Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-10T10:24:27.358Z Has data issue: false hasContentIssue false

2 - Signals in one dimension

Published online by Cambridge University Press:  19 August 2009

Richard E. Blahut
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

We shall study waveforms in one dimension in this chapter and waveforms in two dimensions in the next chapter. We shall call these waveforms one-dimensional signals and two-dimensional signals, respectively.

A waveform that is used by a surveillance system to probe the environment is usually a function of the single variable — time. The collected sensor data will be a set of one or more of such one-dimensional waveforms. However, the environment usually is a two-dimensional or three-dimensional spatial region on which is defined a two-dimensional or three-dimensional signal of interest. Thus the computational task of image formation frequently consists of estimating an unknown two-dimensional or three-dimensional function when given a set of one-dimensional signals as the measured data.

Every waveform of finite energy is associated with another function, known as its Fourier transform, that describes a decomposition of the waveform into an infinite number of sinusoids. The Fourier transform constitutes an alternative representation of the function in the frequency domain. The frequency-domain representation is often much easier to work with than the original time-domain representation of the waveform. The Fourier transform is so pervasive in our studies that, in time, we shall scarcely be able to decide whether the original waveform or its Fourier transform is the more fundamental concept. For this reason, it is important to develop good intuition regarding the Fourier transform.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Signals in one dimension
  • Richard E. Blahut, University of Illinois, Urbana-Champaign
  • Book: Theory of Remote Image Formation
  • Online publication: 19 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543418.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Signals in one dimension
  • Richard E. Blahut, University of Illinois, Urbana-Champaign
  • Book: Theory of Remote Image Formation
  • Online publication: 19 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543418.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Signals in one dimension
  • Richard E. Blahut, University of Illinois, Urbana-Champaign
  • Book: Theory of Remote Image Formation
  • Online publication: 19 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543418.003
Available formats
×