Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T17:26:53.119Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2014

Marc André Meyers
Affiliation:
University of California, San Diego
Po-Yu Chen
Affiliation:
National Tsing Hua University, Taiwan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Biological Materials Science
Biological Materials, Bioinspired Materials, and Biomaterials
, pp. 584 - 619
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaron, B. B. and Gosline, J. M. (1981) Elastin as a random-network elastomer: a mechanical and optical analysis of single elastin fibers. Biopolymers 20: 1247–1260.CrossRefGoogle Scholar
Achrai, B. and Wagner, H. D. (2013) Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. Acta. Biomater. 9: 5890–5902.CrossRefGoogle ScholarPubMed
Addadi, L. and Weiner, S. (1985) Interaction between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc. Natl. Acad. Sci. USA 82: 4110–4114.CrossRefGoogle Scholar
Addadi, L., Moradian, J., Shay, E., Maroudas, N. G., and Weiner, S. (1987) A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc. Natl. Acad. Sci. USA 84: 2732–2736.CrossRefGoogle ScholarPubMed
Addadi, L., Raz, S., and Weiner, S. (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater. 15: 959–970.CrossRefGoogle Scholar
Addadi, L., Joester, D., Nudelman, F., and Weiner, S. (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem. Eur. J. 12: 980–987.CrossRefGoogle ScholarPubMed
Adharapurapu, R. R., Jiang, F., and Vecchio, K. S. (2006) Dynamic fracture of bovine bone. Mater. Sci. Eng. C 26: 1325–1332.CrossRefGoogle Scholar
Aizenberg, J. (2010) New nanofabrication strategies: inspired by biomineralization. MRS Bull. 35: 323–330.CrossRefGoogle Scholar
Aizenberg, J. and Hendler, G. (2004) Designing efficient microlens arrays: lessons from nature. J. Mater. Chem. 14: 2066–2072.CrossRefGoogle Scholar
Aizenberg, J., Weaver, J. C., Thanawala, M. S., Sundar, V. C., Morse, D. E., and Fratzl, P. (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309: 275–278.CrossRefGoogle ScholarPubMed
Aladin, D. M., Cheung, K. M., Ngan, A. H. et al. (2010) Nanostructure of collagen fibrils in human nucleus pulposus and its correlation with macroscale tissue mechanics. J. Orthop. Res. 28: 497–502.Google ScholarPubMed
Alexander, N. J. (1970) Composition of α-and β-keratin in reptiles. Cell. Tissue Res. 110: 153–165.Google Scholar
Alexander, N. J. and Fahrenbach, W. F. (1969) The dermal chromatophores of Anolis carolinensis (Reptilia, Iguanidae). Am. J. Anat. 126: 41–55.CrossRefGoogle Scholar
Alexander, N. J. and Parakkal, P. F. (1969) Formation of α- and β-type keratin in lizard epidermis during the molting cycle. Cell. Tissue Res. 101: 72–87.Google ScholarPubMed
Almqvist, N., Thomson, N. H., Smith, B. L., Stucky, G. D., Morse, D. E., and Hansma, P. K. (1999) Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 7: 37–43.CrossRefGoogle Scholar
Altman, G. H., Diaz, F., Jakuba, C. et al. (2003) Silk-based biomaterials. Biomater. 24: 401–416.CrossRefGoogle ScholarPubMed
Argon, A. S. (1972) Fracture of Composites. Treatise of Materials Science and Technology. New York: Academic Press, p. 1.Google Scholar
Arias, J. L. and Fernández, M. S. (2003) Biomimetic processes through the study of mineralized shells. Mater. Charact. 50: 189–195.CrossRefGoogle Scholar
Armbrust, E. V., Berges, J. A., Bowler, C. et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86.CrossRefGoogle ScholarPubMed
Armstrong, W. P. (1979) Nature’s hitchhikers. Environ. Southwest 486: 20–23.Google Scholar
Arruda, E. M. and Boyce, M. C. (1993) A three-dimensional model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41: 389–412.CrossRefGoogle Scholar
Arzt, E. (2006) Biological and artificial attachment devices: lessons for materials scientists from flies and geckos. Mater. Sci. Eng. C 26: 1245–1250.CrossRefGoogle Scholar
Arzt, E., Gorb, S., and Spolenek, R. (2003) From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 100: 10603–10606.CrossRefGoogle ScholarPubMed
Ashby, M. F. (1989) On the engineering properties of materials. Acta Metal. 37: 1273–1293.CrossRefGoogle Scholar
Ashby, M. F. (1992) Materials Selection in Mechanical Design. Oxford: Butterworth–Heinemann.Google Scholar
ASTM E399–09e2 Standard test method for linear elastic plane strain fracture toughness KIc of metallic materials.
Atkins, A. G. (2009) The Science and Engineering of Cutting. Oxford: Butterworth–Heinemann.Google Scholar
Autumn, K., Liang, Y. A., Hsieh, S. T. et al. (2000) Adhesive force of a single gecko foot-hair. Nature 405: 681–684.CrossRefGoogle ScholarPubMed
Autumn, K., Sitti, M., Liang, Y. A. et al. (2002) Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 99: 12252–12256.CrossRefGoogle Scholar
Aveston, J., Cooper, G. A., and Kelly, A. (1971) Single and multiple fracture. In Proc. Conf. Properties of Fiber Composites. Guildford: IPC Science and Technology Press, pp. 15–26.Google Scholar
Baer, E., Hiltner, A., and Morgan, R. J. (1992) Biological and synthetic hierarchical composites. Phys. Today 45: 60–67.CrossRefGoogle Scholar
Baillie, C. and Fitford, R. (1996) The three-dimensional composite structure of cow hoof wall. Biomimetics 4: 1–22.Google Scholar
Baillie, C., Southam, C., Buxtin, A., and Pavan, P. (2000) Structure and properties of bovine hoof horn. Appl. Composite Lett. 9: 107–115.Google Scholar
Bain, C. D. and Whitesides, G. M. (1998) Molecular-level control over surface order in self-assembled monolayer films of thiols on gold. Science 240: 62–63.CrossRefGoogle Scholar
Ballarini, R., Kaycan, R., Ulm, F -J., Belytschko, T., and Heuer, A. H. (2005) Biological structures mitigate catastrophic fracture through various strategies. Int. J. Fracture 135: 187–197.CrossRefGoogle Scholar
Bao, G. and Suresh, S. (2003) Cell and molecular mechanics of biological materials. Nature Mater. 2: 715–725.CrossRefGoogle ScholarPubMed
Barnes, W. J. P. (2007) Functional morphology and design constraints of smooth adhesive pads. MRS Bull. 32: 479–485.CrossRefGoogle Scholar
Barnes, W. J. P., Perez-Goodwyn, P., and Gorb, S. N. (2005) Mechanical properties of the toe pads of the tree frog, Litoria caerulea. Comp. Biochem. Physiol. A 141: S145.Google Scholar
Barnes, W. J. P., Oines, C., and Smith, J. M. (2006) Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and shape. J. Comp. Physiol. A 192: 1179–1191.CrossRefGoogle Scholar
Barthelat, F., Li, C. M., Comi, C., and Espinosa, H. D. (2006) Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21: 1977–1986.CrossRefGoogle Scholar
Barthlott, W. (1990) Scanning electron microscopy of the epidermal surface in plants. In Claugher, D., ed. Application of the Scanning EM in Taxonomy and Functional Morphology, Systematics Association Special Volume. Oxford: Clarendon Press, pp. 69–94.Google Scholar
Barthlott, W. and Ehler, N. (1977) Raster-Elektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten. Tropische und subtropische Pflanzenwelt (Akad. Wiss. Lit. Mainz) 19: 110.Google Scholar
Barthlott, W. and Neinhuis, C. (1997) The purity of sacred lotus or escape from contamination in biological surfaces. Planta 202: 1–8.CrossRefGoogle Scholar
Bartol, I. K., Gharib, M., Weihs, D., Webb, P. W., Hove, J. R., and Gordon, M. S. (2003) Hydrodynamic stability of swimming in ostraciid fishes: role of the carapace in the smooth trunkfish Lactophrys triqueter (Teleostei: Ostraciidae). J. Exp. Biol. 206: 725–744.CrossRefGoogle Scholar
Bartol, I. K., Gharib, M., Webb, P. W., Weihs, D., and Gordon, M. S. (2005) Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes. J. Exp. Biol. 208: 327–344.CrossRefGoogle ScholarPubMed
Bechtle, S., Ang, S. F., and Schneider, G. A. (2010) On the mechanical properties of hierarchically structured biological materials. Biomater. 31: 6378–6385.CrossRefGoogle ScholarPubMed
Behiri, J. C. and Bonfield, W. (1980) Crack velocity dependence of longitudinal fracture in bone. J. Mater. Sci. 15: 1841–1849.CrossRefGoogle Scholar
Belcher, A. M. (1996) Spatial and temporal resolution of interfaces: phase transitions and isolation of three families of proteins in calcium carbonate-based biocomposite materials. Unpublished Ph.D. Thesis, University of California, Santa Barbara.
Belcher, A. M. and Gooch, E. E. (1998) In Bauerlein, E., ed. Biomineralization. Weinheim: Wiley-VCH.Google Scholar
Belcher, A. M., Wui, X. H., Christensen, R. J., Hansma, P. K., Stucky, G. D., and Morse, D. E. (1996) Control of crystal phase switching and orientation by soluble mollusk-shell proteins. Nature 381: 56–58.CrossRefGoogle Scholar
Belcher, A. M., Hansma, P. K., Stucky, G. D., and Morse, D. E. (1997) First steps in harnessing the potential of biomineralization as a route to new high-performance composite materials. Acta Mater. 46: 733–736.CrossRefGoogle Scholar
Bell, E. C. and Gosline, J. M. (1996) Mechanical design of mussel byssus: material yield enhances attachment strength. J. Exp. Biol. 199: 1005–1017.Google ScholarPubMed
Ben-Yosef, E., Levy, T. E., Higham, T., Najjar, M., and Tauxe, L. (2010) The beginning of Iron Age copper production in the southern Levant: new evidence from Khirbat al-Jariya, Faynan, Jordan. Antiquity 84: 724–746.CrossRefGoogle Scholar
Bereiter-Hahn, J., Matoltsy, A. G., and Richards, K. S., eds. (1986) Biology of the Integument, Vol. 2: Vertebrates. Berlin: Springer-Verlag.CrossRef
Berglin, M. and Gatenholm, P. (2003) The barnacle adhesive plaque: morphological and chemical differences as a response to substrate properties. Colloids Surf. 28: 107–117.CrossRefGoogle Scholar
Berling, J. and Rechberger, M. (2007) Knives as sharp as rat’s teeth. Fraunhofer Institute for Environmental, Safety and Energy Technology, Research News 1, Topic 3, .
Bertram, J. E. A. and Gosline, J. M. (1986) Fracture toughness design in horse hoof keratin. J. Exp. Biol. 125: 29–47.Google ScholarPubMed
Bertram, J. E. A. and Gosline, J. M. (1987) Functional design of horse hoof keratin: the modulation of mechanical properties through hydration effects. J. Exp. Biol. 130: 121–136.Google ScholarPubMed
Best, S. M., Porter, A. E., Thian, E. S., and Huang, J. (2008) Bioceramics: past, present and for the future. J. Euro. Ceramic Soc. 28: 1319–1327.CrossRefGoogle Scholar
Bevelander, G. and Nakahara, H. (1969) An electron microscope study of formation of nacreous layer in shell of certain bivalve molluscs. Calcif. Tiss. Res. 3: 84–87.CrossRefGoogle ScholarPubMed
Bigliana, L. U., Pollock, R. G., Soslowsky, L. J., Flatow, E. L., Pawluk, R. J., and Mow, V. C. (1992) Tensile properties of the inferior glenohumeral ligament. J. Orthop. Res. 10: 187–197.CrossRefGoogle Scholar
Bilitch, M., Lau, F. Y. K., and Cosby, R. S. (1967) Recent advances in artificial pacemakers. Calif. Med. 107: 164–170.Google ScholarPubMed
Bini, F., Marinozzi, A., Marinozzi, F., and Patanè, F. (2002) Microtensile measurements of single trabeculae stiffness in human femur. J. Biomech. 35: 1515–1519.CrossRefGoogle ScholarPubMed
Birchall, J. D. and Thomas, N. L. (1983) On the architecture and function of cuttlefish bone. J. Mater. Sci. 18: 2081–2086.CrossRefGoogle Scholar
Black, J. and Hastings, G. W. (1998) Handbook of Biomaterials Properties. London: Chapman and Hall.CrossRefGoogle Scholar
Bledzki, A. K. and Gassan, J. (1999) Composites reinforced with cellulose based fibres. Prog. Polymer Sci. 24: 221–274.CrossRefGoogle Scholar
Boal, D. (2012) Mechanics of the Cell, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bodde, S. G., Meyers, M. A., and McKittrick, J. (2011) Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco). J. Mech. Behav. Biomed. Mater. 4: 723–732.CrossRefGoogle Scholar
Bonfield, W. and Datta, P. K. (1974) Young’s modulus of compact bone. J. Biomech. 7: 147–149.CrossRefGoogle ScholarPubMed
Bonser, R. H. C. (1995) Melanin and the abrasion resistance of feathers. The Condor 95: 590–591.Google Scholar
Bonser, R. H. C. (2001) The mechanical performance of medullary foam from feathers. J. Mater. Sci. Lett. 20: 941–942.CrossRefGoogle Scholar
Bonser, R. H. C. and Purslow, P. P. (1995) The Young’s modulus of feather keratin. J. Exp. Biol. 198: 1029–1033.Google ScholarPubMed
Bonser, R. H. C. and Witter, M. S. (1993) Indentation hardness of the bill keratin of the European starling. The Condor 95: 736–738.Google Scholar
Boskey, A. (2003) Bone mineral crystal size. Osteoporos. Int. 14: 16–21.Google Scholar
Bouligand, Y. (1970) Aspects ultrastructuraux de la calcification chez les Crabes. 7th Int. Cong. Electron Microscopy, Grenoble, France, 31 Aug. 1970, pp. 105–106.Google Scholar
Bouligand, Y. (1972) Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tiss. Cell 4: 189–217.CrossRefGoogle ScholarPubMed
Bowden, N., Tamerler, A., Carbech, J., and Whitesides, G. M. (1997) Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276: 233–235.CrossRefGoogle ScholarPubMed
Brånemark, P. I. (1972a) Rehabilitation with intra-osseous anchorage of dental prosthesis. Tandlakartidningen 844: 662–663.Google ScholarPubMed
Brånemark, P. I. (1972b) Rehabilitation with a denture anchored to the jawbone. Lakartidningen 69: 4813–4814.Google ScholarPubMed
Brånemark, P. I. and Breine, U. (1964) Formation of bone marrow in isolated segment of rib periosteum in rabbit and dog. Blut 10: 236–252.CrossRefGoogle Scholar
Brånemark, P. I. and Eriksson, E. (1972) Method for studying qualitative and quantitative changes of blood flow in skeletal muscle. Acta Physiol. Scand. 84: 284–288.Google ScholarPubMed
Brånemark, P. I., Breine, U., Johansson, B., and Roylance, P. J. (1964) Regeneration on bone marrow. Acta Anat. 59: 1–46.CrossRefGoogle Scholar
Bricteux-Grègoire, S., Florkin, M., and Grègoire, C. H. (1968) Prism conchiolin of modern or fossil molluscan shells: an example of protein paleization. Comp. Biochem. Physiol. 24: 567–572.CrossRefGoogle ScholarPubMed
Brink, D. J. and van der Berg, N. G. (2004) Structural colours from feathers of the bird Bostrychia hagedash. J. Phys. D: Appl. Phys. 37: 813–818.CrossRefGoogle Scholar
Brodkorb, P. (1955) Number of feathers and weights of various systems in a bald eagle. Wilson Bull. 67: 142.Google Scholar
Brown, C. H. (1975) Structural Materials in Animals. London: Pitman.Google Scholar
Brown, S. (1997) Metal-recognition by repeating polypeptides. Natl. Biotechnol. 15: 269–272.CrossRefGoogle ScholarPubMed
Bruet, B. J. F., Qi, H. J., Boyce, M. C. et al. (2005) Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20: 2400–2419.CrossRefGoogle Scholar
Bruet, B. J. F., Song, J., Boyce, M. C., and Ortiz, C. (2008) Materials design principles of ancient fish armor. Nat. Mater. 7: 748–756.CrossRefGoogle Scholar
Brush, A. H. (1986) Tissue specific protein heterogeneity in keratin structures. Biochem. Syst. Ecol. 14: 547–551.CrossRefGoogle Scholar
Brush, A. H. and Wyld, J. A. (1982) Molecular organization of avian epidermal structures. Comp. Biochem. Physiol. B 73: 313–325.CrossRefGoogle ScholarPubMed
Budiansky, B. (1983) Micromech. 16: 3–12.
Buehler, M. J. (2008) Hierarchical nanomechanics of collagen fibrils: atomistic and molecular modeling. In Fratzl, P., ed. Collagen: Structure and Mechanics. New York: Springer.Google Scholar
Buehler, M. J. and Wong, S. Y. (2007) Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys. J. 93: 37–43.CrossRefGoogle ScholarPubMed
Buhler, P. (1972) Sandwich structures in the skull capsules of various birds: the principles of light-weight structures in organisms. Inf. Inst. Lightweight Struct. (Stuttgart) 4: 39–50.Google Scholar
Bulter, D. L., Grood, E. S., Noyes, F. R., Zernicke, R. F., and Brackett, K. (1984) Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J. Biomach. 17: 579–596.Google Scholar
Burgess, S. C., King, A., and Hyde, R. (2006) An analysis of optimal structural feathers in the peacock tail feather. Opt. Laser Technol. 38: 329–334.CrossRefGoogle Scholar
Burke, J. F., Yannas, I. V., Quinby, W. C., Bondoc, C. C., and Jung, W. K. (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 194: 413–428.CrossRefGoogle ScholarPubMed
Burr, D. B., Schaffler, M. B., and Frederickson, R. G. (1988) Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J. Biomech. 21: 939–945.CrossRefGoogle ScholarPubMed
Butler, M. and Johnson, A. S. (2004) Are melanized feather barbs stronger?J. Exp. Biol. 207: 285–293.CrossRefGoogle ScholarPubMed
Byrom, D. (1991) Biomaterials: Novel Materials from Biological Sources. New York: Macmillan.CrossRefGoogle Scholar
Calvert, P. (1994) Strategies for biomimetic mineralization. Scripta Met. 31: 977–982.CrossRefGoogle Scholar
Cameron, G. J., Wess, T. J., and Bonser, R. H. C. (2003) Young’s modulus varies with differential orientation of keratin in feathers. J. Struct. Biol. 143: 118–123.CrossRefGoogle ScholarPubMed
Cao, J. (2002) Is the α-β transition of keratin a transition of α-helices to β-pleated sheets? II Synchroton investigation for stretched single specimens. J. Molec. Struct. 607: 69–75.CrossRefGoogle Scholar
Carlton, F. C. (1903) The color changes in the skin of the so-called Florida Chameleon. Anolis carolinensis Cuv. Proc. Am. Acad. Arts Sci. 39: 259–276.CrossRefGoogle Scholar
Carroll, M. and Holt, A. C. (1972) Suggested modification of the P-α model for porous materials. J. Appl. Phys. 43: 759–761.CrossRefGoogle Scholar
Cartwright, J. H. E. and Checa, A. G. (2007) The dynamics of nacre self-assembly. J. R. Soc. Interface 4: 491–504.CrossRefGoogle ScholarPubMed
Cha, J. N., Shimizu, K., Zhou, Y. et al. (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. USA 96: 361–365.CrossRefGoogle ScholarPubMed
Cha, J. N., Stucky, G. D., Morse, D. E., and Deming, T. J. (2000) Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403: 289–292.CrossRefGoogle ScholarPubMed
Chazal, J., Tangguy, A., Bourges, M. et al. (1985) Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J. Biomech. 18: 167–176.CrossRefGoogle Scholar
Checa, A. G., Cartwright, J. H., and Willinger, M. G. (2009) The key role of the surface membrane in why gastropod nacre grows in towers. Proc. Natl. Acad. Sci USA 106: 38–43.CrossRefGoogle ScholarPubMed
Chen, B., Peng, X., Wang, J. G., and Wu, X. (2004) Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite. Ceram. Intl. 30: 2011–2014.CrossRefGoogle Scholar
Chen, I., Chen, P. -Y., Meyers, M. A., and McKittrick, J. (2011) Armadillo armor: mechanical testing and microstructural evaluation. J. Mech. Behav. Biomed. Mater. 4: 713–722.CrossRefGoogle Scholar
Chen, I. H., Yang, W., and Meyers, M. A. (2014) Alligator osteoderms: mechanical behavior and hierarchical structure, MSEC 35: 441–448.CrossRefGoogle ScholarPubMed
Chen, P. -Y., Lin, A. Y. M., McKittrick, J., and Meyers, M. A. (2008a) Structure and mechanical properties of crab exoskeleton. Acta Biomater. 4: 587–596.CrossRefGoogle Scholar
Chen, P. -Y., Lin, A. Y. M., Lin, Y. S. et al. (2008b) Structure and mechanical properties of selected biological materials. J. Mech. Behav. Biomed. Mater. 1: 208–226.CrossRefGoogle ScholarPubMed
Chen, P. -Y., Lin, A. Y. M., Lin, Y. S. et al. (2008c) Structural biological materials: overview of current research. JOM 60: 23–32.CrossRefGoogle Scholar
Chen, P. -Y., Stokes, A. G., and McKittrick, J. (2009) Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). Acta Biomater. 5: 693–706.CrossRefGoogle Scholar
Chen, P. -Y., McKittrick, J., and Meyers, M. A. (2012) Biological materials: functional adaptations and bioinspired designs. Prog. Mater. Sci. 57: 1492–1704.CrossRefGoogle Scholar
Chernova, O. F. (2005) Polymorphism of the architectonics of definitive contour feathers. Doklady Akademii Nauk 404: 280–285.Google Scholar
Clark, C. and Petrie, L. (2007) Fracture toughness of bovine claw horn cattle with and without vertical fissures. Veterinary J. 173: 541–547.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H. (1982) The function of antlers. Behavior 79: 108–124.CrossRefGoogle Scholar
Cohen, M., Kear, B. H., and Mehrabian, R., eds. (1980) Rapid Solidification Processing: Principles and Technologies. Baton Rouge, LA: Claitor’s Publishing Division, p. 1.
Corning, W. R. and Biewener, A. A. (1998) In vivo strains in pigeon flight feather shafts: implications for structural design. J. Exp. Biol. 201: 3057–3065.Google ScholarPubMed
Coulombe, P. A. and Omary, M. B. (2002) ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell. Biol. 14: 110–122.CrossRefGoogle ScholarPubMed
Coulombe, P. A., Bousquet, O., Ma, L., Yamada, S., and Wirtz, D. (2000) The ‘ins’ and ‘outs’ of intermediate filament organization. Trends Cell. Biol. 10: 420–428.CrossRefGoogle ScholarPubMed
Crenshaw, D. G. (1980) Design and materials of feather shafts: very light, rigid structures. Symp. Soc. Exp. Biol. 34: 485–486.Google ScholarPubMed
Cribb, B. W., Stewart, A., Huang, H. et al. (2008) Insect mandibles – comparative mechanical properties and links with metal incorporation. Naturwissenschaft. 95: 17–23.CrossRefGoogle ScholarPubMed
Cribb, B. W., Lin, C. -L., Rintoul, L., Rasch, R., Hasenpusch, J., and Huang, H. (2010) Hardness in arthropod exoskeletons in the absence of transition metals. Acta Biomater. 6: 3152–3156.CrossRefGoogle ScholarPubMed
Crne, M., Sharma, V., Blair, J., Park, J. O., Summers, C. J., and Srinivasarao, M. (2011) Biomimicry of optical microstructures of Papilo palinurus. EPL 93: 14001(1–4).CrossRefGoogle Scholar
Cubo, J. and Casinos, A. (2000) Incidence and mechanical significance of pneumatization in the long bones of birds. Zool. J. Linnean Soc. 130: 499–510.CrossRefGoogle Scholar
Cunniff, P. M., Fossey, S. A., Auerbach, M. A. et al. (1944) Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polymer Adv. Technol. 5: 401–410.CrossRefGoogle Scholar
Currey, J. D. (1976) Further studies on mechanical properties of mollusk shell material. J. Zool. 180: 445–453.CrossRefGoogle Scholar
Currey, J. D. (1977) Mechanical properties of mother-of-pearl in tension. Proc. R. Soc. Lond. B 196: 443–463.CrossRefGoogle Scholar
Currey, J. D. (1979) Mechanical properties of bone tissues with greatly differing functions. J. Biomech. 12: 313–319.CrossRefGoogle ScholarPubMed
Currey, J. D. (1980) Mechanical properties of mollusc shell. In Vincent, J. F. V. and Currey, J. D., eds. The Mechanical Properties of Biological Materials, Symp. Soc. Exp. Biol. 34. Cambridge: Cambridge University Press, pp. 73–87.Google Scholar
Currey, J. D. (1984a) Effects of differences in mineralization on the mechanical properties of bone. Phil. Trans. R. Soc. Lond. B 304: 509–518.CrossRefGoogle Scholar
Currey, J. D. (1984b) The Mechanical Adaptations of Bones. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Currey, J. D. (1989) Strain rate dependence of the mechanical properties of reindeer antler and the cumulative damage model of bone fracture. J. Biomech. 22: 469–475.CrossRefGoogle ScholarPubMed
Currey, J. D. (1999) The design of mineralized hard tissues for their mechanical functions. J. Exp. Biol. 202: 3285–3294.Google Scholar
Currey, J. D. (2002) Bones: Structure and Mechanics. Princeton, NJ: Princeton University Press.Google Scholar
Currey, J. D. (2010) Mechanical properties and adaptations of some less familiar bony tissues. J. Mech. Behav. Biomed. Mater. 3: 357–372.CrossRefGoogle ScholarPubMed
Currey, J. D. and Alexander, R. M. (1985) The thickness of the walls of tubular bones. J. Zool. A 206: 453–468.CrossRefGoogle Scholar
Currey, J. D. and Brear, K. (1992) Fractal analysis of compact bone and antler fracture surfaces. Biomimetics 1: 103–118.Google Scholar
Currey, J. D. and Kohn, A. J. (1976) Fracture in crossed-lamellar structure of conus shells. J. Mater. Sci. 11: 1615–1623.CrossRefGoogle Scholar
Currey, J. D. and Taylor, J. D. (1974) The mechanical behaviour of some molluscan hard tissues. J. Zool. Lond. 173: 395–406.CrossRefGoogle Scholar
Currey, J. D., Nash, A., and Bonfield, W. (1982) Calcified cuticle in the stomatopod smashing limb. J. Mater. Sci. 17: 1939–1944.CrossRefGoogle Scholar
Currey, J. D., Brear, K., and Zioupos, P. (1996) The effects of aging and changes in mineral content in degrading the toughness of human femora. J. Biomech. 29: 257–260.CrossRefGoogle ScholarPubMed
Currey, J. D., Zioupos, P., Davis, A., and Casinos, A. (2001) Mechanical properties of nacre and highly mineralized bone. Proc. R. Soc. Lond. B 268: 107–111.CrossRefGoogle ScholarPubMed
Dai, Z. and Yang, Z. (2010) Macro-/micro-structures of elytra, mechanical properties of the biomaterial and the coupling strength between elytra in beetles. J. Bionic Eng. 7: 6–12.CrossRefGoogle Scholar
Dao, M., Lim, C. T., and Suresh, S. (2003) Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51: 2259–2280.CrossRefGoogle Scholar
Dao, M., Li, J., and Suresh, S. (2006) Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. C 26: 1232–1244.CrossRefGoogle Scholar
Davis, P. G. (1998) The bioerosion of bird bones. Intl. J. Osteoarch. 7: 388–401.3.0.CO;2-H>CrossRefGoogle Scholar
Dawson, M. A. and Gibson, L. J. (2007) Optimization of cylindrical shells with compliant cores. Intl. J. Solids Struct. 44: 1145–1160.CrossRefGoogle Scholar
de Leeuw, N. H. and Parker, S. C. (1998) Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach. J. Phys. Chem. B 102: 2914–2922.CrossRefGoogle Scholar
De Villiers, J. P. R. (1971) Crystal structures of aragonite, strontianite, and witherite. Am. Mineral. 56: 758–767.Google Scholar
Del Campo, A., Greiner, C., Alvarez, I., and Arzt, E. (2007) Patterned surfaces with pillars with 3D tip geometry mimicking bioattachment devices. Adv. Mater. 19: 1973–1977.CrossRefGoogle Scholar
Denny, M. (1976) The physical properties of spider’s silk and their role in the design of orb-webs. J. Exp. Biol. 65: 483–506.Google Scholar
Deville, S., Saiz, E., Natta, R. K., and Tomsia, A. P. (2006a) Freezing as a path to build complex composites. Science 311: 515–518.CrossRefGoogle ScholarPubMed
Deville, S., Saiz, E., and Tomsia, A. P. (2006b) Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomater. 27: 5480–5489.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1986) How great white sharks, saber-toothed cats and soldiers kill. Nature 322: 773–774.CrossRefGoogle Scholar
Dickinson, M. (2008) Mechanical properties of an arthropod exoskeleton – nanoindentation of the beetle Scarites subterraneus. HysitronTM Nanoindetation Application Note.
Donovan, D. A. and Carefoot, T. H. (1997) Locomotion in the abalone Haliotis kamtschatkana: pedal morphology and cost of transport. J. Exp. Biol. 200: 1145–1153.Google ScholarPubMed
Downing, S. W., Spitzer, R. H., Salo, W. L., Downing, J. S., Saidel, L. J., and Koch, E. A. (1981) Threads in the hagfish slime gland thread cells: organization, biochemical features, and length. Science 212: 326–328.CrossRefGoogle ScholarPubMed
Downing, S. W., Spitzer, R. H., Koch, E. A., and Salo, W. L. (1984) The hagfish slime gland thread cell. I. A unique cellular system for the study of intermediate filaments and intermediate filament-microtubule interactions. J. Cell. Biol. 98: 653–669.CrossRefGoogle Scholar
Druhala, M. and Feughelman, M. (1974) Dynamic mechanical loss in keratin at low temperatures. Colloid Polymer Sci. 252: 381–391.CrossRefGoogle Scholar
Dumont, E. R. (2010) Bone density and the lightweight skeletons of birds. Proc. Roy. Soc. B 277: 2193–2198.CrossRefGoogle Scholar
Easterling, K. E., Harrysson, R., Gibson, L. J., and Ashby, M. F. (1982) On the mechanics of balsa and other woods. Proc. Roy. Soc. A 383: 31–41.CrossRefGoogle Scholar
Ehrlich, H. and Worch, H. (2007) Collagen, a huge matrix in glass sponge flexible spicules of the meter-long Hyalonema sieboldi. In Baüerlein, E., Behrens, P., and Epple, M., eds. Handbook of Biomineralization. Weinheim: Wiley–VCH, chap. 3.Google Scholar
Ehrlich, H., Maldonado, M., Spindler, K. D. et al. (2007a) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J. Exp. Zool. B Mol. Dev. Evol. 308: 347–356.CrossRefGoogle Scholar
Ehrlich, H., Krautter, M., Hanke, T. et al. (2007b) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J. Exp. Zool. B Mol. Dev. Evol. 308: 473–483.CrossRefGoogle Scholar
Elias, C. N. (2011) Factors affecting the success of dental implants. In Turkyilmaz, I., ed. Implant Dentistry – A Rapidly Evolving Practice. Rijeka: InTech.Google Scholar
Elias, C. N., Lima, J. H. C., Valiev, R., and Meyers, M. A. (2008) Biomedical applications of titanium and its alloys. JOM 60: 46–49.CrossRefGoogle Scholar
Elias, C. N., Meyers, M. A., Valiev, R. Z., and Monteiro, S. N. (2013) Ultrafine grained titanium for biomedical applications: an overview of performance. J. Mater. Res. Technol. 2: 340–350.CrossRefGoogle Scholar
Elices, M. (2000) Structural Biological Materials: Design and Structure-Property Relationships. Oxford: Pergamon.Google Scholar
Elices, M., Perez-Rigueiro, J., Plaza, G. R., and Guinea, G. V. (2005) J. Metals 57: 60–66.
Elvin, C. M., Carr, A. G., Huson, M. G. et al. (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437: 999–1002.CrossRefGoogle ScholarPubMed
Ennos, R. (2012) Solid Biomechanics. Princeton, NJ: Princeton University Press.Google Scholar
Erben, H. K. (1972) On the structure and growth of the nacreous tablets in gastropods. Biomineral. 7: 14–27.Google Scholar
Ernst, V. V. (1973a) The digital pads of the tree frog Hyla cinerea. I. The epidermis. Tissue Cell 5: 83–96.CrossRefGoogle ScholarPubMed
Ernst, V. V. (1973b) The digital pads of the tree frog Hyla cinerea. II. The mucous glands. Tissue Cell 5: 97–104.CrossRefGoogle ScholarPubMed
Escoffier, C., de Rigal, J., Rochefort, A., Vasselet, R., Lévêque1, J. -L., and Agache, P. G. (1989) Age-related mechanical properties of human skin: an in vivo study. J. Invest. Dermatol. 93: 353–357.CrossRefGoogle ScholarPubMed
Evans, A. G. and Charles, E. A. (1976) Fracture toughness determination by indentation. J. Am. Ceramic Soc. 59: 371–372.CrossRefGoogle Scholar
Evans, A. G., Suo, Z., Wang, R. Z., Aksay, I. A., He, M. Y., and Hutchinson, J. W. (2001a) Model for the robust mechanical behavior of nacre. J. Mater. Res. 16: 2475–2493.CrossRefGoogle Scholar
Evans, A. G., Hutchinson, J. W., Fleck, N. A., Ashby, M. F., and Wadley, H. N. G. (2001b) The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46: 309–327.CrossRefGoogle Scholar
Falini, G., Albeck, S., Weiner, S., and Addadi, L. (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271: 67–69.CrossRefGoogle Scholar
Fantner, G. E., Hassenkam, T., Kindt, J. H. et al. (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Mater. 4: 612–616.CrossRefGoogle ScholarPubMed
Fecchio, R. S., Seki, Y., Bodde, S. G. et al. Mechanical behavior of prosthesis in toucan beak (Ramphastos toco). Mater. Sci. Eng. C 30: 460–464.
Fernholm, B. (1981) Thread cells from the slime glands of hagfish (Myxinidae). Acta Zool. 62: 137–145.CrossRefGoogle Scholar
Feughelman, M. (1997) Mechanical Properties and Structure of α-Keratin Fibres: Wool, Human Hair and Related Fibres. Sydney: University of New South Wales Press.Google Scholar
Filshie, B. K. and Rogers, G. E. (1962) An electron microscope study of the fine structure of feather keratin. J. Cell. Biol. 13: 1–12.CrossRefGoogle ScholarPubMed
Fine, M. E. and Marcus, H. L. (1994) Materials science and engineering, an educational discipline. Annu. Rev. Mater. Sci. 24: 1–17.CrossRefGoogle Scholar
Fischmeister, H. and Arzt, E. (1982) Densification of powders by particle deformation. Powder Metall. 26: 82–88.CrossRefGoogle Scholar
Fisher, T. E., Oberhauser, A. F., Carrion-Vazquez, M., Marszalek, P. E., and Fernandez, J. M. (1999) The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24: 379–384.CrossRefGoogle Scholar
Fleck, N. A., Deng, L., and Budiansky, B. (1995) Prediction of kink width in compressed fiber composites. J. Appl. Mech. 62: 329–337.CrossRefGoogle Scholar
Flory, P. J. (1956) Theory of elastic mechanisms in fibrous proteins. J. Am. Chem. Soc. 78: 5222–5235.CrossRefGoogle Scholar
Flory, P. J. (1964) Principles of Polymer Chemistry. New York: Cornell University Press.Google Scholar
Flynn, C. E., Lee, S. -W., Peelle, B. R., and Belcher, A. M. (2003) Viruses as vehicles for growth, organization, and assembly of materials. Acta Mater. 51: 5867–5880.CrossRefGoogle Scholar
Forbes, P. (2007) The Gecko’s Foot. London: Fourth Estate.Google Scholar
Franck, A., Cocquyt, G., Simoens, P., and De Belie, N. (2006) Biomechanical properties of bovine claw horn. Biosys. Eng. 93: 459–467.CrossRefGoogle Scholar
Franke, O., Göken, M., Meyers, M. A., Durst, K., and Hodge, A. M. (2011) Dynamic nanoindentation of articular porcine cartilage. Mater. Sci. Eng. C 31: 789–795.CrossRefGoogle Scholar
Franzblau, C. (1971) Elastin. In Florkin, M. and Stotz, E. H., eds. Comparative Biochemistry. Amsterdam: Elsevier, pp. 659–712.Google Scholar
Fraser, R. D. and MacRae, T. P. (1980) Molecular structure and mechanical properties of keratin. In Vincent, J. F. V. and Currey, J. D., eds. The Mechanical Properties of Biological Materials, Symposium of the Society of Experimental Biology. Cambridge: Cambridge University Press, pp. 211–246.Google Scholar
Fraser, R. D. B. and Parry, D. A. D. (1996) The molecular structure of reptilian keratin. Int. J. Biol. Macro. 19: 207–211.CrossRefGoogle ScholarPubMed
Fraser, R. D. B., MacRae, T. P., and Rogers, G. E. (1972) Keratins: Their Composition, Structure, and Biosynthesis. Springfield: Thomas.Google Scholar
Fraser, R. D., MacRae, T. P., Parry, D. A., and Suzuki, E. (1986) Intermediate filaments in alpha keratins. Proc. Natl. Acad. Sci. USA 83: 1179–1183.CrossRefGoogle ScholarPubMed
Fratzl, P., ed. (2008) Collagen: Structure and Mechanics. New York: Springer.CrossRef
Fratzl, P. and Weinkamer, R. (2007) Nature’s hierarchical materials. Prog. Mater. Sci. 52: 1263–1334.CrossRefGoogle Scholar
Fratzl, P., Groschner, M., Vogl, G., Plenk, H., Eschberger, J., and Fratzl-Zelman, N. (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J. Bone Miner. Res. 7: 329–334.CrossRefGoogle ScholarPubMed
Fratzl, P., Misof, K., Zizak, I., Rapp, G., Amenitsch, H., and Bernstorff, S. (1998) Fibrillar structure and mechanical properties of collagen. J. Struct. Biol. 122: 119–122.CrossRefGoogle ScholarPubMed
Fratzl, P., Gupta, H. S., Paschalis, E. P., and Roschger, P. (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. Mater. Chem. 14: 2115–2123.CrossRefGoogle Scholar
Frazzetta, T. H. (1988) The mechanics of cutting and the form of shark teeth (Chondrichthyes, Elasmobranchii). Zoomorphol. 108: 93–107.CrossRefGoogle Scholar
Frenkel, M. J. and Gillespie, J. M. (1976) The proteins of the keratin component of bird’s beaks. Austral. J. Biol. Sci. 29: 467–479.CrossRefGoogle ScholarPubMed
Fritz, M. and Morse, D. E. (1998) The formation of highly organized biogenic polymer/ceramic composite materials: the high-performance microaluminate of molluscan nacre. Curr. Opin. Colloid Int. Sci. 3: 55–62.CrossRefGoogle Scholar
Fritz, M., Belcher, A. M., Radmacher, M. et al. (1994) Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 371: 49–51.CrossRefGoogle Scholar
Fu, G., Valiyaveettil, S., Wopenka, B., and Morse, D. E. (2005) CaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. Biomacromol. 6: 1289–1298.CrossRefGoogle ScholarPubMed
Fudge, D. S. and Gosline, J. M. (2004) Molecular design of the alpha-keratin composite: insights from a matrix-free model, hagfish slime threads. Proc. Roy. Soc. Lond. B 271: 291–299.CrossRefGoogle ScholarPubMed
Fudge, D. S., Gardner, K. H., Forsyth, V. T., Riekel, C., and Gosline, J. M. (2003) The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys. J. 85: 2015–2027.CrossRefGoogle ScholarPubMed
Fudge, D. S., Levy, N., Chiu, S., and Gosline, J. M. (2005) Composition, morphology and mechanics of hagfish slime. J. Exp. Biol. 208: 4613–4625.CrossRefGoogle ScholarPubMed
Fung, Y. C. (1967) Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213: 1532–1544.Google ScholarPubMed
Fung, Y. C. (1990) Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer-Verlag.CrossRefGoogle Scholar
Fung, Y. C. (1993) Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. New York: Springer.CrossRefGoogle Scholar
Fung, Y. C. (1997) Biomechanics: Circulation, 2nd edn. New York: Springer-Verlag.CrossRefGoogle Scholar
Gao, H. J. (2006) Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fracture 138: 101–137.CrossRefGoogle Scholar
Gao, H. J. and Klein, P. A. (1998) Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J. Mech. Phys. Solids 46: 187–218.CrossRefGoogle Scholar
Gao, H. J., Ji, B. H., Jäger, I. L., Arzt, E., and Fratzl, P. (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 100: 5597–5600.CrossRefGoogle ScholarPubMed
Gao, Y., Ellery, A., Jaddou, M., and Vincent, J. (2006) Deployable wood wasp drill for planetary subsurface sampling. IEEEAC Paper #1591, Version 1, IEEE, pp. 1–8.
Garcia, A. (2005) Get a grip: integrins in cell-biomaterial interactions. Biomater. 26: 7525–7529.CrossRefGoogle ScholarPubMed
Garrido, M. A., Elices, M., Viney, C., and Perez-Riguerio, J. (2002) The variability and interdependence of spider drag line tensile properties. Polymer 43: 4495–4502.CrossRefGoogle Scholar
Gathercole, L. J. and Keller, A. (1975) Light microscopic waveforms in collagenous tissues and their structural implications. In Atkins, E. D. T., ed. Structure of Fibrous Biopolymers. London: Butterworth.Google Scholar
Gautieri, A., Ionita, M., Silvestri, D. et al. (2010) Computer-aided molecular modeling and experimental validation of water permeability properties in biosynthetic materials. J. Comput. Theor. Nanos. 7: 1287–1293.CrossRefGoogle Scholar
Gautieri, A., Vesentini, S., Redaelli, A., and Buehler, M. J. (2011) Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano. Lett. 11: 757–766.CrossRefGoogle ScholarPubMed
Geim, A. K., Dubonos, S. V., Grigorieva, I. V., Nvoselov, K. S., Zhukov, A. A., and Shapoval, S. Y. (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2: 461–463.CrossRefGoogle ScholarPubMed
Ghiradella, H. (1991) Light and colour on the wing: structural colours in butterflies and moths. Appl. Opt. 30: 3492–3500.CrossRefGoogle ScholarPubMed
Gibson, L. J. and Ashby, M. F. (1988) Cellular Solids, 1st edn. Oxford: Pergamon Press Ltd.Google Scholar
Gibson, L. J. and Ashby, M. F. (1997) Cellular Solids: Structure and Properties, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gibson, L. J., Ashby, M. F., and Harley, B. A. (2010) Cellular Materials in Nature and Medicine. Cambridge: Cambridge University Press.Google Scholar
Giraud-Guille, M. M. (1984) Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16: 75–92.CrossRefGoogle ScholarPubMed
Giraud-Guille, M. M. (1990) Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy. J. Structur. Biol. 103: 232–240.CrossRefGoogle Scholar
Giraud-Guille, M. M. (1998) Plywood structures in nature. Curr. Opin. Solid State Mater. Sci. 3: 221–228.CrossRefGoogle Scholar
Giraud-Guille, M. M. and Bouligand, Y. (1995) Crystal growth in a chitin matrix: the study of calcite development in the crab cuticle. In Karnicki, Z. S., ed. Chitin World. Bremerhaven: Wirtschaftsverlag NW, pp. 136–144.Google Scholar
Goffredi, S. K., Warén, A., Orphan, V. J., Van Dover, C. L., and Vrijenhoek, R. C. (2004) Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl. Environ. Microbiol. 70: 3082–3090.CrossRefGoogle Scholar
Gordon, J. E. and Jeronimidis, G. (1980) Composites with high work of fracture. Phil. Trans. Roy. Soc. Lond. A 297: 545–550.CrossRefGoogle Scholar
Gosline, J. M., Denny, M. W., and DeMont, M. E. (1984) Spider silk as rubber. Nature 309: 551–552.CrossRefGoogle Scholar
Gosline, J. M., DeMont, M. E., and Denny, M. W. (1986) The structure and properties of spider silk. Endeavour 10: 37–43.CrossRefGoogle Scholar
Gosline, J. M., Guerette, P. A., Ortlepp, C. S., and Savage, K. N. (1999) The mechanical design of spider silks. J. Exp. Biol. 202: 3295–3303.Google ScholarPubMed
Gray, W. R., Sandberg, L. B., and Forster, J. A. (1973) Molecular model for elastin structure and function. Nature 246: 461–466.CrossRefGoogle ScholarPubMed
Green, D. M. (1979) Tree frog toe pads: comparative surface morphology using scanning electron microscopy. Can. J. Zool. 57: 2033–2046.CrossRefGoogle Scholar
Green, D. M. and Simon, P. (1986) Digital microstructure in ecologically diverse sympatric microhylid frogs, genera Cophixalus and Sphenophryne (Amphibia: Anura) Papua New Guinea. Austral. J. Zool. 34: 135–145.CrossRefGoogle Scholar
Grègoire, C. (1957) Topography of the organic components in mother-of pearl. J. Biophys. Biochem. Cytol. 3: 797–808.CrossRefGoogle ScholarPubMed
Grègoire, C. (1961) Structure of the conchiolin cases of the prisms in Mytilus edulis linne. J. Biophys. Biochem. Cytol. 9: 395–400.CrossRefGoogle Scholar
Grègoire, C., Duchateau, G., and Florkin, M. (1954) La trame protidique des nacres. Experientia 10: 37–40.CrossRefGoogle Scholar
Greiner, C., del Campo, A., and Artz, E. (2007) Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. Langmuir 23: 3495–3502.CrossRefGoogle ScholarPubMed
Greiner, C., Arzt, E., and del Campo, A. (2009) Hierarchical gecko-like adhesives. Adv. Mater. 21: 479–482.CrossRefGoogle Scholar
Griel, P., Lifka, T., and Kaindl, A. (1998) Biomorphic cellular silicon carbide ceramics from wood: I. J. Eur. Ceram. Soc. 18: 1961–1973.CrossRefGoogle Scholar
Gronau, G., Krishnaji, S. T., Kinahan, M. E. et al. (2012) A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomater. 33: 8240–8255.CrossRefGoogle Scholar
Grunkemeier, G., Rahimtoola, S., Starr, A., and Braunwald, E. (2002) Atlas of Heart Diseases, Vol. 11. New York: Springer, chap. 13.Google Scholar
Guvendiren, M., Brassa, D. A., Messersmith, P. B., and Shull, R. (2009) Adhesion of DOPA-functionalized model membranes to hard and soft surfaces. J. Adhesion 9: 631–645.CrossRefGoogle Scholar
Hall, S. J. (2003) Basic Biomechanics, 4th edn. Boston, MA: McGraw-Hill.Google Scholar
Hamilton, W. J. and Selly, M. K. (1976) Fog basking by the Namib Desert beetle, Onymacris unguicularis. Nature 262: 284–285.CrossRefGoogle Scholar
Hamm, C. E., Merkel, R., Springer, O. et al. (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421: 841–843.CrossRefGoogle ScholarPubMed
Hanna, G. and Barnes, W. J. P. (1991) Adhesion and detachment of the toe pads of treefrogs. J. Exp. Biol. 155: 103–125.Google Scholar
Hansma, H. G., Pietrasanta, L. I., Auerbach, I. D., Sorenson, C., Golan, R., and Holden, P. A. (2000) Probing biopolymers with the atomic force microscope: a review. J. Biomater. Sci. Polymer Ed. 11: 675–683.CrossRefGoogle ScholarPubMed
Hansma, P. K., Fantner, G. E., Kindt, J. H., et al. (2005) Sacrificial bonds in the interfibrillar matrix of bone. J. Musculoskel. Neuron. Inter. 5: 313–315.Google Scholar
Harley, B. A., Lynn, A. K., Wissner-Gross, Z., Bonfield, W., Yannas, I. V., and Gibson, L. J. (2010) Design of a multiphase osteochondral scaffold II: fabrication of a mineralized collagen-GAG scaffold. J. Biomed. Mater. Res. 92: 1066–1077.Google Scholar
Hassenkarm, T., Fantner, G. E., Cutroni, J. A., Weaver, J. C., Morse, D. E., and Hansma, P. K. (2004) High-resolution AFM imaging of intact and fracture trabecular bone. Bone 35: 4–10.CrossRefGoogle Scholar
Hayes, W. C. and Carter, D. R. (1976) Postyield behavior of subchondral trabecular bone. J. Biomed. Mater. Res. Symp. 7: 537–544.CrossRefGoogle Scholar
Hearle, J. W. S. (2000) A critical review of the structural mechanics of wool and hair fibres. Int. J. Biol. Macromol. 27: 123–138.CrossRefGoogle ScholarPubMed
Helle, A. S., Easterling, K. E., and Ashby, M. F. (1985) Hot isostatic pressing diagrams: new developments. Acta Metall. 33: 2163–2174.CrossRefGoogle Scholar
Hench, L. L. (1991) Bioceramics – from concept to clinic. J. Am. Ceram. Soc. 74: 1487–1510.CrossRefGoogle Scholar
Hench, L. L. (1999) Bioactive glasses and glass-ceramics. Bioceram. 293: 37–63.Google Scholar
Hench, L. L. (2006) The story of Bioglass®. J. Mater. Sci. Mater. Med. 17: 967–978.CrossRefGoogle Scholar
Henshaw, J. (1971) Antlers – the unbrittle bones of contention. Nature 231: 469.CrossRefGoogle Scholar
Hepburn, H. R., Joffe, I., Green, N., and Nelson, K. J. (1975) Mechanical properties of a crab shell. Comp. Biochem. Physiol. 50: 551–554.CrossRefGoogle Scholar
Hernandez, C. J., Tang, S. Y., Baumbach, B. M. et al. (2005) Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone 37: 825–832.CrossRefGoogle ScholarPubMed
Herrick, W. C., Kingsbury, H. B., and Lou, D. Y. S. (1978) A study of the normal range of strain, strain rate and stiffness of tendon. J. Biomed. Mater. Res. 12: 877–894.CrossRefGoogle ScholarPubMed
Hershey, A. D. and Chase, M. (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36: 39–56.CrossRefGoogle ScholarPubMed
Heuer, A. H., Kink, D. J., Laraia, V. J. et al. (1992) Innovative materials processing strategies: a biomimetic approach. Science 255: 1098–1105.CrossRefGoogle ScholarPubMed
Heywood, B. and Mann, S. (1994) Template directed nucleation and growth of inorganic materials. Adv. Mater. 6: 9–19.CrossRefGoogle Scholar
Hieronymus, T. L., Witmer, L. M., and Ridgely, R. C. (2006) Structure of white rhinoceros (Ceratotherium simum) horn investigated by x-ray computed tomography and histology with implications for growth and external form. J. Morphol. 267: 1172–1176.CrossRefGoogle ScholarPubMed
Hight, T. K. and Brandeau, J. F. (1983) Mathematical modeling of the stress-strain-strain rate behavior of bone using the Ramberg-Osgood equation. J. Biomech. 16: 445–450.CrossRefGoogle Scholar
Hildebrand, M. (2003) Biological processing of nanostructured silica in diatoms. Pro. Org. Coat. 47: 256–266.CrossRefGoogle Scholar
Hildebrand, M. (2005) Prospects of manipulating diatom silica nanostructure. J. Nanosci. Nanotech. 5: 146–157.CrossRefGoogle ScholarPubMed
Hildebrand, M. (2008) Diatoms, biomineralization processes, and genomics. Chem. Rev. 108: 4855–4874.CrossRefGoogle ScholarPubMed
Hildebrand, M., York, E., Kelz, J. I. et al. (2006) Nanoscale control of silica morphology and three-dimensional structure during diatom cell wall formation. J. Mater. Res. 21: 2689–2698.CrossRefGoogle Scholar
Hill, A. V. (1938) The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. Lond. B 126: 136–195.CrossRefGoogle Scholar
Hillerton, J. E. and Vincent, J. F. V. (1982) The specific location of zinc in insect mandibles. J. Exp. Biol. 101: 333–366.Google Scholar
Hillerton, J. E., Reynolds, S. E., and Vincent, J. F. V. (1982) On the indentation hardness of insect cuticle. J. Exp. Biol. 96: 45–52.Google Scholar
Holl, S. M., Hansen, D., Waite, J. H., and Shaefer, J. (1993) Solid-state NMR analysis of crosslinking in mussel protein glue. Arch. Biochem. Biophys. 302: 255–258.CrossRefGoogle ScholarPubMed
Homsy, C. (1970) Biocompatibility in selection of materials for implantation. I. Biomed. Mater. Res. 4: 341–356.CrossRefGoogle Scholar
Hörnschemeyer, T., Beutel, R. G., and Pasop, F. (2002) Head structures of Priacma serrata Leconte (Coleptera, Archostemata) inferred from x-ray tomography. J. Morphol. 252: 298–314.CrossRefGoogle ScholarPubMed
Hou, D. F., Zhou, G. S., and Zheng, M. (2004) Conch shell structure and its effect on mechanical behaviors. Biomater. 25: 751–756.CrossRefGoogle ScholarPubMed
Huang, J., Wang, X., and Wang, Z. L. (2006) Controlled replication of butterfly wings for achieving tunable photonic properties. Nano. Lett. 6: 2325–2331.CrossRefGoogle ScholarPubMed
Huang, T. J., Brough, B., Ho, C. -M. et al. (2004) A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 85: 5391–5393.CrossRefGoogle Scholar
Huber, G., Mantz, H., Spolenak, R. et al. (2005) Proc. Natl. Acad. Sci. USA 102: 16293–16296.CrossRef
Hughes, P. M. (1987) Insect cuticular growth layers seen under the scanning electron microscope: a new display method. Tissue Cell 19: 705–712.CrossRefGoogle ScholarPubMed
Ikeshoji, T. (1993) The Interface Between Mosquitoes and Humans. Tokyo: University of Tokyo Press (in Japanese).Google Scholar
Ikoma, T., Kobayashi, H., Tanaka, J., Wals, D., and Mann, S. (2003) Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J. Structur. Biol. 142: 327–333.CrossRefGoogle ScholarPubMed
Imbeni, V., Nalla, R. K., Bosi, C., Kinney, J. H., and Ritchie, R. O. (2003) In vitro fracture toughness of human dentin. J. Biomed. Mater. Res. A 66: 1–9.CrossRefGoogle ScholarPubMed
Imbeni, V., Kruzic, J. J., Marshall, G. W., Marshall, S. J., and Ritchie, R. O. (2005) The dentin–enamel junction and the fracture of human teeth. Nature Mater. 4: 229–232.CrossRefGoogle ScholarPubMed
Jackson, A. P., Vincent, J. F. V., and Turner, R. M. (1988) The mechanical design of nacre. Proc. R. Soc. Lond. B 234: 415–440.CrossRefGoogle Scholar
Jackson, A. P., Vincent, J. F. V., and Turner, R. M. (1989) A physical model of nacre. Comp. Sci. Tech. 36: 225–266.CrossRefGoogle Scholar
Jackson, D. A., Symons, R. H., and Berg, P. (1972) Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 69: 2904–2909.CrossRefGoogle ScholarPubMed
Jackson, S. A., Cartwright, A. G., and Lewis, D. (1978) The morphology of bone mineral crystals. Calcif. Tissue Res. 25: 217–222.CrossRefGoogle ScholarPubMed
Jaenisch, R. and Mintz, B. (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc. Natl. Acad. Sci. 71: 1250–1254.CrossRefGoogle ScholarPubMed
Jäger, I. and Fratzl, P. (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79: 1737–1746.CrossRefGoogle ScholarPubMed
Jelf, P. M. and Fleck, N. A. (1992) Compression failure mechanisms in unidirectional composites. J. Comp. Mater. 26: 2706–2726.CrossRefGoogle Scholar
Jeronimidis, G. (1976) The work of fracture of wood in relation to its structure. In Baas, P., Bolton, A. J., and Catling, D. M., eds. Wood Structure in Biological and Technological Research. Leiden: The University Press, pp. 253–265.Google Scholar
Jeronimidis, G. (1980) Wood, one of nature’s challenging composites. Symp. Soc. Exp. Biol. 34: 169–182.Google ScholarPubMed
Ji, B. H. and Gao, H. J. (2004) Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solid 52: 1963–1990.CrossRefGoogle Scholar
Ji, B. H. and Gao, H. J. (2010) Mechanical properties of biological composites. Ann. Rev. Mater. Res. 40: 77–100.CrossRefGoogle Scholar
Ji, B. H., Gao, H. J., and Hsia, K. J. (2004) How do slender mineral crystals resist buckling in biological materials?Phil. Mag. Lett. 84: 631–641.CrossRefGoogle Scholar
Joffe, I., Hepburn, H. R., Nelson, K. J., and Green, N. (1975) Mechanical properties of a crustacean exoskeleton. Comp. Biochem. Physiol. A 50: 545–549.CrossRefGoogle Scholar
Johnson, K. L., Kendall, K., and Roberts, A. D. (1971) Surface energy and the contact of elastic solids. Proc. Roy. Soc. Lond. 324: 301–313.CrossRefGoogle Scholar
Johnson, W., Soden, P. D., and Trueman, E. R. (1972) A study in jet propulsion: an analysis of the motion of the squid, Loligo vulgaris. Exp. Biol. 56: 155–165.Google Scholar
Kahler, G. A., Fisher, F. M., and Sass, R. L. (1976) The chemical composition and mechanical properties of the hinge ligament in bivalve mollusks. Biol. Bull. 151: 161–181.CrossRefGoogle Scholar
Kamat, S., Su, X., Ballarini, R., and Heuer, A. H. (2000) Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405: 1036–1040.CrossRefGoogle ScholarPubMed
Kamat, S., Kessler, H., Ballarini, R., Nassirou, M., and Heuer, A. H. (2004) Fracture mechanisms of the Strombus gigas conch shell: II – micromechanics analyses of multiple cracking and large-scale crack bridging. Acta Materialia 52: 2395–2406.CrossRefGoogle Scholar
Kaplan, D. and McGrath, K. (1997) Protein-Based Materials. Boston, MA: Birkhäuser.Google Scholar
Kaplan, D. L., Lombardi, S. J., Muller, W. S., and Fossey, S. A. (1991) In Byrom, D., ed. Biomaterials: Novel Materials from Biological Sources. New York: Stockton Press.Google Scholar
Kaplan, D., Adams, W. W., Farmen, B., and Viney, C. (1994) Silk: biology, structure, properties, and genetics. Am. Chem. Soc. Symp. 544: 2–16.Google Scholar
Karam, G. N. and Gibson, L. J. (1994) Biomimicking of animal quills and plant stems: natural cylindrical shells with foam cores. Mater. Sci. Eng. C 2: 113–132.CrossRefGoogle Scholar
Karam, G. N. and Gibson, L. J. (1995a) Elastic buckling of cylindrical shells with elastic cores I: Analysis. Intl. J. Solids Struct. 32: 1259–1283.CrossRefGoogle Scholar
Karam, G. N. and Gibson, L. J. (1995b) Elastic buckling of cylindrical shells with elastic cores II: Experiments. Intl. J. Solids Struct. 32, 1285–1306.CrossRefGoogle Scholar
Kasapi, M. A. and Gosline, J. M. (1996) Strain-rate-dependent mechanical properties of the equine hoof wall. J. Exp. Biol. 199: 1133–1146.Google ScholarPubMed
Kasapi, M. A. and Gosline, J. M. (1997) Design complexity and fracture control in the equine hoof wall. J. Exp. Biol. 200: 1639–1659.Google ScholarPubMed
Kasapi, M. A. and Gosline, J. M. (1998) Exploring the possible functions of equine hoof wall tubules. Equine Vet. J. 26: 10–14.Google Scholar
Kasapi, M. A. and Gosline, J. M. (1999) Micromechanics of the equine hoof wall: optimizing crack control and material stiffness through modulation of the properties of keratin. J. Exp. Biol. 202: 377–391.Google ScholarPubMed
Katz, J. L. (1971) Hard tissue as a composite material. 1. Bounds on elastic behavior. J. Biomech. 4: 455–473.CrossRefGoogle Scholar
Kelly, R. E. and Rice, R. V. (1967) Abductin: a rubber-like protein from the internal triangular hinge ligament of pectin. Science 155: 208–210.CrossRefGoogle Scholar
Keten, S., Xu, Z. P., Ihle, B., and Buehler, M. J. (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nature Mater. 9: 359–367.CrossRefGoogle Scholar
Khanuja, S. (1991) Processing of laminated B4C-polymer laminated composites. M.S. Thesis, University of Washington.
Kisailus, D., Truong, Q., Amemiya, Y., Weaver, J. C., and Morse, D. E. (2006) Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc. Natl. Acad. Sci. 103: 5652–5657.CrossRefGoogle ScholarPubMed
Kitchener, A. (1987a) Fracture toughness of horns and a reinterpretation of the horning behaviour of bovids. J. Zool. 213: 621–639.CrossRefGoogle Scholar
Kitchener, A. (1987b) Effect of water on the linear viscoelasticity of horn sheath keratin. J. Mater. Sci. Lett. 6: 321–322.CrossRefGoogle Scholar
Kitchener, A. (1988) An analysis of the forces of fighting of the blackbuck (Antilope cervicapra) and the bighorn sheep (Ovis canadensis) and the mechanical design of horns of bovids. J. Zool. 214: 1–20.CrossRefGoogle Scholar
Kitchener, A. C. (1991) The evolution and mechanical design of horns and antlers. In Rayner, J. M. V. and Wootton, R. J., eds. Biomechanics and Evolution. Cambridge: Cambridge University Press, pp. 229–253.Google Scholar
Kitchener, A. C. (2000) Fighting and the mechanical design of horns and antlers. In Domenici, P. and Blake, R. W., eds. Biomechanics in Animal Behavior. Oxford: BIOS Scientific Publishers, pp. 291–314.Google Scholar
Kitchener, A. and Vincent, J. F. V. (1987) Composite theory and the effect of water on the stiffness of horn keratin. J. Mater. Sci. 22: 1385–1389.CrossRefGoogle Scholar
Kobayashi, I. (1969) Internal microstructure of shell of bivalve mollusks. Am. Zool. 9: 633–672.CrossRefGoogle Scholar
Kobayashi, I. and Samata, T. (2006) Bivalve shell structure and organic matrix. Mater. Sci. Eng. C 26: 692–698.CrossRefGoogle Scholar
Koch, K., Bhushan, B., and Barthlott, W. (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog. Mater. Sci. 54: 137–178.CrossRefGoogle Scholar
Koester, K. J., Ager, J. W., and Ritchie, R. O. (2008) The true toughness of human cortical bone measured with realistic short cracks. Nature Mater. 7: 672–676.CrossRefGoogle Scholar
Kohr, E. (2001) Chitin: Fulfilling a Biomaterials Promise. Oxford: Elsevier Science.Google Scholar
Kokubo, T. (1991) Bioactive glass ceramics: properties and applications. Biomater. 12: 155–163.CrossRefGoogle ScholarPubMed
Kolle, M., Salgard-Cunha, P. M., Scherer, M. R. J. et al. (2010) Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nature Nanotech. 5: 511–515.CrossRefGoogle ScholarPubMed
Krajewska, B. (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microbiol. Tech. 35: 126–139.CrossRefGoogle Scholar
Krauss, S., Monsonego-Orman, E., Zelzer, E., Fratzl, P., and Shahar, R. (2009) Mechanical function of a complex three-dimensional suture joining the bony elements in the shell of the red-eared slider turtle. Adv. Mater. 21: 407–412.CrossRefGoogle Scholar
Krishnaji, S. T., Huang, W., Rabotyagova, O. et al. (2011) Thin film assembly of spider silk-like block copolymers. Langmuir 27: 1000–1008.CrossRefGoogle ScholarPubMed
Kruzic, J. J., Nalla, R. K., Kinney, J. H., and Ritchie, R. O. (2003) Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. Biomater. 24: 5209–5221.CrossRefGoogle ScholarPubMed
Kuhn-Spearing, L. F., Kessler, H., Chateau, E., Ballarin, R., Heuer, A. H., and Spearing, S. M. (1996) Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates. J. Mater. Sci. 31: 6583–6594.CrossRefGoogle Scholar
Kulchin, Y. N., Bezverbny, A. V., Bukin, O. A. et al. (2009) Optical and nonlinear optical properties of sea glass sponge spicules. Prog. Molec. Subcell. Biol. 47: 315–340.CrossRefGoogle ScholarPubMed
Kulin, R. M., Chen, P. -Y., Jiang, F., McKittrick, J., and Vecchio, K. S. (2010) Dynamic fracture resilience of elk antler: biomimetic inspiration for improved crashworthiness. JOM 62: 41–46.CrossRefGoogle Scholar
Kulin, R. M., Chen, P. -Y., Jiang, F., and Vecchio, K. S. (2011) A study of the dynamic compressive behavior of elk antler. Mater. Sci. Eng. C 31: 1030–1041.CrossRefGoogle Scholar
Kustandi, T. S., Low, H. Y., Teng, J. H., Rodrizuez, I., and Yin, R. (2009) Mimicking domino-like photonic nanostructures on butterfly wings. Small 5: 574–578.CrossRefGoogle ScholarPubMed
Laraia, V. J. and Heuer, A. H. (1989) Novel composite microstructure and mechanical behavior of mollusk shell. J. Am. Ceram. Soc. 72: 2177–2179.CrossRefGoogle Scholar
Launey, M. E., Munch, E., Alsem, D. H. et al. (2009) Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57: 2919–2932.CrossRefGoogle Scholar
Launey, M. E., Buehler, M. J., and Ritchie, R. O. (2010a) On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40: 25–53.CrossRefGoogle Scholar
Launey, M. E., Chen, P. -Y., McKittrick, J., and Ritchie, R. O. (2010b) Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater. 6: 1505–1514.CrossRefGoogle ScholarPubMed
Lawrence, C., Vukusic, P., and Sambles, J. R. (2002) Grazing-incidence iridescence from a butterfly wing. Appl. Opt. 41: 437–441.CrossRefGoogle ScholarPubMed
Lee, G. Y. H. and Lim, C. T. (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol. 25: 111–118.CrossRefGoogle ScholarPubMed
Lee, H. (2010) Biomaterials: intelligent glue. Nature 465: 298–299.CrossRefGoogle ScholarPubMed
Lee, H., Dellatore, S. M., Mille, W. M., and Messersmith, P. B. (2007a) Mussel-inspired surface chemistry for multifunctional coatings. Science 318: 426–430.CrossRefGoogle ScholarPubMed
Lee, H., Lee, B. P., and Messersmith, P. B. (2007b) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448: 338–341.CrossRefGoogle ScholarPubMed
Lee, S., Reyante, B., Tsukasa, T. et al. (2011) Impact testing of structural biological materials. Mater. Sci. Eng. C 31: 730–739.CrossRefGoogle Scholar
Lee, S. W., Mao, C. B., Flynn, C. E., and Belcher, A. M. (2002) Ordering of quantum dots using genetically engineered viruses. Science 296: 892–895.CrossRefGoogle ScholarPubMed
Lee, Y. J., Yi, H., Kang, K. et al. (2009) Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324: 1051–1055.Google ScholarPubMed
Levi, C., Barton, J. L., Guillemet, C., Le Bras, E., and Jehuede, P. J. (1989) A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. Mater. Sci. Lett. 8: 337–339.CrossRefGoogle Scholar
Levi, K., Weber, R. J., Do, J. Q., and Dauskardt, R. H. (2009) Drying stresses and damage in human stratum corneum. Inl. J. Cosmet. Sci. 32: 276–293.CrossRefGoogle ScholarPubMed
Levi, K., Kwan, A., Rhines, A. S., Gorcea, M., Moore, D. J., and Dauskardt, R. H. (2011) Effect of glycerin on drying stresses in human stratum corneum. J. Dermatol. Sci. 61: 129–131.CrossRefGoogle ScholarPubMed
Levi-Kalisman, Y., Falini, G., Addadi, L., and Weiner, S. (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using Cryo-TEM. J. Struct. Biol. 135: 8–17.CrossRefGoogle ScholarPubMed
Levy, T. E., Najjar, M., and Higham, T. (2010) Ancient texts and archaeology revisited radiocarbon and Biblical dating in the southern Levant. Antiquity 84: 834–847.CrossRefGoogle Scholar
Li, V. C., Stang, H., and Krenchel, H. (1993) Micromechanics of crack bridging in fibre-reinforced concrete. Mater. Struct. 26: 486–494.CrossRefGoogle Scholar
Liao, J., Yang, L., Grashow, J., and Sacks, M. (2005) Molecular orientation of collagen in intact planar connective tissues under biaxial stretch. Acta Biomater. 1: 45–54.CrossRefGoogle ScholarPubMed
Lichtenegger, H. C., Schöberl, T., Bartl, M. H., Waite, H., and Stucky, G. D. (2002) High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science 298: 389–392.CrossRefGoogle ScholarPubMed
Lim, C. T. (2006) Single cell mechanics study of the human disease malaria. J. Biomech. Sci. Eng. 1: 82–92.CrossRefGoogle Scholar
Lim, C. T., Dao, M., Suresh, S., Sow, C. H., and Chew, K. T. (2004) Large deformation of living cells using laser traps. Acta Mater. 52: 1837–1845.CrossRefGoogle Scholar
Lim, C. T., Zhou, E. H., Li, A., Vedula, S. R. K., and Fu, H. X. (2006a) Experimental techniques for single cell and single molecule biomechanics. Mater. Sci. Eng. C 26: 1278–1288.CrossRefGoogle Scholar
Lim, C. T., Zhou, E. H., and Quek, S. T. (2006b) Mechanical models for living cells – a review. J. Biomech. 39: 195–216.CrossRefGoogle ScholarPubMed
Lin, A. and Meyers, M. A. (2005) Growth and structure in abalone shell. Mater. Sci. Eng. A 390: 27–41.CrossRefGoogle Scholar
Lin, A. Y. M. and Meyers, M. A. (2009) Interfacial shear strength in abalone nacre. J. Mech. Behav. Biomed. Mater. 2: 607–612.CrossRefGoogle ScholarPubMed
Lin, A. Y. M, Meyers, M. A., and Vecchio, K. S. (2006) Mechanical properties and structure of Strombus gigas, Tridacna gigas and Haliotis rufescens sea shells: a comparative study. Mater. Sci. Eng. C 26: 1380–1389.CrossRefGoogle Scholar
Lin, A. Y. M., Chen, P. -Y., and Meyers, M. A. (2008) The growth of nacre in the abalone shell. Acta Biomater. 4: 131–138.CrossRefGoogle ScholarPubMed
Lin, A. Y. M., Brunner, R., Chen, P. -Y., Talke, F. E., and Meyers, M. A. (2009) Underwater adhesion of abalone: the role of van der Waals and capillary forces. Acta Mater. 57: 4178–4185.CrossRefGoogle Scholar
Lin, K. L., Chen, L., and Chang, J. (2012) Fabrication of dense hydroxyapatite nanobioceramics with enhanced mechanical properties via two-step sintering process. Int. J. Appl. Ceramic Tech. 9: 479–485.CrossRefGoogle Scholar
Lin, Y. S., Wei, C. T., Olevsky, E. A., and Meyers, M. A. (2011) Mechanical properties and laminate structure of Arapaima gigas scale. J. Mech. Behav. Biomed. Mater. 4: 1145–1156.CrossRefGoogle Scholar
Lincoln, G. A. (1972) The role of antlers in the behaviour of red deer. J. Exp. Zool. 182: 233–249.CrossRefGoogle Scholar
Lincoln, G. A. (1992) Biology of antlers. J. Zool. Lond. 226: 517–528.CrossRefGoogle Scholar
Lingham-Soliar, T., Bonser, R. H. C., and Wesley-Smith, J. (2009) Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering. Proc. Roy. Soc. B 277: 1161–1168.CrossRefGoogle ScholarPubMed
Lopez, M. I., Chen, P. -Y., McKittrick, J., and Meyers, M. A. (2011) Growth of nacre in abalone: seasonal and feeding effects. Mater. Sci. Eng. C 31: 238–245.CrossRefGoogle Scholar
Lowenstam, H. A. (1962) Magnetite in denticle capping in recent chitons (polyplacophora). Bull. Geol. Soc. Am. 73: 435.CrossRefGoogle Scholar
Lowenstam, H. A. (1981) Minerals formed by organisms. Science 211: 1126–1131.CrossRefGoogle ScholarPubMed
Lowenstam, H. A. and Weiner, S. (1989) On Biomineralization. New York: Oxford University Press.Google Scholar
Lucas, G. L., Cooke, F. W., and Friis, E. A. (1999) A Primer on Biomechanics. New York: Springer.CrossRefGoogle Scholar
Lucchinetti, E., Thomann, D., and Danuser, G. (2000) Review: micromechanical testing of bone trabeculae-potentials and limitations. J. Mater. Sci. 35: 6057–6064.CrossRefGoogle Scholar
Lynn, A. K., Nakamura, T., Patel, N. et al. (2005) Composition-controlled nanocomposites of apatite and collagen incorporating silicon as an osseopromotive agent. J. Biomed. Mater. Res. A 74: 447–453.CrossRefGoogle ScholarPubMed
Ma, M., Vijayan, K., Hiltner, A., Baer, E., and Im, J. (1990a) Thickness effects in microlayer composites of polycarbonate and poly-(styrene-acrylonitrile). J. Mater. Sci. 25: 2039–2046.CrossRefGoogle Scholar
Ma, M., Im, J., Hiltner, A., and Baer, E. (1990b) Fatigue crack propagation of polycarbonate and poly-(styrene-acrylonitrile). J. Appl. Poly. Sci. 40: 669–684.CrossRefGoogle Scholar
Magdans, U. and Gies, H. (2004) Single crystal structure analysis of sea urchin spine calcites: systematic investigations of the Ca/Mg distribution as a function of habitat of the sea urchin and the sample location in the spine. Eur. J. Mineral. 16: 261–268.CrossRefGoogle Scholar
Mahdavi, A., Ferreira, L., Sundback, C. et al. (2008) Biodegradable and biocompatible gecko inspired adhesive. Proc. Natl. Acad. Sci. USA 105: 2307–2312.CrossRefGoogle Scholar
Mahoney, E., Holt, A., Swain, M., and Kilpatrick, N. (2010) The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J. Dentistry 28: 589–594.CrossRefGoogle Scholar
Malik, C. L., Gibeling, J. C., Martin, R. B., and Stover, S. M. (2003) Equine cortical bone exhibits rising R-curve fracture mechanics. J. Biomech. 36: 191–198.CrossRefGoogle ScholarPubMed
Mann, S. (1988) Molecular recognition in biomineralization. Nature 332: 119–124.CrossRefGoogle Scholar
Mann, S. (2001) Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press.Google Scholar
Mann, S., Archibald, D. D., Didymus, J. M. et al. (1993) Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261: 1286–1292.CrossRefGoogle ScholarPubMed
Manne, S. and Aksay, I. A. (1997) Thin films and nanolaminates incorporating organic/inorganic interfaces. Curr. Opin. Sol. State Mater. Sci. 2: 358–364.CrossRefGoogle Scholar
Marin, F. and Luquet, G. (2005) Molluscan biomineralization: the proteinaceous shell constituents of Pinna nobilis L. Mater. Sci. Eng. C 25: 105–111.CrossRefGoogle Scholar
Mark, R. E. (1967) Cell Wall Mechanics of Wood Tracheids. New Haven: Yale University Press.Google Scholar
Marks, R. and Plewig, G. (1983) Stratum Corneum. New York: Springer-Verlag.CrossRefGoogle Scholar
Marshall, C. and Gillespie, J. M. (1977) The keratin proteins of wool, horn and hoof from sheep. Austr. J. Bio. Sci. 30: 389–400.CrossRefGoogle Scholar
Martin, R. B. and Burr, D. B. (1982) A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage. J. Biomech. 15: 137–139.CrossRefGoogle Scholar
Matonis, V. A. (1964) Elastic behavior of low density rigid foams in structural applications. Soc. Plast. Eng. J. 20: 1024–1030.Google Scholar
Mayer, G. (2005) Rigid biological systems as models for synthetic composites. Science 310: 1144–1147.CrossRefGoogle ScholarPubMed
Mayer, G. (2006) New classes of tough composite materials – lessons from natural rigid biological systems. Mater. Sci. Eng. C 26: 1261–1268.CrossRefGoogle Scholar
Mayer, G. and Sarikaya, M. (2002) Rigid biological composite materials: structural examples for biomimetic design. Exp. Mech. 42: 395–403.CrossRefGoogle Scholar
McAllister, A. and Channing, L. (1983) Comparisons of toe pads of some Southern African climbing frogs. S. Afr. J. Zool. 18: 110–114.Google Scholar
McBride, E. D. (1938) Absorbable metal in bone surgery: a further report on the use of magnesium alloys. J. Am. Med. Assoc. 111: 2464–2467.CrossRefGoogle Scholar
McElhaney, J. H. (1966) Dynamic response of bone and muscle tissue. J. Appl. Physiol. 21: 1231–1236.CrossRefGoogle ScholarPubMed
McKittrick, J., Chen, P. -Y., Tombolato, L. et al. (2010) Energy absorbent natural materials and bio-inspired design strategies: a review. Mater. Sci. Eng. C 30: 331–342.CrossRefGoogle Scholar
McKittrick, J., Chen, P. -Y., Bodde, S. G., Yang, W., Novitskaya, E. E., and Meyers, M. A. (2012) The structure, functions, and mechanical properties of keratin. JOM 64: 449–468.CrossRefGoogle Scholar
Meldrum, F. C. and Ludwigs, S. (2007) Template-directed control of crystal morphologies. Macromol. Biosci. 7: 152–162.CrossRefGoogle ScholarPubMed
Melnick, C. A., Chen, S., and Mecholsky, J. J. (1996) Hardness and toughness of exoskeleton material in the stone crab Menippe mercenaria. J. Mater. Res. 11: 2903–2907.CrossRefGoogle Scholar
Melvin, J. W. and Evans, F. G. (1973) Crack propagation in bone. ASME Biomaterials Symp. Detroit, MI 1973.Google Scholar
Menezes, G. C., Elias, C. N., Attias, M., and Silva-Filho, F. C. (2003) Osteoblast adhesion onto titanium dental implants. Acta Microsc. 12: 13–19.Google Scholar
Menig, R., Meyers, M. H., Meyers, M. A., and Vecchio, K. S. (2000) Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater. 48: 2383–2398.CrossRefGoogle Scholar
Menig, R., Meyers, M. H., Meyers, M. A., and Vecchio, K. S. (2001) Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells. Mater. Sci. Eng. A 297: 203–211.CrossRefGoogle Scholar
Mercer, E. H. (1961) Keratin and Keratinization: An Essay in Molecular Biology. New York: Pergamon Press.Google Scholar
Meyers, M. A. and Chawla, K. C. (2009) Mechanical Behavior of Materials, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Meyers, M. A., Lin, A. Y. M., Seki, Y., Chen, P. -Y., Kad, B. K., and Bodde, S. (2006) Structural biological composites: an overview. JOM 58: 35–41.CrossRefGoogle Scholar
Meyers, M. A., Lin, A. Y. M., Chen, P. -Y., and Muyco, J. (2008a) Mechanical strength of abalone nacre: role of the soft organic layer. J. Mech. Behav. Biomed. Mater. 1: 76–85.CrossRefGoogle ScholarPubMed
Meyers, M. A., Chen, P. -Y., Lin, A. Y. M., and Seki, Y. (2008b) Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53: 1–206.CrossRefGoogle Scholar
Meyers, M. A., Lin, A. Y. M., Lin, Y. S., Olevsky, E. A., and Georgalis, S. (2008c) The cutting edge: sharp biological materials. JOM 60: 21–26.CrossRefGoogle Scholar
Meyers, M. A., Lim, C. T., Li, A. et al. (2010) The role of organic layer in abalone nacre. Mater. Sci. Eng. C 29: 2398–2410.CrossRefGoogle Scholar
Meyers, M. A., Chen, P. -Y., Lopez, M. I., Seki, Y., and Lin, A. Y. M. (2011) Biological materials: a materials science approach. J. Mech. Behav. Biomed. Mater. 4: 626–657.CrossRefGoogle ScholarPubMed
Meyers, M. A., Lin, Y. S., Olevsky, E. A., and Chen, P. -Y. (2012) Battle in the Amazon: Arapaima versus Piranha. Adv. Eng. Mater. 14: B1–B10.CrossRefGoogle Scholar
Meyers, M. A., McKittrick, J., and Chen, P. -Y. (2013) Structural biological materials: critical mechanics-materials connections. Science 339: 773–779.CrossRefGoogle ScholarPubMed
Milwich, M., Speck, T., Speck, O., Stegmaier, T., and Planck, H. (2006) Biomimetics and technical textiles: solving engineering problems with the help of nature’s wisdom. Am. J. Botany 93: 1455–1465.CrossRefGoogle ScholarPubMed
Miserez, A., Schneberk, T., Sun, C., Zok, F. W., and Waite, J. H. (2008) The transition from stiff to compliant materials in squid beaks. Science 319: 1816–1819.CrossRefGoogle ScholarPubMed
Miserez, A., Weaver, J. C., Pedersen, P. B. et al. (2009a) Microstructural and biochemical characterization of the nanoporous sucker rings from Dosidicus gigas. Adv. Mater. 21: 401–406.CrossRefGoogle Scholar
Miserez, A., Wasko, S. S., Carpenter, C. F., and Waite, J. H. (2009b) Non-entropic and reversible long-range deformation of an encapsulating bioelastomer. Nature Mater. 8: 910–916.CrossRefGoogle ScholarPubMed
Mitchison, T. J. and Cramer, L. P. (1996) Actin-based cell motility and cell locomotion. Cell 84: 371–379.CrossRefGoogle ScholarPubMed
Moir, B. G. (1990) Comparative-studies of fresh and aged Tridacna gigas shell – preliminary investigations of a reported technique for pretreatment of tool material. J. Archaeol. Sci. 17: 329–345.CrossRefGoogle Scholar
Montagna, W. and Parakkal, P. F. (1974) The Structure and Function of Skin, 3rd edn. New York: Academic Press.Google Scholar
Monteiro, S. N., Lopes, F. P. D., Barbosa, A. P., Bevitori, A. B., Da Silva, I. L. A., and Da Costa, L. L. (2011a) Natural lignocellulosic fibers as engineering materials – an overview. Metall. Mater. Trans. 42a: 2963–2974.CrossRefGoogle Scholar
Monteiro, S. N., Satyanarayana, K. G., Ferreira, A. S., Nascimento, D. O. C., and Lopes, F. P. D. (2011b) Selection of high strength natural fibers. Revista Matéria 15: 488–505.CrossRefGoogle Scholar
Mooney, M. (1940) A theory of large elastic deformation. J. Appl. Phys. 11: 582–592.CrossRefGoogle Scholar
Morais, L. S., Glaucio, G., Serra, G. C. et al. (2007) Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release. Acta Biomater. 3: 331–339.CrossRefGoogle ScholarPubMed
Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., and Ritchie, R. O. (2008) Tough, bio-inspired hybrid materials. Science 322: 1516–1520.CrossRefGoogle ScholarPubMed
Murr, L. E. and Ramirez, D. A. (2012) The microstructure of the cultured freshwater pearl. JOM 64: 469–474.CrossRefGoogle Scholar
Nachemson, A. and Evans, J. H. (1968) Some mechanical properties of the third human lumbar interlaminar ligament (ligamen tum flavum). J. Biomech. 1: 211–220.CrossRefGoogle Scholar
Nakahara, H. (1991) Nacre formation in bivalve and gastropod mollusks. In Suga, S. and Nakahara, H., eds. Mechanisms and Phylogeny of Mineralization in Biological Systems. New York: Springer, pp. 343–350.CrossRefGoogle Scholar
Nakahara, H., Kakei, M., and Bevelander, G. (1982) Electron microscopic and amino acid studies on the outer and inner shell layers of Haliotis rufescens. Venus Jpn. J. Malac. 41: 33–46.Google Scholar
Nalla, R. K., Kinney, J. H., and Ritchie, R. O. (2003a) Mechanistic fracture criteria for the failure of human cortical bone. Nature Mater. 2: 164–168.CrossRefGoogle ScholarPubMed
Nalla, R. K., Kinney, J. H., and Ritchie, R. O. (2003b) Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomater. 24: 3955–3968.CrossRefGoogle ScholarPubMed
Nalla, R. K., Kruzic, J. J., Kinney, J. H., and Ritchie, R. O. (2004) On the origin of the toughness of mineralized tissue: microcracking or crack bridging?Bone 34: 790–798.CrossRefGoogle ScholarPubMed
Nalla, R. K., Kruzic, J. J., Kinney, J. H., and Ritchie, R. O. (2005) Mechanistic aspects of fracture and R-curve behavior of human cortical bone. Biomater. 26: 217–231.CrossRefGoogle ScholarPubMed
Nalla, R. K., Kruzic, J. J., Kinney, J. H., Balooch, M., Ager, J. W., and Ritchie, R. O. (2006a) Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Mater. Sci. Eng. C 26: 1251–1260.CrossRefGoogle Scholar
Nalla, R. K., Kinney, J. H., Tomsia, A. P., and Ritchie, R. O. (2006b) Role of alcohol in the fracture resistance of teeth. J. Dent. Res. 85: 1022–1026.CrossRefGoogle ScholarPubMed
Nam, K. T., Kim, D. W., Yoo, P. J. et al. (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312: 886–888.CrossRefGoogle ScholarPubMed
Nassau, K. (1998) Color for Science, Art, and Technology. New York: Elsevier.Google Scholar
Nassau, K. (2001) The Physics and Chemistry of Color, 2nd edn. New York: Wiley.Google Scholar
Nelson, D. L. and Cox, M. M. (2005) Lehninger Principles of Biochemistry, 4th edn. New York: W.H. Freeman.Google Scholar
Nevell, T. P. and Zeronian, S. H. (1985) Cellulose Chemistry and its Applications. New York: Wiley.Google Scholar
Neville, A. C. (1975) Biology of the Arthropod Cuticle. New York: Springer-Verlag.CrossRefGoogle Scholar
Neville, A. C. (1993) Biology of Fibrous Composites. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Nicolis, G. and Prigogine, I. (1989) Exploring Complexity. New York: W. H. Freeman.Google Scholar
Nikolov, S., Petrov, M., Lymperakis, L. et al. (2010) Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. Adv. Mater. 22: 519–526.CrossRefGoogle ScholarPubMed
Novitskaya, E., Chen, P. Y., Lee, S., et al. (2011) Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomater. 7: 3170–3177.CrossRefGoogle ScholarPubMed
Nudelman, F., Gotliv, B. A., Addadi, L., and Weiner, S. (2006) Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol. 153: 176–187.CrossRefGoogle ScholarPubMed
Nuzzo, R. G. and Allara, D. L. (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105: 4481–4483.CrossRefGoogle Scholar
Ogden, R. W. (1972) Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids. Proc. Roy. Soc. Lond. A 326: 565–584.CrossRefGoogle Scholar
Oka, K., Aoyagi, S., Hashiguchi, G., Isono, Y., and Fujita, H. (2002) Fabrication of a micro needle for a trace blood test. Proc. Sensor. Actuat. A 97–98: 478–485.CrossRefGoogle Scholar
Olson, G. B. and Hartman, H. (1982) Martensite and life: displacive transformations as biological processes. J. de Phys. 43: (C4) 855–865.Google Scholar
Olson, P. and Watabe, N. (1980) Studies on formation and resorption of fish scales. Cell Tissue Res. 211: 303–316.CrossRefGoogle ScholarPubMed
Onozato, H. and Watabe, N. (1979) Studies on fish scale formation and resorption. Cell Tissue Res. 201: 409–422.CrossRefGoogle ScholarPubMed
Orme, C. A., Noy, A., Wierzbicki, A. et al. (2001) Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411: 775–779.CrossRefGoogle ScholarPubMed
Oxlund, H., Manschot, J., and Viidik, A. (1988) The role of elastin in the mechanical properties of skin. J. Biomech. 3: 213–218.CrossRefGoogle Scholar
Ozin, G. A., Manners, I., Fournier-Bidoz, S., and Arsenault, A. (2005) Dream nanomachines. Adv. Mater. 17: 3011–3018.CrossRefGoogle Scholar
Pabisch, S., Puchegger, S., Kirchner, H. O. K., Weiss, I. M., and Peterlik, H. (2010) Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. Alba. J. Struct. Biol. 172: 270–275.CrossRefGoogle ScholarPubMed
Papir, Y. S., Hsu, K. H., and Wildnauer, R. H. (1975) The mechanical properties of stratum corneum: I. The effect of water and ambient temperature on the tensile properties of newborn rat stratum corneum. Biochim. Biophys. Acta 399: 170–180.CrossRefGoogle ScholarPubMed
Park, A. C. and Baddiel, C. B. (1972) Rheology of stratum corneum. Part I. A molecular interpretation of the stress-strain curve. J. Soc. Cosmet. Chem. 23: 3–12.Google Scholar
Park, J. and Lakes, R. S. (2007) Biomaterials: An introduction, 3rd edn. New York: Springer.Google Scholar
Parker, A. R. and Lawrence, C. R. (2001) Water capture from desert fogs by a Namibian beetle. Nature 414: 33–34.CrossRefGoogle Scholar
Parry, D. A. D. and North, A. C. T. (1998) Hard α-keratin intermediate filament chains: substructure of the N- and C-terminal domains and the predicted structure and function of the C-terminal domains of type I and type II chains. J. Struct. Biol. 122: 67–75.CrossRefGoogle Scholar
Patek, S. N., Baio, J. E., Fisher, B. L., and Suarez, A. V. (2006) Multifunctionality and mechanical origins: ballistic jaw propulsion in trap-jaw ants. Proc. Natl. Acad. Sci. 103: 12787–12792.CrossRefGoogle ScholarPubMed
Pautard, F. G. E. (1963) Mineralization of keratin and its comparison with the enamel matrix. Nature 199: 531–535.CrossRefGoogle ScholarPubMed
Peattie, A. M. and Full, R. J. (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc. Natl. Acad. Sci. USA 104: 18595.CrossRefGoogle ScholarPubMed
Pek, Y. S., Spector, M., Yanna, I. V., and Gibson, L. J. (2004) Degradation of a collagen-chondroitin-6 sulfate matrix by collagenase and chondroitinase. Biomater. 25: 472–482.CrossRefGoogle ScholarPubMed
Peña, E., Martinsh, P., Mascarenhas, T. et al. (2011) Mechanical characterization of the softening behavior of human vaginal tissue. J. Mech. Behav. Biomed. 4: 275–283.CrossRefGoogle ScholarPubMed
Perez-Rigueiro, J., Viney, C., Llorca, J., and Elices, M. (2000) Mechanical properties of silkworm silk in liquid media. J. Appl. Polymer Sci. 75: 1270–1277.3.0.CO;2-C>CrossRefGoogle Scholar
Pins, G. D., Christiansen, D. L., Patel, R., and Silver, F. H. (1977) Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys. J. 73: 2164–2172.CrossRefGoogle Scholar
Pollock, R. G., Soslowsky, L. J., Bigliani, L. U., Flatow, E. L., and Mow, V. C. (1990) The mechanical properties of the inferior glenohumeral ligament. Trans. Orthop. Res. Soc. 15: 510.Google Scholar
Potyrailo, R. A., Ghiradella, H., Vertiatchikh, A., Dovidenko, K., Cournoyer, J. R., and Olson, E. (2007) Morpho butterfly wing scales demonstrate highly selective vapor response. Nature Photon. 1: 123–128.CrossRefGoogle Scholar
Poulsen, N., Sumper, M., and Kröger, N. (2003) Biosilica formation diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc. Natl. Acad. Sci. 100: 12075–12080.CrossRefGoogle ScholarPubMed
Presser, V., Schultheiβ, S., Berthold, C., and Nickel, K. G. (2009) Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression. J. Bionic Eng. 6: 203–213.CrossRefGoogle Scholar
Preston, R. D. (1974) The Physical Biology of Plant Cell Walls. London: Chapman and Hall.Google Scholar
Prigogine, I. (1962) Non Equilibrium Statistical Mechanics. New York: Wiley-Interscience.Google Scholar
Pruitt, L. A. and Chakravartula, A. M. (2011) Mechanics of Biomaterials. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Prum, R. O. (1999) Development and evolutionary origin of feathers. J. Exp. Zool. 285: 291–306.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Purslow, P. P. (1983) Measurement of the fracture toughness of extensible connective tissues. J. Mater. Sci. 18: 3591–3598.CrossRefGoogle Scholar
Purslow, P. P. and Vincent, J. F. V. (1978) Mechanical properties of primary feathers from the pigeon. J. Exp. Biol. 72: 251–260.Google Scholar
Qian, J. and Gao, H. (2006) Scaling effects of wet adhesion in biological attachment systems. Acta Biomater. 2: 51–58.CrossRefGoogle ScholarPubMed
Qin, X. X., Coyne, K. J., and Waite, J. H. (1997) Tough tendons: mussel byssus has collagen with silk-like domains. J. Biol. Chem. 272: 32623–32627.CrossRefGoogle ScholarPubMed
Quicke, D. L. J., Wyeth, P., Fawke, J. D., Basibuyuk, H. H., and Vincent, J. F. V. (1998) Manganese and zinc in the ovipositors and mandibles of hymenopterous insects. Zool. J. Linn. Soc. 124: 387–396.CrossRefGoogle Scholar
Raabe, D., Al-Sawalmih, A., Romano, P. et al. (2005a) Mater. Sci. Forum 495–497: 1665–1674.CrossRef
Raabe, D., Romano, P., Sachs, C. et al. (2005b) Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J. Crystal Growth 283: 1–7.CrossRefGoogle Scholar
Raabe, D., Sachs, C., and Romano, P. (2005c) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53: 4281–4292.CrossRefGoogle Scholar
Raabe, D., Romano, P., Sachs, C. et al. (2006) Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater. Sci. Eng. A 421: 143–153.CrossRefGoogle Scholar
Rabin, B. H., Williamson, R. L., and Suresh, S. (1995) Fundamentals of residual stresses in joints between dissimilar material. Mater. Res. Soc. Bull. 20: 37–39.CrossRefGoogle Scholar
Rabotyagova, O. S., Cebe, P., and Kaplan, D. L. (2011) Protein-based block copolymers. Biomacromol. 12: 269–289.CrossRefGoogle ScholarPubMed
Ratner, B. D., Hoffman, A. S., Schoen, F. J., and Lemons, J. E. (2005) Biomaterials Science: An Introduction to Materials in Medicine. New York: Academic Press.Google Scholar
Regan, B. C., Aloni, S., Jensen, K., Ritchie, R. O., and Zettl, A. (2005) Nanocrystal-powered nanomotor. Nano Lett. 5: 1730–1733.CrossRefGoogle ScholarPubMed
Ren, D., Meyers, M. A., Zhou, B., and Feng, Q. (2013) Comparative study of carp otolith hardness: lapillus and asteriscus. Mater. Sci. Eng. C 33: 1876–1881.CrossRefGoogle ScholarPubMed
Rhee, H., Horstemeyer, M. F., Hwang, Y., Lim, H., El Kadiri, H., and Trim, W. (2009) A study on the structure and mechanical behavior of the Terrapene carolina carapace: a pathway to design bio-inspired synthetic composites. Mater. Sci. Eng. C 29: 2333–2339.CrossRefGoogle Scholar
Rhee, H., Horstemeyer, M. F., and Ramsay, A. (2011) A study on the structure and mechanical behavior of the Dasypus novemcinctus shell. Mater. Sci. Eng. C 31: 363–369.CrossRefGoogle Scholar
Rho, J. Y., Kuhn-Spearing, L., and Zioupos, P. (1998) Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20: 92–103.CrossRefGoogle Scholar
Rinaudo, M. (2006) Chitin and chitosan: properties and applications. Prog. Polymer Sci. 31: 603–632.CrossRefGoogle Scholar
Ritchie, R. O. (1988) Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding. Mater. Sci. Eng. A 103: 15–28.CrossRefGoogle Scholar
Ritchie, R. O. (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fracture 100: 55–83.CrossRefGoogle Scholar
Ritchie, R. O., Kinney, J. H., Kruzic, J. J., and Nalla, R. K. (2006) Cortical bone fracture. In Akay, M., ed. Wiley Encyclopedia of Biomedical Engineering. Hoboken, NJ: John Wiley & Sons Inc., pp. 1–18.Google Scholar
Rivlin, R. S. and Saunders, D. W. (1951) Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Phil. Trans. Roy. Soc. Lond. A 243: 251–288.CrossRefGoogle Scholar
Rogers, G. J., Milthorpe, B. K., Muratore, A., and Schindhelma, K. (1990) Measurement of the mechanical properties of the ovine anterior cruciate ligament bone-ligament-bone complex: a basis for prosthetic evaluation. Biomater. 11: 89–96.CrossRefGoogle ScholarPubMed
Rohrlich, S. T. and Rubin, R. W. (1975) Biochemical characterization of crystals from the dermal iridophores of a chameleon Anolis carolinensis. J. Cell. Biol. 66: 635–645.CrossRefGoogle ScholarPubMed
Romano, P., Fabritius, H., and Raabe, D. (2007) The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater. 3: 301–309.CrossRefGoogle Scholar
Rosewater, J. R. (1965) The family Tridacnidae in the Indo-Pacific. Indo-Pacific Mollusca 1: 347–396.Google Scholar
Rudall, K. M. (1955) The distribution of collagen and chitin. Symp. Soc. Exp. Biol. 9: 49–71.Google Scholar
Ruibal, R. and Ernst, V. (1965) The structure of the digital setae of lizards. J. Morphol. 117: 271–293.CrossRefGoogle ScholarPubMed
Runnegar, B. and Bengtson, S. (1992) Origin of hard parts: early skeletal fossils. In Briggs, D. E. G. and Crowther, P. R., eds. Palaeobiology: A Synthesis. Oxford: Wiley-Blackwell, pp. 24–29.Google Scholar
Ryan, S. D. and Williams, J. L. (1989) Tensile testing of rodlike trabeculae excised from bovine femoral bone. J. Biomech. 22: 351–355.CrossRefGoogle ScholarPubMed
Ryder, M. L. (1962) Structure of the rhinoceros horn. Nature 193: 1199–1201.CrossRefGoogle Scholar
Sachs, C., Fabritius, H., and Raabe, D. (2006a) Hardness and elastic properties of dehydrated cuticle from the lobster. J. Mater. Res. 21: 1987–1995.CrossRefGoogle Scholar
Sachs, C., Fabritius, H., and Raabe, D. (2006b) Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation. J. Structur. Biol. 155: 409–425.CrossRefGoogle ScholarPubMed
Sacks, M. (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. Trans. ASME 125: 280–287.Google ScholarPubMed
Sahni, V., Blackledge, T. A., and Dhinojwala, A. (2010) Viscoelastic solids explain spider web stickiness. Nature Commun. 1: 19.CrossRefGoogle ScholarPubMed
Saito, A., Miyamura, Y., Nakajima, M. et al. (2006) Reproduction of the Morpho blue by nanocasting lithography. J. Vac. Sci. Tech. B 24: 3248–3251.CrossRefGoogle Scholar
Sanchez, C., Arribart, H., and Giraud-Guille, M. M. (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Mater. 4: 277–288.CrossRefGoogle ScholarPubMed
Sandhage, K. H., Dickerson, M. B., Huseman, P. M. et al. (2002) Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14: 429–433.3.0.CO;2-C>CrossRefGoogle Scholar
Sarikaya, M. (1994) An introduction to biomimetics: a structural viewpoint. Micros. Res. Tech. 27: 360–375.CrossRefGoogle ScholarPubMed
Sarikaya, M. and Aksay, I. A. (1992) Nacre of abalone shell: a natural multifunctional nanolaminated ceramic-polymer composite material. In Case, S. T., ed. Results and Problems in Cell Differentiation – Biopolymers. Berlin: Springer-Verlag, pp. 1–26.Google Scholar
Sarikaya, M., Gunnison, K. E., Yasrebi, M., and Aksay, I. A. (1990) Mechanical property-microstructural relationships in abalone shell. In Rieke, P. C., Calvert, P. D., and Alper, M., eds. Materials Synthesis Utilizing Biological Processes, MRS Symp. Proc. Vol. 174. Pittsburgh, PA: Materials Research Society, pp. 109–116.Google Scholar
Sarikaya, M., Fong, H., Sunderland, N. et al. (2001) Biomimetic model of a sponge – spicular optical fiber-mechanical properties and structure. J. Mater. Res. 16: 1420–1428.CrossRefGoogle Scholar
Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K., and Baneyx, F. (2003) Molecular biomimetics: nanotechnology through biology. Nature Mater. 2: 577–585.CrossRefGoogle ScholarPubMed
Sasaki, N. and Odajima, S. (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech. 29: 1131–1136.CrossRefGoogle ScholarPubMed
Sass, R. L. and Vidale, R. (1957) Interatomic distances and thermal anisotropy in sodium nitrate and calcite. Acta Crystall. 10: 567–570.CrossRefGoogle Scholar
Schäffer, T. E., Zanetti, C. I., Proksch, R. et al. (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges?Chem. Mater. 9: 1731–1740.CrossRefGoogle Scholar
Schillinger, M., Sabet, S., Loewe, C. et al. (2006) Balloon angioplasty versus implantation of Nitinol stents in the superficial femoral artery. New Engl. J. Med. 354: 1879–1888.CrossRefGoogle ScholarPubMed
Schneider, A. S., Heiland, B., Peter, N. J., Guth, C., Arzt, E., and Weiss, I. M. (2012) Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: implications for the limits of biological control over the growth mode of abalone sea shells. BMC Biophys. 5: 19.CrossRefGoogle ScholarPubMed
Schofield, R. M. S., Nesson, M. H., and Richardson, K. A. (2002) Tooth hardness increases with zinc-content in mandibles of young adult leaf-cutter ants. Naturwissenschaft. 89: 579–583.Google ScholarPubMed
Schultz, H. (2006) Sea Urchins. Hemdingen: Heinke & Peter Schutz Partner.Google Scholar
Schultz, J. T., Tompkins, R. G., and Burke, J. F. (2000) Artificial skin. Annu. Rev. Med. 51: 231–244.CrossRefGoogle Scholar
Schwenzer, B., Gomm, J. R., and Morse, D. E. (2006) Substrate-induced growth of nanostructured zinc oxide films at room temperature using concepts of biomimetic catalysis. Langmuir 22: 9829–9831.CrossRefGoogle ScholarPubMed
Schwinger, G., Zanger, K., and Greven, H. (2001) Structure and mechanical aspects of the skin of Bufo marinus (Anura, Amphibia). Tissue Cell 33: 541–547.CrossRefGoogle Scholar
Seeman, N. C. and Belcher, A. M. (2002) Emulating biology: building nanostructures from the bottom up. Proc. Natl. Acad. Sci. USA 99: 6451–6455.CrossRefGoogle ScholarPubMed
Seki, Y., Schneider, M. S., and Meyers, M. A. (2005) Structure and mechanical behavior of a toucan beak. Acta Mater. 53: 5281–5296.CrossRefGoogle Scholar
Seki, Y., Kad, B., Benson, D., and Meyers, M. A. (2006) The toucan beak: structure and mechanical response. Mater. Sci. Eng. C 26: 1412–1420.CrossRefGoogle Scholar
Seki, Y., Bodde, S. G., and Meyers, M. A. (2010) Toucan and hornbill beaks: comparative study. Acta Biomater. 6: 331–343.CrossRefGoogle ScholarPubMed
Seki, Y., Mackey, M., and Meyers, M. A. (2012) Structure and micro-computed tomography-based finite element modeling of toucan beak. J. Mech. Behav. Biomed. Mater. 9: 1–8.CrossRefGoogle ScholarPubMed
Selden, P. A. (1989) Orb-web weaving spiders in the early Cretaceous. Nature 340: 711–712.CrossRefGoogle Scholar
Serra, G., Morais, L. S., Elias, C. N. et al. (2010) Sequential bone healing of immediately loaded mini-implants: histomorphometric and fluorescence analysis. Am. J. Orthodont. Dentofac. Orthop. 137: 80–90.CrossRefGoogle ScholarPubMed
Sethi, S., Ge, L., Ajayan, P. M., and Dhinojwala, A. (2008) Gecko-inspired carbon nanotube based self cleaning adhesives. Nano. Lett. 8: 822–825.CrossRefGoogle ScholarPubMed
Sethman, I., Hinrichs, R., Wörheide, G., and Putnis, A. (2006) Nano-cluster composite structure of calcitic sponge spicules – a case study of basic characteristics of biominerals. J. Inorg. Biochem. 100: 88–96.CrossRefGoogle Scholar
Shadwick, R. E., Russell, A. P., and Lauff, R. F. (1992) The structure and mechanical design of rhinoceros dermal armour. Phil. Trans. Roy. Soc. Lond. B 337: 419–428.CrossRefGoogle ScholarPubMed
Shear, W. A., Palmer, J. M., Coddington, J. A., and Bonamo, P. M. (1989) A devonian spinneret: early evidence of spiders and silk use. Science 246: 479–481.Google ScholarPubMed
Shen, X., Belcher, A. M., Hansma, P. K., Stucky, G. D., and Morse, D. E. (1997) Molecular cloning and characterization of Lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J. Biol. Chem. 272: 32472–32481.CrossRefGoogle ScholarPubMed
Shen, Z. L., Dodge, M. R., Kahn, H. et al. (2008) Stress-strain experiments on individual collagen fibrils. Biophys. J. 95: 3956–3963.CrossRefGoogle ScholarPubMed
Shen, Z. L., Kahn, H., Ballarini, R., and Eppelli, S. J. (2011) Viscoelastic properties of isolated collagen fibrils. Biophys. J. 100: 3008–3015.CrossRefGoogle ScholarPubMed
Shepherd, S. A., Avalos-Borja, M., and Ortiz Quintanilla, M. (1995) Towards a chronology of Haliotis fulgens, with a review of abalone shell microstructure. Mar. Freshwater Res. 46: 607–615.CrossRefGoogle Scholar
Shergold, E. A., Norman, A., Fleck, N. A., and Radford, D. (2006) The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int. J. Impact Engng. 32: 1384–1402.CrossRefGoogle Scholar
Sherrard, K. M. (2000) Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol. Bull. 198: 404–414.CrossRefGoogle Scholar
Sikoryn, T. A. and Hukins, D. W. L. (1990) Mechanism of failure of the ligamentum flavum of the spine during in vitro tensile tests. J. Orthop. Res. 8: 586–591.Google ScholarPubMed
Silyn-Roberts, H. and Sharp, R. M. (1988) Crystal growth and the role of the organic network in eggshell biomineralization. Proc. R. Soc. Lond. B 227: 303–324.CrossRefGoogle Scholar
Simkiss, K. and Wilbur, K. M. (1989) Biomineralization: Cell Biology and Mineral Deposition. San Diego: Academic Press.Google Scholar
Sitti, M. and Fearing, R. S. (2003) Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J. Adhes. Sci. Tech. 17: 1055–1073.CrossRefGoogle Scholar
Skalak, R. J., Farrow, D. A., and Hoger, A. J. (1997) Kinematics of surface growth. J. Math. Biol. 35: 869–907.CrossRefGoogle ScholarPubMed
Skedros, J. G., Durand, P., and Bloebaum, R. D. (1995) Hypermineralized peripheral lamellae in primary osteons of deer antler: potential functional analogues of cement lines in mammalian secondary bone. J. Bone Min. Res. 10 (Suppl. 1): 441.Google Scholar
Smeathers, J. E. and Vincent, J. F. V. (1979) Mechanical properties of mussel byssus threads. J. Mollusc. Stud. 49: 219–230.CrossRefGoogle Scholar
Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315–1317.CrossRefGoogle ScholarPubMed
Snead, M. L., Zhu, D., Lei, Y. et al. (2006) Protein self-assembly creates a nanoscale device for biomineralization. Mater. Sci. Eng. C 26: 1296–1300.CrossRefGoogle Scholar
Song, F., Bai, X. H., and Bai, Y. I. (2002) Microstructure and characteristics in the organic matrix layers of nacre. J. Mater. Res. 17: 1567–1570.CrossRefGoogle Scholar
Song, F., Soh, A. K., and Bai, Y. L. (2003) Structural and mechanical properties of the organic matrix of nacre. Biomater. 24: 3623–3631.CrossRefGoogle ScholarPubMed
Song, J., Ortiz, C., and Boyce, M. C. (2011) Threat-protection mechanics of an armored fish. J. Mech. Behav. Biomed. Mater. 4: 699–712.CrossRefGoogle ScholarPubMed
Sonntag, R., Reinders, J., and Kretzer, J. P. (2012) What’s next? Alternative materials for articulation in total joint replacement. Acta Biomater. 8: 2434–2441.CrossRefGoogle ScholarPubMed
Soong, R. K., Bachand, G. D., Neves, H. P., Olkhovets, A. G., Craighead, H. G., and Montemagno, C. D. (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290: 1555–1558.CrossRefGoogle ScholarPubMed
Spolenak, R., Gorb, S., Gao, H., and Arzt, E. (2005a) Effects of contact shape on the scaling of biological attachments. Proc. Roy. Soc. A 461: 305–319.CrossRefGoogle Scholar
Spolenak, R., Gorb, S., and Arzt, E. (2005b) Adhesion design maps for bio-inspired attachment systems. Acta Biomater. 1: 5–13.CrossRefGoogle ScholarPubMed
Srinivasan, A. V., Haritos, G. K., and Hedberg, F. L. (1991) Biomimetics: advancing man-made materials through guidance from nature. Appl. Mech. Rev. 44: 463–482.CrossRefGoogle Scholar
Stoeckel, D., Pelton, A., and Duering, T. (2004) Self-expanding Nitinol stents – material and design consideration. Eur. Radiol. 14: 292–301.CrossRefGoogle Scholar
Studart, A. R. (2012) Towards high-performance bioinspired composites. Adv. Mater. 24: 5024–5044.CrossRefGoogle ScholarPubMed
Su, X., Belcher, A. M., Zaremba, C. M., Morse, D. E., Stucky, G. D., and Heuer, A. H. (2002) Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone “flat pearls”. Chem. Mater. 14: 3106–3117.CrossRefGoogle Scholar
Sun, C.-Y., and Chen, P.-Y. (2013) Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms. Acta Biomater. 9: 9049–9064.CrossRefGoogle ScholarPubMed
Sundar, V. C., Yablon, A. D., Grazul, J. L., Han, M., and Aizenberg, J. (2003) Fibre-optical features of a glass sponge. Nature 424: 899–900.CrossRefGoogle ScholarPubMed
Suresh, S. (2007) Biomechanics and biophysics of cancer cells. Acta Biomater. 3: 413–438.CrossRefGoogle ScholarPubMed
Suresh, S., Spatz, J., Mills, J. P. et al. (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1: 15–30.CrossRefGoogle ScholarPubMed
Swartz, S. M., Bennett, M. E., and Carrier, D. R. (1992) Wing bone stresses in free flying bats and the evolution of skeletal design for flight. Nature 359: 726–729.CrossRefGoogle ScholarPubMed
Syn, C. K., Lesuer, D. R., Wolfenstine, J., and Sherby, O. D. (1993) Layer thickness effect on ductile tensile fracture of ultrahigh carbon steel-brass laminates. Met. Trans. A 24: 1647–1653.CrossRefGoogle Scholar
Tamerler, C. and Sarikaya, M. (2007) Molecular biomimetics: utilizing nature’s molecular ways to practical engineering. Acta Biomater. 3: 289–299.CrossRefGoogle ScholarPubMed
Tamerler, C. and Sarikaya, M. (2008) Molecular biomimetics: genetic synthesis, assembly, and formation of materials using peptides. MRS Bull. 33: 504–510.CrossRefGoogle Scholar
Tang, Z., Kotov, N. A., Magonov, S., and Ozturk, B. (2003) Nanostructured artificial nacre. Nature Mater. 2: 413–419.CrossRefGoogle ScholarPubMed
Taylor, A. M., Bonser, R. H. C., and Farrent, J. W. (2004) The influence of hydration on the tensile and compressive properties of avian keratinous tissues. J. Mater. Sci. 39: 939–942.CrossRefGoogle Scholar
Taylor, J. D. and Layman, M. (1972) The mechanical properties of bivalve (Mollusca) shell structures. Palaeontol. 15: 73–87.Google Scholar
Taylor, J. R. A. and Patek, S. N. (2010) Ritualized fighting and biological armor: the impact mechanics of the mantis shrimp’s telson. J. Exp. Biol. 213: 3496–3504.CrossRefGoogle ScholarPubMed
Teilhard de Chardin, P. (1970) Le Phénomène Humain. Paris: Seuil.Google Scholar
Teng, H. H., Dove, P. M., Orme, C. A., and De Yoreo, J. J. (1998) Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science 282: 724–727.CrossRefGoogle ScholarPubMed
Thompson, D. W. (1917) On Growth and Form. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Thompson, D. W. (1968) On Growth and Form, 2nd edn., reprinted. Cambridge: Cambridge University Press.Google Scholar
Thompson, J. B., Kindt, J. H., Drake, B., Hansma, H. G., Morse, D. E., and Hansma, P. K. (2001) Bone indentation recovery time correlates with bone reforming time. Nature 414: 773–775.CrossRefGoogle ScholarPubMed
Thornton, P. H. and Magee, C. L. (1975a) The deformation of aluminum foams. Met. Trans. 6A:1253–1263.CrossRefGoogle Scholar
Thornton, P. H. and Magee, C. L. (1975b) Deformation characteristics of zinc foam. Met. Trans. 6A: 1801–1807.CrossRefGoogle Scholar
Tirrell, M., ed. (1994) Hierarchical Structures in Biology as a Guide for New Materials. Committee on Synthetic Hierarchical Structures, Commission on Engineering and Technical Systems, National Research Council. Washington D.C.: The National Academies Press, NMAB–464.
Tombolato, L., Novitskaya, E. E., Chen, P.-Y., Sheppard, F. A., and McKittrick, J. (2010) Microstructure, elastic and fracture properties of horn keratin. Acta Biomater. 6: 319–330.CrossRefGoogle Scholar
Tong, W., Glimcher, M. J., Katz, J. L., Kuhn, L., and Eppell, S. J. (2003) Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif. Tiss. Int. 72: 592–598.Google ScholarPubMed
Toohey, K. S., Sottos, N. R., Lewis, J. A., Moore, J. S., and White, S. R. (2007) Self-healing materials with microvascular networks. Nature Mater. 6: 581–585.CrossRefGoogle ScholarPubMed
Torre, C. (1948) Theorie und Verhalten zusammengepresster Pulver. Berg.-u Huttenmann. Monatsch. Montan. Hochschule Leoben 93: 62.Google Scholar
Torres, F. G., Troncoso, O. P., Nakamatsu, J., Grande, C. J., and Gomez, C. M. (2008) Characterization of the nanocomposite laminate structure occurring in fish scales from Arapaima gigas. Mater. Sci. Eng. C 28: 1276–1283.CrossRefGoogle Scholar
Traeger, R. K. (1967) Physical properties of rigid polyurethane foams. J. Cell. Plast. 3: 405–418.CrossRefGoogle Scholar
Traub, W., Arad, T., and Weiner, S. (1989) Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc. Natl. Acad. Sci. USA 86: 9822–9826.CrossRefGoogle ScholarPubMed
Treloar, L. R. G. (1944) Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40: 59–70.CrossRefGoogle Scholar
Treloar, L. R. G. (1975) The Physics of Rubber Elasticity, 3rd edn. Oxford: Oxford University Press.Google Scholar
Trim, W., Horstemeyer, M. F., Rhee, H. et al. (2011) The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn. Acta Biomater. 7: 1228–1240.CrossRefGoogle ScholarPubMed
Trueman, E. R. and Hodgson, A. N. (1990) The fine structure and function of the foot of Nassarius krausslanus, a gastropod moving by ciliary locomotion. J. Moll. Stud. 56: 221–228.CrossRefGoogle Scholar
Ugural, A. C. and Fenster, S. K. (1981) Advanced Strength and Applied Elasticity, 2nd SI edn. New York: Elsevier.Google Scholar
Urry, D. W., Harris, R. D., Long, M. M., and Prasad, K. U. (1986) Polytetrapeptide of elastin: temperature-correlated elastomeric force and structure development. Int. J. Peptide Protein Res. 28: 649–660.CrossRefGoogle ScholarPubMed
Utsunomiya, H., Koh, H., Miyamoto, J., Skai, T. (2008) High strength porous copper by cold extrusion. Adv. Eng. Mater. 10: 826–829.CrossRefGoogle Scholar
Vaccaro, E. and Waite, J. H. (2001) Yield and post-yield behavior of mussel byssal thread: a self-healing biomolecular material. Biomacromol. 2: 906–911.CrossRefGoogle ScholarPubMed
Vashishth, D. (2004) Rising crack-growth-resistance behavior in cortical bone: implication for toughness measurements. J. Biomech. 37: 943–946.CrossRefGoogle Scholar
Vashishth, D., Behiri, J. C., and Bonfield, W. (1997) Crack growth resistance in cortical bone: concept of microcrack toughening. J. Biomech. 10: 763–769.CrossRefGoogle Scholar
Vashishth, D., Tanner, K. E., and Bonfield, W. (2000) Contribution, development and morphology of microcracking in cortical bone during crack propagation. J. Biomech. 33: 1169–1174.CrossRefGoogle ScholarPubMed
Vashishth, D., Tanner, K. E., and Bonfield, W. (2003) Experimental validation of a microcracking-based toughening mechanism for cortical bone. J. Biomech. 36: 121–124.CrossRefGoogle ScholarPubMed
Veedu, V. P., Cao, A., Li, X. et al. (2006) Multifunctional composites using reinforced laminate with carbon-nantube forests. Nature Mater. 5: 457–462.CrossRefGoogle Scholar
Verbrugge, J. (1934) Le matériel métallique résorbable en chirurgie asseuse. La Presse Medicale 23: 460–465.Google Scholar
Vincent, J. F. V. (1990) Structural Biomaterials, rev. edn. Princeton, NJ: Princeton University Press.Google Scholar
Vincent, J. F. V. (1991) Structural Biomaterials. Princeton, NJ: Princeton University Press.Google Scholar
Vincent, J. F. V. (2002) Survival of the cheapest. Mater. Today 5: 28–41.CrossRefGoogle Scholar
Vincent, J. F. V. and Currey, J. D., eds. (1980) The Mechanical Properties of Biological Materials, Symposia of the Society for Experimental Biology, no. 34. Cambridge: Cambridge University Press.
Vincent, J. F. V. and King, M. J. (1995) The mechanism of drilling by wood wasp ovipositors. Biomimetics 3: 187–201.Google Scholar
Vincent, J. F. V. and Mann, D. L. (2002) Systematic technology transfer from biology to engineering. Phil. Trans. Roy. Soc. Lond. A 360: 159–173.CrossRefGoogle ScholarPubMed
Vincent, J. F. V. and Wegst, U. G. K. (2004) Design and mechanical properties of insect cuticle. Arthropod Struct. Develop. 33: 187–199.CrossRefGoogle ScholarPubMed
Vogel, H. G. (1972) Influence of age, treatment with corticosteroids and strain rate on mechanical properties of rat skin. Biochim. Biophys. Acta 286: 79–83.CrossRefGoogle ScholarPubMed
Vollrath, F. (2000) Strength and structure of spiders’ silks. Rev. Mol. Biotechnol. 74: 67–83.CrossRefGoogle ScholarPubMed
Vukusic, P. and Sambles, J. R. (2003) Photonic structures in biology. Nature 424: 852–855.CrossRefGoogle ScholarPubMed
Wada, K. (1958) The crystalline structure on the nacre of pearl oyster shell. Bull. Jpn. Soc. Sci. Fish 24: 422–427.CrossRefGoogle Scholar
Wada, K. (1959) On the arrangement of aragonite crystals in the inner layer of the nacre. Bull. Jpn. Soc. Sci. Fish 25: 342–345.CrossRefGoogle Scholar
Wagner, I. P., Hood, D. M., and Hogan, H. A. (2001) Comparison of bending modulus and yield strength between outer stratum medium and stratum medium zone alba in equine hooves. Am. J. Vet. Res. 62: 745–751.CrossRefGoogle ScholarPubMed
Wainwright, S. A., Biggs, W. D., Currey, J. D., and Gosline, J. M. (1976) Mechanical Design in Organisms. Princeton, NJ: Princeton University Press.Google Scholar
Waite, J. H. (1987) Nature’s underwater adhesive specialist. Intl. J. Adhes. 7: 9.CrossRefGoogle Scholar
Waite, J. H., Lichtenegger, H. C., Stucky, G. D., and Hansma, P. (2004) Exploring the molecular and mechanical gradients in structural bioscaffolds. Biochem. 43: 7653–7662.CrossRefGoogle ScholarPubMed
Waite, J. H., Holten-Andersen, N., Jewhurst, S., and Sun, C. J. (2005) Mussel adhesion: finding tricks worth mimicking. J. Adhesion 81: 297–317.CrossRefGoogle Scholar
Wang, B., Gao, J., Wang, L., Zhu, S., and Guan, S. (2012) Biocorrosion of coated Mg-Zn-Ca alloy under constant compressive stress close to that of human tibia. Mater. Lett. 70: 174–176.CrossRefGoogle Scholar
Wang, H., Estrin, Y., and Zuberova, Z.(2008) Bio-corrosion of a magnesium alloy with different processing histories. Mater. Lett. 62: 2476–2479.CrossRefGoogle Scholar
Wang, R. Z., Suo, Z., Evans, A. G., Yao, N., and Aksay, I. A. (2001) Deformation mechanisms in nacre. J. Mater. Res. 16: 2485–2493.CrossRefGoogle Scholar
Warburton, F. L. (1948) Determination of the elastic properties of horn keratin. J. Textile Inst. 39: 297–307.CrossRefGoogle Scholar
Warén, A., Bengtson, S., Goffredi, S. K., and Van Dover, C. L. (2003) A hot-vent gastropod with iron sulfide dermal sclerites. Science 302: 1007.CrossRefGoogle ScholarPubMed
Watabe, N. and Wilbur, K. M. (1960) Influence of the organic matrix on crystal type in molluscs. Nature 188: 334.CrossRefGoogle Scholar
Watanabe, K., Hoshino, T., Kanada, K., Haruyama, Y., and Matsui, S. (2005a) Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn. J. Appl. Phys. 44: L48–L50.CrossRefGoogle Scholar
Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y., Kaito, T., and Matsui, S. (2005b) Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition. J. Vac. Sci. Technol. B 23: 570–574.CrossRefGoogle Scholar
Watchtel, E. and Weiner, S. (1994) Small-angle X-ray scattering study of dispersed crystals from bone and tendon. J. Bone Miner. Res. 9: 1651–1655.CrossRefGoogle Scholar
Watson, J. D. and Crick, F. H. (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171: 737–738.CrossRefGoogle ScholarPubMed
Weaver, J. C., Wang, Q., Miserez, A. et al. (2010) Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater. Today 13: 42–52.CrossRefGoogle Scholar
Weaver, J. C., Milliron, G. W., Miserez, A. et al. (2012) The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science. 336: 1275–1280.CrossRefGoogle ScholarPubMed
Weertman, J. and Weertman, J. R. (1970) Mechanical properties, strongly temperature dependent. In Cahn, R. W., ed., Physical Metallurgy. Amsterdam: North Holland.Google Scholar
Wegst, U. G. K. (2011) Bending efficiency through property gradients in bamboo, palm, and wood-based composites. J. Mech. Behav. Biomed. 4: 744–755.CrossRefGoogle ScholarPubMed
Wegst, U. G. K. and Ashby, M. F. (2004) The mechanical efficiency of natural materials. Phil. Mag. 84: 2167–2181.CrossRefGoogle Scholar
Weibull, W. (1951) A statistical distribution function of wide applicability. J. Appl. Mech. 18: 293–297.Google Scholar
Weiner, S. (1980) X-ray-diffraction study of the insoluble organic matrix of mollusk shells. FEBS Lett. 111: 311–316.CrossRefGoogle Scholar
Weiner, S. (1984) Organization of organic matrix components in mineralized tissues. Am. Zool. 24: 945–951.CrossRefGoogle Scholar
Weiner, S. and Addadi, L. (2002) At the cutting edge. Science 298: 375–376.CrossRefGoogle ScholarPubMed
Weiner, S. and Hood, L. (1975) Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science 190: 987–989.CrossRefGoogle ScholarPubMed
Weiner, S. and Price, P. A. (1986) Disaggregation of bone into crystals. Calcif. Tiss. Int. 39: 365–375.CrossRefGoogle ScholarPubMed
Weiner, S. and Wagner, H. D. (1998) The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28: 271–298.CrossRefGoogle Scholar
Weiner, S., Talmon, Y., and Traub, W. (1983) Electron diffraction of mollusc shell organic matrices and their relationship to the mineral phase. Int. J. Bio. Macromol. 5: 325–328.CrossRefGoogle Scholar
Weiner, S., Traub, W., and Parker, S. B. (1984) Macromolecules in mollusc shells and their functions in biomineralization. Phil. Trans. R. Soc. Lond. B 304: 425–434.CrossRefGoogle Scholar
Weiner, S., Traub, W., and Wagner, H. D. (1986) Lamellar bone: structure–function relations. J. Structur. Biol. 126: 241–255.CrossRefGoogle Scholar
Weiner, S., Addadi, L., and Wagner, H. D. (2000) Materials design in biology. Mater. Sci. Eng. C 11: 1–8.CrossRefGoogle Scholar
Weis-Fogh, T. (1961a) Thermodynamic properties of resilin. J. Mol. Biol. 3: 520–531.CrossRefGoogle Scholar
Weis-Fogh, T. (1961b) Molecular interpretation of the elasticity of resilin, a rubber-like protein. J. Mol. Biol. 3: 648–667.CrossRefGoogle Scholar
Weiss, I. M. and Kirchner, H. O. K. (2010) The peacock’s train (Pavo cristatus and Pavo cristatus mut. alba) I. Structure, mechanics, and chemistry of the tail feather coverts. J. Exp. Zool. 313A: 690–703.CrossRefGoogle Scholar
Weiss, I. M. and Schönitzer, V. (2006) The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. J. Struct. Biol. 153: 264–277.CrossRefGoogle ScholarPubMed
Weissbuch, I., Addadi, L., and Leiserowitz, L. (1991) Molecular recognition at crystal interfaces. Science 253: 637–645.CrossRefGoogle ScholarPubMed
Welsh, U., Storch, V., and Fuchs, W. (1974) The fine structure of the digital pads of rhacophorid tree frogs. Cell Tiss. Res. 148: 407–416.Google Scholar
White, S. R., Sottos, N. R., Geubelle, P. H. et al. (2001) Autonomic healing of polymer composites. Nature 409: 794–797.CrossRefGoogle ScholarPubMed
Whitesides, G. M. (2002) Organic material science. Mater. Res. Soc. Bull. 27: 56–65.CrossRefGoogle Scholar
Wilt, F. W. (2005) Developmental biology meets materials science: morphogenesis of biomineralized structures. Devel. Biol. 280: 15–25.CrossRefGoogle ScholarPubMed
Wise, S. W. (1970) Microarchitecture and deposition of gastropod nacre. Science 167: 1486–1488.CrossRefGoogle ScholarPubMed
Witte, F., Kaese, V., Haferkamp, H. et al. (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomater. 26: 3557–3563.CrossRefGoogle ScholarPubMed
Woesz, A., Weaver, J. C., Kazanci, M. et al. (2006) Micromechanical properties of biological silica in skeletons of deep-sea sponges. J. Mater. Res. 21: 2068–2078.CrossRefGoogle Scholar
Wren, T. A. L., Yerby, S. A., Beaupre, G. S., and Carter, D. R. (2001) Mechanical properties of human Achilles tendon. Clin. Biomech. 11: 245–251.CrossRefGoogle Scholar
Wright, T. M. and Hayes, W. C. (1977) Fracture mechanics parameters for compact bone – the effects of density and specimen thickness. J. Biomech. 10: 419–430.CrossRefGoogle ScholarPubMed
Wu, H., Thalladi, V. R., Whitesides, S., and Whitesides, G. M. (2002) Using hierarchical self-assembly to form three-dimensional lattices of spheres. J. Am. Ceram. Soc. 124: 14495–14502.Google Scholar
Wu, K. S., van Osdol, W. W., and Dauskardt, R. H. (2006) Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomater. 27: 785–795.CrossRefGoogle ScholarPubMed
Wu, T.-M., Fink, D. J., Arias, J. L., Rodriguez, J. P., Heuer, A. H., and Caplan, A. I. (1992) The molecular control of avian egg shell mineralization. In Slavkin, H. C. and Price, P., eds. Chemistry and Biology of Mineralized Tissues. NewYork: Elsevier, pp. 133–141.Google Scholar
Wulff, G. (1901) Zur frage der geschwindigkeit des wachstums und derauflösung der kristallflächen. Z. Kristall. 34: 449–530.Google Scholar
Yang, Q. D., Cox, B. N., Nalla, R. K., and Ritchie, R. O. (2006a) Re-evaluating the toughness of human cortical bone. Bone 38: 878–887.CrossRefGoogle ScholarPubMed
Yang, Q. D., Cox, B. N., Nalla, R. K., and Ritchie, R. O. (2006b) Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. Biomater. 27: 2095–2113.CrossRefGoogle ScholarPubMed
Yang, W., Kashani, N. M., Li, X. W., Zhang, G. P., and Meyers, M. A. (2011a) Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). Mater. Sci. Eng. C 31: 724–729.CrossRefGoogle Scholar
Yang, W., Zhang, G. P., Zhu, X. F., Li, X. W., and Meyers, M. A. (2011b) Structure and mechanical properties of Saxidomus purpuratus biological shells. J. Mech. Behav. Biomed. Mater. 4: 1514–1530.CrossRefGoogle ScholarPubMed
Yang, W., Chao, C., and McKittrick, J. (2013a) Axial compression of a hollow cylinder filled with foam: a study of porcupine quills. Acta Biomater. 9: 5297–5305.CrossRefGoogle ScholarPubMed
Yang, W., Chen, I. H., Gludovatz, B., Zimmermann, E. A., Ritchie, R. O., and Meyers, M. A. (2013b) Natural flexible dermal armor. Adv. Mater. 25: 31–48.CrossRefGoogle ScholarPubMed
Yang, W., Gludovatz, B., Zimmermann, E. A., Bale, H. A., Ritchie, R. O., and Meyers, M. A. (2013c) Structure and fracture resistance of alligator gar (Atractosteus spatula) armored fish scales. Acta Biomater. 9: 5876–5889.CrossRefGoogle ScholarPubMed
Yannas, I. V., Burke, J. F., Orgill, D. P., and Skrabut, E. M. (1982) Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 215: 174–176.CrossRefGoogle Scholar
Yao, H. and Gao, H. J. (2007) Multi-scale cohesive laws in hierarchical materials. Int. J. Solids Struct. 44: 8177–8193.CrossRefGoogle Scholar
Yao, H. and Gao, H. (2008) Multi-scale cohesive laws in hierarchical materials. Int. J. Solids Struct. 45: 3627–3643.CrossRefGoogle Scholar
Yao, H., Dao, M., Imholt, T. et al. (2010) Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc. Natl. Acad. Sci. USA 107: 987–992.CrossRefGoogle ScholarPubMed
Yasrebi, M., Kim, G. H., Gunnison, K. E., Milius, D. L., Sarikaya, M., and Aksay, I. A. (1990) Biomimetic processing of ceramics and ceramic-metal composites. Mater. Res. Soc. 180: 625–635.CrossRefGoogle Scholar
Yeni, Y. N. and Norman, T. L. (2000) Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. J. Biomed. Mater. Res. 51: 504–509.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Yeni, Y. N., Brown, C. U., Wang, Z., and Norman, T. L. (1997) The influence of bone morphology on fracture toughness of the human femur and tibia. Bone 21: 453–459.CrossRefGoogle ScholarPubMed
Yeni, Y. N., Brown, C. U., and Norman, T. L. (1998) Influence of bone composition and apparent density on fracture toughness of the human femur and tibia. Bone 22: 79–84.CrossRefGoogle ScholarPubMed
Yoon, S.-H. and Park, S. (2011) A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems. Bioinsp. Biomim. 6: 1–12.CrossRefGoogle ScholarPubMed
Young, R. A. and Rowell, R. M. (1986) Cellulose: Structure, Modification, and Hydrolysis. New York: John Wiley and Sons.Google Scholar
Zampieri, A., Sieber, H., Selvam, T. et al. (2005) Biomorphic SiSiC/zeolite ceramic composites: from rattan palm to bioinspired structured monoliths for catalysis and sorption. Adv. Mater. 17: 344–349.CrossRefGoogle Scholar
Zaremba, C. M., Belcher, A. M., Fritz, M. et al. (1996) Critical transitions in the biofabrication of abalone shells and flat pearls. Chem. Mater. 8: 679–690.CrossRefGoogle Scholar
Zhang, W., Zhang, D., Fan, T. et al. (2006) Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates. Bioinsp. Biomim. 1: 89–95.CrossRefGoogle ScholarPubMed
Zhao, S., Zhang, J., Zhao, S., Li, W., and Li, H. (2003) Effect of inorganic-organic interface adhesion of mechanical properties of Al2O3/polymer laminate composites. Comp. Sci. Tech. 63: 1009–1014.CrossRefGoogle Scholar
Zhou, B. L. (1996) Some progress in the biomimetic study of composite materials. Mater. Chem. Phys. 45: 114–119.CrossRefGoogle Scholar
Zhou, B., Xu, F., Chen, C. Q., and Lu, T. J. (2010) Strain rate sensitivity of skin tissue under thermomechanical loading. Phil. Trans. Roy. Soc. A 368: 679–690.CrossRefGoogle ScholarPubMed
Zhu, Q. and Asaro, R. J. (2008) Spectrin folding versus unfolding reactions and RBC membrane stiffness. Biophys. J. 94: 2529–2545.CrossRefGoogle ScholarPubMed
Zi, J., Yu, X., Li, Y. et al. (2003) Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. USA 100: 12576–12578.CrossRefGoogle ScholarPubMed
Zioupos, P. and Currey, J. D. (1998) Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22: 57–66.CrossRefGoogle ScholarPubMed
Zioupos, P., Currey, J. D., and Sedman, A. J. (1994) An examination of the micromechanics of failure of bone and antler by acoustic emission tests and laser scanning confocal microscopy. Med. Eng. Phys. 16: 203–212.CrossRefGoogle ScholarPubMed
Zioupos, P., Wang, X. T., and Currey, J. D. (1996) Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J. Biomech. 29: 989–1002.CrossRefGoogle ScholarPubMed
Ziv, V. and Weiner, S. (1994) Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction width broadening techniques. Connect. Tissue Res. 30: 165–175.CrossRefGoogle ScholarPubMed
Zollfrank, C., Travitzky, N., Sieber, H., Selchert, T., and Greil, P. (2005) Biomorphous SiSiC/Al-Si ceramic composites manufactured by squeeze casting: microstructure and mechanical properties. Adv. Eng. Mater. 7: 743–746.CrossRefGoogle Scholar
Zoond, A. and Eyre, J. (1934) Studies in reptilian colour response. I. The bionomics and physiology of the pigmentary activity of the chameleon. Phil. Trans. Roy. Soc. Lond. B 223: 27–55.CrossRefGoogle Scholar
Zylberberg, L. and Nicolas, G. (1982) Ultrastructure of scales in a teleost (Carassius auratus L.) after use of rapid freeze-fixation and freeze-substitution. Cell Tissue Res. 223: 349–367.CrossRefGoogle Scholar
Zylberberg, L., Bereiter-Hahn, J., and Sire, J, Y. (1988) Cytoskeletal organization and collagen orientation in the fish scales. Cell Tissue Res. 253: 597–607.CrossRefGoogle ScholarPubMed
Zylberberg, L., Bonaventure, J., Cohen-Solal, L., Hartmann, D. J., and Bereiter-Hahn, J. (1992) Organization and characterization of fibrillar collagens in fish scales in situ and in vitro. J. Cell. Sci. 103: 273–285.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Marc André Meyers, University of California, San Diego, Po-Yu Chen, National Tsing Hua University, Taiwan
  • Book: Biological Materials Science
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862397.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Marc André Meyers, University of California, San Diego, Po-Yu Chen, National Tsing Hua University, Taiwan
  • Book: Biological Materials Science
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862397.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Marc André Meyers, University of California, San Diego, Po-Yu Chen, National Tsing Hua University, Taiwan
  • Book: Biological Materials Science
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862397.018
Available formats
×