Vet. Res. 62: 745–751.
Wainwright, S. A., Biggs, W. D., Currey, J. D., and Gosline, J. M. (1976) Mechanical Design in Organisms. Princeton, NJ: Princeton University Press.
Waite, J. H. (1987) Nature’s underwater adhesive specialist. Intl. J. Adhes. 7: 9.
Waite, J. H., Lichtenegger, H. C., Stucky, G. D., and Hansma, P. (2004) Exploring the molecular and mechanical gradients in structural bioscaffolds. Biochem. 43: 7653–7662.
Waite, J. H., Holten-Andersen, N., Jewhurst, S., and Sun, C. J. (2005) Mussel adhesion: finding tricks worth mimicking. J. Adhesion 81: 297–317.
Wang, B., Gao, J., Wang, L., Zhu, S., and Guan, S. (2012) Biocorrosion of coated Mg-Zn-Ca alloy under constant compressive stress close to that of human tibia. Mater. Lett. 70: 174–176.
Wang, H., Estrin, Y., and Zuberova, Z.(2008) Bio-corrosion of a magnesium alloy with different processing histories. Mater. Lett. 62: 2476–2479.
Wang, R. Z., Suo, Z., Evans, A. G., Yao, N., and Aksay, I. A. (2001)