Skip to main content Accessibility help
×
  • Cited by 121
Publisher:
Cambridge University Press
Online publication date:
February 2015
Print publication year:
2015
Online ISBN:
9781107447226

Book description

This is the first comprehensive introduction to the powerful moment approach for solving global optimization problems (and some related problems) described by polynomials (and even semi-algebraic functions). In particular, the author explains how to use relatively recent results from real algebraic geometry to provide a systematic numerical scheme for computing the optimal value and global minimizers. Indeed, among other things, powerful positivity certificates from real algebraic geometry allow one to define an appropriate hierarchy of semidefinite (SOS) relaxations or LP relaxations whose optimal values converge to the global minimum. Several extensions to related optimization problems are also described. Graduate students, engineers and researchers entering the field can use this book to understand, experiment with and master this new approach through the simple worked examples provided.

Reviews

'This monograph may be considered as a comprehensive introduction to solving global optimization problems described by polynomials and even semi-algebraic functions. The book is accompanied by a MATLAB® freeware software that implements the described methodology … The well written and extensive introduction may help the reader to knowingly use the book.'

Jerzy Ombach Source: Zentralblatt MATH

'This book provides an accessible introduction to very recent developments in the field of polynomial optimisation, i.e., the task of finding the infimum of a polynomial function on a set defined by polynomial constraints … Every chapter contains additional exercises and a guide to the (free) Matlab software GloptiPoly. Therefore, this really well-written book provides an ideal introduction for individual learning and is well suited as the basis for a course on polynomical optimisation.

Cordian Riener Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Acquistapace, F., Andradas, C., and Broglia, F. 2000. The strict Positivstellensatz for global analytical functions and the moment problem for semianalytic sets. Math. Ann., 316, 609–616.
Acquistapace, F., Andradas, C., and Broglia, F. 2002. The Positivstellensatz for definable functions on O-minimal structures. Illinois J. Math., 46, 685–693.
Adams, W. W. and Loustaunau, P. 1994. An Introduction to Gröbner Bases. Providence, RI: American Mathematical Society.
Ahmadi, A. A. and Parrilo, P. A. 2010. On the equivalence of algebraic conditions for convexity and quasi convexity of polynomials. In: 49th IEEE Conference on Decision and Control, pp. 3343–3348. New York: IEEE.
Ahmadi, A. A., Olshevsky, A., Parrilo, P. A., and Tsitsiklis, J. N. 2013. NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Prog., 137, 453–476.
Ahmed, S. and Guan, Yongpei. 2005. The inverse optimal value problem. Math. Prog. Ser. A, 102, 91–110.
Ahuja, R. ~K. and Orlin, J. B. 2001. Inverse optimization. Oper. Res., 49, 771–783.
Akhiezer, N. I. 1965. The Classical Moment Problem. New York: Hafner.
Ali, M. M., Khompatraporn, C., and Zabinsky, Z. B. 2005. A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Global Optim., 31, 635–672.
Anastassiou, G. A. 1993. Moments in Probability and Approximation Theory. New York: Longman Scientific and Technical.
Andronov, V. G., Belousov, E. G., and Shironin, V. M. 1982. On solvability of the problem of polynomial programming. Izv. Akad. Nauk SSSR, Teckh. Kibern., 4, 194–197.
Androulakis, I. P., Maranas, C. D., and Floudas, C. A. 1995. alphaBB: a global optimization method for general constrained nonconvex problems. J. Global Optim., 7, 337–363.
Anjos, M. 2001. New Convex Relaxations for the Maximum Cut and VLSI Layout Problems. Ph.D. thesis, University of Waterloo, Ontario, Canada. orion.math. uwaterloo.ca/∼hwolkowi.
Anjos, M. and Lasserre, J. B. (editors) 2012. Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research and Management Science, vol. 166. New York: Springer.
Ash, R. B. 1972. Real Analysis and Probability. San Diego, CA: Academic Press.
Balas, E., Ceria, S., and Cornuéjols, G. 1993. A lift-and-project cutting plane algorithm for mixed 0/1 programs. Math. Prog., 58, 295–324.
Baldoni, V., Berline, N., De Loera, J. A., Köppe, M., and Vergne, M. 2011. How to integrate a polynomial over a simplex. Math. Comp., 80, 297–325.
Ball, K. 1992. Ellipsoids of maximal volume in convex bodies. Geom. Dedicata, 41, 241–250.
Ball, K. 2001. Convex geometry and functional analysis. In: Johnson, W. B. and Lindenstrauss, J. (editors), Handbook of the Geometry of Banach Spaces I, pp. 161–194. Amsterdam: North Holland.
Barvinok, A. 2002. A Course in Convexity. Providence, RI: American Mathematical Society.
Basu, S., Pollack, R., and Roy, M.-F. 2003. Algorithms in Real Algebraic Geometry. Algorithms and Computations in Mathematics, vol. 10. Berlin: Springer.
Bayer, C. and Teichmann, J. 2006. The proof of Tchakaloff's theorem. Proc. Amer. Math. Soc., 134, 3035–3040.
Becker, E. and Schwartz, N. 1983. Zum Darstellungssatz von Kadison–Dubois. Arch. Math. (Basel), 40, 421–428.
Belousov, E. G. 1977. Introduction to Convex Analysis and Integer Programming. Moscow: Moscow University Publications.
Belousov, E. G. and Klatte, D. 2002. A Frank–Wolfe type theorem for convex polynomial programs. Comp. Optim. Appl., 22, 37–48.
Benabbas, S. and Magen, A. 2010. Extending SDP integrality gaps to Sherali–Adams with applications to quadratic programming and MaxCutGain. In: Eisenbrand, F. and Shepherd, F. B. (editors), Integer Programming and Combinatorial Optimization, pp. 299–312. Lecture Notes in Computer Science, vol. 6080. Berlin: Springer.
Benabbas, S., Georgiou, K., Magen, A., and Tulsiani, M. 2012. SDP gaps from pairwise independence. Theory Comp., 8, 269–289.
Ben-Tal, A. and Nemirovski, A. 2001. Lectures on Modern Convex Optimization. Philadelphia, PA: SIAM.
Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. 2000. Robustness. In: Wolkowicz, H., Saigal, R., and Vandenberghe, L. (editors), Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. Boston, MA: Kluwer Academic.
Ben-Tal, A., Boyd, S., and Nemirovski, A. 2006. Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Prog. Ser. B, 107, 63–89.
Berg, C. 1987. The multidimensional moment problem and semi-groups. In: Landau, H. J. (editor), Moments in Mathematics, pp. 110–124. Proceedings of Symposia in Applied Mathematics, vol. 37. Providence, RI: American Mathematical Society.
Bernstein, S. 1921. Sur la représentation des polynômes positifs. Math. Z., 9, 74–109.
Bertsimas, D. 1995. Nonlinear Programming, second edition. Boston, MA: Athena Scientific.
Bertsimas, D. and Sim, M. 2004. The price of robustness. Oper. Res., 52, 35–53.
Bertsimas, D. and Sim, M. 2006. Tractable approximations to robust conic optimization problems. Math. Prog. Ser. B, 107, 5–36.
Blekherman, G. 2006. There are significantly more nonnegative polynomials than sums of squares. Isr. J. Math., 153, 355–380.
Blekherman, G. 2012. Nonnegative polynomials and sums of squares. J. Amer. Math. Soc., 25, 617–635.
Blekherman, G. 2014. Positive Gorenstein ideals. Proc. Amer. Math. Soc. To appear.
Blekherman, G. and Lasserre, J. B. 2012. The truncated K-moment problem for closure of open sets. J. Func. Anal., 263, 3604–3616.
Bochnak, J., Coste, M., and Roy, M.-F. 1998. Real Algebraic Geometry. New York: Springer.
Bomze, I. M. 2012. Copositive optimization – recent developments and applications. Eur. J. Oper. Res, 216, 509–520.
Bomze, I. M. and de Klerk, E. 2002. Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Global Optim., 24, 163–185.
Bomze, I. M., Dürr, M., de Klerk, E., Roos, C., Quist, A. J., and Terlaky, T. 2000. On copositive programming and standard quadratic optimization problems. J. Global Optim., 18, 301–320.
Bomze, I. M., Schachinger, W., and Uchida, G. 2012. Think co(mpletely) positive! – matrix properties, examples and a clustered bibliography on copositive optimization. J. Global Optim., 52, 423–445.
Bonnans, J. F. and Shapiro, A. 2000. Perturbation Analysis of Optimization Problems. New York: Springer.
Buelens, P. F. and Hellinckx, L. J. 1974. Optimal control of linear multivariable systems with quadratic performance index, and the inverse optimal control problem. Int. J. Control, 20, 113–127.
Bugarin, F., Henrion, D., and Lasserre, J. B. 2011. Minimizing the Sum of Many Rational Functions. Technical Report. LAAS-CNRS, Toulouse, France. arXiv: 1102. 4954.
Burer, S. 2009. On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Prog. Ser. A, 120, 479–495.
Burer, S. 2012. Copositive programming. In Anjos, M. and Lasserre, J. B. (editors), Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 201–218.
Burer, S.International Series in Operations Research and Management Science, vol. 166. New York: Springer.
Burgdorf, S., Scheiderer, C., and Schweighofer, M. 2012. Pure states, nonnegative polynomials and sums of squares. Comment. Math. Helv., 87, 113–140.
Burton, D. and Toint, P. 1992. On an instance of the inverse shortest path problem. Math. Prog., 63, 45–61.
Cafieri, S., Lee, J., and Liberti, L. 2010. On convex relaxations of quadrilinear terms. J. Global Optim., 47, 661–685.
Carleman, T. 1926. Les Fonctions Quasi-analytiques. Paris: Gauthier-Villars.
Cassier, G. 1984. Problème des moments sur un compact de ℝn et représentation de polynômes à plusieurs variables. J. Func. Anal., 58, 254–266.
Castaing, C., de Fitte, P. R., and Valadier, M. 2004. Young Measures on Topological Spaces. With Applications in Control Theory and Probability Theory. Mathematics and its Applications, vol. 571. Dordrecht: Kluwer Academic.
Chlamtac, E. 2007. Approximation algorithms using hierarchies of semidefinite programming relaxations. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pp. 691–701. New York: IEEE.
Chlamtac, E. and Singh, G. 2008. Improved approximation guarantees through higher levels of SDP hierarchies. In: Approximation, Randomization and Combinatorial Optimization Problems, pp. 49–62. Lecture Notes in Computer Science, vol. 5171. Berlin: Springer.
Chlamtac, E. and Tulsiani, M. 2012. Convex relaxations and integrality gaps. In: Anjos, M. and Lasserre, J. B. (editors), Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 139–170. International Series in Operations Research and Management Science, vol. 166. New York: Springer.
Curto, R. and Fialkow, L. 1991. Recursiveness, positivity, and truncated moment problems. Houston Math. J., 17, 603–635.
Curto, R. and Fialkow, L. 1996. Solution of the Truncated Complex Moment Problem for Flat Data. Memoirs of the American Mathematical Society, vol. 119. Providence, RI: American Mathematical Society.
Curto, R. and Fialkow, L. 1998. Flat Extensions of Positive Moment Matrices: Recursively Generated Relations. Memoirs of the American Mathematical Society, vol. 136. Providence, RI: American Mathematical Society.
Curto, R. and Fialkow, L. 2000. The truncated complex K-moment problem. Trans. Amer. Math. Soc., 352, 2825–2855.
Curto, R. E. and Fialkow, L. A. 2008. An analogue of the Riesz–Haviland theorem for the truncated moment problem. J. Funct. Anal., 255, 2709–2731.
d'Aspremont, A. 2008. Smooth optimization with approximate gradient. SIAM J. Optim., 19, 1171–1183.
de Klerk, E. and Laurent, M. 2011. On the Lasserre hierarchy of semidefinite programming relaxations of convex polynomial optimization problems. SIAM J. Optim., 21, 824–832.
de Klerk, E. and Pasechnik, D. V. 2002. Approximation of the stability number of a graph via copositive programming. SIAM J. Optim., 12, 875–892.
de Klerk, E. and Pasechnik, D. V. 2007. A linear programming formulation of the standard quadratic optimization problem. J. Global Optim., 75–84.
de Klerk, E., Laurent, M., and Parrilo, P. A. 2006. A PTAS for the minimization of polynomials of fixed degree over the simplex. Theor. Comp. Sci., 361, 210–225.
de Klerk, E., Pasechnik, D. V., and Schrijver, A. 2007. Reduction of symmetric semidefinite programs using the regular ⋆-representation. Math. Prog., 109, 613–624.
Diaconis, P. and Freedman, D. 2006. The Markov moment problem and de Finetti's Theorem Part I.Math. Z., 247, 183–199.
Dunkl, C. F. and Xu, Y. 2001. Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, vol. 81. Cambridge: Cambridge University Press.
Dürr, M. 2010. Copositive programming – a survey. In: Diehl, M., Glineur, F., Jarlebring, E., and Michiels, W. (editors), Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. New York: Springer.
Faraut, J. and Korányi, A. 1994. Analysis on Symmetric Cones. Oxford: Clarendon Press.
Fekete, M. 1935. Proof of three propositions of Paley. Bull. Amer. Math. Soc., 41, 138–144.
Feller, W. 1966. An Introduction to Probability Theory and Its Applications, second edition. New York: John Wiley & Sons.
Fidalgo, C. and Kovacec, A. 2011. Positive semidefinite diagonal minus tail forms are sums of squares. Math. Z., 269, 629–645.
Floudas, C. A. 2000. Deterministic Global Optimization Theory, Methods and Applications. Dordrecht: Kluwer Academic.
Floudas, C. A. and Pardalos, P. (editors) 2001. Encyclopedia of Optimization. Dordrecht: Kluwer Academic.
Floudas, C. A., Pardalos, P. M., Adjiman, C. S., Esposito, W. R., Gümüs, Z. H., Harding, S. T., Klepeis, J. L., Meyer, C. A., and Schweiger, C. A. 1999. Handbook of Test Problems in Local and Global Optimization. Boston, MA: Kluwer. titan.princeton.edu/TestProblems.
Freeman, R. A. and Kokotovic, P. V. 1996. Inverse optimality in robust stabilization. SIAM J. Control Optim., 34, 1365–1391.
Freitag, E. and Busam, R. 2009. Complex Analysis, second edition. Berlin: Springer.
Fujii, K. 2011. Beyond the Gaussian. SIGMA, 7, arXiv: 0912,2135.
Gaddum, J. W. 1958. Linear inequalities and quadratic forms. Pacific J. Math., 8, 411–414.
Gaterman, K. and Parrilo, P. A. 2004. Symmetry group, semidefinite programs and sums of squares. J. Pure Appl. Alg., 192, 95–128.
Gelfand, I. M. and Graev, M. I. 1999. GG-Functions and their relations to general hypergeometric functions. Lett. Math. Phys., 50, 1–28.
Ghasemi, M. and Marshall, M. 2010. Lower bounds for polynomials using geometric programming. Arch. Math. (Basel), 95, 343–353.
Ghasemi, M. and Marshall, M. 2012. Lower bounds for a polynomial in terms of its coefficients. SIAM J. Optim., 22, 460–473.
Goemans, M. X. and Williamson, D. P. 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42, 1115–1145.
Golub, G. and Loan, C. F. Van. 1996. Matrix Computations, third edition. New York: John Hopkins University Press.
Gounaris, C. E. and Floudas, C. A. 2008. Tight convex underestimators for C2-continuous problems: II. Multivariate functions. J. Global Optim., 42, 69–89.
Gouveia, J. and Netzer, T. 2011. Positive polynomials and projections of spectrahedra. SIAM J. Optim., 21, 960–976.
Gouveia, J. and Thomas, R. 2012. Convex hulls of algebraic sets. In: Anjos, M. and Lasserre, J. B. (editors), Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 113–138. International Series in Operations Research and Management Science, vol. 166. New York: Springer.
Gouveia, J., Parrilo, P. A., and Thomas, R. 2010. Theta bodies for polynomial ideals. SIAM J. Optim., 20, 2097–2118.
Gouveia, J., Laurent, M., Parrilo, P. A., and Thomas, R. 2012. A new hierarchy of semidefinite programming relaxations for cycles in binary matroids and cuts in graphs. Math. Prog. Ser. A. To appear.
Güler, O. 2010. Foundations of Optimization. New York: Springer.
Guzman, Y. A., Hasan, M. M. F., and Floudas, C. A. 2014. Computational comparison of convex underestimators for use in a branch-and-bound global optimization framework. In: Rassias, T. M., Floudas, C. A., and Butenko, S. (editors), Optimization in Science and Engineering: In Honor of the 60th Birthday of Panos Pardalos. New York: Springer.
Handelman, D. 1988. Representing polynomials by positive linear functions on compact convex polyhedra. Pacific J. Math., 132, 35–62.
Hanzon, B. and Jibetean, D. 2003. Global minimization of a multivariate polynomial using matrix methods. J. Global Optim., 27, 1–23.
Hausdorff, F. 1915. Summationsmethoden und Momentfolgen I. Soobshch. Kharkov matem. ob-va Ser. 2, 14, 227–228.
Haviland, E. K. 1935. On the momentum problem for distributions in more than one dimension, I. Amer. J. Math., 57, 562–568.
Haviland, E. K. 1936. On the momentum problem for distributions in more than one dimension, II. Amer.J.Math., 58, 164–168.
Helton, J. W. and Nie, J. 2009. Sufficient and necessary conditions for semidefinite representability of convex hulls and sets. SIAM J. Optim., 20, 759–791.
Helton, J. W. and Nie, J. 2010. Semidefinite representation of convex sets. Math. Prog. Ser. A, 122, 21–64.
Helton, J. W. and Nie, J. 2012. Semidefinite representation of convex sets and convex hulls. In: Anjos, M. and Lasserre, J. B. (editors), Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 77–112. International Series in Operations Research and Management Science, vol. 166. New York: Springer.
Helton, J. W. and Putinar, M. 2007. Positive polynomials in scalar and matrix variables, the spectral theorem and optimization. In: Bakonyi, M., Gheondea, A., and Putinar, M. (editors), Operator Theory, Structured Matrices and Dilations, pp. 229–306. Bucharest: Theta.
Helton, J. W., Lasserre, J. B., and Putinar, M. 2008. Measures with zeros in the inverse of their moment matrix. Ann. Prob., 36, 1453–1471.
Henk, M. 2012. Löwner–John ellipsoids. Doc. Math., 95–106. extra volume: Optimization stories, 95–106.
Henrion, D. and Lasserre, J. B. 2003. GloptiPoly: global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Software, 29, 165–194.
Henrion, D. and Lasserre, J. B. 2005. Detecting global optimality and extracting solution in GloptiPoly. In: Henrion, D. and Garulli, A. (editors), Positive Polynomials in Control, pp. 293–310. Lecture Notes in Control and Information Science, vol. 312. Berlin: Springer.
Henrion, D. and Lasserre, J. B. 2006. Convergent relaxations of polynomial matrix inequalities and static output feedback. IEEE Trans. Autom. Control, 51, 192–202.
Henrion, D. and Lasserre, J. B. 2012. Inner approximations for polynomial matrix inequalities and robust stability regions. IEEE Trans. Autom. Control, 57, 1456–1467.
Henrion, D., Lasserre, J. B., and Savorgnan, C. 2009a. Approximate volume and integration for basic semi-algebraic sets. SIAM Review, 51, 722–743.
Henrion, D., Lasserre, J. B., and Löfberg, J. 2009b. GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Software, 24, 761–779.
Hernández-Lerma, O. and Lasserre, J. B. 1996. Discrete-Time Markov Control Processes: Basic Optimality Criteria. New York: Springer.
Heuberger, C. 2004. Inverse combinatorial optimization: a survey on problems, methods and results. J. Comb. Optim., 8, 329–361.
Hol, C. W. J. and Scherer, C. W. 2005. A sum of squares approach to fixed-order H∞synthesis. In: Henrion, D. and Garulli, A. (editors), Positive Polynomials in Control, pp. 45–71. Lecture Notes in Control and Information Science, vol. 312. Berlin: Springer.
Hong, H. and Safey El Din, M. 2012. Variant quantifier elimination. J. Symb. Comput., 47, 883–901.
Huang, S. and Liu, Z. 1999. On the inverse problem of linear programming and its application to minimum weight perfect k-matching. Eur. J. Oper. Res., 112, 421–426.
Jacobi, T. and Prestel, A. 2001. Distinguished representations of strictly positive polynomials. J. Reine. Angew. Math., 532, 223–235.
Jibetean, D. and de Klerk, E. 2006. Global optimization of rational functions: a semidefinite programming approach. Math. Prog., 106, 93–109.
Jibetean, D. and Laurent, M. 2005. Semidefinite approximations for global unconstrained polynomial optimization. SIAM J. Optim., 16, 490–514.
John, F. 1948. Extremum problems with inequalities as subsidiary conditions. In: Friedrichs, K. O., Neugebauer, O. E., and Stoker, J. J. (editors), Studies and Essays Presented to R. Courant on his 60th Birthday, pp. 187–204. New York: Interscience.
Jordan, M. I. 2004. Graphical models. Stat. Sci., 19, 140–155. Special Issue on Bayesian Statistics.
Karlin, A. R., Mathieu, C., and Nguyen, C. Thach. 2011. Integrality gaps of linear and semi-definite programming relaxations for knapsack. In: Günlük, O. and Woeginger, G. J. (editors), Integer Programming and Combinatorial Optimization, pp. 301–314. Lecture Notes in Computer Science, vol. 6655. Berlin: Springer.
Karush, W. 1939. Minima of Functions of Several Variables with Inequality as Side Constraints. Ph.D. thesis, Department of Mathematics, University of Chicago, Chicago, IL.
Kemperman, J. H. B. 1968. The general moment problem, a geometric approach. Ann. Math. Stat., 39, 93–122.
Kemperman, J. H. B. 1987. Geometry of the moment problem. In: Landau, H. J. (editors), Moments in Mathematics, pp. 110–124. Proceedings of Symposia in Applied Mathematics, vol. 37. Providence, RI: American Mathematical Society.
Kim, S., Kojima, M., and Waki, H. 2009. Exploiting sparsity in SDP relaxation for sensor network localization. SIAM J. Optim., 20, 192–215.
Kojima, M. and Maramatsu, M. 2007. An extension of sums of squares relaxations to polynomial optimization problems over symmetric cones. Math. Prog., 110, 315–336.
Kojima, M. and Maramatsu, M. 2009. A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones. Comp. Optim. Appl., 42, 31–41.
Kojima, M., Kim, S., and Maramatsu, M. 2005. Sparsity in sums of squares of squares of polynomials. Math. Prog., 103, 45–62.
Krivine, J. L. 1964a. Anneaux préordonnés. J. Anal. Math., 12, 307–326.
Krivine, J. L. 1964b. Quelques propriétés des préordres dans les anneaux commutatifs unitaires. C. R. Acad. Sci. Paris, 258, 3417–3418.
Kuhlmann, S. and Putinar, M. 2007. Positive polynomials on fibre products. C. R. Acad. Sci. Paris, Ser. 1, 1344, 681–684.
Kuhlmann, S. and Putinar, M. 2009. Positive polynomials on projective limits of real algebraic varieties. Bull. Sci. Math., 133, 92–111.
Kuhlmann, S., Marshall, M., and Schwartz, N. 2005. Positivity, sums of squares and the multi-dimensional moment problem II. Adv. Geom., 5, 583–606.
Landau, H. (editor) 1987. Moments in Mathematics. Proceedings of Symposia in Applied Mathematics, vol. 37. Providence, RI: American Mathematical Society.
Lasserre, J. B. 2000. Optimisation globale et théorie des moments. C. R. Acad. Sci. Paris, Ser. 1, 331, 929–934.
Lasserre, J. B. 2001. Global optimization with polynomials and the problem of moments. SIAM J. Optim., 11, 796–817.
Lasserre, J. B. 2002a. An explicit equivalent positive semidefinite program for nonlinear 0-1 programs. SIAM J. Optim., 12, 756–769.
Lasserre, J. B. 2002b. Polynomials nonnegative on a grid and discrete optimization. Trans. Amer. Math. Soc., 354, 631–649.
Lasserre, J. B. 2002c. Semidefinite programming vs. LP relaxations for polynomial programming. Math. Oper. Res., 27, 347–360.
Lasserre, J. B. 2004. Polynomial programming: LP-relaxations also converge. SIAM J. Optim., 15, 383–393.
Lasserre, J. B. 2005. SOS approximations of polynomials nonnegative on a real algebraic set. SIAM J. Optim., 16, 610–628.
Lasserre, J. B. 2006a. Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim., 17, 822–843.
Lasserre, J. B. 2006b. Robust global optimization with polynomials. Math. Prog. Ser. B, 107, 275–293.
Lasserre, J. B. 2006c. A sum of squares approximation of nonnegative polynomials. SIAM J. Optim, 16, 751–765.
Lasserre, J. B. 2007. Sufficient conditions for a real polynomial to a sum of squares. Arch. Math. (Basel), 89, 390–398.
Lasserre, J. B. 2008. Representation of nonnegative convex polynomials. Arch. Math. (Basel), 91, 126–130.
Lasserre, J. B. 2009a. Convex sets with semidefinite representation. Math. Prog. Ser. A, 120, 457–477.
Lasserre, J. B. 2009b. Convexity in semi-algebraic geometry and polynomial optimization. SIAM J. Optim., 19, 1995–2014.
Lasserre, J. B. 2009c. Moments, Positive Polynomials and Their Applications. London: Imperial College Press.
Lasserre, J. B. 2010a. Certificates of convexity for basic semi-algebraic sets. Appl. Math. Lett., 23, 912–916.
Lasserre, J. B. 2010b. A “joint+marginal” approach to parametric polynomial optimization. SIAM J. Optim., 20, 1995–2022.
Lasserre, J. B. 2011. A new look at non negativity on closed sets and polynomial optimization. SIAM J. Optim., 21, 864–885.
Lasserre, J. B. 2013a. Borel measures with a density on a compact semi-algebraic set. Arch. Math. (Basel), 101, 361–371.
Lasserre, J. B. 2013b. A generalization of Löwner–John's ellipsoid problem. Math. Prog. Ser. A. To appear.
Lasserre, J. B. 2013c. Inverse polynomial optimization. Math. Oper. Res., 38, 418–436.
Lasserre, J. B. 2013d. The K-moment problem with continuous linear functionals. Trans. Amer. Math. Soc., 365, 2489–2504.
Lasserre, J. B. 2013e. A Lagrangian relaxation view of linear and semidefinite hierarchies. SIAM J. Optim., 23, 1742–1756.
Lasserre, J. B. 2013f. Tractable approximations of sets defined with quantifiers. Math. Prog. Ser. B. To appear.
Lasserre, J. B. 2014a. Level sets and non Gaussian integrals of positively homogeneous functions. Int. Game Theory Rev. To appear.
Lasserre, J. B. 2014b. New approximations for the cone of copositive matrices and its dual. Math. Prog., 144, 265–276.
Lasserre, J. B. and Netzer, T. 2007. SOS approximations of nonnegative polynomials via simple high degree perturbations. Math. Z., 256, 99–112.
Lasserre, J. B. and Putinar, M. 2010. Positivity and optimization for semi-algebraic functions. SIAM J. Optim., 20, 3364–3383.
Lasserre, J. B. and Putinar, M. 2012. Positivity and optimization: beyond polynomials. In: Anjos, M., and Lasserre, J. B. (editors), Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 407–436. International Series in Operations Research and Management Science, vol. 166. New York: Springer.
Lasserre, J. B. and Thanh, T. P. 2011. Convex underestimators of polynomials. In: Proceedings of the 50th IEEE CDC Conference on Decision and Control, December 2011, pp. 7194–7199. New York: IEEE.
Lasserre, J. B. and Thanh, T. P. 2012. A “joint+marginal” heuristic for 0/1 programs. J. Global Optim. 54, 729–744.
Lasserre, J. B. and Thanh, T. P. 2013. Convex underestimators of polynomials. J. Global Optim., 56, 1–25.
Laurent, M. 2003. A comparison of the Sherali–Adams, Lovász–Schrijver and Lasserre relaxations for 0-1 programming. Math. Oper. Res., 28, 470–496.
Laurent, M. 2005. Revisiting two theorems of Curto and Fialkow on moment matrices. Proc. Amer. Math. Soc., 133, 2965–2976.
Laurent, M. 2007a. Semidefinite representations for finite varieties. Math. Prog. Ser. A, 109, 1–26.
Laurent, M. 2007b. Strengthened semidefinite programming bounds for codes. Math. Prog. Ser. B, 109, 239–261.
Laurent, M. 2008. Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M. and Sullivant, S. (editors), Emerging Applications of Algebraic Geometry, pp. 157–270. IMA Volumes in Mathematics and its Applications, vol. 149. New York: Springer.
Löfberg, J. 2004. YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the IEEE Symposium on Computer-Aided Control System Design (CACSD), Taipei, Taiwan. New York: IEEE.
Lombardi, H., Perrucci, D., and Roy, M.-F. 2014. An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert 17th Problem. Technical Report IRMAR, Rennes, France. arXiv:1404.2338v1.
Lovász, L. 2003. Semidefinite programs and combinatorial optimization. In: Reed, B. A. and Sales, C. L. (editors), Recent Advances in Algorithms and Combinatorics, pp. 137–194. CMS Books Math./Ouvrages Math. SMC, 11. New York: Springer.
Lovász, L. and Schrijver, A. 1991. Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim., 1, 166–190.
Marshall, M. 2006. Representation of non-negative polynomials with finitely many zeros. Ann. Fac. Sci. Toulouse, 15, 599–609.
Marshall, M. 2008. Positive Polynomials and Sums of Squares. AMS Mathematical Surveys and Monographs, vol. 146. Providence, RI: American Mathematical Society.
Marshall, M. 2009. Representation of non-negative polynomials, degree bounds and applications to optimization. Canad. J. Math., 61, 205–221.
Marshall, M. 2010. Polynomials non-negative on a strip. Proc. Amer. Math. Soc., 138, 1559–1567.
Marshall, M. and Netzer, T. 2012. Positivstellensätze for real function algebras. Math. Z., 270, 889–901.
Morozov, A. and Shakirov, S. 2009a. Introduction to integral discriminants. J. High Energy Phys., 12(12).
Morozov, A. and Shakirov, S. 2009b. New and Old Results in Resultant Theory. Technical Report ITEP, Moscow. Theor. Math. Phys. To appear.
Moylan, P. J. and Anderson, B. D. O. 1973. Nonlinear regulator theory and an inverse optimal control problem. IEEE Trans. Autom Control, 18, 460–465.
Mulholland, H. P. and Rogers, C. A. 1958. Representation theorems for distribution functions. Proc. London Math. Soc., 8, 177–223.
Nesterov, Y. 2000. Squared functional systems and optimization problems. In: Frenk, H., Roos, K., Terlaky, T., and Zhang, S. (editors), High Performance Optimization, pp. 405–440. New York: Springer.
Netzer, T., Plaumann, D., and Schweighofer, M. 2010. Exposed faces of semidefinitely representable sets. SIAM J. Optim., 20, 1944–1955.
Nie, J. 2014. Optimality conditions and finite convergence of Lasserre's hierarchy. Math. Prog. Ser. A, 146, 97–121.
Nie, J. and Schweighofer, M. 2007. On the complexity of Putinars’ Positivstellensatz. J. Complexity, 23, 135–150.
Nie, J., Demmel, J., and Sturmfels, B. 2006. Minimizing polynomials via sum of squares over the gradient ideal. Math. Prog. Ser. A, 106, 587–606.
Nussbaum, A. E. 1966. Quasi-analytic vectors. Ark. Mat., 5, 179–191.
Park, J. G. and Lee, K. Y. 1975. An inverse optimal control problem and its application to the choice of performance index for economic stabilization policy. IEEE Trans. Syst. Man Cybern., 5, 64–76.
Parrilo, P. A. 2000. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. thesis, California Institute of Technology, Pasadena, CA.
Parrilo, P. A. 2002. An Explicit Construction of Distinguished Representations of Polynomials Nonnegative over Finite Sets. Technical Report Auto-02, IfA, ETH, Zurich, Switzerland.
Parrilo, P. A. 2003. Semidefinite programming relaxations for semialgebraic problems. Math. Prog., 96, 293–320.
Pedregal, P. 1999. Optimization, relaxation and Young measures. Bull. Amer. Math. Soc., 36, 27–58.
Pena, J., Vera, J., and Zuluaga, L. 2007. Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim., 87–105.
Pólya, G. 1974. Collected Papers, vol. II. Cambridge, MA: MIT Press.
Pólya, G. and Szegö, G. 1976. Problems and Theorems in Analysis II. Berlin: Springer.
Powers, V. and Reznick, B. 2000. Polynomials that are positive on an interval. Trans. Amer. Math. Soc., 352, 4677–4692.
Prajna, S., Papachristodoulou, A., and Parrilo, P. A. 2002. Introducing SOSTOOLS: a general purpose sum of squares programming solver. In: Proceedings of the 41st IEEE Conference on Decision and Control. New York: IEEE.
Prestel, A. and Delzell, C. N. 2001. Positive Polynomials. Berlin: Springer.
Putinar, M. 1993. Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J., 42, 969–984.
Putinar, M. 2000. A note on Tchakaloff's theorem. Proc. Amer. Math. Soc., 125, 2409–2414.
Reznick, B. 1995. Uniform denominators in Hilbert's seventeenth problem. Math. Z., 220, 75–98.
Reznick, B. 2000. Some concrete aspects of Hilbert's 17th problem. In: Delzell, C. N. and Madden, J. J. (editors), Real Algebraic Geometry and Ordered Structures. Contemporary Mathematics, vol. 253. Providence, RI: American Mathematical Society.
Richter, H. 1957. Parameterfreie Abschätzung und Realisierung von Erwartungswerten. Bl. Dtsch. Ges. Versicherungsmath., 3, 147–161.
Riener, C., Theobald, T., Jansson, L., and Lasserre, J. B. 2013. Exploiting symmetries in SDP-relaxations for polynomial optimization. Math. Oper. Res., 38, 122–141.
Rockafellar, R. T. 1970. Convex Analysis. Princeton, NJ: Princeton University Press.
Rogosinsky, W. W. 1958. Moments of non-negative mass. Proc. R. Soc. London Ser. A, 245, 1–27.
Royden, H. L. 1988. Real Analysis, third edition. New York: Macmillan.
Rugh, W. J. 1971. On an inverse optimal control problem. IEEE Trans. Autom. Control, 16, 87–88.
Schaefer, A. 2004. Inverse integer programming. Optim. Lett., 3, 483–489.
Scheiderer, C. 2008. Positivity and sums of squares: a guide to some recent results. In: Putinar, M. and Sullivant, S. (editors), Emerging Applications of Algebraic Geometry, pp. 271–324. IMA Volumes in Mathematics and its Applications, vol 149. New York. Springer.
Scherer, C. W. and Hol, C. W. J. 2004. Sum of squares relaxation for polynomial semidefinite programming. Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems, Leuven, pp. 1–10.
Schichl, H. and Neumaier, A. 2006. Transposition theorems and qualification-free optimality conditions. SIAM J. Optim., 17, 1035–1055.
Schmid, J. 1998. On the Degree Complexity of Hilbert's 17th Problem and the Real Nullstellensatz. Ph.D. thesis, University of Dortmund. Habilitationsschrift zur Erlangug der Lehrbefignis für das Fach Mathematik an der Universität Dortmund.
Schmüdgen, K. 1991. The K-moment problem for compact semi-algebraic sets. Math. Ann., 289, 203–206.
Schneider, R. 1994. Convex Bodies: The Brunn–Minkowski Theory. Cambridge: Cambridge University Press.
Schoenebeck, G. 2008. Linear level Lasserre lower bounds for certain k-CSPs. In: 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS'08), pp. 593–602. New York: IEEE.
Schrijver, A. 2005. New codes upper bounds from the Terwilliger algebra and semidefinite pogramming. IEEE Trans. Inf. Theory, 51, 2859–2866.
Schweighofer, M. 2005. On the complexity of Schmüdgen's Positivstellensatz. J. Complexity, 20, 529–543.
Schweighofer, M. 2006. Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim., 17, 920–942.
Shakirov, S. R. 2010. Nonperturbative approach to finite-dimensional non-Gaussian integrals. Theor. Math. Phys., 163, 804–812.
Sherali, H. D. and Adams, W. P. 1990. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discr. Math., 3, 411–430.
Sherali, H. D. and Adams, W. P. 1999. A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Dordrecht: Kluwer.
Sherali, H. D., Adams, W. P., and Tuncbilek, C. H. 1992. A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique. J. Global Optim., 2, 101–112.
Shor, N. Z. 1987. Quadratic optimization problems. Tekh. Kibern., 1, 128–139.
Shor, N. Z. 1998. Nondifferentiable Optimization and Polynomial Problems. Dordrecht: Kluwer.
Simon, B. 1998. The classical moment problem as a self-adjoint finite difference operator. Adv. Math., 137, 82–203.
Stengle, G. 1974. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math. Ann., 207, 87–97.
Sturm, J. F. 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimizing over symmetric cones. Optim. Methods Software, 11-12, 625–653.
Tawarmalani, M. and Sahinidis, N. V. 2002. Convex extensions and envelopes of lower semi-continuous functions. Math. Prog., 93, 247–263.
Tawarmalani, M. and Sahinidis, N. V. 2005. A polyhedral branch-and-cut approach to global optimization. Math. Prog., 103, 225–249.
Tchakaloff, V. 1957. Formules de cubature mécanique à coefficients non négatifs. Bull. Sci. Math., 81, 123–134.
Tuncel, L. 2000. Potential reduction and primal-dual methods. In: Wolkowicz, H., Saigal, R., and Vandenberghe, L. (editors), Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, pp. 235–265. Boston, MA: Kluwer Academic.
Vallentin, F. 2007. Symmetry in semidefinite programs. Linear Alg. Appl., 430, 360–369.
Vandenberghe, L. and Boyd, S. 1996. Semidefinite programming. SIAM Rev., 38, 49–95.
Vasilescu, F.-H. 2003. Spectral measures and moment problems. Spectral Theory Appl., 173–215.
Vui, H. H. and Pham, T. S. 2008. Global optimization of polynomials using the truncated tangency variety and sums of squares. SIAM J. Optim., 19, 941–951.
Waki, S., Kim, S., Kojima, M., and Maramatsu, M. 2006. Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim., 17, 218–242.
Waki, H., Kim, S., Kojima, M., Muramatsu, M., and Sugimoto, H. 2008. SparsePOP : a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Software, 35, article 15.
Zhang, J. and Liu, Z. 1996. Calculating some inverse linear programming problems. J. Comp. Appl. Math., 72, 261–273.
Zhang, J. and Liu, Z. 1999. A further study on inverse linear programming problems. J. Comp. Appl. Math., 106, 345–359.
Zhang, J., Ma, Z., and Yang, C. 1995. A column generation method for inverse shortest path problems. Math. Methods Oper. Res., 41, 347–358.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.