Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2017
  • Online publication date: July 2017

9 - The Global Circulation

Allison, M. (1997), Accurate analytic representations of solar time and seasons on Mars with applications to the Pathfinder/Surveyor missions, Geophys. Res. Lett., 24(16), 19671970, doi:10.1029/97GL01950.
Allison, M., and McEwen, M. (2000), A post-Pathfinder evaluation of areocentric solar coordinates with improved timing recipes for Mars seasonal/diurnal climate studies, Planet. Space Sci., 48(23), 215235, doi:10.1016/S0032-0633(99)00092-6.
Anderson, D.L.T. (1976), The low-level jet as a western boundary current, Mon. Wea. Rev., 104, 907921, doi:10.1175/1520-0493(1976)104<0907:TLLJAA>2.0.CO;2.
Anderson, E., and Leovy, C.B. (1978), Mariner 9 television limb observations of dust and ice hazes on Mars, J. Atmos. Sci., 35, 723734, doi:10.1175/1520-0469(1978)035<0723:MTLOOD>2.0.CO;2.
Andrews, D.G., and McIntyre, M.E. (1976), Planetary waves in horizontal and vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration, J. Atmos. Sci., 33(11), doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.
Andrews, D.G., Taylor, F.W., and McIntyre, M.E. (1987), The influence of atmospheric waves on the general circulation of the middle atmosphere [and discussion], Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 323(1575), 693705, doi:10.1098/rsta.1987.0115.
Angelats i Coll, M., Forget, F., López-Valverde, M.A., and González-Galindo, F. (2005), The first Mars thermospheric general circulation model: the Martian atmosphere from the ground to 240 km, Geophys. Res. Lett., 32, L04201, doi:10.1029/2004GL021368.
Banfield, D., Ingersoll, A.P., and Keppenne, C.L. (1995), A steady-state Kalman filter for assimilating data from a single polar orbiting satellite, J. Atmos. Sci., 52, 737753, doi:10.1175/1520-0469(1995)052<0737:ASSKFF>2.0.CO;2.
Banfield, D., Toigo, A.D., Ingersoll, A.P., and Paige, D.A. (1996), Martian weather correlation length scales, Icarus, 119(1), 130143, doi:10.1006/icar.1996.0006.
Banfield, D., Conrath, B.J., Pearl, J.C., Smith, M.D., and Christensen, P.R. (2000), Thermal tides and stationary waves on Mars as revealed by Mars Global Surveyor Thermal Emission Spectrometer, J. Geophys. Res., 105(E4), 9521, doi:10.1029/1999JE001161.
Banfield, D., Conrath, B.J., Smith, M.D., Christensen, P.R., and Wilson, R.J. (2003), Forced waves in the Martian atmosphere from MGS TES nadir data, Icarus, 161(2), 319345, doi:10.1016/S0019-1035(02)00044-1.
Banfield, D., Conrath, B.J., Gierasch, P.J., Wilson, R.J., and Smith, M.D. (2004), Traveling waves in the Martian atmosphere from MGS TES nadir data, Icarus, 170(2), 365403, doi:10.1016/j.icarus.2004.03.015.
Barnes, J.R. (1980), Time spectral analysis of midlatitude disturbances in the Martian atmosphere, J. Atmos. Sci., 37, 20022015, doi:10.1175/1520-0469(1980)037<2002:TSAOMD>2.0.CO;2.
Barnes, J.R. (1981), Midlatitude disturbances in the Martian atmosphere: a second Mars year, J. Atmos. Sci., 38, 225234, doi:10.1175/1520-0469(1981)038<0225:MDITMA>2.0.CO;2.
Barnes, J.R. (1983), Baroclinic waves in the atmosphere of Mars: observations, linear instability, and finite-amplitude evolution, Ph.D Thesis, University of Washington, Seattle, Washington.
Barnes, J.R. (1984), Linear baroclinic instability in the Martian atmosphere, J. Atmos. Sci., 41, 15361550, doi:10.1175/1520-0469(1984)041<1536:LBIITM>2.0.CO;2.
Barnes, J.R. (1986), Finite-amplitude behavior of a single baroclinic wave with multiple vertical modes: effects of thermal damping, J. Atmos. Sci., 43, 5871, doi:10.1175/1520-0469(1986)043<0058:FABOAS>2.0.CO;2
Barnes, J.R. (1990), Possible effects of breaking gravity waves on the circulation of the middle atmosphere of Mars, J. Geophys. Res., 95(B2), 1401, doi:10.1029/JB095iB02p01401.
Barnes, J.R. (2001), Asynoptic fourier transform analyses of MGS TES data: transient baroclinic eddies, Bull. Am. Met. Soc., 33, 1067.
Barnes, J.R. (2003a), Planetary eddies in the Martian atmosphere: FFSM analysis of TES data, First Int. Workshop Mars Atmos. Model. Obs., Granada, Spain, http://www-mars.lmd.jussieu.fr/granada2003/.
Barnes, J.R. (2003b), Mars weather systems and maps: FFSM analyses of MGS TES temperature data, Sixth Int. Conf. Mars, Pasadena, California, www.lpi.usra.edu/meetings/sixthmars2003/abstractvolume.html.
Barnes, J.R. (2006), FFSM studies of transient eddies in the MGS TES temperature data, Second Int. Workshop Mars Atmos. Model. Obs., Granada, Spain, http://www-mars.lmd.jussieu.fr/granada2006/.
Barnes, J.R., and Haberle, R.M. (1996), The Martian zonal-mean circulation: angular momentum and potential vorticity structure in GCM simulations, J. Atmos. Sci., 53, 31433156, doi:10.1175/1520-0469(1996)053<3143:TMZMCA>2.0.CO;2.
Barnes, J.R., and Hollingsworth, J.L. (1987), Dynamical modeling of a planetary wave mechanism for a Martian polar warming, Icarus, 71, 313334.
Barnes, J.R., and Tyler, D. (2007), Winter weather on Mars: the unique southern hemisphere, in Seventh Int. Conf. Mars, Pasadena, California, www.lpi.usra.edu/meetings/7thmars2007/.
Barnes, J.R., Pollack, J.B., Haberle, R.M., et al. (1993), Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 2. Transient baroclinic eddies, J. Geophys. Res., 98(E2), 31253148, doi:10.1029/92JE02935.
Barnes, J.R., Walsh, T.D., and Murphy, J.R. (1996a), Transport timescales in the Martian atmosphere: general circulation model simulations, J. Geophys. Res., 101(E7), 16881, doi:10.1029/96JE00500.
Barnes, J.R., Haberle, R.M., Pollack, J.B., Lee, H., and Schaeffer, J. (1996b), Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 3. Winter quasi-stationary eddies, J. Geophys. Res., 101, 1275312776.
Barnes, J.R., Rucker, M.S., and Tyler, D. (2014), Transient eddies in the atmosphere of Mars: the crucial importance of water clouds, in Eighth Int. Conf. Mars, Pasadena, California, www.hou.usra.edu/meetings/8thmars2014/.
Basu, S., Wilson, J., Richardson, M., and Ingersoll, A.P. (2006), Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM, J. Geophys. Res., 111(E9), E09004, doi:10.1029/2005JE002660.
Benson, J.L., Kass, D.M., Kleinböhl, A., et al. (2010), Mars’ south polar hood as observed by the Mars Climate Sounder, J. Geophys. Res., 115(E12), E12015, doi:10.1029/2009JE003554.
Blumsack, S.L. (1971), On the effects of topography on planetary atmospheric circulation, J. Atmos. Sci., 28, doi:10.1175/1520-0469(1971)028<1134:OTEOTO>2.0.CO;2.
Blumsack, S.L., and Gierasch, P.J. (1972), Mars: the effects of topography on baroclinic instability, J. Atmos. Sci., 29, doi:10.1175/1520-0469(1972)029<1081:MTEOTO>2.0.CO;2.
Blumsack, S.L., Gierasch, P.J., and Wessel, W.R. (1973), An analytical and numerical study of the Martian planetary boundary layer over slopes, J. Atmos. Sci., 30, doi:10.1175/1520-0469(1973)030<0066:AAANSO>2.0.CO;2.
Bougher, S.W., Engel, S., Hinson, D.P., and Forbes, J.M. (2001), Mars Global Surveyor radio science electron density profiles: neutral atmosphere implications, Geophys. Res. Lett., 28(16), 30913094, doi:10.1029/2001GL012884.
Bridger, A.F.C., and Murphy, J.R. (1998), Mars’ surface pressure tides and their behavior during global dust storms, J. Geophys. Res., 103(E4), 8587, doi:10.1029/98JE00242.
Briggs, G.A., and Leovy, C.B. (1974), Mariner observations of the Mars north polar hood, Bull. Am. Meteorol. Soc., 55(4), doi:10.1175/1520-0477(1974)055<0278:MOOTMN>2.0.CO;2.
Cahoy, K.L., Hinson, D.P., and Tyler, G.L. (2007), Characterization of a semidiurnal eastward-propagating tide at high northern latitudes with Mars Global Surveyor electron density profiles, Geophys. Res. Lett., 34(15), L15201, doi:10.1029/2007GL030449.
Cavalié, T., Billebaud, F., Encrenaz, T., et al. (2008), Vertical temperature profile and mesospheric winds retrieval on Mars from CO millimeter observations, Astron. Astrophys., 489(2), 795809, doi:10.1051/0004-6361:200809815.
Chapman, S., and Lindzen, R.S. (1970), Atmospheric Tides – Thermal and Gravitational, Reidel, Dordrecht.
Charney, J.G. (1947), The dynamics of long waves in a baroclinc westerly current, J. Meteorol., 4(5), 136162, doi:10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.
Christensen, P.R. (1988), Global albedo variations on Mars: implications for active aeolian transport, deposition, and erosion, J. Geophys. Res., 93(B7), 7611, doi:10.1029/JB093iB07p07611.
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., et al. (2001), Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res., 106(E10), 23823, doi:10.1029/2000JE001370.
Christensen, P.R., Jakosky, B.M., Kieffer, H.H., et al. (2004), The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev., 110(1/2), 85130, doi:10.1023/B:SPAC.0000021008.16305.94.
Clancy, R.T., Sandor, B.J., Moriarty-Schieven, G.H., and Smith, M.D. (2006), Mesospheric winds and temperatures from JCMT sub-millimeter CO line observations during the 2003 and 2005 Mars oppositions, Second Int. Work. Mars Atmos. Model. Obs., Granada, Spain, http://www-mars.lmd.jussieu.fr/granada2006/.
Colaprete, A., Haberle, R.M., and Toon, O.B. (2003), Formation of convective carbon dioxide clouds near the south pole of Mars, J. Geophys. Res., 108(E7), 5081, doi:10.1029/2003JE002053.
Colaprete, A., Barnes, J.R., Haberle, R.M., et al. (2005), Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics, Nature, 435(7039), 184188, doi:10.1038/nature03561.
Colaprete, A., Barnes, J.R., Haberle, R.M., and Montmessin, F. (2008), CO2 clouds, CAPE and convection on Mars: observations and general circulation modeling, Planet. Space Sci., 56(2), 150180, doi:10.1016/j.pss.2007.08.010.
Colburn, D.S., Pollack, J.B., and Haberle, R.M. (1988), Diurnal Variations in Optical Depth at Mars: Observations and Interpretations, NASA-TM-100057, A-88067, NAS 1.15:1000057.
Collins, M., Lewis, S.R., and Read, P.L. (1995), Regular and irregular baroclinic waves in a Martian general circulation model: a role for diurnal forcing?, Adv. Sp. Res., 16(6), 37, doi:10.1016/0273-1177(95)00243-8.
Collins, M., Lewis, S.R., Read, P.L., and Hourdin, F. (1996), Baroclinic wave transitions in the Martian atmosphere, Icarus, 120(2), 344357, doi:10.1006/icar.1996.0055.
Collins, M., Lewis, S.R., and Read, P.L. (1997), Gravity wave drag in a global circulation model of the Martian atmosphere: parameterisation and validation, Adv. Sp. Res., 19(8), 12451254, doi:10.1016/S0273-1177(97)00277-9.
Conrath, B.J. (1975), Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971, Icarus, 24(1), 3646, doi:10.1016/0019-1035(75)90156-6.
Conrath, B.J. (1976), Influence of planetary-scale topography on the diurnal thermal tide during the 1971 Martian dust storm, J. Atmos. Sci., 33, 24302439, doi:10.1175/1520-0469(1976)033<2430:IOPSTO>2.0.CO;2.
Conrath, B.J. (1981), Planetary-scale wave structure in the Martian atmosphere, Icarus, 48(2), 246255, doi:10.1016/0019-1035(81)90107-X.
Conrath, B.J., Pearl, J.C., Smith, M.D., et al. (2000), Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: atmospheric temperatures during aerobraking and science phasing, J. Geophys. Res., 105(E4), 9509, doi:10.1029/1999JE001095.
Creasey, J.E., Forbes, J.M., and Hinson, D.P. (2006), Global and seasonal distribution of gravity wave activity in Mars’ lower atmosphere derived from MGS radio occultation data, Geophys. Res. Lett., 33(1), doi:10.1029/2005GL024037.
Crisp, D. (1990), Infrared radiative transfer in the dust-free Martian atmosphere, J. Geophys. Res., 95(B9), 14577, doi:10.1029/JB095iB09p14577.
Eady, E.T. (1949), Long waves and cyclone waves, Tellus, 1, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.
Eckermann, S.D., Ma, J., and Zhu, X. (2011), Scale-dependent infrared radiative damping rates on Mars and their role in the deposition of gravity-wave momentum flux, Icarus, 211(1), 429442, doi:10.1016/j.icarus.2010.10.029.
Edmonds, R.M., Murphy, J., Schofield, J.T., and Heavens, N.G. (2014), Considerations on the Presence of Gravity Wave Activity During MCS Limb Staring Observations, Fifth Int. Work. Mars Atmos. Model. Obs., Oxford, UK, http://www-mars.lmd.jussieu.fr/oxford2014/.
Forbes, J.M. (2008), Troposphere–Thermosphere Coupling by Thermal Tides at Earth and Mars, AGU Spring Meeting Abstracts, 1, 1.
Forbes, J.M., and Hagan, M.E. (2000), Diurnal Kelvin wave in the atmosphere of Mars: towards an understanding of “stationary” density structures observed by the MGS accelerometer, Geophys. Res. Lett., 27(21), 35633566, doi:10.1029/2000GL011850.
Forbes, J.M., Bridger, A.F.C., Bougher, S.W., et al. (2002), Nonmigrating tides in the thermosphere of Mars, J. Geophys. Res., 107(E11), 5113, doi:10.1029/2001JE001582.
Forget, F., Hourdin, F., Fournier, R., et al. (1999), Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res., 104(E10), 24155, doi:10.1029/1999JE001025.
Formisano, V., Grassi, D., Orfei, R., et al. (2004), The Planetary Fourier Spectrometer (PFS) for Mars Express, In Mars Express – The Scientific Payload, Ed. by Wilson, A., Sci. Coord. by A. Chicarro, ESA SP-1240, Noordwijk, Netherlands, ESA Publications Division, 7194, http://sci.esa.int/mars-express/34885-esa-sp-1240-mars-express-the-scientific-payload/.
Gadian, A.M. (1978), The dynamics of and the heat transfer by baroclinic eddies and large-scale stationary topographically forced long waves in the Martian atmosphere, Icarus, 33(3), 454465, doi:10.1016/0019-1035(78)90184-7.
Geissler, P.E. (2005), Three decades of Martian surface changes, J. Geophys. Res., 110(E2), E02001, doi:10.1029/2004JE002345.
Gierasch, P.J., and Goody, R. (1968), A study of the thermal and dynamical structure of the Martian lower atmosphere, Planet. Space Sci., 16(5), 615646, doi:10.1016/0032-0633(68)90102-5.
Gill, A.E. (1980), Some simple solutions for heat-induced tropical circulation, Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.
Gómez-Elvira, J., Armiens, C., Castaner, L., et al. (2012), REMS: the environmental sensor suite for the Mars Science Laboratory Rover, Space Sci. Rev., 170(14), 583640, doi:10.1007/s11214-012-9921-1.
Goody, R., and Belton, M.J.S. (1967), A discussion of Martian atmospheric dynamics, Planet. Space Sci., 15(2), 247256, doi:10.1016/0032-0633(67)90193-6.
Greeley, R., Lancaster, N., Lee, S., and Thomas, P. (1992), Martian aeolian processes, sediments, and features, In Mars, Kieffer, H.H., Jakosky, B.M., Snyder, C.W., and Mathews, M.S., Eds., University of Arizona Press, 730766.
Greeley, R., Skypeck, A., and Pollack, J.B. (1993), Martian aeolian features and deposits: comparisons with general circulation model results, J. Geophys. Res., 98(E2), 3183, doi:10.1029/92JE02580.
Greybush, S.J., Wilson, R.J., Hoffman, R.N., et al. (2012), Ensemble Kalman filter data assimilation of Thermal Emission Spectrometer temperature retrievals into a Mars GCM, J. Geophys. Res., 117(E11), E11008, doi:10.1029/2012JE004097.
Gunnlaugsson, H.P., Holstein-Rathlou, C., Merrison, J.P., et al. (2008), Telltale wind indicator for the Mars Phoenix Lander, J. Geophys. Res., 113, E00A04, doi:10.1029/2007JE003008.
Guzewich, S.D., Talaat, E.R., and Waugh, D.W. (2012), Observations of planetary waves and nonmigrating tides by the Mars Climate Sounder, J. Geophys. Res., 117(E3), E03010, doi:10.1029/2011JE003924.
Guzewich, S.D., Toigo, A.D., Richardson, M.I., et al. (2013), The impact of a realistic vertical dust distribution on the simulation of the Martian General Circulation, J. Geophys. Res. Planets, 118(5), 980993, doi:10.1002/jgre.20084.
Haberle, R.M., and Catling, D.C. (1996), A Micro-Meteorological mission for global network science on Mars: rationale and measurement requirements, Planet. Space Sci., 44(11), 13611383, doi:10.1016/S0032-0633(96)00056-6.
Haberle, R.M., Leovy, C.B., and Pollack, J.B. (1982), Some effects of global dust storms on the atmospheric circulation of Mars, Icarus, 50(2–3), 322367, doi:10.1016/0019-1035(82)90129-4.
Haberle, R.M., Houben, H.C., Hertenstein, R., and Herdtle, T. (1993a), A boundary-layer model for Mars: comparison with Viking Lander and entry data, J. Atmos. Sci., 50, 15441559, doi:10.1175/1520-0469(1993)050<1544:ABLMFM>2.0.CO;2.
Haberle, R.M., Pollack, J.B., Barnes, J.R., et al. (1993b), Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal-mean circulation, J. Geophys. Res., 98(E2), 3093, doi:10.1029/92JE02946.
Haberle, R.M., Houben, H.C., Barnes, J.R., and Young, R.E. (1997), A simplified three-dimensional model for Martian climate studies, J. Geophys. Res., 102(E4), 9051, doi:10.1029/97JE00383.
Haberle, R.M., Joshi, M.M., Murphy, J.R., et al. (1999), General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res., 104(E4), 8957, doi:10.1029/1998JE900040.
Haberle, R.M., Gomez-Elvira, J., de la Torre Juarez, M., et al. (2014), Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission, J. Geophys. Res. Planets, 119(3), 440453, doi:10.1002/2013JE004488.
Hamilton, K., and Garcia, R.R. (1986), Theory and observations of the short-period normal mode oscillations of the atmosphere, J. Geophys. Res., 91(D11), 11867, doi:10.1029/JD091iD11p11867.
Hanel, R., Conrath, B.J., Hovis, W., et al. (1972), Investigation of the Martian environment by infrared spectroscopy on Mariner 9, Icarus, 17(2), 423442, doi:10.1016/0019-1035(72)90009-7.
Hartogh, P., Medvedev, A.S., Kuroda, T., et al. (2005), Description and climatology of a new general circulation model of the Martian atmosphere, J. Geophys. Res., 110(E11), E11008, doi:10.1029/2005JE002498.
Hartogh, P., Medvedev, A.S., and Jarchow, C. (2007), Middle atmosphere polar warmings on Mars: simulations and study on the validation with sub-millimeter observations, Planet. Space Sci., 55(9), 11031112, doi:10.1016/j.pss.2006.11.018.
Hayne, P.O., Paige, D.A., Heavens, N.G., and the Mars Climate Sounder Science Team (2014), The role of snowfall in forming the seasonal ice caps of Mars: models and constraints from the Mars Climate Sounder, Icarus, 231, 122130, doi:10.1016/j.icarus.2013.10.020.
Hayward, R.K., Fenton, L.K., and Titus, T.N. (2014), Mars Global Digital Dune Database (MGD3): global dune distribution and wind pattern observations, Icarus, 230, 3846, doi:10.1016/j.icarus.2013.04.011.
Heavens, N.G., Richardson, M.I., Lawson, W.G., et al. (2010), Convective instability in the Martian middle atmosphere, Icarus, 208(2), 574589, doi:10.1016/j.icarus.2010.03.023.
Hébrard, E., Listowski, C., Coll, P., et al. (2012), An aerodynamic roughness length map derived from extended Martian rock abundance data, J. Geophys. Res. Planets, 117(E4), doi:10.1029/2011JE003942.
Held, I.M., and Hou, A.Y. (1980), Nonlinear axially symmetric circulations in a nearly inviscid atmosphere, J. Atmos. Sci., 37(3), 515533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.
Held, I.M., Ting, M., and Wang, H. (2002), Northern winter stationary waves: theory and modeling, J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.
Hess, S.L. (1950), Some aspects of the meteorology of Mars., J. Atmos. Sci., 7(1), doi:10.1175/1520-0469(1950)007<0001: SAOTMO>2.0.CO;2.
Hess, S.L., Henry, R.M., Leovy, C.B., Ryan, J.A., and Tillman, J.E. (1977), Meteorological results from the surface of Mars: Viking 1 and 2, J. Geophys. Res., 82(28), 45594574, doi:10.1029/JS082i028p04559.
Hinson, D.P. (2006), Radio occultation measurements of transient eddies in the northern hemisphere of Mars, J. Geophy. Res., 111, E05002, doi:10.1029/2005JE002612.
Hinson, D.P., and Wang, H. (2010), Further observations of regional dust storms and baroclinic eddies in the northern hemisphere of Mars, Icarus, 206, 290305, doi:10.1016/j.icarus.2009.08.019.
Hinson, D.P., and Wilson, R.J. (2002), Transient eddies in the southern hemisphere of Mars, Geophys. Res. Lett., 29(7), 1154, doi:10.1029/2001GL014103.
Hinson, D.P., and Wilson, R.J. (2004), Temperature inversions, thermal tides, and water ice clouds in the Martian tropics, J. Geophys. Res., 109, E01002, doi:10.1029/2003JE002129.
Hinson, D.P., Simpson, R.A., Twicken, J.D., Tyler, G.L., and Flasar, F.M. (1999), Initial results from radio occultation measurements with Mars Global Surveyor, J. Geophys. Res., 104(E11), 2699727012, doi:10.1029/1999JE001069.
Hinson, D.P., Tyler, G.L., Hollingsworth, J.L., and Wilson, R.J. (2001), Radio occultation measurements of forced atmospheric waves on Mars, J. Geophys. Res. Planets, 106(E1), 14631480, doi:10.1029/2000JE001291.
Hinson, D.P., Wilson, R.J., Smith, M.D., and Conrath, B.J. (2003), Stationary planetary waves in the atmosphere of Mars during southern winter, J. Geophys. Res., 108(E1), 5004, doi:10.1029/2002JE001949.
Hinson, D.P., Pätzold, M., Wilson, R.J., et al. (2008a), Radio occultation measurements and MGCM simulations of Kelvin waves on Mars, Icarus, 193(1), 125138, doi:10.1016/j.icarus.2007.09.009.
Hinson, D.P., Pätzold, M., Tellmann, S., Häusler, B., and Tyler, G.L. (2008b), The depth of the convective boundary layer on Mars, Icarus, 198(1), 5766, doi:10.1016/j.icarus.2008.07.003.
Hinson, D.P., Wang, H., and Smith, M.D. (2012), A multi-year survey of dynamics near the surface in the northern hemisphere of Mars: short-period baroclinic waves and dust storms, Icarus, 219(1), 307320, doi:10.1016/j.icarus.2012.03.001.
Hoffman, M.J., Greybush, S.J., John Wilson, R.J., et al. (2010), An ensemble Kalman filter data assimilation system for the Martian atmosphere: implementation and simulation experiments, Icarus, 209(2), 470481, doi:10.1016/j.icarus.2010.03.034.
Hollingsworth, J.L., and Barnes, J.R. (1996), Forced stationary planetary waves in Mars’s winter atmosphere., J. Atmos. Sci., 53, doi:10.1175/1520-0469(1996)053<0428:FSPWIM>2.0.CO;2.
Hollingsworth, J.L., and Kahre, M.A. (2010), Extratropical cyclones, frontal waves, and Mars dust: modeling and considerations, Geophys. Res. Lett., 37(22), doi:10.1029/2010GL044262.
Hollingsworth, J.L., Haberle, R.M., Barnes, J.R., et al. (1996), Orographic control of storm zones on Mars, Nature, 380(6573), 413416, doi:10.1038/380413a0.
Hollingsworth, J.L., Haberle, R.M., and Schaeffer, J. (1997), Seasonal variations of storm zones on Mars, Adv. Sp. Res., 19(8), 12371240, doi:10.1016/S0273-1177(97)00275-5.
Hollingsworth, J.L., Kahre, M.A., Haberle, R.M., and Montmessin, F. (2011), Radiatively-active aerosols within Mars’ atmosphere: implications on the weather and climate as simulated by the NASA ARC Mars GCM, in Fourth Int. Work. Mars Atmos. Model. Obs., Paris, France, http://www-mars.lmd.jussieu.fr/paris2011/.
Holstein-Rathlou, C., Gunnlaugsson, H.P., Iversen, J.J., et al. (2014), Mars wind as seen by the NASA Phoenix Lander telltale, in Eighth Int. Conf. Mars, www.hou.usra.edu/meetings/8thmars2014/.
Holton, J.R., and Hakim, G.J. (2013), An Introduction to Dynamic Meteorology, Fifth Ed., Academic Press.
Holton, J.R., Haynes, P.H., McIntyre, M.E., et al. (1995), Stratosphere-troposphere exchange, Rev. Geophys., 33(4), 403, doi:10.1029/95RG02097.
Hourdin, F., Forget, F., and Talagrand, O. (1995), The sensitivity of the Martian surface pressure and atmospheric mass budget to various parameters: a comparison between numerical simulations and Viking observations, J. Geophys. Res., 100(E3), 5501, doi:10.1029/94JE03079.
Hu, R., Cahoy, K., and Zuber, M.T. (2012), Mars atmospheric CO2 condensation above the north and south poles as revealed by radio occultation, climate sounder, and laser ranging observations, J. Geophys. Res., 117, E07002, doi:10.1029/2012JE004087.
Imamura, T., and Ogawa, T. (1995), Radiative damping of gravity waves in the terrestrial planetary atmospheres, Geophys. Res. Lett., 22(3), 267270, doi:10.1029/94GL02998.
Joshi, M.M., Lewis, S.R., Read, P.L., and Catling, D.C. (1994), Western boundary currents in the atmosphere of Mars, Nature, 367(6463), 548552, doi:10.1038/367548a0.
Joshi, M.M., Lawrence, B.N., and Lewis, S.R. (1995a), Gravity wave drag in three-dimensional atmospheric models of Mars, J. Geophys. Res., 100(E10), 21235, doi:10.1029/95JE02486.
Joshi, M.M., Lewis, S.R., Read, P.L., and Catling, D.C. (1995b), Western boundary currents in the Martian atmosphere: numerical simulations and observational evidence, J. Geophys. Res., 100(E3), 54855500, doi:10.1029/94JE02716.
Joshi, M.M., Haberle, R.M., Barnes, J.R., Murphy, J.R., and Schaeffer, J. (1997), Low-level jets in the NASA Ames Mars general circulation model, J. Geophys. Res., 102(E3), 6511, doi:10.1029/96JE03765.
Kahn, R. (1983), Some observational constraints on the global-scale wind systems of Mars, J. Geophys. Res., 88(A12), 10189, doi:10.1029/JA088iA12p10189.
Kahre, M.A., Haberle, R.M., Hollingsworth, J.L., and Wilson, R.J. (2014), Coupling the Mars dust and water cycles: investigating the role of clouds in controlling the vertical distribution of dust during N.H. summer, in Fifth Int. Work. Mars Atmos. Model. Obs., Oxford, UK, http://www-mars.lmd.jussieu.fr/oxford2014/.
Kavulich, M.J., Szunyogh, I., Gyarmati, G., and Wilson, R.J. (2013), Local dynamics of baroclinic waves in the Martian atmosphere, J. Atmos. Sci., 70, 34153447, doi:10.1175/JAS-D-12-0262.1.
Kieffer, H.H., Martin, T.Z., Peterfreund, A.R., et al. (1977), Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res., 82(28), 42494291, doi:10.1029/JS082i028p04249.
Kleinböhl, A., Wilson, R.J., Kass, D., Schofield, J.T., and McCleese, D.J. (2013), The semidiurnal tide in the middle atmosphere of Mars, Geophys. Res. Lett., 40(10), 19521959, doi:10.1002/grl.50497.
Kondratyev, K.I., and Hunt, G.E. (1982), Weather and Climate on Planets, Pergamon Press.
Kuroda, T., Medvedev, A.S., Hartogh, P., and Takahashi, M. (2009), On forcing the winter polar warmings in the Martian middle atmosphere during dust storms, J. Met. Soc. Japan, 87(5), 913921, doi:10.2151/jmsj.87.913.
Lahoz, W., Khattatov, B., and Menard, R., Eds. (2010), Data Assimilation – Making Sense of Observations, Springer.
Lait, L.R., and Stanford, J.L. (1988), Applications of Asynoptic Space–Time Fourier Transform Methods to Scanning Satellite Measurements, J. Atmos. Sci., 45(24), 37843799, doi:10.1175/1520-0469(1988)045<3784:AOASFT>2.0.CO;2.
Lee, C., Lawson, W.G., Richardson, M.I., et al. (2009), Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder, J. Geophys. Res., 114, E03005, doi:10.1029/2008JE003285.
Lee, C., Lawson, W.G., Richardson, M.I., et al. (2011), Demonstration of ensemble data assimilation for Mars using DART, MarsWRF, and radiance observations from MGS TES, J. Geophys. Res., 116, E11011, doi:10.1029/2011JE003815.
Lellouch, E., Rosenqvist, J., Goldstein, J.J., Bougher, S.W., and Paubert, G. (1991), First absolute wind measurements in the middle atmosphere of Mars, Astrophys. J., 383, 401, doi:10.1086/170797.
Leovy, C.B. (1969), Mars: theoretical aspects of meteorology, Appl. Opt., 8(7), 1279–86, doi:10.1364/AO.8.001279.
Leovy, C.B. (1981), Observations of Martian tides over two annual cycles, J. Atmos. Sci., 38, 3039, doi:10.1175/1520-0469(1981)038<0030:OOMTOT>2.0.CO;2.
Leovy, C.B., and Mintz, Y. (1969), Numerical simulation of the atmospheric circulation and climate of Mars, J. Atmos. Sci., 26(6), doi:10.1175/1520-0469(1969)026<1167:NSOTAC>2.0.CO;2.
Leovy, C.B., and Zurek, R.W. (1979), Thermal tides and Martian dust storms: direct evidence for coupling, J. Geophys. Res., 84(B6), 2956, doi:10.1029/JB084iB06p02956.
Leovy, C.B., Zurek, R.W., and Pollack, J.B. (1973), Mechanisms for Mars dust storms., J. Atmos. Sci., 30, doi:10.1175/1520-0469(1973)030<0749:MFMDS>2.0.CO;2.
Leovy, C.B., Tillman, J.E., Guest, W.R., and Barnes, J.R. (1985), Interannual variability of Martian weather, In Recent Advances in Planetary Meteorology, Cambridge Press, 6984.
Lewis, S.R., and Barker, P.R. (2005), Atmospheric tides in a Mars general circulation model with data assimilation, Adv. Sp. Res., 36(11), 21622168, doi:10.1016/j.asr.2005.05.122.
Lewis, S.R., and Read, P.L. (1995), An operational data assimilation scheme for the Martian atmosphere, Adv. Sp. Res., 16(6), 913, doi:10.1016/0273-1177(95)00244-9.
Lewis, S.R., and Read, P.L. (2003), Equatorial jets in the dusty Martian atmosphere, J. Geophys. Res., 108, E4, 5034, doi:10.1029/2002JE001933.
Lewis, S.R., Collins, M., Read, P.L., et al. (1999), A climate database for Mars, J. Geophys. Res., 104(E10), 24177, doi:10.1029/1999JE001024.
Lewis, S.R., Read, P.L., Conrath, B.J., Pearl, J.C., and Smith, M.D. (2007), Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period, Icarus, 192(2), 327347, doi:10.1016/j.icarus.2007.08.009.
Lewis, S.R., Mulholland, D.P., Read, P.L., et al. (2016), The solsticial pause on Mars: 1. A planetary wave reanalysis, Icarus, 264, 456464, doi:10.1016/j.icarus.2015.08.039.
Lian, Y., Richardson, M.I., Newman, C.E., et al. (2012), The Ashima/MIT Mars GCM and argon in the Martian atmosphere, Icarus, 218(2), 10431070, doi:10.1016/j.icarus.2012.02.012.
Lindzen, R.S., and Hou, A. (1988), Hadley circulations for zonally averaged heating centered off the equator, J. Atmos. Sci., 45(17), 24162427, doi:10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.
Liu, J., Richardson, M.I., and Wilson, R.J. (2003), An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared, J. Geophys. Res., 108, E8, 5089, doi:10.1029/2002JE001921.
Määttänen, A., Montmessin, F., Gondet, B., et al. (2010), Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models, Icarus, 209(2), 452469, doi:10.1016/j.icarus.2010.05.017.
Määttänen, A., Gondet, B., Montmessin, F., et al. (2014), Mesospheric CO2 clouds on Mars: detection, properties and origin, Eighth Int. Conf. Mars., www.hou.usra.edu/meetings/8thmars2014/.
Madeleine, J.-B., Forget, F., Millour, E., Navarro, T., and Spiga, A. (2012), The influence of radiatively active water ice clouds on the Martian climate, Geophys. Res. Lett., 39(23), doi:10.1029/2012GL053564.
Magalhães, J.A. (1987), The Martian Hadley circulation: comparison of “viscous” model predictions to observations, Icarus, 70(3), 442468, doi:10.1016/0019-1035(87)90087-X.
Magalhães, J.A., Schofield, J.T., and Seiff, A. (1999), Results of the Mars Pathfinder atmospheric structure investigation, J. Geophys. Res., 104(E4), 8943, doi:10.1029/1998JE900041.
Martin, T.Z. (1981), Mean thermal and albedo behavior of the Mars surface and atmosphere over a Martian year, Icarus, 45(2), 427446, doi:10.1016/0019-1035(81)90045-2.
Martin, T.Z., and Kieffer, H.H. (1979), Thermal infrared properties of the Martian atmosphere: 2. The 15 µm band measurements, J. Geophys. Res., 84(B6), 2843, doi:10.1029/JB084iB06p02843.
McCleese, D.J., Schofield, J.T., Taylor, F.W., et al. (2008), Intense polar temperature inversion in the middle atmosphere on Mars, Nat. Geosci., 1(11), 745749, doi:10.1038/ngeo332.
McCleese, D.J., Heavens, N.G., Schofield, J.T., et al. (2010), Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols, J. Geophys. Res., 115, E12016, doi:10.1029/2010JE003677.
McConnochie, T.H., Bell, J.F. III, Savransky, D., et al. (2010), THEMIS-VIS observations of clouds in the Martian mesosphere: altitudes, wind speeds, and decameter-scale morphology, Icarus, 210(2), 545565, doi:10.1016/j.icarus.2010.07.021.
McFarlane, N.A. (1987), The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere, J. Atmos. Sci., 44, 17751800.
Medvedev, A.S., and Hartogh, P. (2007), Winter polar warmings and the meridional transport on Mars simulated with a general circulation model, Icarus, 186(1), 97110, doi:10.1016/j.icarus.2006.08.020.
Medvedev, A.S., Yiğit, E., and Hartogh, P. (2011), Estimates of gravity wave drag on Mars: indication of a possible lower thermospheric wind reversal, Icarus, 211(1), 909912, doi:10.1016/j.icarus.2010.10.013.
Mellon, M.T., Jakosky, B.M., Kieffer, H.H., and Christensen, P.R. (2000), High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer, Icarus, 148(2), 437455, doi:10.1006/icar.2000.6503.
Mintz, Y. (1961), The general circulation of planetary atmospheres. In The Atmospheres of Mars and Venus, 107146.
Mischna, M.A., Lee, C., and Richardson, M.I. (2012), Development of a fast, accurate radiative transfer model for the Martian atmosphere, past and present, J. Geophys. Res., 117(E10), E10009, doi:10.1029/2012JE004110.
Mitchell, D.M., Montabone, L., Thomson, S., and Read, P.L. (2015), Polar vortices on Earth and Mars: a comparative study of the climatology and variability from reanalyses, Quart. J. Roy. Met. Soc., 141(687), 550562, doi:10.1002/qj.2376.
Miyoshi, Y., Forbes, J.M., and Moudden, Y. (2011), A new perspective on gravity waves in the Martian atmosphere: sources and features, J. Geophys. Res., 116(E9), E09009, doi:10.1029/2011JE003800.
Montabone, L., Lewis, S.R., Read, P.L., and Hinson, D.P. (2006), Validation of Martian meteorological data assimilation for MGS/TES using radio occultation measurements, Icarus, 185(1), 113132, doi:10.1016/j.icarus.2006.07.012.
Montmessin, F., Forget, F., Rannou, P., Cabane, M., and Haberle, R.M. (2004), Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, J. Geophys. Res., 109(E10), E10004, doi:10.1029/2004JE002284.
Montmessin, F., Gondet, B., Bibring, J.-P., et al. (2007), Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars, J. Geophys. Res., 112, E11590, doi:10.1029/2007JE002944.
Mooring, T.A., and Wilson, R.J. (2015), Transient eddies in the MACDA Mars reanalysis, J. Geophys. Res. Planets, 120, 16711696, doi:10.1002/2015JE004824.
Moreno, R., Lellouch, E., Forget, F., et al. (2009), Wind measurements in Mars’ middle atmosphere: IRAM Plateau de Bure interferometric CO observations, Icarus, 201(2), 549563, doi:10.1016/j.icarus.2009.01.027.
Moudden, Y., and Forbes, J.M. (2014), Insight into the seasonal asymmetry of nonmigrating tides on Mars, Geophys. Res. Lett., 41(7), 26312636, doi:10.1002/2014GL059535.
Moudden, Y., and McConnell, J.C. (2005), A new model for multiscale modeling of the Martian atmosphere, GM3, J. Geophys. Res., 110(E4), E04001, doi:10.1029/2004JE002354.
Moudden, Y., and Forbes, J.M. (2008a), Effects of vertically propagating thermal tides on the mean structure and dynamics of Mars’ lower thermosphere, Geophys. Res. Lett., 35, L23805, doi:10.1029/2008GL036086.
Moudden, Y., and Forbes, J.M. (2008b), Topographic connections with density waves in Mars’ aerobraking regime, J. Geophys. Res., 113, E11009, doi:10.1029/2008JE003107.
Mulholland, D.P., Lewis, S.R., Read, P.L., Madaleine, J.-B., and Forget, F. (2016), The solsticial pause on Mars: 2. Modeling and investigation of causes, Icarus, 264, 465477, doi:10.1016/j.icarus.2015.08.038.
Murphy, J.R., Leovy, C.B., and Tillman, J.E. (1990), Observations of Martian surface winds at the Viking Lander 1 Site, J. Geophys. Res., 95(B9), 14555, doi:10.1029/JB095iB09p14555.
Navarro, T., Forget, F., Millour, E., and Greybush, S.J. (2014), Detection of detached dust layers in the Martian atmosphere from their thermal signature using assimilation, Geophys. Res. Lett., 41, 66206626, doi:10.1002/1014GL061377.
Nayvelt, L., Gierasch, P.J., and Cook, K.H. (1997), Modeling and observations of Martian stationary waves, J. Atmos. Sci., 54, doi:10.1175/1520-0469(1997)054<0986:MAOOMS>2.0.CO;2.
Niver, D.S., and Hess, S.L. (1982), Band-pass filtering of one year of daily mean pressures on Mars, J. Geophys. Res., 87(B12), 10191, doi:10.1029/JB087iB12p10191.
Pätzold, M., Neubauer, F.M., Carone, L., et al. (2004), MaRS: Mars Express Orbiter Radio Science, In Mars Express – The Scientific Payload, Ed. by Wilson, A., Sci. Coord. by A. Chicarro, ESA SP-1240, Noordwijk, Netherlands, ESA Publications Division, 7194, http://sci.esa.int/mars-express/34885-esa-sp-1240-mars-express-the-scientific-payload/.
Pedlosky, J. (1979), Geophysical Fluid Dynamics, Springer.
Peixoto, J.P., and Oort, A.H. (1992), Physics of Climate, American Institute of Physics.
Pirraglia, J.A., and Conrath, B.J. (1974), Martian tidal pressure and wind field obtained from the Mariner 9 infrared spectroscopy experiment., J. Atmos. Sci., 31, doi:10.1175/1520-0469(1974)031<0318:MTPAWF>2.0.CO;2.
Pleskot, L.K., and Miner, E.D. (1981), Time variability of Martian bolometric albedo, Icarus, 45(1), 179201, doi:10.1016/0019-1035(81)90013-0.
Pollack, J.B., Colburn, D.S., Flasar, F.M., et al. (1979), Properties and effects of dust particles suspended in the Martian atmosphere, J. Geophys. Res., 84(B6), 2929, doi:10.1029/JB084iB06p02929.
Pollack, J.B., Leovy, C.B., Greiman, P.W., and Mintz, Y. (1981), A Martian general circulation experiment with large topography, J. Atmos. Sci., 38, 329, doi:10.1175/1520-0469(1981)038<0003: AMGCEW>2.0.CO;2.
Pollack, J.B., Haberle, R.M., Schaeffer, J., and Lee, H. (1990), Simulations of the general circulation of the Martian atmosphere: 1. Polar processes, J. Geophys. Res., 95(B2), 14471473, doi:10.1029/JB095iB02p01447.
Putzig, N., and Mellon, M.T. (2007), Apparent thermal inertia and the surface heterogeneity of Mars, Icarus, 191(1), 6894, doi:10.1016/j.icarus.2007.05.013.
Read, P.L., and Lewis, S.R. (2004), The Martian Climate Revisited – Atmosphere and Environment of a Desert Planet, Springer.
Richardson, M.I., and Wilson, R.J. (2002), A topographically forced asymmetry in the Martian circulation and climate., Nature, 416(6878), 298301, doi:10.1038/416298a.
Richardson, M.I., Toigo, A.D., and Newman, C.E. (2007), PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics, J. Geophys. Res., 112(E9), E09001, doi:10.1029/2006JE002825.
Rothman, L.S., Gordon, I.E., Babikov, Y., et al. (2013), The HITRAN2012 molecular spectroscopic database, J. Quant. Spectroscopy Rad. Transfer, 130, 450, doi:10.1016/j.jqsrt.2013.07.002.
Rucker, M.S. (2014), The effects of clouds on transient baroclinic eddies in a Mars general circulation model, Master’s Thesis, Oregon State University, Corvallis, Oregon.
Ryan, J.A., Henry, R.M., Hess, S.L., et al. (1978), Mars meteorology: three seasons at the surface, Geophys. Res. Lett., 5(8), 715718, doi:10.1029/GL005i008p00715.
Salby, M.L. (1982a), Sampling theory for asynoptic satellite observations. Part I: Space-time spectra, resolution, and aliasing, J. Atmos. Sci., 39(11), 25772600, doi:10.1175/1520-0469(1982)039<2577:STFASO>2.0.CO;2.
Salby, M.L. (1982b), Sampling theory for asynoptic satellite observations. Part II: Fast Fourier Synoptic Mapping, J. Atmos. Sci., 39(11), 26012614, doi:10.1175/1520-0469(1982)039<2601:STFASO>2.0.CO;2.
Santee, M.L., and Crisp, D. (1993), Thermal structure and dust loading of the Martian atmosphere during late southern summer: Mariner 9 revisited, J. Geophys. Res., 98(E2), 3261, doi:10.1029/92JE01896.
Santee, M.L., and Crisp, D. (1995), Diagnostic calculations of the circulation in the Martian atmosphere, J. Geophys. Res., 100(E3), 5465, doi:10.1029/94JE03207.
Sato, T.M., Fujiwara, H., Takahashi, Y.O., et al. (2011), Tidal variations in the Martian lower atmosphere inferred from Mars Express Planetary Fourier Spectrometer temperature data, Geophys. Res. Lett., 38(24), doi:10.1029/2011GL050348.
Savijärvi, H. (1995), Mars boundary layer modeling: diurnal moisture cycle and soil properties at the Viking Lander 1 site, Icarus, 117(1), 120127, doi:10.1006/icar.1995.1146.
Savijärvi, H., and Siili, T. (1993), The Martian slope winds and the nocturnal PBL jet, J. Atmos. Sci., 50, 7788, doi:10.1175/1520-0469(1993)050<0077:TMSWAT>2.0.CO;2.
Savijärvi, H., Crisp, D., and Harri, A.-M. (2005), Effects of CO2 and dust on present-day solar radiation and climate on Mars, Q. J. R. Meteorol. Soc., 131(611), 29072922, doi:10.1256/qj.04.09.
Schneider, E.K. (1983), Martian great dust storms: interpretive axially symmetric models, Icarus, 55(2), 302331, doi:10.1016/0019-1035(83)90084-2.
Schofield, J.T., Barnes, J.R., Crisp, D., et al. (1997), The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment., Science, 278(5344), 17521758, doi:10.1126/science.278.5344.1752.
Sharman, R.D., and Ryan, J.A. (1980), Mars atmosphere pressure periodicities from Viking observations, J. Atmos. Sci., 37, 19942001, doi:10.1175/1520-0469(1980)037<1994:MAPPFV>2.0.CO;2.
Shia, R.-L., Yung, Y.L., Allen, M., Zurek, R.W., and Crisp, D. (1989), Sensitivity study of advection and diffusion coefficients in a two-dimensional stratospheric model using excess carbon 14 data, J. Geophys. Res., 94(D15), 18467, doi:10.1029/JD094iD15p18467.
Smith, M.D. (2004), Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167(1), 148165, doi:10.1016/j.icarus.2003.09.010.
Smith, M.D. (2008), Spacecraft observations of the Martian atmosphere, Ann. Rev. Earth Planet. Sci., 36(1), 191219, doi:10.1146/annurev.earth.36.031207.124334.
Smith, M. D. (2009), THEMIS observations of Mars aerosol optical depth from 2002–2008, Icarus, 202(2), 444452, doi:10.1016/j.icarus.2009.03.027.
Smith, M.D., Pearl, J.C., Conrath, B.J., and Christensen, P.R. (2001a), One Martian year of atmospheric observations by the thermal emission spectrometer, Geophys. Res. Lett., 28(22), 42634266, doi:10.1029/2001GL013608.
Smith, M.D., Pearl, J.C., Conrath, B.J., and Christensen, P.R. (2001b), Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution, J. Geophys. Res., 106(E10), 23929, doi:10.1029/2000JE001321.
Smith, M.D., Conrath, B.J., Pearl, J.C., and Christensen, P.R. (2002), Thermal Emission Spectrometer observations of Martian planet-encircling dust storm 2001A, Icarus, 157(1), 259263, doi:10.1006/icar.2001.6797.
Smith, M.D., Wolff, M.J., Spanovich, N., et al. (2006), One Martian year of atmospheric observations using MER Mini-TES, J. Geophys. Res., 111(E12), E12S13, doi:10.1029/2006JE002770.
Sonnabend, G., Sornig, M., Krötz, P.J., Schieder, R.T., and Fast, K.E. (2006), High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2, Geophys. Res. Lett., 33(18), L18201, doi:10.1029/2006GL026900.
Sonnabend, G., Sornig, M., Kroetz, P., and Stupar, D. (2012), Mars mesospheric zonal wind around northern spring equinox from infrared heterodyne observations of CO2, Icarus, 217(1), 315321, doi:10.1016/j.icarus.2011.11.009.
Spiga, A., Forget, F., Lewis, S.R., and Hinson, D.P. (2010), Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements, Q. J. R. Meteorol. Soc., 136(647), 414428, doi:10.1002/qj.563.
Sprague, A.L., Boynton, W.V, Kerry, K.E., et al. (2004), Mars’ south polar Ar enhancement: a tracer for south polar seasonal meridional mixing, Science, 306(5700), 1364–7, doi:10.1126/science.1098496.
Sprague, A.L., Boynton, W.V., Kerry, K.E., et al. (2007), Mars’ atmospheric argon: tracer for understanding Martian atmospheric circulation and dynamics, J. Geophys. Res., 112(E3), E03S02, doi:10.1029/2005JE002597.
Sprague, A.L., Boynton, W.V., Forget, F., et al. (2012), Interannual similarity and variation in seasonal circulation of Mars’ atmospheric Ar as seen by the Gamma Ray Spectrometer on Mars Odyssey, J. Geophys. Res. Planets, 117(E4), doi:10.1029/2011JE003873.
Steele, L.J., Lewis, S.R., Patel, M.R., et al. (2014a), The seasonal cycle of water vapor on Mars from assimilation of Thermal Emission Spectrometer data, Icarus, 237, 97115, doi:10.1016/j.icarus.2014.04.017.
Steele, L.J., Lewis, S.R., and Patel, M.R. (2014b), The radiative impact of water ice clouds from a reanalysis of Mars Climate Sounder data, Geophys. Res. Lett., 41, 44714478, doi:10.1002/2014GL060235.
Sullivan, R., Greeley, R., Kraft, M., et al. (2000), Results of the Imager for Mars Pathfinder windsock experiment, J. Geophys. Res., 105(E10), 24547, doi:10.1029/1999JE001234.
Sutton, J.L., Levoy, C.B., and Tillman, J.E. (1978), Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites, J. Atmos. Sci., 35, 23462355, doi:10.1175/1520-0469(1978)035<2346:DVOTMS>2.0.CO;2.
Szwast, M.A., Richardson, M.I., and Vasavada, A.R. (2006), Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking Orbiters, J. Geoph. Res., 111(E11), E11008, doi:10.1029/2005JE002485.
Takahashi, Y.O., Fujiwara, H., Fukunishi, H., et al. (2003), Topographically induced north–south asymmetry of the meridional circulation in the Martian atmosphere, J. Geophys. Res., 108(E3), 5018, doi:10.1029/2001JE001638.
Takahashi, Y.O., Fujiwara, H., and Fukunishi, H. (2006), Vertical and latitudinal structure of the migrating diurnal tide in the Martian atmosphere: numerical investigations, J. Geophys. Res., 111(E1), E01003, doi:10.1029/2005JE002543.
Tellmann, S., Pätzold, M., Häusler, B., Hinson, D.P., and Tyler, G.L. (2013), The structure of Mars lower atmosphere from Mars Express Radio Science (MaRS) occultation measurements, J. Geophys. Res. Planets, 118(2), 306320, doi:10.1002/jgre.20058.
Théodore, B., Lellouch, E., Chassefière, E., and Hauchecorne, A. (1993), Solstitial temperature inversions in the Martian middle atmosphere: observational clues and 2-D modeling, Icarus, 105(2), 512528, doi:10.1006/icar.1993.1145.
Thomas, P., Veverka, J., Lee, S., and Bloom, A. (1981), Classification of wind streaks on Mars, Icarus, 45(1), 124153, doi:10.1016/0019-1035(81)90010-5.
Tillman, J.E. (1988), Mars global atmospheric oscillations: annually synchronized, transient normal-mode oscillations and the triggering of global dust storms, J. Geophys. Res., 93(D8), 9433, doi:10.1029/JD093iD08p09433.
Tillman, J.E., Henry, R.M., and Hess, S.L. (1979), Frontal systems during passage of the Martian north polar hood over the Viking Lander 2 site prior to the first 1977 dust storm, J. Geophys. Res., 84(B6), 2947, doi:10.1029/JB084iB06p02947.
Tillman, J.E., Johnson, N.C., Guttorp, P., and Percival, D.B. (1993), The Martian annual atmospheric pressure cycle: years without great dust storms, J. Geophys. Res., 98(E6), 10963, doi:10.1029/93JE01084.
Toigo, A.D., Richardson, M.I., Wilson, R.J., Wang, H., and Ingersoll, A.P. (2002), A first look at dust lifting and dust storms near the south pole of Mars with a mesoscale model, J. Geophys. Res., 107(E7), doi:10.1029/2011JE001592.
Tyler, D., and Barnes, J.R. (2005), A mesoscale model study of summertime atmospheric circulations in the north polar region of Mars, J. Geophys. Res., 110(E6), E06007, doi:10.1029/2004JE002356.
Tyler, D., and Barnes, J.R. (2013), Mesoscale modeling of the circulation in the Gale Crater region: an investigation into the complex forcing of convective boundary layer depths, Mars, 8, 5877, doi:10.1555/mars.2013.0003.
Tyler, D., and Barnes, J.R. (2014), Atmospheric mesoscale modeling of water and clouds during northern summer on Mars, Icarus, 237, 388414, doi:10.1016/j.icarus.2014.04.020.
Tyler, D., and Barnes, J.R. (2015), Convergent crater circulations on Mars: influence on the surface pressure cycle and the depth of the convective boundary layer, Geophys. Res. Lett., 42(18), 73437350, doi:10.1002/2015GL064957.
Wang, H. (2007), Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor, Icarus, 189(2), 325343, doi:10.1016/j.icarus.2007.01.014.
Wang, H., and Ingersoll, A.P. (2003), Cloud-tracked winds for the first Mars Global Surveyor mapping year, J. Geophys. Res., 108(E9), 5110, doi:10.1029/2003JE002107.
Wang, H., and Richardson, M.I. (2015), The origin, evolution, and trajectory of large dust storms on Mars during Mars Years 24–30 (1999–2011), Icarus, 251, 112127, doi:10.1016/j.icarus.2013.10.033.
Wang, H., Richardson, M.I., Wilson, R.J., et al. (2003), Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars, Geophys. Res. Lett., 30(9), 1488, doi:10.1029/2002GL016828.
Wang, H., Zurek, R.W., and Richardson, M.I. (2005), Relationship between frontal dust storms and transient eddy activity in the northern hemisphere of Mars as observed by Mars Global Surveyor, J. Geophys. Res., 110(E7), E07005, doi:10.1029/2005JE002423.
Wang, H., Toigo, A.D., and Richardson, M.I. (2011), Curvilinear features in the southern hemisphere observed by Mars Global Surveyor Mars Orbiter Camera, Icarus, 215(1), 242252, doi:10.1016/j.icarus.2011.06.029.
Wang, H., Richardson, M.I., Toigo, A.D., and Newman, C.E. (2013), Zonal wavenumber three traveling waves in the northern hemisphere of Mars simulated with a general circulation model, Icarus, 223(2), 654676, doi:10.1016/j.icarus.2013.01.004.
Webster, P.J. (1977), The low-latitude circulation of Mars, Icarus, 30(4), 626649, doi:10.1016/0019-1035(77)90086-0.
Wilson, R.J. (1997), A general circulation model simulation of the Martian polar warming, Geophys. Res. Lett., 24(2), 123126, doi:10.1029/96GL03814.
Wilson, R.J. (2000), Evidence for diurnal period Kelvin waves in the Martian atmosphere from Mars Global Surveyor TES data, Geophys. Res. Lett., 27(23), 38893892, doi:10.1029/2000GL012028.
Wilson, R.J. (2002), Evidence for nonmigrating thermal tides in the Mars upper atmosphere from the Mars Global Surveyor Accelerometer Experiment, Geophys. Res. Lett., 29(7), 1120, doi:10.1029/2001GL013975.
Wilson, R.J. (2011), Water ice clouds and thermal structure in the Martian tropics as revealed by Mars Climate Sounder, in Fourth Int. Workshop Mars Atmos. Model. Obs., Paris, France, http://www-mars.lmd.jussieu.fr/paris2011/.
Wilson, R.J. (2012a), The role of thermal tides in the Martian dust cycle, in Eur. Planet. Sci. Congr., Madrid, Spain, http://meetingorganizer.copernicus.org/EPSC2012/EPSC2012-798-1.pdf.
Wilson, R.J. (2012b), Thermal tides as revealed by Mars Climate Sounder, in Eur. Planet. Sci. Congr., Madrid, Spain, http://meetingorganizer.copernicus.org/EPSC2012/EPSC2012-825-1.pdf.
Wilson, R.J. (2015), The impact of planetary-scale thermal forcing and small-scale topography on the diurnal cycle of Martian surface pressure, Abstract P22A-07, presented at 2015 Fall Meeting, AGU, San Francisco, CA, 14–18 December, http://abstractsearch.agu.org/meetings/2015/FM/P22A-07.html.
Wilson, R.J., and Guzewich, S.D. (2014), Influence of water ice clouds on nighttime tropical temperature structure as seen by the Mars Climate Sounder, Geophys. Res. Lett., 41(10), 33753381, doi:10.1002/2014GL060086.
Wilson, R.J., and Hamilton, K. (1996), Comprehensive model simulation of thermal tides in the Martian atmosphere., J. Atmos. Sci., 53, doi:10.1175/1520-0469(1996)053<1290:CMSOTT>2.0.CO;2.
Wilson, R.J., and Richardson, M.I. (1999), Comparison of Mars GCM dust storm simulations with Viking mission observations, Fifth Int. Conf. Mars, Pasadena, California, www.lpi.usra.edu/meetings/5thMars99/pdf/sessguid.pdf.
Wilson, R.J., and Richardson, M.I. (2000), The Martian atmosphere during the Viking mission. 1: Infrared measurements of atmospheric temperatures revisited, Icarus, 145(2), 555579, doi:10.1006/icar.2000.6378.
Wilson, R. J., Banfield, D., Conrath, B.J., and Smith, M.D. (2002), Traveling waves in the northern hemisphere of Mars, Geophys. Res. Lett., 29(14), 1684, doi:10.1029/2002GL014866.
Wilson, R.J., Hinson, D.P., and Smith, M.D. (2006), GCM simulations of transient eddies and frontal systems in the Martian atmosphere, Second Int. Work. Mars Atmos. Model. Obs., Granada, Spain, http://www-mars.lmd.jussieu.fr/granada2006/.
Wilson, R.J., Lewis, S.R., and Montabone, L. (2007), Thermal tides in an assimilation of three years of Thermal Emission Spectrometer data from Mars Global Surveyor, Seventh Int. Conf. Mars, Pasadena, California, www.lpi.usra.edu/meetings/7thmars2007/.
Wilson, R.J., Haberle, R.M., Noble, J., et al. (2008a), Simulation of the 2001 planet-encircling dust storm with the NASA/NOAA Mars general circulation model, Third Int. Work. Mars Atmos. Model. Obs., Williamsburg, Virginia, www.lpi.usra.edu/meetings/modeling2008/.
Wilson, R.J., Lewis, S.R., Montabone, L., and Smith, M.D. (2008b), Influence of water ice clouds on Martian tropical atmospheric temperatures, Geophys. Res. Lett., 35(7), doi:10.1029/2007GL032405.
Wilson, R.J., Millour, E., Navarro, T., Forget, F., and Kahre, M. (2014a), GCM simulations of aphelion season tropical cloud and temperature structure, Fifth Int. Work. Mars Atmos. Model. Obs., Oxford, UK, http://www-mars.lmd.jussieu.fr/oxford2014/.
Wilson, R.J., Guzewich, S.D., and Kleinböhl, A. (2014b), New progress and insights on thermal tides and their forcing from MCS and modeling, Eighth Int. Conf. Mars, Pasadena, California, www.hou.usra.edu/meetings/8thmars2014/.
Withers, P., Bougher, S.W., and Keating, G.J. (2003), The effects of topographically-controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer, Icarus, 164(1), 1432, doi:10.1016/S0019-1035(03)00135-0.
Withers, P., Pratt, R., Bertaux, J.-L., and Montmessin, F. (2011), Observations of thermal tides in the middle atmosphere of Mars by the SPICAM instrument, J. Geophys. Res., 116(E11), E11005, doi:10.1029/2011JE003847.
Wolkenberg, P.M., and Wilson, R.J. (2014), Mars Climate Sounder observations of wave structure in the north polar middle atmosphere of Mars during the summer season, Eighth Int. Conf. Mars, Pasadena, California, www.hou.usra.edu/meetings/8thmars2014/.
Zalucha, A.M., Plumb, R.A., and Wilson, R.J. (2010), An analysis of the effect of topography on the Martian Hadley cells, J. Atmos. Sci., 67(3), 673693, doi:10.1175/2009JAS3130.1.
Zhang, K.Q., Ingersoll, A.P., Kass, D.M., et al. (2001), Assimilation of Mars Global Surveyor atmospheric temperature data into a general circulation model, J. Geophys. Res., 106(E12), 32863, doi:10.1029/2000JE001330.
Zurek, R.W. (1976), Diurnal tide in the Martian atmosphere, J. Atmos. Sci., 33, 321337, doi:10.1175/1520-0469(1976)033<0321:DTITMA>2.0.CO;2.
Zurek, R.W. (1981), Inference of dust opacities for the 1977 Martian great dust storms from Viking Lander 1 pressure data, Icarus, 45(1), 202215, doi:10.1016/0019-1035(81)90014-2.
Zurek, R.W. (1986), Atmospheric tidal forcing of the zonal-mean circulation: the Martian dusty atmosphere, J. Atmos. Sci., 43, 652670, doi:10.1175/1520-0469(1986)043<0652:ATFOTZ>2.0.CO;2.
Zurek, R.W. (1988), Free and forced modes in the Martian atmosphere, J. Geophys. Res., 93(D8), 9452, doi:10.1029/JD093iD08p09452.
Zurek, R.W., and Haberle, R.M. (1988), Zonally symmetric response to atmospheric tidal forcing in the dusty Martian atmosphere, J. Atmos. Sci., 45, 24692485, doi:10.1175/1520-0469(1988)045<2469:ZSRTAT>2.0.CO;2.
Zurek, R.W., and Leovy, C.B. (1981), Thermal tides in the dusty Martian atmosphere: a verification of theory, Science, 213(4506), 437439, doi:10.1126/science.213.4506.437.
Zurek, R.W., Barnes, J.R., Haberle, R.M., et al. (1992), Dynamics of the atmosphere of Mars, In Mars, Kieffer, H.H., Jakosky, B.M., Snyder, C.W., and Mathews, M.S., Eds., University of Arizona Press, 835933.