Skip to main content Accessibility help
Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-14T23:30:33.386Z Has data issue: false hasContentIssue false

1 - Fundamentals on Synthesis and Properties of Ultrananocrystalline Diamond (UNCD™) Coatings

Published online by Cambridge University Press:  08 July 2022

Orlando Auciello
University of Texas, Dallas
Get access


This chapter describes the fundamental and applied science underlying the synthesis of UNCD films, using microwave plasma chemical vapor deposition (MOCVD) and hot filament chemical vapor deposition (HFCVD), and systematic characterization of the mechanical (hardness), tribological (coefficient of friction and surface resistance to wear), chemical (resistance to chemical attach by corrosive liquids and other environments, including body fluids), electrical, and biocompatibility properties of the UNCD films, which make UNCD coatings a multifunctional material for a new generation of external and implantable medical devices and prostheses with order of magnitude superior performance than current metals and polymers used in current medical devices and prostheses.


Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Spitsyn, B. V., Bouilov, L. L., and Derjaguin, B. V., “Vapor growth of diamond on diamond and other surfaces,” J. Cryst. Growth, vol. 52, p. 219, 1981.Google Scholar
Matsumoto, S., Sato, Y., Tsutsumi, M., and Setaka, N., “Growth of diamond particles from methane-hydrogen gas,” J. Mater. Sci., vol. 17, p. 3106, 1982.Google Scholar
Matsumoto, S., “Development of CVD diamond synthesis techniques,” in Proc. 1st Symposium on Diamond and Diamond-like Films, Electrochem. Soc. Proc., New York, vol. 50, p. 89, 1989.Google Scholar
Hirose, Y. and Kondo, N., “Program and book of abstracts,” Japan Appl. Phys. Spring Meeting Proceedings, p. 34, 1988.Google Scholar
Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., “Diamond synthesis from gas phase in microwave plasma,” J. Cryst Growth, vol. 62(3), p. 642, 1983.Google Scholar
Matsumoto, S., “Chemical vapor deposition of diamond in RF glow discharge,” J. Mater. Sci. Lett., vol. 4(5), p. 600, 1985.CrossRefGoogle Scholar
Matsumoto, M., Hino, M., and Kobayashi, T., “Synthesis of diamond films in a RF induction thermal plasma,” Appl. Phys. Lett., vol. 51, p. 737, 1987.CrossRefGoogle Scholar
Suzuki, K., Sawabe, S., Yasuda, H., and Inzuka, T., “Growth of diamond thin films by DC plasma chemical vapor deposition,” Appl. Phys. Lett, vol. 50 (12), 728, 1987.CrossRefGoogle Scholar
Kurihara, K., Sasaki, K., Kawaradi, M., and Koshino, N., “High-rate synthesis of diamond by DC plasma jet chemical vapor deposition,” Appl. Phys. Lett., vol. 52, p. 437, 1988.CrossRefGoogle Scholar
Backmann, P. K. and Messier, R., “Emerging technology of diamond thin films,” C&EN, vol. 67(20), p. 24. 1989.Google Scholar
Harris, S. J. and Goodwin, D. G., “Growth on the reconstructed diamond (100) surface,” J. Phys. Chem., vol. 97, p. 23, 1993.CrossRefGoogle Scholar
Dischler, B. and Wild, C., Low-Pressure Synthetic Diamond: Manufacturing and Applications, Heidelberg: Springer, 1998.Google Scholar
Bachmann, P. K., Hagemann, H. J., Lade, H., et al., “Thermal properties of C/H, C/H/O, C/H/N and C/H/X grown polycrystalline CVD diamond,” Diam. Relat. Mater., vol. 4: p. 820, 1995.Google Scholar
Sharda, T. and Bhattacharyya, S., “Advances in nanocrystalline diamond,” in Encyclopedia of Nanoscience and Nanotechnology, vol. 2, Nalwa, H.S., Ed. Stevenson Ranch, CA: American Scientific Publishers, p. 337, 2004.Google Scholar
Butler, J. E. and Sumant, A. V., “The CVD of nanodiamond materials,” Chem. Vap. Deposition, vol.14, p. 145, 2008.Google Scholar
Gruen, D. M., Liu, S., Krauss, A. R., Luo, L., and Pan, X., “Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions,” Appl. Phys. Lett., vol. 64, p. 1502, 1994.CrossRefGoogle Scholar
McCauley, T. G., Corrigan, T. D., A.R. Krauss, O.Auciello et al., “Electron emission properties of Si field emitter arrays coated with nanocrystalline diamond from fullerene precursors,” Proc. MRS, Symposium. “Electron Emission from Highly Covalent Materials,” 1998, vol. 498, p. 227.Google Scholar
Gruen, D. M., Nanocrystalline diamond films, Annu. Rev. Mater. Sci. vol. 29: p. 211, 1999.Google Scholar
Smalley, R. E., “Discovering the fullerenes,” Rev. Mod. Phys. vol. 69, p. 723, 1997.CrossRefGoogle Scholar
Jiao, S., Sumant, A. V., Kirk, M. A., et al. “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2,” J. Appl. Phys., vol. 90, p. 118, 2001.Google Scholar
Naguib, N., Birrell, J., Elam, J., Carlisle, J. A., and Auciello, O., “A method to grow carbon thin films consisting entirely of diamond grains 3–5 nm in size and high-energy grain boundaries,” US Patent #7,128,8893, 7,556,982, 2006.Google Scholar
Auciello, O. and Sumant, A. V., “Status review of the science and technology of ultrananocrystalline diamond (UNCDTM) films and application to multifunctional devices,” Diam. Relat. Mater., vol. 19, p. 699, 2010.Google Scholar
Shenderova, O. A. and Gruen, D. M., Eds., Ultrananocrystalline Diamond: Synthesis, Properties and Applications, 2nd ed. Oxford: Elsevier, 2012.Google Scholar
Zhou, D., Gruen, D. M., Qin, L. C., McCauley, T. G., and Krauss, A. R., “Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas,” J. Appl. Phys. vol. 84, p. 1981, 1998.CrossRefGoogle Scholar
Advanced Diamond Technologies, Inc. Homepage. Scholar
Original Biomedical Implants, Inc. Homepage. Scholar
Konicek, A. R., Grierson, D. S., Gilbert, P. U. P. A., Sawyer, W. G., Sumant, A. V., and Auciello, O., “Origin of ultralow friction and wear in ultrananocrystalline diamond,” Phys Rev Lett., vol. 100 (23), p. 235502, 2008.Google Scholar
Xiao, X., Wang, J., Carlisle, J. A., et al., “In Vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips,” J. Biomed. Mater., vol. 77B, p. 273, 2006.CrossRefGoogle Scholar
Bhattacharyya, S., Auciello, O., Birrell, J., et al., “Synthesis and characterization of nitrogen doped ultrananocrystalline diamond thin films,” Appl. Phys. Lett., vol. 79, p. 1441, 2001.Google Scholar
Gruen, D. M., Krauss, A. R., Auciello, O., and Carlisle, J. A., “N-type doping of NCD films with nitrogen and electrodes made therefrom,” US patent #6,793,849 B1, 2004.Google Scholar
Zeng, H., Arumugam, U. P., Siddiqui, S, and Carlisle, J. A., “Low temperature boron doped diamond,” Appl. Phys. Lett., vol. 103, p. 223108, 2013.CrossRefGoogle Scholar
Yuan, W.-X., Wu, Q. X., Luo, Z. K., and Wu, H. S., “Effects of boron doping on the properties of ultrananocrystalline diamond films,” J Electr. Mater., vol. 43 (4), p. 1302, 2014Google Scholar
Okano, K., Naruki, H., Akiba, Y., et al., “Characterization of boron-doped diamond film,” Japan. J. Appl. Phys., vol. 28 (1), p. 1066, 1989.Google Scholar
Swain, G. M. and Ramesham, R., “The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes,” Anal. Chem., vol. 65 (4), p. 345, 1993.CrossRefGoogle Scholar
Ramesham, R., “Selective growth and characterization of doped polycrystalline diamond thin films,” Thin Solid Films, vol. 229, p. 44, 1993.Google Scholar
Vernon, S. W., Swope, M., Butler, J. E., Feygelson, T., and Swain, G. M., “The structural and electrochemical properties of boron-doped nanocrystalline diamond thin-film electrodes grown from Ar-rich and H2-rich source gases,” Diam. Relat. Mater., vol. 18 (4), p. 669, 2009.Google Scholar
Srikanth, V. V. S. S., Kumar, P. S., and Kumar, V. B., “A brief review on the in-situ synthesis of boron-doped diamond thin films,” Int J Electrochem, vol. 2012, Article ID 218393, 2012.Google Scholar
Tirado, P., Acantar-Peña, J. J., de Obaldia, E., et al., “Boron doping of ultrananocrystalline diamond films by thermal diffusion process,MRS Commun., vol. 8 (3), p. 1111, 2018.Google Scholar
Xiao, X., Birrell, J., Gerbi, J. E., Auciello, O., and Carlisle, J. A., “Low temperature growth of ultrananocrystalline diamond,” J. Appl. Phys., vol. 96, p. 2232, 2004.Google Scholar
Carlisle, J. A., Gruen, D. M., Auciello, O., and Xiao, X., “A method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates,” US Patent #7,556,982, 2009.Google Scholar
Alcantar-Peña, J. J., Lee, G., Fuentes-Fernandez, E. M. A., et al., “Science and technology of diamond films grown on HfO2 interface layer for transformational technologies,” Diam. Relat. Mater., vol. 69. p. 221, 2016.Google Scholar
Sudarsan, S., Hiller, J., Kabius, B., and Auciello, O., “Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems,” Appl. Phys. Lett., vol. 90, p. 134101, 2007.Google Scholar
Zalazar, M., Gurman, P., Park, J., et al., “Integration of piezoelectric aluminum nitride and ultrananocrystalline diamond films for implantable biomedical microelectromechanical devices,” Appl. Phys. Lett., vol. 102, p. 104101, 2013.CrossRefGoogle Scholar
Auciello, O., Birrell, J., Carlisle, J. A., et al., “Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films,” J. Phys Condens. Matter, vol. 16, p. R539, 2004.CrossRefGoogle Scholar
Auciello, O., Pacheco, S., Sumant, A. V., et al., “Are diamonds a MEMS best friend?,” IEEE Microwave Mag, vol. 8, p. 61, 2008.Google Scholar
Auciello, O., “Science and technology of ultrananocrystalline diamond (UNCDTM) film-based MEMS and NEMS devices and systems,” in Science and Technology of UNCD Films, Shenderova, O. A. and Gruen, D. M., Eds. New York: Elsevier, p. 383, 2013.Google Scholar
Cheng, Y.-W., Lin, C-K., Chu, Y.-C., et al., “Electrically conductive ultrananocrystalline diamond-coated natural graphite-copper anode for new long-life lithium-ion battery,” Adv. Mater., vol. 26 (1–5), p. 3724, 2014.Google Scholar
Tzeng, Y., Auciello, O, Liu, C-P., Lin, C-K., and Cheng, Y-W, “Nanocrystalline-diamond/carbon and nanocrystalline-diamond/silicon composite electrodes for Li-based batteries,” US Patent #9,196,905, 2015.Google Scholar
Link, Y. C., Sankaran, K. J., Chen, Y. C., et al., “Enhancing electron field emission properties of UNCD films through nitrogen incorporation at high substrate temperature,” Diam. Relat. Mater., vol. 20 (2), p. 191, 2011.Google Scholar
Krauss, A. R., Ding, M. Q., Auciello, O., et al., “Electron field emission for ultrananocrystalline diamond films,” J. Appl. Phys., vol. 89, p. 2958, 2001.Google Scholar
Hajra, M., Ding, M., Auciello, O., et al. “Effect of gases on the field emission properties of ultrananocrystalline diamond-coated silicon field emitter arrays,” J. Appl. Phys., vol. 94 (6), p. 4079, 2003.CrossRefGoogle Scholar
Panda, K., Hyeok, J. J., Park, J. Y., et al., “Nanoscale investigation of enhanced electron field emission for silver ion implanted/post-annealed ultrananocrystalline diamond films,” Sci. Rep., vol. 7, article number 16325, 2017.Google Scholar
Getty, S. A., Auciello, O., Sumant, A. al. “Characterization of nitrogen-incorporated ultrananocrystalline diamond as a robust cold cathode material,” in Micro-and Nanotechnology Sensors, Systems, and Applications-II, George, T., Islam, S., and Dutta, A., Eds. Bellingham, WA: SPIE, p. 76791N-1, 2010.Google Scholar
Garguilo, J. M., Koeck, F. A. M., Nemanich, R. J., et al., “Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays,” Phys. Rev., vol. B 72, p. 165404, 2005.Google Scholar
Wang, J., Firestone, M. A., Auciello, O., and Carlisle, J. A., “Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of aryl diazonium salts,” Langmuir, vol. 20, p. 11450, 2004.Google Scholar
Yang, W., Auciello, O., Butler, J. E., et al., “Direct electrical detection of hybridization at DNA-modified nanocrystalline diamond thin films,” J. Electrochem. Soc., 2007.Google Scholar
Bajaj, P., Akin, D., Gupta, A., et al. “Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications,” Biomed. Microdevices, vol. 9 (6), p. 787, 2007.Google Scholar
Shi, B., Jin, Q., Chen, L., and Auciello, O., “Fundamentals of ultrananocrystalline diamond (UNCD) thin films as biomaterials for developmental biology: embryonic fibroblasts growth on the surface of (UNCD) films,” Diam. Relat. Mater., vol. 18 (2), p. 596, 2008.Google Scholar
Auciello, O. , “Novel biocompatible ultrananocrystalline diamond coating technology for a new generation of medical implants, devices, and scaffolds for developmental biology,” Biomater. Med. Appl. J., vol. 1 (1), 1000103, 2017.Google Scholar
Butler, J. E. and Windischmann, H., “Developments in CVD-diamond synthesis during the past decade,” MRS Bull., vol. 23 (9), p. 22, 1998.Google Scholar
Prelas, M. A., Popovici, G., and Biglow, K.L. (Eds.). Handbook of Industrial Diamonds and Diamond Films. Chichester: Wiley, 2009.Google Scholar
Kohn, E., Gluche, P., and Adamschik, M., “Diamond MEMS: a new technology,” Diam. Relat. Mater., vol. 8, p. 934, 1999.Google Scholar
Rotter, S., Proc. Applied Diamond Conference/Frontier Carbon Technologies-ADC/FCT ‘99, Yoshikawa, M., Koga, Y., Tzeng, Y., Klages, C. P. and Miyoshi, K., Eds. Tokyo: MYU, K.K, p. 25, 1999.Google Scholar
Sumant, A. V., Grierson, D. S., Konicek, A. R., et al., “Surface composition, bonding, and morphology in the nucleation and growth of ultra-thin, high quality nanocrystalline diamond films,” Diam. Relat. Mater., vol. 16, p. 718, 2007.Google Scholar
May, P. W., Harvey, J. N., Smith, J. A., and Mankelevich, Y. A., “Re-evaluation of the mechanism for ultrananocrystalline diamond deposition from Ar∕CH4∕H2 gas mixtures,” J. Appl. Phys., vol. 99, p. 104907, 2006.Google Scholar
May, P. W., Allan, N. L., Ashfold, M. N. R., Richley, J. C., and Mankelevich, Y. A., “Simplified Monte Carlo simulations of chemical vapour deposition diamond growth,” J. Phys.: Condens. Matter., vol. 21, p. 364203, 2009.Google Scholar
Sumant, A. V., Auciello, O., Yuan, H.-C., et al., “Large area low temperature ultrananocrystalline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMS/NEMS-CMOS systems,” Proc. SPIE, vol. 7318, p. 17, 2009.Google Scholar
Xu, Z., He, Z., Song, Y., et al., “Topic review: application of Raman spectroscopy characterization in micro/nano-machining,” Micromachines (Basel), vol. 9(7), p. 361, 2018.Google Scholar
Weber, W. H. and Merlin, R., Eds., Raman Scattering in Materials Science, Berlin: Springer, 2000.Google Scholar
Birrell, J., Gerbi, J. E., Auciello, O., et al. “Interpretation of the Raman spectra of ultrananocrystalline diamond,Diam. Relat. Mater., vol. 14 p. 86, 2005.Google Scholar
Stohr, J., NEXAFS, New York, Springer, 1992.Google Scholar
Zuiker, D., Krauss, A. R., Gruen, D. M., et al., “Characterization of diamond thin films by core-level photo-absorption and UV excitation Raman spectroscopy,” Mat. Res. Soc. Proc., vol. 437, p. 211, 1996.Google Scholar
Tirado, P., Alcantar-Peña, J., de Obaldia, E., Garcia, R., and Auciello, O., “Effect of the gas chemistry, total pressure, and microwave power on the grain size and growth rate of polycrystalline diamond films grown by microwave plasma chemical vapor deposition technique,Proc. IEEE-7th International Engineering, Sciences and Technology Conference, p. 85, 2019.Google Scholar
Fuentes-Fernandez, E. M. A., Alcantar-Peña, J. J., Lee, G., et al., “Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via hot filament chemical vapor deposition for scaling to large area applications,” Thin Solid Films, vol. 603, p. 62, 2016.Google Scholar
Filik, J., “Raman spectroscopy: a simple non-destructive way to characterize diamond and diamond-like materials,” Spectroscopy Europe, vol. 17 (5), p. 10, 2005.Google Scholar
Stoner, B. R., Ma, G.-H. M., Wolter, S. D., and Glass, J. T., “Characterization of bias-enhanced nucleation of diamond on silicon by in vacuo surface analysis and transmission electron microscopy,” Phys. Rev. B, vol. 45, p. 11067, 1992.CrossRefGoogle Scholar
Gerber, S., Sattel, S., Ehrhardt, H., et al., “Investigation of bias enhanced nucleation of diamond on silicon,” J. Appl. Phys., vol. 79, p. 4388, 1996.Google Scholar
Lee, Y. C., Lin, S. J., Chia, C. T., Cheng, H. F., and Lin, I. N., “Effect of processing parameters on the nucleation behavior of nano-crystalline diamond film,” Diam. Relat. Mater., vol. 14, p. 296, 2005.Google Scholar
Ding, M. Q., Krauss, R., Auciello, O., et al., “Studies of field emission from bias-grown diamond thin films,” J. Vac. Sci. Tech B, vol. 17, p. 705, 1999.Google Scholar
Lee, Y. C., Lin, S. J., Lin, C. Y., et al., “Pre-nucleation techniques for enhancing nucleation density and adhesion of low temperature deposited ultra-nano-crystalline diamond,” Diam. Relat. Mater., vol. 15, p. 2046, 2006.Google Scholar
Chen, Y. C., Zhong, X. Y., Konicek, A. R., et al., “Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth,” Appl. Phys. Lett., vol. 92, p. 133113, 2008.Google Scholar
Auciello, O. and Kelly, R., Ion Bombardment Modification of Surfaces: Fundamentals and Applications, Amsterdam: Elsevier, 1984.Google Scholar
Zhong, X. Y., Chen, Y. C., Tai, N. H., et al. “Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: an approach to interfacial chemistry analysis via chemical bonding mapping,” J. Appl. Phys., vol. 105, p. 034311, 2009.Google Scholar
Teng, K-Y., Huang-Chin, C., Tzeng, G-C., et al., “Bias enhanced nucleation and growth processes for improving the electron field emission properties of diamond films,” J. Appl. Phys., vol. 111, p. 053701, 2012.CrossRefGoogle Scholar
Härtl, A., Schmich, E., Garrido, J. A., et al., “Protein modified nanocrystalline diamond thin films for biosensor applications,” Nat. Mater., vol. 3, p. 736, 2004.Google Scholar
Auciello, O., “Unpublished: Auciello’s wife defibrillator/pacemaker needed to be replaced in 2019, after only 6 years from implantation.”Google Scholar
Cogan, S. F., “Neural stimulation and recording electrodes,” Ann. Rev. Biomed. Eng., vol. 10, p. 275, 2008.Google Scholar
Lu, Y., Li, T., Zhao, X., et al., “Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces,” Biomaterials, vol. 31, p. 5169, 2010.Google Scholar
Hung, A., Greenberg, R., Zhou, D. M., Judy, J., and Talbot, N., “High-density array of micro-machined electrodes for neural stimulation,” US patent #7676274 B2, 2010.Google Scholar
Brunet, F., Germi, P., Pernet, M., et al., “The effect of boron doping on the lattice parameter of homoepitaxial diamond films,” Diam. Relat. Mater., vol. 7(6), p. 869, 1998.Google Scholar
Seo, J., Wu, H., Mikael, S., et al., “Thermal diffusion boron doping of single-crystal natural diamond,” J. Appl. Phys., vol. 119, p. 205703, 2016.Google Scholar
Cui, J., Ristein, J., and Ley, L., “Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface,” Phys. Rev. Lett., vol. 81, p. 429, 1998.Google Scholar
Sung, T., Popovici, G., Prelas, M. A., and Wilson, R. G., “Boron diffusion coefficient in diamond,” MRS Proc., vol. 416, p. 467, 1996.Google Scholar
Popovici, G., Sung, T., Khasawinah, S., Prelas, M. A., and Wilson, R. G., “Forced diffusion of impurities in natural diamond and polycrystalline diamond films,” J. Appl. Phys., vol. 77, p. 5625, 1995.Google Scholar
Garrett, D. J., Saunders, A. L., McGowan, C., et al., “In vivo biocompatibility of boron-doped and nitrogen included conductive-diamond for use in medical implants,” J. Biomed. Mater. Res B, vol. 1048 (1), p, 19, 2015.Google Scholar
Mateti, S., Wong, C. S., Liu, Z., et al., “Biocompatibility of boron nitride nanosheets,” Nano Res., vol. 11, p. 334, 2018.Google Scholar
Okano, K., Koizumi, S., Silva, S. R., and Amaratunga, G. A. J., “Low threshold cold cathodes made of nitrogen-doped chemical-vapor-deposited diamond,” Nature, vol. 398, p. 140, 1996.CrossRefGoogle Scholar
Koizumi, S., Kamo, M., Sato, Y., Ozaki, H., and Inuzuka, T., “Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films,” Appl. Phys. Lett., vol. 71, p. 1065, 1997.CrossRefGoogle Scholar
Yu, B. D., Miyamoto, Y., and Sugino, O., “Efficient n-type doping of diamond using surfactant-mediated epitaxial growth,” Appl. Phys. Lett., vol. 76, p. 976, 2000.Google Scholar
Prins, J. F., “N-type semiconducting diamond by means of oxygen-ion implantation,” Phys. Rev. B, vol. 61, p. 719, 2000.Google Scholar
Collins, T. and Lightowlers, E. C., “Electrical properties,” in The Properties of Diamond, Field, J. E., Ed. London: Academic Press, pp. 79, 1979.Google Scholar
Prawer, S., Uzan-Saguy, C., Braunstein, G., and Kalish, R., “Can n-type doping of diamond be achieved by Li or Na ion implantation?,” Appl. Phys. Lett., vol. 63, p. 2502, 1993.Google Scholar
Koizumi, S., Kamo, M., Sato, Y., et al., “Growth and characterization of phosphorus doped n-type diamond thin films,” Diam. Relat. Mater., vol. 7 (2–5), p. 540, 1998.Google Scholar
Childers, D. L., Corman, J., Edwards, M., and Elser, J. J., “Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle,” Bio Science, vol. 61, p. 117, 2011.Google Scholar
Shao, J., Xie, H., Huang, H., et al., “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun., 2016. DOI: 10.1038/ncomms12967.Google Scholar
Island, J. O., Steele, G.A., van der Zant, H. S., and Castellanos-Gomez, A.. “Environmental instability of few-layer black phosphorus,” 2D Mater., vol. 2, p. 011002, 2015.Google Scholar
Ling, X., Wang, H., Huang, S., Xia, F., and Dresselhaus, M. S., “The renaissance of black phosphorus,” Proc. Natl Acad. Sci. USA, vol. 112, p. 4523, 2015.Google Scholar
Pravst, I., “Risking public health by approving some health claims? The case of phosphorus,” Food Policy, vol. 36, p. 726, 2011.Google Scholar
Dresselhaus, M. S. and Kalish, R., Ion Implantation in Diamond, Graphite and Related Materials. Berlin: Springer, 1992.Google Scholar
Birrell, J., Carlisle, J. A., Auciello, O., Gruen, D. M., and Gibson, J. M., “Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond,” Appl. Phys. Lett., 81, p. 2235, 2002.CrossRefGoogle Scholar
Coffman, F. L., Cao, R., Pianetta, P. A., et al. “Near edge X-ray absorption of carbon materials for determining bond hybridization in mixed sp2/s3 bonded materials,” Appl. Phys. Lett., vol. 69, p. 568, 1996.Google Scholar
Nemanich, R. J., Glass, J. T., and Lucovsky, G., “Raman scattering characterization of carbon bonding in diamond and diamond-like films,” J. Vac. Sci. Technol. A, vol. 6, p. 1783, 1988.Google Scholar
Zapol, P., Sternberg, M., Curtiss, L. A., Frauenhein, T., and Gruen, D. M., “Tight binding molecular dynamics simulation of impurities in ultranancrystalline diamond grain boundaries," Phys. Rev. B, vol. 65, p. 045403, 2001.Google Scholar
Heck, P. R., Staderman, F. J., Isheim, D., et al., “Atom-probe analyses of nanodiamonds from Allende,” Meteorit. Planet. Sci., vol. 49(3), p. 453, 2014.Google Scholar
Gicquel, A., Silva, F., and Hassouni, K., “Diamond growth mechanism in various environments,” J. Electrochem. Soc., vol. 147, p. 2218, 2000.Google Scholar
Choy, T. C., Stoneham, A. M., Ortuno, M., and Somoza, A. M., “Negative magnetoresistance in ultrananocrystalline diamond: strong or weak localization?,” Appl. Phys. Lett., vol. 92, p. 012120, 2008.Google Scholar
Bhattacharyya, S., “Two-dimensional transport in disordered carbon and nanocrystalline diamond films,” Phys. Rev. B, vol. 77, p. 233407, 2008.Google Scholar
Shah, K. V., Churochkin, D., Chiguvare, Z., and Bhattacharyya, S., “Anisotropic weakly localized transport in nitrogen-doped ultrananocrystalline diamond films,” Phys. Rev. B, vol. 82, p. 184206, 2010.Google Scholar
Yuan, W., Fang, L., Feng, Z., et al., “Highly conductive nitrogen-doped ultrananocrystalline diamond films with enhanced field emission properties: triethylamine as a new nitrogen source,” J. Mater. Chem. C, vol. 4, p. 4778, 2016.Google Scholar
Jothiramalingan, K., Haenen, S., and Haenen, K, “Nitrogen incorporated ultrananocrystalline films for field electron emission applications,” in Diamond: Novel Applications of Diamond, Yang, N., Ed. Siegen: Springer, p. 123, 2015.Google Scholar
Sankaran, K. J., Kurian, J., Chen, H. C., et al., “Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma,” J. Phys. D Appl. Phys., vol. 45, p. 365303, 2012.Google Scholar
Wang, C. S., Tong, G. H., Chen, H. C., Shih, W. C., and Lin, I. N., “Effect of N2 addition in Ar plasma on the development of microstructure of ultra-nanocrystalline diamond films,” Diam. Relat. Mater., vol. 19, p. 147, 2010.Google Scholar
Huang, B.-R., Chia, C-T., Chang, M-C., and Cheng, C-L., “Bias effects on large area polycrystalline diamond films synthesized by the bias enhanced growth technique,” Diam. Relat. Mater., vol. 12, p. 26, 2003.Google Scholar
Alves, R., Amorim, A., Eichenberger Neto, J., et al., “Filmes de diamante CVD em grandes áreas obtidos por crescimentos sucessivos em etapas,” Matéria Rio J., vol. 13 (3), p. 569, 2008.Google Scholar
Weng, J., Liu, F., Xiong, L. W., Wang, J. H., and Sun, Q., “Deposition of large area uniform diamond films by microwave plasma CVD,” Vacuum, vol. 147, p. 134, 2018.Google Scholar
Suna, Q. and Wang, J., “Study on the large area diamond film deposition in a self built overmoded microwave power chemical vapor deposition device,” Chem. Eng. Trans., vol. 62, p. 1129, 2017.Google Scholar
Lee, S. T., Lam, Y. W., Lin, Z., Chen, Y., and Chen, Q., “Pressure effect on diamond nucleation in a hot-filament CVD system,” Phys. Rev. B, vol. 55, p. 15937, 1997.Google Scholar
Schwarz, S., Rosiwal, S. M., Frank, M., Breidt, D., and Singer, R. F., “Dependence of the growth rate, quality, and morphology of diamond coatings on the pressure during the CVD-process in an industrial hot-filament plant,” Diam. Relat. Mater., vol. 11, 589, 2002.Google Scholar
Hao, T., Zhang, H., Shi, C., and Han, G., “Nano-crystalline diamond films synthesized at low temperature and low pressure by hot filament chemical vapor deposition,” Surf. Coat. Tech., vol. 201, p. 801. 2006.Google Scholar
May, P. W., Smith, J. A., and Mankelevich, Y. A., “Deposition of NCD films using hot filament CVD and Ar/ CH4/H2 gas mixtures,” Diam. Relat. Mater., vol. 15, p. 345, 2006.CrossRefGoogle Scholar
Liang, X., Wang, L., Zhu, H., and Yang, D., “Effect of pressure on nanocrystalline diamond films deposition by hot filament CVD technique from CH4/H2 gas mixture,” Surf. Coat. Tech., vol. 202, p. 261, 2007.Google Scholar
Uppireddi, K., Weiner, B. R., and Morell, G., “Synthesis of nanocrystalline diamond films by DC plasma-assisted argon-rich hot filament chemical vapor deposition,” Diam. Relat. Mater., vol. 17, p. 55, 2008.Google Scholar
Barbosa, D. C., Almeida, F. A., Silva, R. F., et al., “Influence of substrate temperature on formation of ultrananocrystalline diamond films deposited by HFCVD argon-rich gas mixture,” Diam. Relat. Mater., vol. 18, p. 1283, 2009.Google Scholar
Barbosa, D. C., Hammer, P., Trava-Airoldi, V. J., and Corat, E. J., “The valuable role of renucleation rate in ultrananocrystalline diamond growth,” Diam. Relat. Mater., vol. 23, p. 112, 2012.Google Scholar
Alcantar-Peña, J. J., de Obaldia, E. Montes-Gutierrez, J., et al., “Fundamentals towards large area synthesis of multifunctional ultrananocrystalline diamond films via large area hot filament chemical vapor deposition bias enhanced nucleation/bias enhanced growth for fabrication of broad range of multifunctional devices,Diam. Relat. Mater., vol. 78, p. 1, 2017.Google Scholar
Naguib, N., Birrell, J., Elam, J., Carlisle, J. A., and Auciello, O., “Use of tungsten interlayer to enhance the initial nucleation and conformality of ultrananocrystalline diamond (UNCD) thin films,” US Patent #20070257265 A1.Google Scholar
Naguib, N. N., Elam, J. W., Birrell, J., et al. “Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers,” Chem. Phys. Lett., vol. 430, p. 345, 2006.Google Scholar
Fussstetter, H., Richter, H., and Umeno, M., “Sub-quarter-micron silicon issues in the 200/300 mm conversion era,” Microelectron. Eng., vol. 56 (1–2), p. 1, 2001.Google Scholar
Wallace, R. and Auciello, O., “Science and technology of high-dielectric constant (K) thin films for next generation CMOS,” in Thin films and Heterostructures for Oxide Electronics, Ogale, S.B., Ed. New York: Springer, p. 79, 2005.Google Scholar
Klauser, F., Steinmüller-Nethl, D., Kaindl, R., Bertel, E., and Memmel, N., “Raman studies of nano- and ultrananocrystalline diamond films grown by hot-filament CVD,” Chem. Vap. Depos., vol. 16 (4–6), p. 127, 2010.Google Scholar
Ferrari, A. C. and Robertson, J., “Interpretation of Raman spectra of disordered and amorphous carbon,Phys. Rev. B, vol. 61 (20), p. 14095. 2000.Google Scholar
Špatenka, P., Shur, H., Erker, G., and Rump, M., “Formation of hafnium carbide thin films by plasma enhanced chemical vapor deposition from bis(η-cyclopentadienyl) dimethyl hafnium as precursor,” Appl. Phys. Mater. Sci. Process., vol. 60 (3), p. 285, 1995.Google Scholar
Ramqvist, L., Hamrin, K., Johansson, G., Fahlman, A., and Nordling, C., “Charge transfer in transition metal carbides and related compounds studied by ESCA,” J. Phys. Chem. Solids, vol. 30 (7), 1835, 1969.Google Scholar
Jaffer, I. H., Fredenburgh, J. C., Hirsh, J., and Weitz, J. I., “Medical device-induced thrombosis: what causes it and how can we prevent it?,” J. Thrombosis Haemostasis, vol. 13 (Suppl. 1), p. S72, 2015.Google Scholar
Wilson, C. J., Clegg, R. E., Leavesley, D. I., and Pearcy, M. J., “Mediation of biomaterial–cell interactions by adsorbed proteins: a review,” Tissue Eng., vol. 11, p. 1, 2005.Google Scholar
Corum, L. E. and Hlady, V., “Screening platelet–surface interactions using negative surface charge gradients,Biomaterials, vol. 31(12), p. 3148, 2010.Google Scholar
Hughes, E., “Advances in hydrophilic and hydrophobic coatings for medical devices,” Medical Design Briefs Magazine, 2017.Google Scholar
Varney, M. W., Aslam, D. M., Janoudi, A., Chan, H.-Y., and Wang, D. H., “Polycrystalline-diamond MEMS biosensors including neural microelectrode-arrays,” Biosensors, vol. 1, p. 118, 2011.Google Scholar
Kang, W. P., Gurbuz, Y., Davidson, J. L., and Kerns, D. V., “A new hydrogen sensor using a polycrystalline diamond-based Schottky diode,” J. Electrochem. Soc., vol. 141, p. 2231, 1994.Google Scholar
Gurbuz, Y., Kang, W. P., Davidson, J. L., Kinser, D. L., and Kerns, D. V., “Diamond microelectronics gas sensors,” in 8th International Conference on Transducers, p. 745, 1995.Google Scholar
Guillauden, S., Zhu, X., and Aslam, D. A., “Fabrication of 2 µm wide polycrystalline diamond channels using silicon molds for micro-fluidic applications,” Diam. Relat. Mater., vol. 12, p. 65, 2003.Google Scholar
Gabriela Montano-Figueroa, A., Alcantar-Peña, J. J., Tirado, P., et al., “Tailoring of polycrystalline diamond surfaces from hydrophilic to superhydrophobic via synergistic chemical plus microstructuring processes,Carbon, vol. 139, p. 361, 2018.Google Scholar
Teli, K., Hori, M., and Goto, T., “Co-deposition on diamond film surface during reactive ion etching in SF6 and O2 plasmas,” J. Vac. Sci. Technol. A, vol. 18, p. 2779, 2000.Google Scholar
Popov, C., Vasilchina, H., Kulisch, W., et al., “Wettability and protein adsorption on ultrananocrystalline diamond/amorphous carbon composite films,” Diam. Relat. Mater., vol. 18, p. 895, 2009.Google Scholar
Osterovskaya, L., Perevertailo, V., Ralchenko, V., Saveliev, A., and Zhuraviev, V., “Wettability of nanocrystalline diamond films,” Diam. Relat. Mater., vol. 16, p. 2109, 2007.Google Scholar
Durant, S. F., Baranauskas, V., Peterlevitz, A. C., et al., “ Characterization of diamond fluorinated by glow discharge plasma treatment,” Diam. Relat. Mater., vol. 10, p. 490, 2001.Google Scholar
Fredman, A. and Stinespring, C. D., “Fluorination of diamond (100) by atomic and molecular beams, Appl. Phys. Lett.,” vol 57, p. 1194, 1990.Google Scholar
Denisenko, A., Romanyuk, A., Pietzka, C., Scharpf, J., and Kohn, E., “Surface structure and surface barrier characteristics of boron-doped diamond in electrolytes after CF4 plasma treatment in RF-barrel reactor,” Diam. Relat. Mater., vol. 19, p. 423, 2010.Google Scholar
Ando, T., Tanaka, J., Ishii, M., et al. “Diffuse reflectance Fourier-transform infrared study of the plasma-fluorination of diamond surfaces using a microwave discharge in CF4,” J. Chem. Soc. Faraday Trans., vol. 89, p. 3105, 1993.Google Scholar
Schvartzman, M., Mathur, A., Hone, J., Jahnes, C., and Wind, S. J., “Plasma fluorination of carbon-based materials for imprint and molding lithographic applications,” Appl. Phys. Lett., vol. 93, p. 153105, 2008.Google Scholar
Kulisch, W., Voss, A., Merker, D., et al., “Plasma surface fluorination of ultrananocrystalline diamond films,” Surf. Coat. Technology, vol. 302, p. 448, 2016.Google Scholar
Park, Y.-S., Son, H.-G., Kim, D.-H, et al., “Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface,” Appl. Surf. Sci., vol. 361, p. 269, 2016.Google Scholar
Nosonovsky, M. and Bhushan, B., “Biomimetic super-hydrophobic surfaces: multiscale approach,” Nano Lett., vol. 7, p. 2633, 2007.Google Scholar
Kim, J. and Choi, S.-O., “Super-hydrophobicity,” in Waterproof and Water Repellent Textiles and Clothing, Williams, J., Ed. Cambridge: Woodhead Publishing, p. 267, 2018.Google Scholar
Yang, Q., Xiao, C., and Hirose, A., “Plasma enhanced deposition of nano-structured carbon films,” Plasma Sci. Technol., 7(1), p. 2660, 2005.Google Scholar
Stoner, B. R. and Glass, J. T., “Textured diamond growth on (100) p-SiC via microwave plasma chemical vapor deposition,” Appl. Phys. Lett., vol. 60, p. 698, 1992.Google Scholar
Soga, T., Sharda, T., and Jimbo, T., “Precursors for CVD growth of nanocrystalline diamond,” Phys. Solid State, vol. 46(4), p. 720, 2004.CrossRefGoogle Scholar
Janischowsky, K., Ebert, W., and Kohn, E., “Bias enhanced nucleation of diamond on silicon (100) in a HFCVD system,” Diam. Relat. Mater., vol. 12(3–7), p. 336, 2003.Google Scholar
Uppireddi, K., Weiner, B. R., and Morell, G., “Synthesis of nanocrystalline diamond films by DC plasma-assisted argon-rich hot filament chemical vapor deposition,” Diam. Relat. Mater., vol. 17(1), p. 55. 2008.Google Scholar
Makris, T. D., Giorgi, R., Lisi, N., Pilloni, L., and Salernitano, E., “Bias enhanced nucleation of diamond on Si (100) in a vertical straight hot filament CVD,” Diam. Relat. Mater., vol. 14(3–7), p. 318, 2005.Google Scholar
Zhou, X. T., Lai, H. L., Peng, H.Y, et al. “Heteroepitaxial nucleation of diamond on Si (100) via double bias assisted hot filament chemical vapor deposition,” Diam. Relat. Mater., vol. 9(2), p. 134, 2000.Google Scholar
Pecoraro, S., Arnault, J. C., and Werckmann, J., “BEN-HFCVD diamond nucleation on Si (111) investigated by HRTEM and nano-diffraction,” Diam. Relat. Mater., vol. 14(2), p. 137, 2005.Google Scholar
Li, Y., Li, J., Wang, Q., Yang, Y., and Gu, C., “Controllable growth of nanocrystalline diamond films by hot filament chemical vapor deposition method,” J Nanosci. Nanotechnol., vol. 9(2), p. 1062, 2009.Google Scholar
Ansari, S. G., Anh, T. L., Seo, H-K., et al., “Growth kinetics of diamond film with bias enhanced nucleation and H2/CH4/Ar mixture in a hot-filament chemical vapor deposition system,” J Cryst. Growth, vol. 265(3–4), p. 563, 2004.Google Scholar
Robertson, J., Gerber, J., Sattel, S., et al., “Mechanism of bias-enhanced nucleation of diamond on Si,” Appl. Phys. Lett., vol. 66, p. 3287, 1995.Google Scholar
Gerber, J., Robertson, J., Sattel, S., and Ehrhardt, H., “Role of surface diffusion processes during bias-enhanced nucleation of diamond on Si,” Diam. Relat. Mater., vol. 5(3–5), p. 261, 1996.Google Scholar
García, M. M., Jiménez, I., Sánchez, O., Gómez-Aleixandre, C., and Vázquez, L., “Model of the bias-enhanced nucleation of diamond on silicon based on atomic force microscopy and x-ray-absorption studies,” Phys. Rev. B, vol. 61, p. 383, 2000.Google Scholar
Dash, T., Nayak, B. B., Abhangi, M., et al., “Preparation and neutronic studies of tungsten carbide composite,” Sci. Technol., vol. 65(2), p. 241, 2014.Google Scholar
de Luca, A., Poravoce, A., Texier, M., et al., “Tungsten diffusion in silicon,” J. Appl. Phys., vol. 115(1), p. 013501, 2014.Google Scholar
Liu, H. and Dandy, D. S., “Studies on nucleation process in diamond CVD: an overview of recent developments,” Diam. Relat. Mater., vol. 4(10), p. 1173, 1995.Google Scholar
Liu, Z., Li, P., Zhai, F., et al., “Amorphous carbon modified nano-sized tungsten carbide as a gas diffusion electrode catalyst for the oxygen reduction reaction,” RSC Adv., vol. 5(87), p. 70743, 2015.Google Scholar
Liu, S., Xie, S. E., Sun, J., Ning, C., and Jiang, Y., “A study on nano-nucleation and interface of diamond film prepared by hot filament assisted with radio frequency plasma,” Mater. Lett., vol. 57(11), p. 1662, 2003.Google Scholar
Koeck, F. A. M. and Nemanich, R. J., “Substrate–diamond interface considerations for enhanced thermionic electron emission from nitrogen doped diamond films,” J. Appl. Phys., vol. 112(11), p. 113707, 2012.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats