We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
Alberts, M J, Brass, L M, Perry, A, Webb, D, Dawson, D V. Evaluation times for patients with in-hospital strokes. Stroke. 1993; 24:1817–22.Google Scholar
2
Emiru, T, Adil, M M, Suri, M F, Qureshi, A I. Thrombolytic treatment for in-hospital ischemic strokes in United States. Journal of Vascular and Interventional Neurology. 2014; 7:28–34.Google ScholarPubMed
3
Kelley, R E, Kovacs, A G. Mechanism of in-hospital cerebral ischemia. Stroke. 1986; 17:430–3.Google Scholar
4
Barnwell, S L, Clark, W M, Nguyen, T T, et al.Safety and efficacy of delayed intraarterial urokinase therapy with mechanical clot disruption for thromboembolic stroke. American Journal of Neuroradiology. 1994; 15:1817–22.Google Scholar
5
Bavinzski, G, Killer, M, Ferraz-Leite, H, et al.Endovascular therapy of idiopathic cavernous aneurysms over 11 years. American Journal of Neuroradiology. 1998; 19:559–65.Google Scholar
6
Belan, A, Vesela, M, Vanek, I, Weiss, K, Peregrin, J H. Percutaneous transluminal angioplasty of fibromuscular dysplasia of the internal carotid artery. Cardiovascular and Interventional Radiology. 1982; 5:79–81.Google Scholar
7
Benati, A. Interventional neuroradiology for the treatment of inaccessible arterio-venous malformations. Acta Neurochirurgica. 1992; 118:76–9.Google Scholar
8
Brown, M M, Butler, P, Gibbs, J, Swash, M, Waterston, J. Feasibility of percutaneous transluminal angioplasty for carotid artery stenosis. Journal of Neurology, Neurosurgery, and Psychiatry. 1990; 53:238–43.Google Scholar
9
Casasco, A E, Aymard, A, Gobin, Y P, et al.Selective endovascular treatment of 71 intracranial aneurysms with platinum coils. Journal of Neurosurgery. 1993; 79:3–10.CrossRefGoogle ScholarPubMed
10
Cognard, C, Weill, A, Castaings, L, Rey, A, Moret, J. Intracranial berry aneurysms: Angiographic and clinical results after endovascular treatment. Radiology. 1998; 206:499–510.CrossRefGoogle ScholarPubMed
11
Crawley, F, Clifton, A, Buckenham, T, et al.Comparison of hemodynamic cerebral ischemia and microembolic signals detected during carotid endarterectomy and carotid angioplasty. Stroke. 1997; 28:2460–4.CrossRefGoogle ScholarPubMed
12
Crawley, F, Clifton, A, Markus, H, Brown, M M. Delayed improvement in carotid artery diameter after carotid angioplasty. Stroke. 1997; 28:574–9.CrossRefGoogle ScholarPubMed
13
Criado, F J, Wellons, E, Clark, N S. Evolving indications for and early results of carotid artery stenting. American Journal of Surgery. 1997; 174:111–14.Google Scholar
14
Cronqvist, M, Pierot, L, Boulin, A, et al.Local intraarterial fibrinolysis of thromboemboli occurring during endovascular treatment of intracerebral aneurysm: A comparison of anatomic results and clinical outcome. American Journal of Neuroradiology. 1998; 19:157–65.Google ScholarPubMed
15
Debrun, G, Vinuela, F, Fox, A, Drake, C G. Embolization of cerebral arteriovenous malformations with bucrylate. Journal of Neurosurgery. 1982; 56:615–27.Google Scholar
16
Debrun, G M, Aletich, V, Ausman, J I, Charbel, F, Dujovny, M. Embolization of the nidus of brain arteriovenous malformations with n-butyl cyanoacrylate. Neurosurgery. 1997; 40:112–20.Google Scholar
17
Debrun, G M, Aletich, V A, Kehrli, P, et al.Selection of cerebral aneurysms for treatment using Guglielmi detachable coils: The preliminary University of Illinois at Chicago experience. Neurosurgery. 1998; 43:1281–95.Google ScholarPubMed
18
Diethrich, E B, Ndiaye, M, Reid, D B. Stenting in the carotid artery: Initial experience in 110 patients. Journal of Endovascular Surgery. 1996; 3:42–62.2.0.CO;2>CrossRefGoogle ScholarPubMed
19
Dion, J E, Gates, P C, Fox, A J, Barnett, H J, Blom, R J. Clinical events following neuroangiography: A prospective study. Stroke. 1987; 18:997–1004.CrossRefGoogle ScholarPubMed
20
Earnest, F T, Forbes, G, Sandok, B A, et al.Complications of cerebral angiography: Prospective assessment of risk. American Journal of Roentgenology. 1984; 142:247–53.Google Scholar
21
Endo, S, Kuwayama, N, Hirashima, Y, et al.Results of urgent thrombolysis in patients with major stroke and atherothrombotic occlusion of the cervical internal carotid artery. American Journal of Neuroradiology. 1998; 19:1169–75.Google Scholar
22
Fournier, D, TerBrugge, K G, Willinsky, R, Lasjaunias, P, Montanera, W. Endovascular treatment of intracerebral arteriovenous malformations: Experience in 49 cases. Journal of Neurosurgery. 1991; 75:228–33.CrossRefGoogle ScholarPubMed
23
Fox, A J, Pelz, D M, Lee, D H. Arteriovenous malformations of the brain: Recent results of endovascular therapy. Radiology. 1990; 177:51–7.Google Scholar
24
Freitag, G, Freitag, J, Koch, R D, Wagemann, W. Percutaneous angioplasty of carotid artery stenoses. Neuroradiology. 1986; 28:126–7.Google Scholar
25
Frey, J L, Greene, K A, Khayata, M H, et al.Intrathrombus administration of tissue plasminogen activator in acute cerebrovascular occlusion. Angiology. 1995; 46:649–56.CrossRefGoogle ScholarPubMed
26
Gil-Peralta, A, Mayol, A, Marcos, J R, et al.Percutaneous transluminal angioplasty of the symptomatic atherosclerotic carotid arteries. Results, complications, and follow-up. Stroke. 1996; 27:2271–3.Google Scholar
27
Gobin, Y P, Laurent, A, Merienne, L, et al.Treatment of brain arteriovenous malformations by embolization and radiosurgery. Journal of Neurosurgery. 1996; 85:19–28.CrossRefGoogle ScholarPubMed
28
Graves, V B, Strother, C M, Duff, T A, Perl, J2nd. Early treatment of ruptured aneurysms with Guglielmi detachable coils: Effect on subsequent bleeding. Neurosurgery. 1995; 37:640–7.CrossRefGoogle ScholarPubMed
29
Guglielmi, G, Vinuela, F, Duckwiler, G, et al.Endovascular treatment of posterior circulation aneurysms by electrothrombosis using electrically detachable coils. Journal of Neurosurgery. 1992; 77:515–24.CrossRefGoogle ScholarPubMed
30
Gurian, J H, Martin, N A, King, W A, et al.Neurosurgical management of cerebral aneurysms following unsuccessful or incomplete endovascular embolization. Journal of Neurosurgery. 1995; 83:843–53.CrossRefGoogle ScholarPubMed
31
Guterman, L R, Budny, J L, Gibbons, K J, Hopkins, L N. Thrombolysis of the cervical internal carotid artery before balloon angioplasty and stent placement: Report of two cases. Neurosurgery. 1996; 38:620–3.Google Scholar
32
Heiserman, J E, Dean, B L, Hodak, J A, et al.Neurologic complications of cerebral angiography. American Journal of Neuroradiology. 1994; 15:1401–7.Google ScholarPubMed
33
Henry, M, Amor, M, Masson, I, et al.Angioplasty and stenting of the extracranial carotid arteries. Journal of Endovascular Surgery. 1998; 5:293–304.Google Scholar
34
Heras, M, Chesebro, J H, Penny, W J, et al.Importance of adequate heparin dosage in arterial angioplasty in a porcine model. Circulation. 1988; 78:654–60.Google Scholar
35
Higashida, R T, Halbach, V V, Barnwell, S L, et al.Treatment of intracranial aneurysms with preservation of the parent vessel: Results of percutaneous balloon embolization in 84 patients. American Journal of Neuroradiology. 1990; 11:633–40.Google Scholar
36
Higashida, R T, Halbach, V V, Cahan, L D, Hieshima, G B, Konishi, Y. Detachable balloon embolization therapy of posterior circulation intracranial aneurysms. Journal of Neurosurgery. 1989; 71:512–19.Google Scholar
37
Higashida, R T, Halbach, V V, Dowd, C, et al.Endovascular detachable balloon embolization therapy of cavernous carotid artery aneurysms: Results in 87 cases. Journal of Neurosurgery. 1990; 72:857–63.Google Scholar
38
Higashida, R T, Halbach, V V, Dowd, C F, Barnwell, S L, Hieshima, G B. Intracranial aneurysms: Interventional neurovascular treatment with detachable balloons – results in 215 cases. Radiology. 1991; 178:663–70.Google Scholar
39
Hodes, J E, Aymard, A, Gobin, Y P, et al.Endovascular occlusion of intracranial vessels for curative treatment of unclippable aneurysms: Report of 16 cases. Journal of Neurosurgery. 1991; 75:694–701.Google Scholar
40
Huang, Z, Dai, Q, Suo, J, et al.Percutaneous endovascular embolization of intracerebral arteriovenous malformations. Experience in 72 cases. Chinese Medical Journal. 1995; 108:413–19.Google Scholar
41
Jordan, W DJr., Schroeder, P T, Fisher, W S, McDowell, H A. A comparison of angioplasty with stenting versus endarterectomy for the treatment of carotid artery stenosis. Annals of Vascular Surgery. 1997; 11:2–8.Google Scholar
42
Jordan, W DJr., Voellinger, D C, Doblar, D D, et al.Microemboli detected by transcranial Doppler monitoring in patients during carotid angioplasty versus carotid endarterectomy. Cardiovascular Surgery. 1999; 7:33–8.CrossRefGoogle ScholarPubMed
43
Kachel, R, Basche, S, Heerklotz, I, Grossmann, K, Endler, S. Percutaneous transluminal angioplasty (PTA) of supra-aortic arteries especially the internal carotid artery. Neuroradiology. 1991; 33:191–4.Google Scholar
44
Kachel, R, Endert, G, Basche, S, Grossmann, K, Glaser, F H. Percutaneous transluminal angioplasty (dilatation) of carotid, vertebral, and innominate artery stenoses. Cardiovascular and Interventional Radiology. 1987; 10:142–6.Google Scholar
45
Kearon, C, Hirsh, J. Management of anticoagulation before and after elective surgery. New England Journal of Medicine. 1997; 336:1506–11.Google Scholar
46
Kesava, P, Graves, V, Salamat, S, Rappe, A. Intraarterial thrombolysis in a pig model: A preliminary note. American Journal of Neuroradiology. 1997; 18:915–20.Google Scholar
47
Klein, G E, Szolar, D H, Leber, K A, Karaic, R, Hausegger, K A. Basilar tip aneurysm: Endovascular treatment with Guglielmi detachable coils – midterm results. Radiology. 1997; 205:191–6.CrossRefGoogle ScholarPubMed
48
Klotzsch, C, Nahser, H C, Henkes, H, Kuhne, D, Berlit, P. Detection of microemboli distal to cerebral aneurysms before and after therapeutic embolization. American Journal of Neuroradiology. 1998; 19:1315–18.Google Scholar
49
Koenigsberg, R A, Wysoki, M, Weiss, J, Faro, S H, Tsai, F Y. Risk of clot formation in femoral arterial sheaths maintained overnight for neuroangiographic procedures. American Journal of Neuroradiology. 1999; 20:297–9.Google ScholarPubMed
50
Krupski, W C, Bass, A, Kelly, A B, Hanson, S R, Harker, L A. Reduction in thrombus formation by placement of endovascular stents at endarterectomy sites in baboon carotid arteries. Circulation. 1991; 84:1749–57.CrossRefGoogle ScholarPubMed
51
Kuether, T A, Nesbit, G M, Barnwell, S L. Clinical and angiographic outcomes, with treatment data, for patients with cerebral aneurysms treated with Guglielmi detachable coils: A single-center experience. Neurosurgery. 1998; 43:1016–25.Google Scholar
52
Lagalla, G, Ceravolo, M G, Provinciali, L, et al.Transcranial Doppler sonographic monitoring during cerebral aneurysm embolization: A preliminary report. American Journal of Neuroradiology. 1998; 19:1549–53.Google Scholar
53
Lam, J Y, Chesebro, J H, Steele, P M, et al.Deep arterial injury during experimental angioplasty: Relation to a positive indium-111-labeled platelet scintigram, quantitative platelet deposition and mural thrombosis. Journal of the American College of Cardiology. 1986; 8:1380–6.Google Scholar
54
Larson, J J, Tew, J MJr., Tomsick, T A, van Loveren, H R. Treatment of aneurysms of the internal carotid artery by intravascular balloon occlusion: Long-term follow-up of 58 patients. Neurosurgery. 1995; 36:26–30.Google Scholar
55
Lincoff, A M, Tcheng, J E, Califf, R M, et al.Standard versus low-dose weight-adjusted heparin in patients treated with the platelet glycoprotein IIb/IIIa receptor antibody fragment abciximab (c7E3 Fab) during percutaneous coronary revascularization. PROLOG investigators. American Journal of Cardiology. 1997; 79:286–91.CrossRefGoogle ScholarPubMed
56
Lundqvist, C, Wikholm, G, Svendsen, P. Embolization of cerebral arteriovenous malformations: Part II – aspects of complications and late outcome. Neurosurgery. 1996; 39:460–7.Google Scholar
57
Malisch, T W, Guglielmi, G, Vinuela, F, et al.Intracranial aneurysms treated with the Guglielmi detachable coil: Midterm clinical results in a consecutive series of 100 patients. Journal of Neurosurgery. 1997; 87:176–83.Google Scholar
58
Markus, H S, Clifton, A, Buckenham, T, Brown, M M. Carotid angioplasty. Detection of embolic signals during and after the procedure. Stroke. 1994; 25:2403–6.Google Scholar
59
Markus, H S, Clifton, A, Buckenham, T, Taylor, R, Brown, M M. Improvement in cerebral hemodynamics after carotid angioplasty. Stroke. 1996; 27:612–16.Google Scholar
60
Mathur, A, Roubin, G S, Gomez, C R, et al.Elective carotid artery stenting in the presence of contralateral occlusion. American Journal of Cardiology. 1998; 81:1315–17.CrossRefGoogle ScholarPubMed
61
Mathur, A, Roubin, G S, Iyer, S S, et al.Predictors of stroke complicating carotid artery stenting. Circulation. 1998; 97:1239–45.Google Scholar
62
McDougall, C G, Halbach, V V, Dowd, C F, et al.Treatment of basilar tip aneurysms using electrolytically detachable coils. Journal of Neurosurgery. 1996; 84:393–9.Google Scholar
63
Mericle, R A, Lanzino, G, Wakhloo, A K, Guterman, L R, Hopkins, L N. Stenting and secondary coiling of intracranial internal carotid artery aneurysm: Technical case report. Neurosurgery. 1998; 43:1229–34.CrossRefGoogle ScholarPubMed
64
Merland, J J, Rufenacht, D, Laurent, A, Guimaraens, L. Endovascular treatment with isobutyl cyano acrylate in patients with arteriovenous malformation of the brain. Indications, results and complications. Acta Radiologica. Supplementum. 1986; 369:621–2.Google Scholar
65
Moret, J, Pierot, L, Boulin, A, Castaings, L, Rey, A. Endovascular treatment of anterior communicating artery aneurysms using Guglielmi detachable coils. Neuroradiology. 1996; 38:800–5.Google Scholar
66
Munari, L M, Belloni, G, Perretti, A, et al.Carotid percutaneous angioplasty. Neurological Research. 1992; 14:156–8.Google Scholar
67
Nakstad, P H, Nornes, H. Superselective angiography, embolisation and surgery in treatment of arteriovenous malformations of the brain. Neuroradiology. 1994; 36:410–13.Google Scholar
68
Nesbit, G M, Clark, W M, O’Neill, O R, Barnwell, S L. Intracranial intraarterial thrombolysis facilitated by microcatheter navigation through an occluded cervical internal carotid artery. Journal of Neurosurgery. 1996; 84:387–92.Google Scholar
69
Nichols, D A, Brown, R DJr., Thielen, K R, et al.Endovascular treatment of ruptured posterior circulation aneurysms using electrolytically detachable coils. Journal of Neurosurgery. 1997; 87:374–80.Google Scholar
70
Pasqualin, A, Scienza, R, Cioffi, F, et al.Treatment of cerebral arteriovenous malformations with a combination of preoperative embolization and surgery. Neurosurgery. 1991; 29:358–68.CrossRefGoogle ScholarPubMed
71
Pelz, D M, Lownie, S P, Fox, A J. Thromboembolic events associated with the treatment of cerebral aneurysms with Guglielmi detachable coils. American Journal of Neuroradiology. 1998; 19:1541–7.Google Scholar
72
Pierot, L, Boulin, A, Castaings, L, Rey, A, Moret, J. Selective occlusion of basilar artery aneurysms using controlled detachable coils: Report of 35 cases. Neurosurgery. 1996; 38:948–53.Google Scholar
73
Raschke, R A, Reilly, B M, Guidry, J R, Fontana, J R, Srinivas, S. The weight-based heparin dosing nomogram compared with a “standard care” nomogram. A randomized controlled trial. Annals of Internal Medicine. 1993; 119:874–81.Google Scholar
74
Raymond, J, Roy, D. Safety and efficacy of endovascular treatment of acutely ruptured aneurysms. Neurosurgery. 1997; 41:1235–45.CrossRefGoogle ScholarPubMed
75
Raymond, J, Roy, D, Bojanowski, M, Moumdjian, R, L’Esperance, G. Endovascular treatment of acutely ruptured and unruptured aneurysms of the basilar bifurcation. Journal of Neurosurgery. 1997; 86:211–19.CrossRefGoogle ScholarPubMed
76
Raymond, J, Theron, J. Intracavernous aneurysms: Treatment by proximal balloon occlusion of the internal carotid artery. American Journal of Neuroradiology. 1986; 7:1087–92.Google Scholar
77
Rich, L F, Weimar, V L, Squires, E L, Haraguchi, K H. Stimulation of corneal wound healing with mesodermal growth factor. Archives of Ophthalmology. 1979; 97:1326–30.Google Scholar
78
Roubin, G S, Yadav, S, Iyer, S S, Vitek, J. Carotid stent-supported angioplasty: A neurovascular intervention to prevent stroke. American Journal of Cardiology. 1996; 78:8–12.Google Scholar
79
Rowe, J G, Byrne, J V, Molyneux, A, Rajagopalan, B. Haemodynamic consequences of embolizing aneurysms: A transcranial Doppler study. British Journal of Neurosurgery. 1995; 9:749–57.Google Scholar
80
Rowe, J G, Molyneux, A J, Byrne, J V, Renowden, S, Aziz, T Z. Endovascular treatment of intracranial aneurysms: A minimally invasive approach with advantages for elderly patients. Age and Ageing. 1996; 25:372–6.Google Scholar
81
Sawyer, P N, Stanczewski, B, Pomerance, A, Stoner, G, Srinivasan, S. Utility of anticoagulant drugs in vascular thrombosis: Electron microscopic and biophysical study. Surgery. 1973; 74:263–75.Google Scholar
82
Scarborough, R M, Rose, J W, Hsu, M A, et al.Barbourin. A GPIIB-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. Journal of Biological Chemistry. 1991; 266:9359–62.Google Scholar
83
Schatz, R A, Baim, D S, Leon, M, et al.Clinical experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation. 1991; 83:148–61.Google Scholar
84
Schlossman, D. Thrombogenic properties of vascular catheter materials in vivo. The differences between materials. Acta Radiologica: Diagnosis. 1973; 14:186–92.Google Scholar
85
Schomig, A, Neumann, F J, Kastrati, A, al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. New England Journal of Medicine. 1996; 334:1084–9.Google Scholar
86
Schumacher, M, Horton, J A. Treatment of cerebral arteriovenous malformations with PVA. Results and analysis of complications. Neuroradiology. 1991; 33:101–5.Google Scholar
87
Segi, E, Sugimoto, Y, Yamasaki, A, et al.Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochemical and Biophysical Research Communications. 1998; 246:7–12.Google Scholar
88
Serbinenko, F A. Balloon catheterization and occlusion of major cerebral vessels. Journal of Neurosurgery. 1974; 41:125–45.Google Scholar
89
Serruys, P W, de Jaegere, P, Kiemeneij, F, et al.A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent study group. New England Journal of Medicine. 1994; 331:489–95.Google Scholar
90
Sharis, P J, Cannon, C P, Loscalzo, J. The antiplatelet effects of ticlopidine and clopidogrel. Annals of Internal Medicine. 1998; 129:394–405.Google Scholar
91
Smedema, J P, Saaiman, A. Carotid stent-assisted angioplasty. South African Medical Journal. 1997; 87 Suppl 1:C9–14.Google Scholar
92
Smith, D C, Smith, L L, Hasso, A N. Fibromuscular dysplasia of the internal carotid artery treated by operative transluminal balloon angioplasty. Radiology. 1985; 155:645–8.Google Scholar
93
Smyth, S S, Joneckis, C C, Parise, L V. Regulation of vascular integrins. Blood. 1993; 81:2827–43.Google Scholar
94
Sobel, M, McNeill, P M, Carlson, P L, et al.Heparin inhibition of von Willebrand factor-dependent platelet function in vitro and in vivo. Journal of Clinical Investigation. 1991; 87:1787–93.CrossRefGoogle Scholar
95
Speidel, C M, Eisenberg, P R, Ruf, W, Edgington, T S, Abendschein, D R. Tissue factor mediates prolonged procoagulant activity on the luminal surface of balloon-injured aortas in rabbits. Circulation. 1995; 92:3323–30.Google Scholar
96
Spetzler, R F, Martin, N A, Carter, L P, et al.Surgical management of large AVM’s by staged embolization and operative excision. Journal of Neurosurgery. 1987; 67:17–28.Google Scholar
97
Stormorken, H. Effects of contrast media on the hemostatic and thrombotic mechanisms. Investigative Radiology. 1988; 23 Suppl 2:S318–25.Google Scholar
98
Taki, W, Nishi, S, Yamashita, K, et al.Selection and combination of various endovascular techniques in the treatment of giant aneurysms. Journal of Neurosurgery. 1992; 77:37–42.Google Scholar
99
Teitelbaum, G P, Lefkowitz, M A, Giannotta, S L. Carotid angioplasty and stenting in high-risk patients. Surgical Neurology. 1998; 50:300–11.Google Scholar
100
Theodotou, B C, Whaley, R, Mahaley, M S. Complications following transfemoral cerebral angiography for cerebral ischemia. Report of 159 angiograms and correlation with surgical risk. Surgical Neurology. 1987; 28:90–2.Google Scholar
101
Theron, J, Courtheoux, P, Alachkar, F, Bouvard, G, Maiza, D. New triple coaxial catheter system for carotid angioplasty with cerebral protection. American Journal of Neuroradiology. 1990; 11:869–74.Google Scholar
102
Theron, J G, Payelle, G G, Coskun, O, Huet, H F, Guimaraens, L. Carotid artery stenosis: Treatment with protected balloon angioplasty and stent placement. Radiology. 1996; 201:627–36.Google Scholar
103
Theroux, P. Antiplatelet therapy: Do the new platelet inhibitors add significantly to the clinical benefits of aspirin?American Heart Journal. 1997; 134:S62–70.Google Scholar
104
Theroux, P, Waters, D, Lam, J, Juneau, M, McCans, J. Reactivation of unstable angina after the discontinuation of heparin. New England Journal of Medicine. 1992; 327:141–5.Google Scholar
105
Thielen, K R, Nichols, D A, Fulgham, J R, Piepgras, D G. Endovascular treatment of cerebral aneurysms following incomplete clipping. Journal of Neurosurgery. 1997; 87:184–9.Google Scholar
106
Topol, E J. Ultrathrombolysis. Journal of the American College of Cardiology. 1990; 15:922–4.CrossRefGoogle ScholarPubMed
107
Topol, E J, Bonan, R, Jewitt, D, et al.Use of a direct antithrombin, hirulog, in place of heparin during coronary angioplasty. Circulation. 1993; 87:1622–9.Google Scholar
108
Touho, H. Percutaneous transluminal angioplasty in the treatment of atherosclerotic disease of the anterior cerebral circulation and hemodynamic evaluation. Journal of Neurosurgery. 1995; 82:953–60.Google Scholar
109
Tournade, A, Courtheoux, P, Sengel, C, Ozgulle, S, Tajahmady, T. Saccular intracranial aneurysms: Endovascular treatment with mechanical detachable spiral coils. Radiology. 1997; 202:481–6.Google Scholar
110
Tsai, F Y, Matovich, V, Hieshima, G, et al.Percutaneous transluminal angioplasty of the carotid artery. American Journal of Neuroradiology. 1986; 7:349–58.Google Scholar
111
Turpie, A G. Successors to heparin: New antithrombotic agents. American Heart Journal. 1997; 134:S71–77.Google Scholar
112
Van Belle, E, Tio, F O, Chen, D, et al.Passivation of metallic stents after arterial gene transfer of phVEGF165 inhibits thrombus formation and intimal thickening. Journal of the American College of Cardiology. 1997; 29:1371–9.Google Scholar
113
Vinuela, F, Dion, J E, Duckwiler, G, et al.Combined endovascular embolization and surgery in the management of cerebral arteriovenous malformations: Experience with 101 cases. Journal of Neurosurgery. 1991; 75:856–64.Google Scholar
114
Vinuela, F, Duckwiler, G, Mawad, M. Guglielmi detachable coil embolization of acute intracranial aneurysm: Perioperative anatomical and clinical outcome in 403 patients. Journal of Neurosurgery. 1997; 86:475–82.Google Scholar
115
Vorchheimer, D A, Badimon, JJ, Fuster, V. Platelet glycoprotein IIb/IIIa receptor antagonists in cardiovascular disease. JAMA. 1999; 281:1407–14.Google Scholar
116
Vozzi, C R, Rodriguez, A O, Paolantonio, D, Smith, J A, Wholey, M H. Extracranial carotid angioplasty and stenting. Initial results and short-term follow-up. Texas Heart Institute Journal. 1997; 24:167–72.Google Scholar
117
Waigand, J, Gross, C M, Uhlich, F, et al.Elective stenting of carotid artery stenosis in patients with severe coronary artery disease. European Heart Journal. 1998; 19:1365–70.Google Scholar
118
Wallace, R C, Flom, R A, Khayata, M H, et al.The safety and effectiveness of brain arteriovenous malformation embolization using acrylic and particles: The experiences of a single institution. Neurosurgery. 1995; 37:606–15.Google Scholar
119
Wardlaw, J M, Warlow, C P, Counsell, C. Systematic review of evidence on thrombolytic therapy for acute ischaemic stroke. Lancet. 1997; 350:607–14.Google Scholar
120
Warkentin, T E, Levine, M N, Hirsh, J, et al.Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. New England Journal of Medicine. 1995; 332:1330–5.Google Scholar
121
Weitz, J I. Low-molecular-weight heparins. New England Journal of Medicine. 1997; 337:688–98.Google Scholar
122
Weitz, J I, Hudoba, M, Massel, D, Maraganore, J, Hirsh, J. Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. Journal of Clinical Investigation. 1990; 86:385–91.Google Scholar
123
Wholey, M H, Wholey, M H, Jarmolowski, C R, et al.Endovascular stents for carotid artery occlusive disease. Journal of Endovascular Surgery. 1997; 4:326–38.Google Scholar
124
Wikholm, G, Lundqvist, C, Svendsen, P. Embolization of cerebral arteriovenous malformations: Part I – technique, morphology, and complications. Neurosurgery. 1996; 39:448–57.Google Scholar
125
Wityk, R J, Pessin, M S, Kaplan, R F, Caplan, L R. Serial assessment of acute stroke using the NIH stroke scale. Stroke. 1994; 25:362–5.Google Scholar
126
Yadav, J S, Roubin, G S, King, P, Iyer, S, Vitek, J. Angioplasty and stenting for restenosis after carotid endarterectomy. Initial experience. Stroke. 1996; 27:2075–9.Google Scholar
127
Yakes, W F, Krauth, L, Ecklund, J, et al.Ethanol endovascular management of brain arteriovenous malformations: Initial results. Neurosurgery. 1997; 40:1145–52.Google Scholar
128
Yalamanchili, K, Rosenwasser, R H, Thomas, J E, et al.Frequency of cerebral vasospasm in patients treated with endovascular occlusion of intracranial aneurysms. American Journal of Neuroradiology. 1998; 19:553–8.Google Scholar
129
CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet. 1996; 348:1329–39.Google Scholar
130
Ansara, A J, Shiltz, D L, Slavens, J B. Use of cilostazol for secondary stroke prevention: An old dog with new tricks?Annals of Pharmacotherapy. 2012; 46:394–402.CrossRefGoogle ScholarPubMed
131
Gotoh, F, Tohgi, H, Hirai, S, et al.Cilostazol stroke prevention study: A placebo-controlled double-blind trial for secondary prevention of cerebral infarction. Journal of Stroke and Cerebrovascular Diseases. 2000; 9:147–57.Google Scholar
132
Dinicolantonio, J J, Lavie, C J, Fares, H, et al.Meta-analysis of cilostazol versus aspirin for the secondary prevention of stroke. American Journal of Cardiology. 2013; 112:1230–4.Google Scholar
133
Kamal, A K, Naqvi, I, Husain, M R, Khealani, B A. Cilostazol versus aspirin for secondary prevention of vascular events after stroke of arterial origin. Cochrane Database of Systematic Reviews. 2011; CD008076.Google Scholar
134
Ikeda, Y. Antiplatelet therapy using cilostazol, a specific PPE3 inhibitor. Thrombosis and Haemostasis. 1999; 82:435–8.Google Scholar
135
Jeng, J S, Sun, Y, Lee, J T, et al.The efficacy and safety of cilostazol in ischemic stroke patients with peripheral arterial disease (SPAD): Protocol of a randomized, double-blind, placebo-controlled multicenter trial. International Journal of Stroke. 2015; 10:123–7.Google Scholar
136
Lefkovits, J, Plow, E F, Topol, E J. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. New England Journal of Medicine. 1995; 332:1553–9.Google Scholar
137
PRISM-PLUS study investigators. Inhibition of the platelet glycoprotein IIb/IIIa receptor with tirofiban in unstable angina and non-Q-wave myocardial infarction. Platelet receptor inhibition in ischemic syndrome management in patients limited by unstable signs and symptoms (PRISM-PLUS). New England Journal of Medicine. 1998; 338:1488–97.Google Scholar
138
Ciccone, A, Motto, C, Abraha, I, Cozzolino, F, Santilli, I. Glycoprotein IIb-IIIa inhibitors for acute ischaemic stroke. Cochrane Database of Systematic Reviews. 2014; 3:CD005208.Google Scholar
139
Adams, H PJr., Effron, M B, Torner, J, et al.Emergency administration of abciximab for treatment of patients with acute ischemic stroke: Results of an international phase III trial: Abciximab in emergency treatment of stroke trial (ABESTT-II). Stroke. 2008; 39:87–99.Google Scholar
140
Velat, G J, Burry, M V, Eskioglu, E, et al.The use of abciximab in the treatment of acute cerebral thromboembolic events during neuroendovascular procedures. Surgical Neurology. 2006; 65:352–8.Google Scholar
141
Siebler, M, Hennerici, M G, Schneider, D, et al.Safety of tirofiban in acute ischemic stroke: The SATIS trial. Stroke. 2011; 42:2388–92.CrossRefGoogle ScholarPubMed
142
Kellert, L, Hametner, C, Rohde, S, et al.Endovascular stroke therapy: Tirofiban is associated with risk of fatal intracerebral hemorrhage and poor outcome. Stroke. 2013; 44:1453–5.Google Scholar
143
Cannon, C P. Oral platelet glycoprotein IIb/IIIa receptor inhibitors – part I. Clinical Cardiology. 2003; 26:358–64.Google Scholar
144
Second, S I. Randomized trial of aspirin, sibrafiban, or both for secondary prevention after acute coronary syndromes. Circulation. 2001; 103:1727–33.Google Scholar
145
Cannon, C P, McCabe, C H, Wilcox, R G, et al.Oral glycoprotein IIb/IIIa inhibition with orbofiban in patients with unstable coronary syndromes (OPUS-TIMI 16) trial. Circulation. 2000; 102:149–56.Google Scholar
146
O’Neill, W W, Serruys, P, Knudtson, M, et al.Long-term treatment with a platelet glycoprotein-receptor antagonist after percutaneous coronary revascularization. EXCITE trial investigators. Evaluation of oral xemilofiban in controlling thrombotic events. New England Journal of Medicine. 2000; 342:1316–24.Google Scholar
147
Mousa, S A, Khurana, S, Forsythe, M S. Comparative in vitro efficacy of different platelet glycoprotein IIb/IIIa antagonists on platelet-mediated clot strength induced by tissue factor with use of thromboelastography: Differentiation among glycoprotein IIb/IIIa antagonists. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000; 20:1162–7.Google Scholar
148
The SYMPHONY investigators. Comparison of sibrafiban with aspirin for prevention of cardiovascular events after acute coronary syndromes: A randomised trial. Sibrafiban versus aspirin to yield maximum protection from ischemic heart events post-acute coronary syndromes. Lancet. 2000; 355:337–45.Google Scholar
149
Chew, D P, Bhatt, D L, Sapp, S, Topol, E J. Increased mortality with oral platelet glycoprotein IIb/IIIa antagonists: A meta-analysis of phase III multicenter randomized trials. Circulation. 2001; 103:201–6.Google Scholar
150
Saw, J, Bajzer, C, Casserly, I P, et al.Evaluating the optimal activated clotting time during carotid artery stenting. American Journal of Cardiology. 2006; 97:1657–60.Google Scholar
151
Batchelor, W B, Mahaffey, K W, Berger, P B, et al.A randomized, placebo-controlled trial of enoxaparin after high-risk coronary stenting: The ATLAST trial. Journal of the American College of Cardiology. 2001; 38:1608–13.Google Scholar
152
Hassan, A E, Memon, M Z, Georgiadis, A L, et al.Safety and tolerability of high-intensity anticoagulation with bivalirudin during neuroendovascular procedures. Neurocritical Care. 2011; 15:96–100.Google Scholar
153
Zidar, J P. Rationale for low-molecular weight heparin in coronary stenting. American Heart Journal. 1997; 134:S81–87.Google Scholar
154
McDougall, C G, Johnston, S C, Gholkar, A, et al.Bioactive versus bare platinum coils in the treatment of intracranial aneurysms: The MAPS (matrix and platinum science) trial. American Journal of Neuroradiology. 2014; 35:935–42.Google Scholar
155
Molyneux, A J, Clarke, A, Sneade, M, et al.Cerecyte coil trial: Angiographic outcomes of a prospective randomized trial comparing endovascular coiling of cerebral aneurysms with either cerecyte or bare platinum coils. Stroke. 2012; 43:2544–50.Google Scholar
156
Coley, S, Sneade, M, Clarke, A, et al.Cerecyte coil trial: Procedural safety and clinical outcomes in patients with ruptured and unruptured intracranial aneurysms. American Journal of Neuroradiology. 2012; 33:474–80.Google Scholar
157
Butteriss, D, Gholkar, A, Mitra, D, Birchall, D, Jayakrishnan, V. Single-center experience of cerecyte coils in the treatment of intracranial aneurysms: Initial experience and early follow-up results. American Journal of Neuroradiology. 2008; 29:53–5.Google Scholar
158
Kallmes, D F, Ding, Y H, Dai, D, et al.A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke. 2007; 38:2346–52.Google Scholar
159
Nelson, P K, Lylyk, P, Szikora, I, et al.The pipeline embolization device for the intracranial treatment of aneurysms trial. American Journal of Neuroradiology. 2011; 32:34–40.Google Scholar
160
De Vries, J, Boogaarts, J, Van Norden, A, Wakhloo, A K. New generation of flow diverter (surpass) for unruptured intracranial aneurysms: A prospective single-center study in 37 patients. Stroke. 2013; 44:1567–77.Google Scholar
161
Darsaut, T E, Bing, F, Makoyeva, A, et al.Flow diversion to treat aneurysms: The free segment of stent. Journal of Neurointerventional Surgery. 2013; 5:452–7.Google Scholar
162
Augsburger, L, Farhat, M, Reymond, P, et al.Effect of flow diverter porosity on intraaneurysmal blood flow. Klinische Neuroradiologie. 2009; 19:204–14.Google Scholar
163
Walcott, B P, Pisapia, J M, Nahed, B V, Kahle, K T, Ogilvy, C S. Early experience with flow diverting endoluminal stents for the treatment of intracranial aneurysms. Journal of Clinical Neuroscience. 2011; 18:891–4.Google Scholar
164
McAuliffe, W, Wycoco, V, Rice, H, et al.Immediate and midterm results following treatment of unruptured intracranial aneurysms with the pipeline embolization device. American Journal of Neuroradiology. 2012; 33:164–70.Google Scholar
165
Stabile, E, Salemme, L, Sorropago, G, et al.Proximal endovascular occlusion for carotid artery stenting: Results from a prospective registry of 1,300 patients. Journal of the American College of Cardiology. 2010; 55:1661–7.Google Scholar
166
Ang, L, Mahmud, E. Monitoring oral antiplatelet therapy: Is it justified?Therapeutic Advances in Cardiovascular Disease. 2008; 2:485–96.Google Scholar
167
Smith, J W, Steinhubl, S R, Lincoff, A M, et al.Rapid platelet-function assay: An automated and quantitative cartridge-based method. Circulation. 1999; 99:620–5.Google Scholar
168
Antman, E M, Wiviott, S D, Murphy, S A, et al.Early and late benefits of prasugrel in patients with acute coronary syndromes undergoing percutaneous coronary intervention: A triton-timi 38 (trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-thrombolysis in myocardial infarction) analysis. Journal of the American College of Cardiology. 2008; 51:2028–33.Google Scholar
169
Steinhubl, S R, Talley, J D, Braden, G A, et al.Point-of-care measured platelet inhibition correlates with a reduced risk of an adverse cardiac event after percutaneous coronary intervention: Results of the GOLD (AU-Assessing Ultegra) multicenter study. Circulation. 2001; 103:2572–8.Google Scholar
Simon, D I, Liu, C B, Ganz, P, et al.A comparative study of light transmission aggregometry and automated bedside platelet function assays in patients undergoing percutaneous coronary intervention and receiving abciximab, eptifibatide, or tirofiban. Catheterization and Cardiovascular Interventions. 2001; 52:425–32.Google Scholar
172
Mukherjee, D, Chew, D P, Robbins, M, et al.Clinical application of procedural platelet monitoring during percutaneous coronary intervention among patients at increased bleeding risk. Journal of Thrombosis and Thrombolysis. 2001; 11:151–4.Google Scholar
173
Pandya, D J, Fitzsimmons, B F, Wolfe, T J, et al.Measurement of antiplatelet inhibition during neurointerventional procedures: The effect of antithrombotic duration and loading dose. Journal of Neuroimaging. 2010; 20:64–9.Google Scholar
174
Lee, D H, Arat, A, Morsi, H, et al.Dual antiplatelet therapy monitoring for neurointerventional procedures using a point-of-care platelet function test: A single-center experience. American Journal of Neuroradiology. 2008; 29:1389–94.Google Scholar
175
Hill, M D, Martin, R H, Mikulis, D, et al.Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): A phase 2, randomised, double-blind, placebo-controlled trial. Lancet. Neurology. 2012; 11:942–50.Google Scholar
176
Qureshi, A I, Luft, A R, Sharma, M, et al.Prevention and treatment of thromboembolic and ischemic complications associated with endovascular procedures: Part II – clinical aspects and recommendations. Neurosurgery. 2000; 46:1360–75.Google Scholar
177
Qureshi, A I, Janardhan, V, Memon, M Z, et al.Initial experience in establishing an academic neuroendovascular service: Program building, procedural types, and outcomes. Journal of Neuroimaging. 2009; 19:72–9.Google Scholar
178
Silver, F L, Mackey, A, Clark, W M, et al.Safety of stenting and endarterectomy by symptomatic status in the carotid revascularization endarterectomy versus stenting trial (CREST). Stroke. 2011; 42:675–80.Google Scholar
179
Bonati, L H, Jongen, L M, Haller, S, et al.New ischaemic brain lesions on MRI after stenting or endarterectomy for symptomatic carotid stenosis: A substudy of the International Carotid Stenting Study (ICSS). Lancet. Neurology. 2010; 9:353–62.Google Scholar
180
Economopoulos, K P, Sergentanis, T N, Tsivgoulis, G, Mariolis, A D, Stefanadis, C. Carotid artery stenting versus carotid endarterectomy: A comprehensive meta-analysis of short-term and long-term outcomes. Stroke. 2011; 42:687–92.Google Scholar
181
Halliday, A, Mansfield, A, Marro, J, et al.Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial. Lancet. 2004; 363:1491–502.Google Scholar
182
Rothwell, P M, Eliasziw, M, Gutnikov, S A, et al.Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet. 2003; 361:107–16.Google Scholar
183
Yadav, J S, Wholey, M H, Kuntz, R E, et al.Protected carotid-artery stenting versus endarterectomy in high-risk patients. New England Journal of Medicine. 2004; 351:1493–501.Google Scholar
184
Mas, J L, Chatellier, G, Beyssen, B, EVA-35 Investigators. Carotid angioplasty and stenting with and without cerebral protection: Clinical alert from the Endarterectomy Versus Angioplasty in Patients with Symptomatic Severe Carotid Stenosis (EVA-3S) Trial. Stroke. 2004; 35:e18–20.Google Scholar
185
Matsumura, J S, Gray, W, Chaturvedi, S, et al.Results of carotid artery stenting with distal embolic protection with improved systems: Protected Carotid Artery Stenting in Patients at High Risk for Carotid Endarterectomy (PROTECT) Trial. Journal of Vascular Surgery. 2012; 55:968–76.Google Scholar
186
Myla, S, Bacharach, J M, Ansel, G M, et al.Carotid artery stenting in high surgical risk patients using the fibernet embolic protection system: The EPIC trial results. Catheterization and Cardiovascular Interventions. 2010; 75:817–22.Google Scholar
187
Higashida, R T, Popma, J J, Apruzzese, P, Zimetbaum, P; MAVErIC I and II Investigators. Evaluation of the Medtronic exponent self-expanding carotid stent system with the Medtronic guardwire temporary occlusion and aspiration system in the treatment of carotid stenosis: Combined from the MAVErIC (Medtronic AVE self-expanding carotid stent system with distal protection in the treatment of carotid stenosis) I and MAVErIC II trials. Stroke. 2010; 41:e102–9.Google Scholar
188
Ansel, G M, Hopkins, L N, Jaff, M R, et al.Safety and effectiveness of the INVATEC MO.MA proximal cerebral protection device during carotid artery stenting: Results from the ARMOUR pivotal trial. Catheterization and Cardiovascular Interventions. 2010; 76:1–8.Google Scholar
189
Ohki, T, Parodi, J, Veith, F J, et al.Efficacy of a proximal occlusion catheter with reversal of flow in the prevention of embolic events during carotid artery stenting: An experimental analysis. Journal of Vascular Surgery. 2001; 33:504–9.Google Scholar
190
Harada, K, Kakumoto, K, Morioka, J, Saito, T, Fukuyama, K. Combination of flow reversal and distal filter for cerebral protection during carotid artery stenting. Annals of Vascular Surgery. 2014; 28:651–8.Google Scholar
191
Cano, M N, Kambara, A M, de Cano, S J, et al.Randomized comparison of distal and proximal cerebral protection during carotid artery stenting. Cardiovascular Interventions. 2013; 6:1203–9.Google Scholar
192
Stabile, E, Sannino, A, Schiattarella, G G, et al.Cerebral embolic lesions detected with diffusion-weighted magnetic resonance imaging following carotid artery stenting: A meta-analysis of 8 studies comparing filter cerebral protection and proximal balloon occlusion. Cardiovascular Interventions. 2014; 7:1177–83.Google Scholar
193
Bersin, R M, Stabile, E, Ansel, G M, et al.A meta-analysis of proximal occlusion device outcomes in carotid artery stenting. Catheterization and Cardiovascular Interventions. 2012; 80:1072–8.Google Scholar
194
Dalainas, I, Nano, G, Bianchi, P, et al.Dual antiplatelet regime versus acetyl-acetic acid for carotid artery stenting. Cardiovascular and Interventional Radiology. 2006; 29:519–21.Google Scholar
195
McKevitt, F M, Randall, M S, Cleveland, T J, et al.The benefits of combined anti-platelet treatment in carotid artery stenting. European Journal of Vascular and Endovascular Surgery. 2005; 29:522–7.Google Scholar
196
Van Der Heyden, J, Van Werkum, J, Hackeng, C M, et al.High versus standard clopidogrel loading in patients undergoing carotid artery stenting prior to cardiac surgery to assess the number of microemboli detected with transcranial Doppler: Results of the randomized IMPACT trial. Journal of Cardiovascular Surgery. 2013; 54:337–47.Google Scholar
197
Nakagawa, I, Wada, T, Park, H S, et al.Platelet inhibition by adjunctive cilostazol suppresses the frequency of cerebral ischemic lesions after carotid artery stenting in patients with carotid artery stenosis. Journal of Vascular Surgery. 2014; 59:761–7.Google Scholar
198
Zahn, R, Ischinger, T, Hochadel, M, et al.Glycoprotein IIb/IIIa antagonists during carotid artery stenting: Results from the Carotid Artery Stenting (CAS) registry of the Arbeitsgemeinschaft Leitende Kardiologische Krankenhausarzte (ALKK). Clinical Research in Cardiology. 2007; 96:730–7.Google Scholar
199
Hofmann, R, Kerschner, K, Steinwender, C, et al.Abciximab bolus injection does not reduce cerebral ischemic complications of elective carotid artery stenting: A randomized study. Stroke. 2002; 33:725–7.Google Scholar
200
Qureshi, A I, Suri, M F, Ali, Z, et al.Carotid angioplasty and stent placement: A prospective analysis of perioperative complications and impact of intravenously administered abciximab. Neurosurgery. 2002; 50:466–73.Google Scholar
201
Walcott, B P, Gerrard, J L, Nogueira, R G, et al.Microsurgical retrieval of an endovascular microcatheter trapped during onyx embolization of a cerebral arteriovenous malformation. Journal of Neurointerventional Surgery. 2011; 3:77–9.Google Scholar
202
Huk, W, Becker, H. [Complication after embolization of an AVM with onyx]. Klinische Neuroradiologie. 2009; 19:145–52.Google Scholar
203
Chimowitz, M I, Lynn, M J, Derdeyn, C P, et al.Stenting versus aggressive medical therapy for intracranial arterial stenosis. New England Journal of Medicine. 2011; 365:993–1003.Google Scholar
204
Siddiq, F, Chaudhry, S A, Khatri, R, et al.Rate of postprocedural stroke and death in SAMMPRIS trial-eligible patients treated with intracranial angioplasty and/or stent placement in practice. Neurosurgery. 2012; 71:68–73.Google Scholar
205
Qureshi, A I, Abou-Chebl, A, Jovin, T G. Qualification requirements for performing neurointerventional procedures: A report of the Practice Guidelines Committee of the American Society of Neuroimaging and the Society of Vascular and Interventional Neurology. Journal of Neuroimaging. 2008; 18:433–47.Google Scholar