Skip to main content Accessibility help
×
  • Cited by 14
Publisher:
Cambridge University Press
Online publication date:
February 2016
Print publication year:
2016
Online ISBN:
9781316106242

Book description

This in-depth textbook with a focus on atom-light interactions prepares students for research in a fast-growing and dynamic field. Intended to accompany the laser-induced revolution in atomic physics, it is a comprehensive text for the emerging era in atomic, molecular and optical science. Utilising an intuitive and physical approach, the text describes two-level atom transitions, including appendices on Ramsey spectroscopy, adiabatic rapid passage and entanglement. With a unique focus on optical interactions, the authors present multi-level atomic transitions with dipole selection rules, and M1/E2 and multiphoton transitions. Conventional structure topics are discussed in some detail, beginning with the hydrogen atom and these are interspersed with material rarely found in textbooks such as intuitive descriptions of quantum defects. The final chapters examine modern applications and include many references to current research literature. The numerous exercises and multiple appendices throughout enable advanced undergraduate and graduate students to balance theory with experiment.

Reviews

'Two experienced pedagogues and researchers on laser cooling and trapping and quantum hydrodynamics have written a rigorous textbook for advanced undergraduates and graduate students. The work provides a comprehensive description of the fundamentals and of the awe-inspiring recent advances in atomic and molecular physics, such as the theory and the experimental techniques of Bose–Einstein condensation, laser cooling, and optical lattices. The authors point out common misconceptions in atomic physics, e.g. about 'virtual states', resonances, and the vector potential. Each chapter is augmented with supplementary materials and exercises which assess comprehension and further the understanding of the content. … Detailed tables and plots of experimental data permit the numerical calculation of physical parameters. The exact quantum mechanical solutions to a few physical problems are derived as well as the various useful approximations for atoms and molecules, and their limitations are clearly explained.'

Barry R. Masters Source: Optics and Photonics News

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
[1] H., Metcalf and P., van der Straten. Laser Cooling and Trapping. New York: Springer (1999).
[2] N., Bohr. On the Constitution of Atoms and Molecules. Philos. Mag. 26, 1–25 (1913).
[3] N., Bohr. The Structure of the Atom. In Nobel Lectures, Physics 1922–1941. Elsevier (1965). Also available from Nobelprize.org.
[4] Louis de, Broglie. Recherches sur la Théorie des Quanta. Ph.D. thesis, Faculté des Sciences de Paris (1924).
[5] John David, Jackson. Classical Electrodynamics. New York: John Wiley and Sons (1975).
[6] L., Allen and J. H., Eberly. Optical Resonance and Two-Level Atoms. New York: Dover (1975).
[7] C., Cohen-Tannoudji, B., Diu, and F., Laloë. Quantum Mechanics. New York: Wiley (1977).
[8] B. R., Mollow. Power Spectrum of Light Scattered by Two-Level Systems. Phys. Rev. 188, 1969–1975 (1969).
[9] E. T., Jaynes and F. W., Cummings. Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser. Proc. IEEE 51, 89–109 (1963).
[10] R., Feynman, F., Vernon, and R., Hellwarth. Geometrical Representation of the Schrödinger Equation for Solving Maser Problems. J. Appl. Phys. 28, 49 (1957).
[11] Norman F., Ramsey. A Molecular Beam Resonance Method with Separated Oscillating Fields. Phys. Rev. 78, 695–699 (1950).
[12] R., Wynands and S., Weyers. Atomic Fountain Clocks. Metrologia 42, S64 (2005).
[13] Steven, Chu. Cold Atoms and Quantum Control. Nature 416, 206–210 (2002).
[14] I. D., Abella, N. A., Kurnit, and S. R., Hartmann. Photon Echoes. Phys. Rev. 141, 391–406 (1966).
[15] E. L., Hahn. Spin Echoes. Phys. Rev. 80, 580–594 (1950).
[16] S., Guérin, R. G., Unanyan, L. P., Yatsenko, and H. R., Jauslin. Adiabatic Creation of Entangled States by a Bichromatic Field Designed from the Topology of the Dressed Eigenenergies. Phys. Rev. A 66, 032311 (2002).
[17] A., Einstein, B., Podolsky, and N., Rosen. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47, 777–780 (1935).
[18] N. F., Ramsey. Molecular Beams. Oxford: Clarendon Press (1956).
[19] Leonard, Mandel and Emil, Wolf. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press (1995). 490
[20] A., Einstein. On the Quantum Theory of Radiation. Phys. Z. 18, 121 (1917).
[21] D. J., Griffiths. Introduction to Quantum Mechanics. New Jersey: Prentice Hall (1994).
[22] Peter W., Milonni and Joseph H., Eberly. Lasers. New York: Wiley & Sons (1988).
[23] C., Cohen-Tannoudji, J., Dupont-Roc, and G., Grynberg. Photons and Atoms, Introduction to Quantum Electrodynamics. New York: Wiley & Sons (1989).
[24] P. A., Franken. Interference Effects in the Resonance Fluorescence of “Crossed” Excited Atomic States. Phys. Rev. 121, 508–512 (1961).
[25] M. E., Rose and R. L., Carovillano. Coherence Effects in Resonance Fluorescence. Phys. Rev. 122, 1185–1194 (1961).
[26] Peter, Schenck, Robert C., Hilborn, and Harold, Metcalf. Time-Resolved Fluorescence from Ba and Ca Excited by a Pulsed Tunable Dye Laser. Phys. Rev. Lett. 31, 189–192 (1973).
[27] J. C., Baird, John, Brandenberger, Ken-Ichiro, Gondaira, and Harold, Metcalf. Determination of the Atomic-Hydrogen Fine Structure by Level Crossing in the 2P States of Hydrogen, a Measurement of the Fine-Structure Constant. Phys. Rev. A 5, 564–587 (1972).
[28] W. C., Martin and W. L., Wiese. Atomic Spectroscopy. In G. W. F., Drake, editor, Atomic, Molecular, and Optical Physics Handbook, chapter 10.Woodbury, NY: AIP Press (1996).
[29] A., Gold. Proc. Fermi Summer School XLII. New York: Academic Press (1969).
[30] Maria, Göppert-Mayer. Über Elementarakte mit Zwei Quantensprüngen. Ann. Phys. 9, 273 (1930).
[31] G., Breit and E., Teller. Metastability of Hydrogen and Helium Levels. Astrophys. J. 91, 215 (1940).
[32] F., Biraben, B., Cagnac, and G., Grynberg. Experimental Evidence of Two-Photon Transition without Doppler Broadening. Phys. Rev. Lett. 32, 643–645 (1974).
[33] M. D., Levenson and N., Bloembergen. Observation of Two-Photon Absorption without Doppler Broadening on the 3S–5S Transition in Sodium Vapor. Phys. Rev. Lett. 32, 645–648 (1974).
[34] P. A., Franken, A. E., Hill, C. W., Peters, and G., Weinreich. Generation of Optical Harmonics. Phys. Rev. Lett. 7, 118–119 (1961).
[35] D., Pritchard, J., Apt, and T. W., Ducas. Fine Structure of Na 4d2D2 Using High- Resolution Two-Photon Spectroscopy. Phys. Rev. Lett. 32, 641–642 (1974).
[36] Y. R., Shen. The Principles of Non-Linear Optics. Hoboken NJ: Wiley Classics (2002).
[37] Robert W., Boyd. Nonlinear Optics, Third Edition. Amsterdam: Academic Press (Elsevier) (2008).
[38] Marc D., Levenson. Introduction to Nonlinear Laser Spectroscopy. Amsterdam: Elsevier (1982).
[39] Shaul, Mukamel. Principles of Nonlinear Optical Spectroscopy. Oxford: Oxford University Press (1999).
[40] V., Weisskopf and E., Wigner. Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z. Phys. 63, 54 (1930).
[41] E. M., Purcell. Spontaneous Emission Probabilities at Radio Frequencies. Phys. Rev. 69, 681 (1946).
[42] Daniel, Kleppner. Inhibited Spontaneous Emission. Phys. Rev. Lett. 47, 233–236 (1981).
[43] Serge, Haroche and Jean-Michel, Raimond. Exploring the Quantum: Atoms, Cavities, and Photons. Oxford: Oxford University Press (2006).
[44] R., Loudon. The Quantum Theory of Light. Oxford: Clarendon Press (1973).
[45] Gilbert, Grynberg, Alain, Aspect, and Claude, Fabre. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light. Cambridge: Cambridge University Press (2010).
[46] Paul, Berman and Vladimir, Malinovsky. Principles of Laser Spectroscopy and Quantum Optics. Princeton: Princeton University Press (2011).
[47] Marlan O., Scully and M. Suhail, Zubairy. Quantum Optics. Cambridge: Cambridge University Press (1997).
[48] Ulf, Leonhardt. Essential Quantum Optics: From Quantum Measurements to Black Holes. Cambridge: Cambridge University Press (2010).
[49] Pierre, Meystre and Murray, Sargent. Elements of Quantum Optics. Springer (1990).
[50] Timothy H., Boyer. Random Electrodynamics: The Theory of Classical Electrodynamics With Classical Electromagnetic Zero-Point Radiation. Phys. Rev. D 11, 790–808 (1975).
[51] M. D., Crisp and E. T., Jaynes. Radiative Effects in Semiclassical Theory. Phys. Rev. 179, 1253–1261 (1969).
[52] C. R., Stroud and E. T., Jaynes. Long-Term Solutions in Semiclassical Radiation Theory. Phys. Rev. A 1, 106–121 (1970).
[53] D., Bouwmeester, R. J. C., Spreeuw, G., Nienhuis, and J. P., Woerdman. Neoclassical Radiation Theory as an Integral Part of the Monte Carlo Wave-Function Method. Phys. Rev. A 49, 4170–4175 (1994).
[54] D. ter, Haar. Theory and Applications of the Density Matrix. Rep. Prog. Phys. 24, 304 (1961).
[55] U., Fano. Description of States in Quantum Mechanics by Density Matrix and Operator Techniques. Rev. Mod. Phys. 29, 74–93 (1957).
[56] C., Cohen-Tannoudji. Atoms in Strong Resonant Fields. In R., Balian et al., editor, Proceedings of Les Houches XXVII, page 3 (1977). North Holland: Amsterdam.
[57] S., Stenholm. Foundations of Laser Spectroscopy. New York: Wiley & Sons (1984).
[58] A. R., Edmonds. Angular Momentum in Quantum Mechanics. Princeton: Princeton University Press (1957).
[59] H. A., Bethe and E. E., Salpeter. Quantum Mechanics of One- and Two-Electron Atoms. Berlin: Springer-Verlag (1957). Also published by Plenum, New York, 1977 (paperback).
[60] B. H., Bransden and C. J., Joachain. Introduction to Quantum Mechanics. NewYork: Longman (1989).
[61] E., Merzbacher. Quantum Mechanics. New York: Wiley & Sons (1961).
[62] D. J., Griffiths. Introduction to Quantum Mechanics. New Jersey: Prentice Hall (1995).
[63] Charles, Burkhardt and Jacob, Leventhal. Foundations of Quantum Physics. New York: Springer (2008).
[64] H., Hellmann. Einfuhrüng in die Quantumchemie. Leipzig: Deuticke (1937).
[65] R. P., Feynman. Forces in Molecules. Phys. Rev. 56, 340–343 (1939).
[66] A., Einstein and W. J. de, Haas. Experimenteller Nachweis der Ampereschen Molekularstörme. Deutsche Physikalische Gesellschaft, Verhandlungen 17, 152–170 (1915).
[67] Abraham, Pais. Subtle Is the Lord: The Science and the Life of Albert Einstein. Oxford: Oxford University Press (1982).
[68] L. H., Thomas. I. The Kinematics of an Electron with an Axis. Philos. Mag. Series 7 3, 1–22 (1927).
[69] B. H., Bransden and C. J., Joachain. Physics of Atoms and Molecules. New York: Wiley & Sons (1983).
[70] Willis E., Lamb and Robert, C. Retherford. Fine Structure of the Hydrogen Atom by a Microwave Method. Phys. Rev. 72, 241–243 (1947).
[71] H. A., Bethe. The Electromagnetic Shift of Energy Levels. Phys. Rev. 72, 339–341 (1947).
[72] Sol, Triebwasser, Edward S., Dayhoff, and Willis E., Lamb. Fine Structure of the Hydrogen Atom. V. Phys. Rev. 89, 98 (1953).
[73] E. E., Salpeter. The Lamb Shift for Hydrogen and Deuterium. Phys. Rev. 89, 92–97 (1953).
[74] Theodore A., Welton. Some Observable Effects of the Quantum-Mechanical Fluctuations of the Electromagnetic Field. Phys. Rev. 74, 1157–1167 (1948).
[75] H., Bethe and E., Salpeter. Quantum Mechanics of One and Two Electron Atoms. New York: Academic Press (1957). Also published by Dover, New York, 2008 (paperback).
[76] Boris M., Smirnov. Reference Data on Atomic Physics and Atomic Processes, volume 51 of Springer Series on Atomic, Optical, and Plasma Physics. Berlin, Heidelberg: Springer (2008).
[77] A. E., Kramida. A Critical Compilation of Experimental Data on Spectral Lines and Energy Levels of Hydrogen, Deuterium, and Tritium. At. Data Nucl. Data Tables 96, 586–644 (2010).
[78] Robley C., Williams. The Fine Structures of Ha and Da Under Varying Discharge Conditions. Phys. Rev. 54, 558–567 (1938).
[79] G. W., Series, editor. The Spectrum of Atomic Hydrogen: Advances. Singapore: World Scientific (1988).
[80] T. W., Hänsch, M. H., Nayfeh, S. A., Lee, S. M., Curry, and I. S., Shahin. Precision Measurement of the Rydberg Constant by Laser Saturation Spectroscopy of the Balmer a Line in Hydrogen and Deuterium. Phys. Rev. Lett. 32, 1336–1340 (1974).
[81] C., Wieman and T. W., Hänsch. Precision Measurement of the 1S Lamb Shift and of the 1S–2S Isotope Shift of Hydrogen and Deuterium. Phys. Rev. A 22, 192–205 (1980).
[82] Arthur, Matveev, Christian G., Parthey, Katharina, Predehl, Janis, Alnis, Axel, Beyer, Ronald, Holzwarth, Thomas, Udem, Tobias, Wilken, Nikolai, Kolachevsky, Michel, Abgrall, Daniele, Rovera, Christophe, Salomon, Philippe, Laurent, Gesine, Grosche, Osama, Terra, Thomas, Legero, Harald, Schnatz, Stefan, Weyers, Brett, Altschul, and Theodor, W. Hänsch. Precision Measurement of the Hydrogen 1S-2S Frequency via a 920-km Fiber Link. Phys. Rev. Lett. 110, 230801 (2013).
[83] T. van der, Veldt, W., Vassen, and W., Hogervorst. Mass-Polarization Effects in the 1s2s 1S and 3S States of Helium. Phys. Rev. A 41, 4099–4101 (1990).
[84] H. De, Witte, A. N., Andreyev, N., Barre, M., Bender, T. E., Cocolios, S., Dean, D., Fedorov, V. N., Fedoseyev, L. M., Fraile, S., Franchoo, V., Hellemans, P. H., Heenen, K., Heyde, G., Huber, M., Huyse, H., Jeppessen, U., Koster, P., Kunz, S. R., Lesher, B. A., Marsh, I., Mukha, B., Roussiere, J., Sauvage, M., Seliverstov, I., Stefanescu, E., Tengborn, K. Van de, Vel, J. Van de, Walle, P. Van, Duppen, and Yu., Volkov. Nuclear Charge Radii of Neutron-Deficient Lead Isotopes Beyond N = 104 Midshell Investigated by In-Source Laser Spectroscopy. Phys. Rev. Lett. 98, 112502 (2007).
[85] C., Townes and A., Schawlow. Microwave Spectroscopy. New York: McGraw Hill, NY (1955).
[86] L.-B., Wang, P., Mueller, K., Bailey, G. W. F., Drake, J. P., Greene, D., Henderson, R. J., Holt, R. V. F., Janssens, C. L., Jiang, Z.-T., Lu, T. P., O'Connor, R. C., Pardo, K. E., Rehm, J. P., Schiffer, and X. D., Tang. Laser Spectroscopic Determination of the 6He Nuclear Charge Radius. Phys. Rev. Lett. 93, 142501 (2004).
[87] L., Essen, R. W., Donaldson, M. J., Bangham, and E. G., Hope. Frequency of the Hydrogen Maser. Nature 229, 110–111 (1971).
[88] N., Ramsey. Nuclear Moments. Wiley and Sons (1953).
[89] E., Arimondo, M., Inguscio, and P., Violino. Experimental Determinations of the Hyperfine Structure in the Alkali Atoms. Rev. Mod. Phys. 49, 31 (1977).
[90] David J., Griffiths. Hyperfine Splitting in the Ground State of Hydrogen. Am. J. Phys. 50, 698–703 (1982).
[91] H. M., Goldenberg, D., Kleppner, and N. F., Ramsey. Atomic Hydrogen Maser. Phys. Rev. Lett. 5, 361–362 (1960).
[92] Yu., Ralchenko, A. E., Kramida, J., Reader, and NIST ASD Team. NIST Atomic Spectra Database (2014).
[93] R., Freeman and D., Kleppner. Core Polarization and Quantum Defects in High- Angular-Momentum States of Alkali Atoms. Phys. Rev. A 14, 1614 (1976).
[94] C., Bottcher. An Iterative Perturbation Solution of the Inverse Potential Problem. J. Phys. B 4, 1140 (1971).
[95] Jon C., Weisheit. Photoabsorption by Ground-State Alkali-Metal Atoms. Phys. Rev. A 5, 1621–1630 (1972).
[96] C., Bottcher. An Iterative Perturbation Solution of the Inverse Potential Problem. J. Phys. B 4, 1140 (1971).
[97] M., Marinescu, H. R., Sadeghpour, and A., Dalgarno. Dispersion Coefficients for Alkali-Metal Dimers. Phys. Rev. A 49, 982–988 (1994).
[98] Enrico, Clementi and Carla, Roetti. Roothaan–Hartree–Fock AtomicWavefunctions: Basis Functions and their Coefficients for Ground and Certain Excited States of Neutral and Ionized Atoms, Z = 54. At. Data Nucl. Data Tables 14, 177–478 (1974).
[99] D. R., Bates and A., Damgaard. The Calculation of the Absolute Strenghts of Spectral Lines. Phil. Trans. R. Soc. A 242, 101 (1949).
[100] R. N., Zare. Angular Momentum. New York: Wiley (1988).
[101] M. E., Rose. Elementary Theory of Angular Momentum. New York: Wiley and Sons (1957).
[102] M., Rotenberg, N., Metropolis, R., Birins, and J. Wooten|Jr. The 3 j and 6 j Symbols. Cambridge: Technology Press (1959).
[103] E., Fermi. Notes on Quantum Mechanics. Chicago: University of Chicago Press (1961).
[104] R., Parsons and V., Weisskopf. The Spectrum of the Alkali Atoms. Z. Phys. 202, 492 (1967).
[105] Steven, Chu, Allen P., Mills, and John L., Hall. Measurement of the Positronium 1S 13 - 2S 13 Interval by Doppler-Free Two-Photon Spectroscopy. Phys. Rev. Lett. 52, 1689–1692 (1984).
[106] Willis E., Lamb. Fine Structure of the Hydrogen Atom. III. Phys. Rev. 85, 259–276 (1952).
[107] J. von, Neumann and E., Wigner. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z. 30, 467–470 (1929).
[108] R. S., Knox and A., Gold. Symmetry in the Solid State. New York: W. A. Benjamin NY (1964).
[109] Jan R., Rubbmark, Michael M., Kash, Michael G., Littman, and Daniel, Kleppner. Dynamical Effects at Avoided Level Crossings: A Study of the Landau–Zener Effect Using Rydberg Atoms. Phys. Rev. A 23, 3107 (1981).
[110] T., Lu, X., Miao, and H., Metcalf. Nonadiabatic Transitions in Finite-Time Adiabatic Rapid Passage. Phys. Rev. A 75, 063422 (2007).
[111] Tianshi, Lu. Population Inversion by Chirped Pulses. Phys. Rev. A 84, 033411 (2011).
[112] Matteo, Leone, Alessandro, Paoletti, and Nadia, Robotti. A Simultaneous Discovery: The Case of Johannes Stark and Antonino Lo Surdo. Phys. Persp. 6, 271 (2004).
[113] J., Stark. Observation of the Separation of Spectral Lines by an Electric Field. Nature 92, 401 (1913).
[114] N., Bohr. On the Effect of Electric and Magnetic Fields on Spectral Lines. Philos. Mag. 27, 506 (1914).
[115] Myron L., Zimmerman, Michael G., Littman, Michael M., Kash, and Daniel, Kleppner. Stark Structure of the Rydberg states of Alkali-Metal Atoms. Phys. Rev. A 20, 2251–2275 (1979).
[116] E., Luc-Koenig and A., Bachelier. Systematic Theoretical Study of the Stark Spectrum of Atomic Hydrogen I. J. Phys. B 13, 1743 (1980).
[117] E., Luc-Koenig and A., Bachelier. Systematic Theoretical Study of the Stark Spectrum of Atomic Hydrogen II. J. Phys. B 13, 1769 (1980).
[118] David A., Harmin. Theory of the Stark Effect. Phys. Rev. A 26, 2656–2681 (1982).
[119] Harris J., Silverstone. Perturbation Theory of the Stark Effect in Hydrogen to Arbitrarily High Order. Phys. Rev. A 18, 1853–1864 (1978).
[120] Thomas, Gallagher. Rydberg Atoms. Cambridge: Cambridge University Press (1994).
[121] Serge, Haroche. Nobel Lecture: Controlling Photons in a Box and Exploring the Quantum to Classical Boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).
[122] Harold, Metcalf. Highly Excited Atoms. Nature 284, 127 (1980).
[123] C., Fabre, S., Haroche, and P., Goy. Millimeter Spectroscopy in Sodium Rydberg States: Quantum-Defect, Fine-Structure, and Polarizability Measurements. Phys. Rev. A 18, 229–237 (1978).
[124] E. A., Hessels, W. G., Sturrus, and S. R., Lundeen. Microwave Spectroscopy of High- L Helium Rydberg States: 10H–10I, 10I–10K, and 10K–10L Intervals. Phys. Rev. A 38, 4574–4584 (1988).
[125] C., Deutsch. Rydberg States of HeI using the Polarization Model. Phys. Rev. A 13, 2311–2313 (1976).
[126] K. T., Lu and U., Fano. Graphic Analysis of Perturbed Rydberg Series. Phys. Rev. A 2, 81–86 (1970).
[127] R. H., Garstang. Atoms in High Magnetic Fields (White Dwarfs). Rep. Prog. Phys. 40, 105 (1977).
[128] Myron L., Zimmerman, Jarbas C., Castro, and Daniel, Kleppner. Diamagnetic Structure of Na Rydberg States. Phys. Rev. Lett. 40, 1083–1086 (1978).
[129] R. J., Fonck, F. L., Roesler, D. H., Tracy, K. T., Lu, F. S., Tomkins, and W. R. S., Garton. Atomic Diamagnetism and Diamagnetically Induced Configuration Mixing in Laser-Excited Barium. Phys. Rev. Lett. 39, 1513–1516 (1977).
[130] K. T., Lu, F. S., Tomkins, H. M., Crosswhite, and H., Crosswhite. Absorption Spectrum of Atomic Lithium in High Magnetic Fields. Phys. Rev. Lett. 41, 1034–1036 (1978).
[131] Michael G., Littman, Myron L., Zimmerman, Theodore W., Ducas, Richard R., Freeman, and Daniel, Kleppner. Structure of Sodium Rydberg States in Weak to Strong Electric Fields. Phys. Rev. Lett. 36, 788–791 (1976).
[132] Michael G., Littman, Michael M., Kash, and Daniel, Kleppner. Field-Ionization Processes in Excited Atoms. Phys. Rev. Lett. 41, 103–107 (1978).
[133] Joel, Gersten and Marvin H., Mittleman. Atomic Transitions in Ultrastrong Laser Fields. Phys. Rev. A 10, 74–80 (1974).
[134] T. F., Gallagher and W. E., Cooke. Fine-structure Intervals and Polarizabilities of Highly Excited D States of K. Phys. Rev. A 18, 2510–2516 (1978).
[135] Keith B., MacAdam and William H., Wing. Fine Structure of Rydberg States. III. New Measurements in D, F, and G States of 4He. Phys. Rev. A 15, 678–688 (1977).
[136] E. A., Hessels, F. J., Deck, P. W., Arcuni, and S. R., Lundeen. Precision Spectroscopy of High-L, n=10 Rydberg Helium: An Improved Test of Relativistic, Radiative, and Retardation Effects. Phys. Rev. Lett. 65, 2765–2768 (1990).
[137] P. L., Jacobson, R. D., Labelle, W. G., Sturrus, R. F., Ward, and S. R., Lundeen. Optical Spectroscopy of High-L, n=10 Rydberg States of Nitrogen. Phys. Rev. A 54, 314–322 (1996).
[138] R. F., Ward, W. G., Sturrus, and S. R., Lundeen. Microwave Spectroscopy of High-L Rydberg States of Neon. Phys. Rev. A 53, 113–121 (1996).
[139] P. L., Jacobson, D. S., Fisher, C. W., Fehrenbach, W. G., Sturrus, and S. R.|Lundeen. Determination of the Dipole Polarizabilities of H+2 (0, 0) and D+2 (0, 0) by Microwave Spectroscopy of High-L Rydberg States of H2 and D2. Phys. Rev. A 56, R4361–R4364 (1997).
[140] Julie A., Keele, S. R., Lundeen, and C. W., Fehrenbach. Polarizabilities of Rn-like Th4+ from RF Spectroscopy of Th3+ Rydberg Levels. Phys. Rev. A 83, 062509 (2011).
[141] G. D., Stevens, C.-H., Iu, T. H., Bergeman, H. J., Metcalf, I., Seipp, K., Taylor, and D., Delande. Precision Measurements of Lithium Atoms in an Electric Field Compared with R-Matrix and Other Stark Theories. Phys. Rev A 53, 1349 (1996).
[142] P., Nussenzveig, F., Bernardot, M., Brune, J., Hare, J. M., Raimond, S., Haroche, and W., Gawlik. Preparation of High-Principal-Quantum-Number “Circular” States of Rubidium. Phys. Rev. A 48, 3991–3994 (1993).
[143] M., Brune, F., Schmidt-Kaler, A., Maali, J., Dreyer, E., Hagley, J. M., Raimond, and S., Haroche. Quantum Rabi Oscillation: A Direct Test of Field Quantization in a Cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).
[144] M., Brune, P., Nussenzveig, F., Schmidt-Kaler, F., Bernardot, A., Maali, J. M., Raimond, and S., Haroche. From Lamb Shift to Light Shifts: Vacuum and Subphoton Cavity Fields Measured by Atomic Phase Sensitive Detection. Phys. Rev. Lett. 72, 3339–3342 (1994).
[145] M., Saffman, T. G., Walker, and K., Mølmer. Quantum Information with Rydberg Atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).
[146] T., Wilk, A., Gaëtan, C., Evellin, J., Wolters, Y., Miroshnychenko, P., Grangier, and A., Browaeys. Entanglement of Two Individual Neutral Atoms Using Rydberg Blockade. Phys. Rev. Lett. 104, 010502 (2010).
[147] L., Isenhower, E., Urban, X. L., Zhang, A. T., Gill, T., Henage, T. A., Johnson, T. G., Walker, and M., Saffman. Demonstration of a Neutral Atom Controlled-NOT Quantum Gate. Phys. Rev. Lett. 104, 010503 (2010).
[148] L. I., Schiff. Quantum Mechanics. New York: McGraw-Hill (1968).
[149] P. van der, Straten and R., Morgenstern. Shapes of Excited Atoms and Charge Motions Induced by Ion–Atom Collisions. Comments At. Mol. Phys. 17, 243–260 (1986).
[150] D. R., Hartree. TheWaveMechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion. Math. Proc. Cambr. Phil. Soc. 24, 111–132 (1928).
[151] B. H., Bransden. Atomic Collision Theory. Reading: Benjamin/Cummings, (1983).
[152] V., Fock. Näherungsmethode zur Lösung des Quantenmechanischen Mehrkörperproblems. Z. Phys. 61, 126–148 (1930).
[153] C. E., Moore and P.W., Merrill. Partial Grotrian Diagrams of Astrophysical Interest, volume 23. Gaithersburg, MD: NSRDS N.B.S. (1968).
[154] P., Langevin. Sur la Théorie du Magnétisme. J. Phys. (Paris) 4, 678 (1905).
[155] P., Langevin. Magnetism et Theory des Electrons. Ann. Chim. Phys. 5, 70 (1905).
[156] J. H., Weaver and H. P. R., Frederikse. Optical Properties of Selected Elements. In D. R., Lide, editor, CRC Handbook of Chemistry and Physics, pages 12.133–12.156. Boca Raton, FL CRC Press Inc. (2002).
[157] J. P., Desclaux. Relativistic Dirac–Fock Expectation Values for Atoms with Z = 1 to Z = 120. At. Data Nucl. Data Tables 12, 311–406 (1973).
[158] Herzberg, . Spectra of Diatomic Molecules. New York: D. van Nostrand Company, Inc. (1950).
[159] N., Bohr. On the Constitution of Atoms and Molecules. Part II Systems Containing Only a Single Nucleus. Philos. Mag. 26, 476–502 (1913).
[160] N., Bohr. On the Constitution of Atoms and Molecules. Part III Systems Containing Several Nuclei. Philos. Mag. 26, 857–875 (1913).
[161] Krzysztof, Pachucki. Born–Oppenheimer Potential for H2. Phys. Rev. A 82, 032509 (2010).
[162] Anatoly A., Svidzinsky, Marlan O., Scully, and Dudley R., Herschbach. Bohr's 1913 Molecular Model Revisited. Proc. Nat. Acad. Sci. U.S.A. 102, 11985–11988 (2005).
[163] Anatoly A., Svidzinsky, Marlan O., Scully, and Dudley R., Herschbach. Simple and Surprisingly Accurate Approach to the Chemical Bond Obtained from Dimensional Scaling. Phys. Rev. Lett. 95, 080401 (2005).
[164] Anatoly, Svidzinsky, Marlan, Scully, and Dudley, Herschbach. Bohr's Molecular Model, a Century Later. Phys. Today 67, 33–39 (2014).
[165] John M., Brown and Alan, Carrington. Rotational Spectroscopy of Diatomic Molecules. Cambridge University Press (2003).
[166] Philip M., Morse. Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Phys. Rev. 34, 57–64 (1929).
[167] F., London. Zur Theorie und Systematik der Molekularkräfte. Z. Phys. 63, 245–279 (1930).
[168] M., Karplus and R. N., Porter. Atoms and Molecules. Benjamin/Cummings (1970).
[169] Edmund S., Rittner. Binding Energy and Dipole Moment of Alkali Halide Molecules. J. Chem. Phys. 19, 1030–1035 (1951).
[170] P., Atkins and R., Friedman. Molecular Quantum Mechanics. Oxford: Oxford University Press (2005).
[171] F., Hund. Zur Deutung einiger Erscheinungen in den Molekelspektren. Z. Phys. 36, 657–674 (1926).
[172] J., Franck and E. G., Dymond. Elementary Processes of Photochemical Reactions. Trans. Faraday Soc. 21, 536–542 (1926).
[173] Edward, Condon. A Theory of Intensity Distribution in Band Systems. Phys. Rev. 28, 1182–1201 (1926).
[174] W. T., Hill and C. H., Lee. Light–Matter Interaction. Weinheim: Wiley (2007).
[175] W., Heitler and F., London. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z. Phys. 44, 455–472 (1927).
[176] Y., Sugiura. Über die Eigenschaften des Wasserstoffmoleküls im Grundzustande. Z. Phys. A 45, 484–492 (1927).
[177] Clarence, Zener and Victor, Guillemin. The B-State of the Hydrogen Molecule. Phys. Rev. 34, 999 (1929).
[178] N., Rosen. Calculation of Interaction between Atoms with s-Electrons. Phys. Rev. 38, 255–276 (1931).
[179] N., Rosen. The Normal State of the Hydrogen Molecule. Phys. Rev. 38, 2099–2114 (1931).
[180] Hubert M., James and Albert Sprague, Coolidge. The Ground State of the Hydrogen Molecule. J. Chem. Phys. 1, 825 (1933).
[181] J. O., Hirschfelder and J. W., Linnett. The Energy of Interaction between Two Hydrogen Atoms. J. Chem. Phys. 18, 130 (1950).
[182] W., Kolos and L., Wolniewicz. Potential-Energy Curves for the X 1Σg+, b 3Σu+, and C 1Πu States of the Hydrogen Molecule. J. Chem. Phys. 43, 2429 (1965).
[183] W., Kolos and L., Wolniewicz. Potential-Energy Curve for the B 1Σu+ State of the Hydrogen Molecule. J. Chem. Phys. 45, 509 (1966).
[184] W., Kolos and L., Wolniewicz. Improved Theoretical Ground-State Energy of the Hydrogen Molecule. J. Chem. Phys. 49, 404 (1968).
[185] Krzysztof, Pachucki. Two-Center Two-Electron Integrals with Exponential Functions. Phys. Rev. A 80, 032520 (2009).
[186] J. C., Slater. The Virial and Molecular Structure. J. Chem. Phys. 1, 687–691 (1933).
[187] M., Marinescu and A., Dalgarno. Dispersion Forces and Long-Range Electronic Transition Dipole Moments of Alkali-Metal Dimer Excited States. Phys. Rev. A 52, 311–328 (1995).
[188] M., Marinescu. Dispersion Coefficients for the nP-nP Asymptote of Homonuclear Alkali-Metal Dimers. Phys. Rev. A 56, 4764–4773 (1997).
[189] M. E., Rose. The Electrostatic Interaction of Two Arbitrary Charge Distributions. J. Math. Phys. 37, 215 (1958).
[190] A., Amelink and P. van der, Straten. Photoassociation of Ultra-Cold Atoms. Phys. Scr. 68, C82-89 (2003).
[191] K. M., Jones, P. S., Julienne, P. D., Lett, W. D., Phillips, E., Tiesinga, and C. J., Williams. Measurement of the Atomic Na(3P) Lifetime and of Retardation in the Interaction between Two Atoms Bound in a Molecule. Europhys. Lett. 35, 85 (1996).
[192] E., Tiesinga, C. J., Williams, P. S., Julienne, K. M., Jones, P. D., Lett, and W. D., Phillips. A Spectroscopic Determination of Scattering Lengths for Sodium Atom Collisions. J. Res. Nat. Inst. Stand. Technol. 101, 505 (1996).
[193] W. C., Stwalley, Y., Uang, and G., Pichler. Pure Long-Range Molecules. Phys. Rev. Lett. 41, 1164 (1978).
[194] Robert J., LeRoy and Richard B., Bernstein. Dissociation Energy and Long-Range Potential of Diatomic Molecules from Vibrational Spacings of Higher Levels. J. Chem. Phys. 52, 3869–3879 (1970).
[195] P., Molenaar. Photoassociative Reactions of Laser-Cooled Sodium. Ph.D. thesis, Utrecht University (1995).
[196] Thorsten, Köhler, Krzysztof, Góral, and Paul S., Julienne. Production of Cold Molecules via Magnetically Tunable Feshbach Resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).
[197] Paul S., Julienne. Cold Binary|Atomic Collisions in a Light Field. J. Res. Nat. Inst. Stand. Technol. 101, 487 (1996).
[198] Cheng, Chin, Rudolf, Grimm, Paul, Julienne, and Eite, Tiesinga. Feshbach Resonances in Ultracold Gases. Rev. Mod. Phys. 82, 1225–1286 (2010).
[199] P., Ehrenfest. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantummechanik. Z. Phys. 45, 455 (1927).
[200] W., Phillips and H., Metcalf. Laser Deceleration of an Atomic Beam. Phys. Rev. Lett. 48, 596 (1982).
[201] J., Prodan, W., Phillips, and H., Metcalf. Laser Production of a Very Slow Monoenergetic Atomic Beam. Phys. Rev. Lett. 49, 1149 (1982).
[202] J., Gordon and A., Ashkin. Motion of Atoms in a Radiation Trap. Phys. Rev. A 21, 1606 (1980).
[203] J., Dalibard and W., Phillips. Stability and Damping of Radiation Pressure Traps. Bull. Am. Phys. Soc. 30, 748 (1985).
[204] S., Chu, L., Hollberg, J., Bjorkholm, A., Cable, and A., Ashkin. Three-Dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure. Phys. Rev. Lett. 55, 48 (1985).
[205] S., Chu and C., Wieman (Eds.). Laser Cooling and Trapping of Atoms. J. Opt. Soc. Am. B 6, 1961–2288 (1989).
[206] P., Gould, P., Lett, and W. D., Phillips. New Measurement with Optical Molasses. In W., Persson and S., Svanberg, editors, Laser Spectroscopy VIII, page 64, Berlin: Springer (1987).
[207] T., Hodapp, C., Gerz, C., Westbrook, C., Furtlehner, and W., Phillips. Diffusion in Optical Molasses. Bull. Am. Phys. Soc. 37, 1139 (1992).
[208] C., Cohen-Tannoudji and W. D., Phillips. New Mechanisms for Laser Cooling. Phys. Today 43, October, 33–40 (1990).
[209] P., Lett, R., Watts, C., Westbrook, W., Phillips, P., Gould, and H., Metcalf. Observation of Atoms Laser Cooled below the Doppler Limit. Phys. Rev. Lett. 61, 169 (1988).
[210] P. D., Lett, R. N., Watts, C. E., Tanner, S. L., Rolston, W.D.|Phillips, and C.I.|Westbrook Optical Molasses. J. Opt. Soc. Am. B 6, 2084–2107 (1989).
[211] J., Dalibard and C., Cohen-Tannoudji. Laser Cooling Below the Doppler Limit by Polarization Gradients — Simple Theoretical-Models. J. Opt. Soc. Am. B 6, 2023–2045 (1989).
[212] P. J., Ungar, D. S., Weiss, S., Chu, and E., Riis. Optical Molasses and Multilevel Atoms — Theory. J. Opt. Soc. Am. B 6, 2058–2071 (1989).
[213] B., Sheehy, S. Q., Shang, P. van der, Straten, S., Hatamian, and H., Metcalf. Magnetic- Field-Induced Laser Cooling Below the Doppler Limit. Phys. Rev. Lett. 64, 858–861 (1990).
[214] A., Ashkin. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 24, 156 (1970).
[215] S., Chu, J., Bjorkholm, A., Ashkin, and A., Cable. Experimental Observation of Optically Trapped Atoms. Phys. Rev. Lett. 57, 314 (1986).
[216] A., Ashkin. Application of Laser Radiation Pressure. Science 210, 1081–1088 (1980).
[217] A., Ashkin and J. M., Dziedzic. Observation of Radiation-Pressure Trapping of Particles by Alternating Light Beams. Phys. Rev. Lett. 54, 1245 (1985).
[218] A., Ashkin and J. M., Dziedzic. Optical Trapping and Manipulation of Viruses and Bacteria. Science 235, 1517 (1987).
[219] C. S., Adams, H. J., Lee, N., Davidson, M., Kasevich, and S., Chu. Evaporative Cooling in a Crossed Dipole Trap. Phys. Rev. Lett. 74, 3577–3580 (1995).
[220] T., Takekoshi and R. J., Knize. CO2-Laser Trap for Cesium Atoms. Opt. Lett. 21, 77–79 (1996).
[221] H., Metcalf and W., Phillips. Electromagnetic Trapping of Neutral Atoms. Metrologia 22, 271 (1986).
[222] N., Davidson, H. J., Lee, C. S., Adams, M., Kasevich, and S., Chu. Long Atomic Coherence Times in an Optical Dipole Trap. Phys. Rev. Lett. 74, 1311–1314 (1995).
[223] A., Siegman. Lasers. Mill Valley: University Sciences (1986).
[224] N., Simpson, K., Dholakia, L., Allen, and M., Padgett. The Mechanical Equivalence of Spin and Orbital Angular Momentum of Light: an Optical Spanner. Opt. Lett. 22, 52 (1997).
[225] D., McGloin, N., Simpson, and M., Padgett. Transfer of Orbital Angular Momentum from a Stressed Fiber OpticWaveguide to a Light Beam. Appl. Opt. 37, 469 (1998).
[226] M., Beijersbergen. Phase Singularities in Optical Beams. Ph.D. thesis, University Leiden (1996).
[227] D., Wineland, W., Itano, J., Bergquist, and J., Bollinger. Trapped Ions and Laser Cooling. Technical Report 1086, NIST (1985).
[228] A., Migdall, J., Prodan, W., Phillips, T., Bergeman, and H., Metcalf. First Observation of Magnetically Trapped Neutral Atoms. Phys. Rev. Lett. 54, 2596 (1985).
[229] T., Bergeman, G., Erez, and H., Metcalf. Magnetostatic Trapping Fields for Neutral Atoms. Phys. Rev. A 35, 1535 (1987).
[230] T. H., Bergeman, N. L., Balazs, H., Metcalf, P., Mcnicholl, and J., Kycia. Quantized Motion of Atoms in a Quadrupole Magnetostatic Trap. J. Opt. Soc. Am. B 6, 2249–2256 (1989).
[231] E., Raab, M., Prentiss, A., Cable, S., Chu, and D., Pritchard. Trapping of Neutral- Sodium Atoms with Radiation Pressure. Phys. Rev. Lett. 59, 2631 (1987).
[232] H., Metcalf. Magneto-Optical Trapping and Its Application to Helium Metastables. J. Opt. Soc. Am. B 6, 2206–2210 (1989).
[233] V. S., Lethokov. Narrowing of the Doppler Width in a Standing Light Wave. JETP Lett. 7, 272 (1968).
[234] C., Salomon, J., Dalibard, A., Aspect, H., Metcalf, and C., Cohen-Tannoudji. Channeling Atoms in a Laser Standing Wave. Phys. Rev. Lett. 59, 1659 (1987).
[235] Y., Castin and J., Dalibard. Quantization of Atomic Motion in Optical Molasses. Europhys. Lett. 14, 761–766 (1991).
[236] P., Verkerk, B., Lounis, C., Salomon, C., Cohen-Tannoudji, J. Y., Courtois, and G., Grynberg. Dynamics and Spatial Order of Cold Cesium Atoms in a Periodic Optical-Potential. Phys. Rev. Lett. 68, 3861–3864 (1992).
[237] P. S., Jessen, C., Gerz, P. D., Lett, W. D., Phillips, S. L., Rolston, R. J. C., Spreeuw, and C. I., Westbrook. Observation of Quantized Motion of Rb Atoms in an Optical-Field. Phys. Rev. Lett. 69, 49–52 (1992).
[238] B., Lounis, P., Verkerk, J. Y., Courtois, C., Salomon, and G., Grynberg. Quantized Atomic Motion in 1D Cesium Molasses with Magnetic-Field. Europhys. Lett. 21, 13–17 (1993).
[239] R., Gupta, S., Padua, C., Xie, H., Batelaan, T., Bergeman, and H., Metcalf. Motional Quantization of Laser Cooled Atoms. Bull. Am. Phys. Soc. 37, 1139 (1992).
[240] R., Gupta, S., Padua, T., Bergeman, and H., Metcalf. Search forMotional Quantization of Laser-Cooled Atoms. In E., Arimondo, W., Phillips, and F., Strumia, editors, Laser Manipulation of Atoms and Ions, Proceedings of Fermi School CXVIII, Varenna. Amsterdam: North Holland (1993).
[241] B. P., Anderson and M. A., Kasevich. Macroscopic Quantum Interference from Atomic Tunnel Arrays. Nature 282, 1686–1689 (1998).
[242] M., Greiner, O., Mandel, T., Esslinger, T. W., Hänsch, and I., Bloch. Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. Nature 415, 39–44 (2002).
[243] G., Birkl, M., Gatzke, I. H., Deutsch, S. L., Rolston, and W. D., Phillips. Bragg Scattering from Atoms in Optical Lattices. Phys. Rev. Lett. 75, 2823–2826 (1995).
[244] C. I., Westbrook, R. N., Watts, C. E., Tanner, S. L., Rolston, W. D., Phillips, P. D., Lett, and P. L., Gould. Localization of Atoms in a 3-Dimensional Standing Wave. Phys. Rev. Lett. 65, 33–36 (1990).
[245] M., Bendahan, E., Peik, J., Reichel, Y., Castin, and C., Salomon. Bloch Oscillations of Atoms in an Optical-Potential. Phys. Rev. Lett. 76, 4508–4511 (1996).
[246] Charles E., Hecht. The Possible Superfluid Behaviour of Hydrogen Atom Gases and Liquids. Physica 25, 1159–1161 (1959).
[247] Willian C., Stwalley and L. H., Nosanow. Possible “New” Quantum Systems. Phys. Rev. Lett. 36, 910–913 (1976).
[248] Isaac F., Silvera and J. T. M., Walraven. Stabilization of Atomic Hydrogen at Low Temperature. Phys. Rev. Lett. 44, 164–168 (1980).
[249] Harald F., Hess, Greg P., Kochanski, John M., Doyle, Naoto, Masuhara, Daniel, Kleppner, and Thomas J., Greytak. Magnetic Trapping of Spin-Polarized Atomic Hydrogen. Phys. Rev. Lett. 59, 672–675 (1987).
[250] Naoto, Masuhara, John M., Doyle, Jon C., Sandberg, Daniel, Kleppner, Thomas J., Greytak, Harald F., Hess, and Greg P., Kochanski. Evaporative Cooling of Spin- Polarized Atomic Hydrogen. Phys. Rev. Lett. 61, 935–938 (1988).
[251] Yu, Kagan, I. A., Vartanyantz, and G. V., Shlyapnikov. Kinetics of Decay of Metastable Gas Phase of Polarized Atomic Hydrogen at Low Temperatures. Sov. Phys. JETP 54, 590 (1980).
[252] D., Fried, T., Killian, L., Willmann, D., Landhuis, S., Moss, D., Kleppner, and T., Greytak. Bose Einstein Condensation of Atomic Hydrogen. Phys. Rev. Lett. 81, 3811 (1998).
[253] Lincoln D., Carr, David, DeMille, Roman V., Krems, and Jun, Ye. Cold and Ultracold Molecules: Science, Technology and Applications. New J. Phys. 11, 055049 (2009).
[254] Dallin, Durfee and Wolfgang, Ketterle. Experimental Studies of Bose–Einstein Condensation. Opt. Express 2, 299–313 (1998).
[255] M. R., Andrews, C. G., Townsend, H.-J., Miesner, D. S., Durfee, D. M., Kurn, and W., Ketterle. Observation of Interference between Two Bose Condensates. Science 275, 637–641 (1997).
[256] Yvan, Castin and Jean, Dalibard. Relative Phase of Two Bose–Einstein Condensates. Phys. Rev. A 55, 4330–4337 (1997).
[257] L. D., Landau. The Theory of Superfluidity of Helium II. J.Phys. V, 71–90 (1941).
[258] Laszlo, Tisza. The Theory of Liquid Helium. Phys. Rev. 72, 838–854 (1947).
[259] D. M., Stamper-Kurn, H.-J., Miesner, S., Inouye, M. R., Andrews, and W., Ketterle. Collisionless and Hydrodynamic Excitations of a Bose–Einstein Condensate. Phys. Rev. Lett. 81, 500–503 (1998).
[260] R., Meppelink S. B.|Koller, and P. van, Straten: Sound Propagation in a Bose– Einstein Condensate at Finite Temperatures. Phys. Rev. A 80, 043605 (2009).
[261] Russell J., Donnelly. The Two-Fluid Theory and Second Sound in Liquid Helium. Phys. Today 62, 34–39 (2009).
[262] K. I., Petsas, A. B., Coates, and G., Grynberg. Crystallography of Optical Lattices. Phys. Rev. A 50, 5173–5189 (1994).
[263] P., Nozi`eres and D., Pines. The Theory of Quantum Liquids, volume II. Redwood City: Addison-Wesley (1989).
[264] E., Taylor, H., Hu, X.-J., Liu, L. P., Pitaevskii, A., Griffin, and S., Stringari. First and second sound in a strongly interacting Fermi gas. Phys. Rev. A 80, 053601 (2009).
[265] D., Jaksch, C., Bruder, J. I., Cirac, C.W., Gardiner, and P., Zoller. Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).
[266] Matthew P. A., Fisher, Peter B., Weichman, G., Grinstein, and Daniel S., Fisher. Boson Localization and the Superfluid–Insulator Transition. Phys. Rev. B 40, 546–570 (1989).
[267] Henk T. C., Stoof. Bose–Einstein Condensation: Breaking up a Superfluid. Nature 415, 25–26 (2002).
[268] D. van, Oosten, P. van der, Straten, and H. T. C., Stoof. Quantum Phases in an Optical Lattice. Phys. Rev. A 63, 053601 (2001).
[269] Markus, Greiner, Olaf, Mandel, Tilman, Esslinger, Theodor W., Hansch, and Immanuel, Bloch. Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. Nature 415, 39–44 (2002).
[270] L. E., Reichl. A Modern Course in Statistical Physics. Edward Arnold (1980).
[271] William C., Stwalley, Roman V., Krems, and Bretislav, Friedrich, editors. Cold Molecules, Theory, Experiment, Applications. Boca Raton: CRC Press (2009).
[272] E. S., Shuman, J. F., Barry, and D., DeMille. Laser Cooling of a Diatomic Molecule. Nature 467, 820–823 (2010).
[273] M. D., Di Rosa. Laser-cooling Molecules. Eur. Phys. J. D 31, 395–402 (2004).
[274] M. A., Baranov, M., Dalmonte, G., Pupillo, and P., Zoller. Condensed Matter Theory of Dipolar Quantum Gases. Chem. Rev. 112, 5012–5061 (2012).
[275] T., Breeden and H., Metcalf. Stark Acceleration of Rydberg Atoms in Inhomogeneous Electric Fields. Phys. Rev. Lett. 47, 1726 (1981).
[276] Hendrick L., Bethlem, Giel, Berden, and Gerard, Meijer. Decelerating Neutral Dipolar Molecules. Phys. Rev. Lett. 83, 1558–1561 (1999).
[277] Hendrick L., Bethlem, Giel, Berden, Floris M. H., Crompvoets, Rienk T., Jongma, Andre J. A. van, Roij, and Gerard, Meijer. Electrostatic Trapping of Ammonia Molecules. Nature 406, 491–494 (2000).
[278] W., Wing. On Neutral Particle Trapping in Quasistatic Electromagnetic Fields. Prog. Quant. Elect. 8, 181 (1984).
[279] Wesley C., Campbell and John M., Doyle. Cooling, Trap Loading, and Beam Production Using a Cryogenic Helium Buffer Gas. In William C., Stwalley, Roman V., Krems, and Bretislav, Friedrich, editors, Cold Molecules: Theory, Experiment, Applications, chapter 13. Boca Raton: CRC Press (2009).
[280] Jonathan D., Weinstein, Robert, deCarvalho, Thierry, Guillet, Bretislav, Friedrich, and John M., Doyle. Magnetic Trapping of Calcium Monohydride Molecules at Millikelvin Temperatures. Nature 395, 148–150 (1998).
[281] Nicholas R., Hutzler, Hsin-I, Lu, and John M., Doyle. The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules. Chem. Rev. 112, 4803–4827 (2012).
[282] Kevin M., Jones, Eite, Tiesinga, Paul D., Lett, and Paul S., Julienne. Ultracold Photoassociation Spectroscopy: Long-Range Molecules and Atomic Scattering. Rev. Mod. Phys. 78, 483–535 (2006).
[283] C. M., Dion, C., Drag, O., Dulieu, B. Laburthe, Tolra, F., Masnou-Seeuws, and P., Pillet. Resonant Coupling in the Formation of Ultracold Ground State Molecules via Photoassociation. Phys. Rev. Lett. 86, 2253–2256 (2001).
[284] Andrew J., Kerman, Jeremy M., Sage, Sunil, Sainis, Thomas, Bergeman, and David, DeMille. Production of Ultracold, Polar RbCs* Molecules via Photoassociation. Phys. Rev. Lett. 92, 033004 (2004).
[285] Jeremy M., Sage, Sunil, Sainis, Thomas, Bergeman, and David, DeMille. Optical Production of Ultracold Polar Molecules. Phys. Rev. Lett. 94, 203001 (2005).
[286] J., Deiglmayr, A., Grochola, M., Repp, K., Mörtlbauer, C., Glück, J., Lange, O., Dulieu, R., Wester, and M., Weidemüller. Formation of Ultracold Polar Molecules in the Rovibrational Ground State. Phys. Rev. Lett. 101, 133004 (2008).
[287] Matthieu, Viteau, Amodsen, Chotia, Maria, Allegrini, Nadia, Bouloufa, Olivier, Dulieu, Daniel, Comparat, and Pierre, Pillet. Optical Pumping and Vibrational Cooling of Molecules. Science 321, 232–234 (2008).
[288] Juris, Ulmanis, Johannes, Deiglmayr, Marc, Repp, Roland, Wester, and Matthias, Weidem üller. UltracoldMolecules Formed by Photoassociation: Heteronuclear Dimers, Inelastic Collisions, and Interactions with Ultrashort Laser Pulses. Chem. Rev. 112, 4890–4927 (2012).
[289] Jens, Herbig, Tobias, Kraemer, Michael, Mark, Tino, Weber, Cheng, Chin, Hanns- Christoph, Nägerl, and Rudolf, Grimm. Preparation of a Pure Molecular Quantum Gas. Science 301, 1510–1513 (2003).
[290] S., Inouye, M. R., Andrews, J., Stenger, H.-J., Miesner, D. M., Stamper-Kurn, and W., Ketterle. Observation of Feshbach Resonances in a Bose–Einstein Condensate. Nature 392, 151–154 (1998).
[291] Cindy A., Regal, Christopher, Ticknor, John L., Bohn, and Deborah S., Jin. Creation of Ultracold Molecules from a Fermi Gas of Atoms. Nature 424, 47–50 (2003).
[292] S., Jochim, M., Bartenstein, A., Altmeyer, G., Hendl, C., Chin, J. Hecker, Denschlag, and R., Grimm. Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms. Phys. Rev. Lett. 91, 240402 (2003).
[293] M. W., Zwierlein, C. A., Stan, C. H., Schunck, S. M. F., Raupach, S., Gupta, Z., Hadzibabic, and W., Ketterle. Observation of Bose–Einstein Condensation of Molecules. Phys. Rev. Lett. 91, 250401 (2003).
[294] Markus, Greiner, Cindy A., Regal, and Deborah S., Jin. Emergence of a Molecular Bose–Einstein Condensate from a Fermi Gas. Nature 426, 537–540 (2003).
[295] K., Winkler, F., Lang, G., Thalhammer, P. v. d., Straten, R., Grimm, and J. Hecker, Denschlag. Coherent Optical Transfer of Feshbach Molecules to a Lower Vibrational State. Phys. Rev. Lett. 98, 043201 (2007).
[296] Johann G., Danzl, Elmar, Haller, Mattias, Gustavsson, Manfred J., Mark, Russell, Hart, Nadia, Bouloufa, Olivier, Dulieu, Helmut, Ritsch, and Hanns-Christoph, Nägerl. Quantum Gas of Deeply Bound Ground State Molecules. Science 321, 1062–1066 (2008).
[297] K.-K., Ni, S., Ospelkaus, M. H. G. de, Miranda, A., Pe'er, B., Neyenhuis, J. J., Zirbel, S., Kotochigova, P. S., Julienne, D. S., Jin, and J., Ye. A High Phase-Space-Density Gas of Polar Molecules. Science 322, 231–235 (2008).
[298] F., Lang, K., Winkler, C., Strauss, R., Grimm, and J. Hecker, Denschlag. Ultracold Triplet Molecules in the Rovibrational Ground State. Phys. Rev. Lett. 101, 133005 (2008).
[299] D. J., Heinzen. Collisions of Ultracold Atoms in Optical Fields. In, D., Wineland, C., Wieman, and S., Smith, editors. Atomic Physics 14, page 369. New York: AIP Press (1995).
[300] P. D., Lett, P. S., Julienne, and W. D., Phillips. Photoassociative Spectroscopy of Laser Cooled Atoms. Annu. Rev. Phys. Chem. 46, 423 (1995).
[301] P. A., Molenaar, P. van der, Straten, and H. G. M., Heideman. Long-Range Predissociation in Two-Color Photoassociation of Ultracold Na Atoms. Phys. Rev. Lett. 77, 1460 (1996).
[302] P. D., Lett, K., Helmerson, W. D., Phillips, L. P., Ratliff, S. L., Rolston, and M. E., Wagshul. Spectroscopy of Na2 by Photoassociation of Laser-Cooled Na. Phys. Rev. Lett. 71, 2200 (1993).
[303] L. P., Ratliff, M. E., Wagshul, P. D., Lett, S. L., Rolston, and W. D., Phillips. Photoassociative Spectroscopy of 1g, 0+u and 0-g States of Na2. J. Chem. Phys. 101, 2638 (1994).
[304] J., Weiner, F., Masnou-Seeuws, and A., Giusti-Suzor. Associative Ionization: Experiments, Potentials and Dynamics. Adv. At. Mol. Phys. 26, 209 (1989).
[305] O., Dulieu, S., Magnier, and F., Masnou-Seeuws. Doubly-excited States for the Na2 Molecule: Application to the Dynamics of the Associative Ionization Reaction. Z. Phys. D 32, 229–240 (1994).
[306] Boichanh, Huynh, Olivier, Dulieu, and Françoise, Masnou-Seeuws. Associative Ionization between Two Laser-Excited Sodium Atoms: Theory Compared To Experiment. Phys. Rev. A 57, 958–975 (1998).
[307] A., Amelink, K. M., Jones, P. D., Lett, P. van der, Straten, and H. G. M., Heideman. Spectroscopy of Autoionizing Doubly Excited States in Ultracold Na2 molecules produced by photoassociation. Phys. Rev. A 61, 042707 (2000).
[308] Bruce, Shore. The Theory of Coherent Atomic Excitation, volume 2. New York: Wiley and Sons (1990).
[309] Bruce W., Shore. Manipulating Quantum Structures Using Laser Pulses. Cambridge: Cambridge University Press (2011).
[310] G., Alzetta, A., Gozzini, L., Moi, and G., Orriols. An Experimental Method for the Observation of R. F. Transitions and Laser Beat Resonances in Oriented Na Vapour. Il Nuovo Cimento B Series 11 36, 5–20 (1976).
[311] E., Arimondo and G., Orriols. Nonabsorbing Atomic Coherences by Coherent Two- Photon Transitions in a Three-Level Optical Pumping. Nuovo Cimento Lett. 17, 333–338 (1976).
[312] William A., Davis, Harold J., Metcalf, and William D., Phillips. Vanishing Electric Dipole Transition Moment. Phys. Rev. A 19, 700–703 (1979).
[313] Petr M., Anisimov, Jonathan P., Dowling, and Barry C., Sanders. Objectively Discerning Autler–Townes Splitting from Electromagnetically Induced Transparency. Phys. Rev. Lett. 107, 163604 (2011).
[314] U., Fano. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 124, 1866–1878 (1961).
[315] U., Gaubatz, P., Rudecki, M., Becker, S., Schiemann, M., Kulz, and K., Bergmann. Population Switching between Vibrational Levels in Molecular Beams. Chem. Phys. Lett. 149, 463 (1988).
[316] J. R., Kuklinski, U., Gaubatz, F. T., Hioe, and K., Bergmann. Adiabatic Population Transfer in a Three-Level System Driven by Delayed Laser Pulses. Phys. Rev. A 40, 6741 (1989).
[317] K., Bergmann, H., Theuer, and B. W., Shore. Coherent Population Transfer Among Quantum States of Atoms and Molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).
[318] Yuan, Sun and Harold, Metcalf. Nonadiabaticity in Stimulated Raman Adiabatic Passage. Phys. Rev. A 90, 033408 (2014).
[319] M. P., Fewell, B. W., Shore, and K., Bergmann. Coherent Population Transfer among Three States: Full Algebraic Solutions and the Relevance of Non Adiabatic Processes to Transfer by Delayed Pulses. Aust. J. Phys. 50, 281–308 (1997).
[320] A., Aspect, E., Arimondo, R., Kaiser, N., Vansteenkiste, and C., Cohen-Tannoudji. Laser Cooling Below the One-Photon Recoil Energy by Velocity-Selective Coherent Population Trapping. Phys. Rev. Lett. 61, 826 (1988).
[321] J., Hack, L., Liu, M., Olshanii, and H., Metcalf. Velocity-Selective Coherent Population Trapping of Two-Level Atoms. Phys. Rev. A 62, 013405 (2000).
[322] Stanley J., Brodsky, Carl E., Carlson, John R., Hiller, and Dae Sung, Hwang. Constraints on Proton Structure from Precision Atomic-Physics Measurements. Phys. Rev. Lett. 94, 022001 (2005).
[323] John E., Nafe and Edward B., Nelson. The Hyperfine Structure of Hydrogen and Deuterium. Phys. Rev. 73, 718–728 (1948).
[324] H. M., Foley and P., Kusch. On the Intrinsic Moment of the Electron. Phys. Rev. 73, 412–412 (1948).
[325] D. T., Wilkinson and H. R., Crane. Precision Measurement of the g Factor of the Free Electron. Phys. Rev. 130, 852–863 (1963).
[326] D., Hanneke, S., Fogwell, and G., Gabrielse. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant. Phys. Rev. Lett. 100, 120801 (2008).
[327] Michael, Lombardi, Thomas, Heavner, and Steven R., Jefferts. NIST Primary Frequency Standards and the Realization of the SI Second. NCSL Intern. Meas. 2, 74 (2007).
[328] Norman, Ramsey. History of Atomic Clocks. J. Res. Nat. Bur. Stand. 88, 301 (1983).
[329] J. R., Zacharias. Precision Measurements with Molecular Beams. Phys. Rev. 94, 751 (1954).
[330] R., Weiss. Contribution to “Festschrift for Jerrold R. Zacharias”. Private communication.
[331] C. W., Chou, D. B., Hume, J. C. J., Koelemeij, D. J., Wineland, and T., Rosenband. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks. Phys. Rev. Lett. 104, 070802 (2010).
[332] Jeremy, Darling. Methods for Constraining Fine Structure Constant Evolution with OH Microwave Transitions. Phys. Rev. Lett. 91, 011301 (2003).
[333] Eric R., Hudson, H. J., Lewandowski, Brian C., Sawyer, and Jun, Ye.Cold Molecule Spectroscopy for Constraining the Evolution of the Fine Structure Constant. Phys. Rev. Lett. 96, 143004 (2006).
[334] D., DeMille, S., Sainis, J., Sage, T., Bergeman, S., Kotochigova, and E., Tiesinga. Enhanced Sensitivity to Variation of me/mp in Molecular Spectra. Phys. Rev. Lett. 100 043202 (2008).
[335] A., Cingöz, A., Lapierre, A.-T., Nguyen, N., Leefer, D., Budker, S. K., Lamoreaux, and J. R., Torgerson. Limit on the Temporal Variation of the Fine-Structure Constant Using Atomic Dysprosium. Phys. Rev. Lett. 98, 040801 (2007).
[336] N., Leefer, C. T. M., Weber, A., Cingöz, J. R., Torgerson, and D., Budker. New Limits on Variation of the Fine-Structure Constant Using Atomic Dysprosium. Phys. Rev. Lett. 111, 060801 (2013).
[337] T., Rosenband, D., Hume, P. O., Schmidt, C. W., Chow, L., Lorini, W. H., Oksay, R., Drullinger, T., Fortier, E., Stalneker, S., Diddams, W., Swann, N. R., Newbury, D., Wineland, and J., Bergquist. Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place. Science 319, 1808 (2008).
[338] L., Lorini, N., Ashby, A., Brusch, S., Diddams, R., Drullinger, E., Eason, T., Fortier, P., Hastings, T., Heavner, D., Hume, W., Itano, S., Jefferts, N., Newbury, T., Parker, T., Rosenband, J., Stalnaker, W., Swann, D., Wineland, and J., Bergquist. Recent Atomic Clock Comparisons at NIST. Eur. Phys. J. Special Topics 163, 19 (2008).
[339] R. M., Godun, P. B. R., Nisbet-Jones, J. M., Jones, S. A., King, L. A. M., Johnson, H. S., Margolis, K., Szymaniec, S. N., Lea, K., Bongs, and P., Gill. Frequency Ratio of Two Optical Clock Transitions in 171Yb+ and Constraints on the Time Variation of Fundamental Constants. Phys. Rev. Lett. 113, 210801 (2014).
[340] N., Huntemann, B., Lipphardt, Chr., Tamm, V., Gerginov, S., Weyers, and E., Peik. Improved Limit on a Temporal Variation of mp/me from Comparisons of Yb+ and Cs Atomic Clocks. Phys. Rev. Lett. 113, 210802 (2014).
[341] Martin, Deutsch. Evidence for the Formation of Positronium in Gases. Phys. Rev. 82, 455–456 (1951).
[342] K. F., Canter, A. P., Mills, and S., Berko. Observations of Positronium Lyman-a Radiation. Phys. Rev. Lett. 34, 177–180 (1975).
[343] D., Hagena, R., Ley, D., Weil, G., Werth, W., Arnold, and H., Schneider. Precise Measurement of n = 2 Positronium Fine-Structure Intervals. Phys. Rev. Lett. 71, 2887–2890 (1993).
[344] M. S., Fee, A. P., Mills, S., Chu, E. D., Shaw, K., Danzmann, R. J., Chichester, and D. M., Zuckerman. Measurement of the Positronium 13S1–23S1 Interval by Continuous-Wave Two-Photon Excitation. Phys. Rev. Lett. 70, 1397–1400 (1993).
[345] D. B., Cassidy and A. P. Mills., Jr.The Production of Molecular Positronium. Nature 449, 195–197 (2007).
[346] M.W., Ritter, P. O., Egan, V.W., Hughes, and K. A., Woodle. Precision Determination of the Hyperfine-Structure Interval in the Ground State of Positronium. V. Phys. Rev. A 30, 1331–1338 (1984).
[347] V., Hughes. Muonium. Phys. Today 20, 29–40 (1967).
[348] D. S., Covita, D. F., Anagnostopoulos, H., Gorke, D., Gotta, A., Gruber, A., Hirtl, T., Ishiwatari, P., Indelicato, E.-O. Le, Bigot, M., Nekipelov, J. M. F., dos Santos, Ph., Schmid, L. M., Simons, M., Trassinelli, J. F. C. A., Veloso, and J., Zmeskal. Line Shape of the µH (3p–1s) Hyperfine Transitions. Phys. Rev. Lett. 102, 023401 (2009).
[349] Randolf, Pohl, Aldo, Antognini, François, Nez, Fernando D., Amaro, François, Biraben, João M. R., Cardoso, Daniel S., Covita, Andreas, Dax, Satish, Dhawan, Luis M. P., Fernandes, Adolf, Giesen, Thomas, Graf, Theodor W., Hänsch, Paul, Indelicato, Lucile, Julien, Cheng-Yang, Kao, Paul, Knowles, Eric-Olivier Le, Bigot, Yi-Wei, Liu, José A. M., Lopes, Livia, Ludhova, Cristina M. B., Monteiro, Françoise, Mulhauser, Tobias, Nebel, Paul, Rabinowitz, Joaquim M. F., dos Santos, Lukas A., Schaller, Karsten, Schuhmann, Catherine, Schwob, David, Taqqu, João F. C. A., Veloso, and Franz, Kottmann. The Size of the Proton. Nature 466, 213–216 (2010).
[350] Detlev, Gotta, F., Amaro, D., Anagnostopoulos, P., Bühler, H., Gorke, D., Covita, H., Fuhrmann, A., Gruber, M., Hennebach, A., Hirtl, T., Ishiwatari, P., Indelicato, E.-O., Le Bigot, J., Marton, M., Nekipelov, J. dos, Santos, S., Schlesser, Ph., Schmid, L., Simons, Th., Strauch, M., Trassinelli, J., Veloso, and J., Zmeskal. Muonium. Hyp. Int. 209, 57–62 (2012).
[351] G., Gabrielse, R., Kalra,W. S., Kolthammer, R., McConnell, P., Richerme, D., Grzonka, W., Oelert, T., Sefzick, M., Zielinski, D.W., Fitzakerley, M. C., George, E. A., Hessels, C. H., Storry, M., Weel, A., Müllers, and J., Walz. Trapped Antihydrogen in its Ground State. Phys. Rev. Lett. 108, 113002 (2012).
[352] Alpha, Collaboration. A Source of Antihydrogen for In-flight Hyperfine Spectroscopy. Nat. Commun. 5 doi: 10.1038/ncomms4089 (2014).
[353] E., Schrödinger. Discussion of Probability Relations between Separated Systems. Math. Proc. Cambr. Phil. Soc. 31, 555–563 (1935).
[354] John, Clauser and Abner, Shimony. Bell's Theorem : Experimental Tests and Implications. Rep. Prog. Phys. 38, 1881–1927 (1978).
[355] J. S., Bell. On the Einstein–Podolsky–Rosen Paradox. Physics 1, 195 (1964).
[356] John S., Bell. On the Problem of Hidden Variables in Quantum Mechanics. Rev. Mod. Phys. 38, 447–452 (1966).
[357] J. S., Bell. Bertlmann's Socks and the Nature of Reality. J. Phys. Coll. 42, C2-41– C2-62 (1981).
[358] Alain, Aspect, Philippe, Grangier, and Gérard, Roger. Experimental Realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A New Violation of Bell's Inequalities. Phys. Rev. Lett. 49, 91–94 (1982).
[359] Alain, Aspect, Jean, Dalibard, and Gérard, Roger. Experimental Test of Bell's Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).
[360] Marie-Anne, Bouchiat and Claude, Bouchiat. Parity Violation in Atoms. Rep. Prog. Phys. 60, 1351–1396 (1997).
[361] C. S., Wood, S. C., Bennett, D., Cho, B. P., Masterson, J. L., Roberts, C. E., Tanner, and C. E., Wieman. Measurement of Parity Nonconservation and an Anapole Moment in Cesium. Science 275, 1759–1763 (1997).
[362] E., Gomez, S., Aubin, G. D., Sprouse, L. A., Orozco, and D. P., DeMille. Measurement Method for the Nuclear Anapole Moment of Laser-Trapped Alkali-Metal Atoms. Phys. Rev. A 75, 033418 (2007).
[363] Jocelyne, Guéna, Michel, Lintz, and Marie-Anne, Bouchiat. Proposal for High- Precision Atomic-Parity-Violation Measurements by Amplification of the Asymmetry by Stimulated Emission in a Transverse Electric and Magnetic Field Pump-Probe Experiment.J. Opt. Soc. Am. B 22, 21–28 (2005).
[364] L., Bougas, G. E., Katsoprinakis, W. von, Klitzing, J., Sapirstein, and T. P., Rakitzis. Cavity-Enhanced Parity-Nonconserving Optical Rotation in Metastable Xe and Hg. Phys. Rev. Lett. 108, 210801 (2012).
[365] S., Schlamminger, K.-Y., Choi, T. A., Wagner, J. H., Gundlach, and E. G., Adelberger. Test of the Equivalence Principle Using a Rotating Torsion Balance. Phys. Rev. Lett. 100, 041101 (2008).
[366] E. R., Williams, J. E., Faller, and H. A., Hill. New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass. Phys. Rev. Lett. 26, 721–724 (1971).
[367] J. H., Smith, E. M., Purcell, and N. F., Ramsey. Experimental Limit to the Electric Dipole Moment of the Neutron. Phys. Rev. 108, 120–122 (1957).
[368] P. G., Harris, C. A., Baker, K., Green, P., Iaydjiev, S., Ivanov, D. J. R., May, J. M., Pendlebury, D., Shiers, K. F., Smith, M. van der, Grinten, and P., Geltenbort. New Experimental Limit on the Electric Dipole Moment of the Neutron. Phys. Rev. Lett. 82, 904–907 (1999).
[369] Norval, Fortson, Patrick, Sandars, and Stephen, Barr. The Search for a Permanent Electric Dipole Moment. Phys. Today 56, 33 (2003).
[370] J. J., Hudson, D. M., Kara, I. J., Smallman, B. E., Sauer, M. R., Tarbutt, and E. A., Hinds. Improved Measurement of the Shape of the Electron. Nature 473, 493–496 (2011).
[371] J., Baron (The ACME Collaboration), W. C., Campbell, D., DeMille, J. M., Doyle, G., Gabrielse, Y. V., Gurevich, P. W., Hess, N. R., Hutzler, E., Kirilov, I., Kozyryev, B. R., O'Leary, C. D., Panda, M. F., Parsons, E. S., Petrik, B., Spaun, A. C., Vutha, and A. D., West. Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron. Science 343, 269–272 (2014).
[372] Clebsch–Gordan Coefficients, Spherical Harmonics, and D Functions. Eur. Phys. J. C 15, 208 (2000).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.