Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-10T10:26:55.887Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 January 2012

Bruce Hapke
Affiliation:
University of Pittsburgh
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeles, F. (1966). Optical Properties and Electronic Structure of Metals and Alloys. Amsterdam: North Holland.Google Scholar
Abramowitz, M., and Stegun, I. (1972). Handbook of Mathematical Functions. Washington, DC: U.S. Government Printing Office.Google Scholar
Adams, C., and Kattawar, G. (1978). Radiative transfer in spherical shell atmospheres. I. Rayleigh scattering. Icarus, 35, 139–51.CrossRefGoogle Scholar
Adams, J. (1968). Lunar and Marian surfaces: petrologic significance of absorption bands in the near-infrared, Science, 159, 1453–5.CrossRefGoogle Scholar
Adams, J. (1975). Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, ed. C., Karr (pp. 91–116). NewYork: Academic Press.CrossRefGoogle Scholar
Adams, J., and Felice, A. (1967). Spectral reflectance 0.4 to 2.0 microns of silicate rock powder. J. Geophys. Res., 72, 5705–15.CrossRefGoogle Scholar
Akkermans, E., Wolf, P., and Maynard, R. (1986). Coherent backscattering of light by disordered media: analysis of the peak line shape. Phys. Rev. Lett., 56, 1471–4.CrossRefGoogle ScholarPubMed
Akkermans, E., Wolf, P., Maynard, R., and Maret, G. (1988). Theoretical study of the coherent backscattering of light by disordered media. J. Phys. France, 49, 77–98.CrossRefGoogle Scholar
Allen, C. (1946). The spectrum of the corona at the eclipse of 1940 October 1. Proc. Roy. Astron. Soc. London, 106, 137–50.Google Scholar
Altobelli, N., Spilker, L., Pilorz, S., et al. (2009), Thermal phase curves observed in Saturn's main rings by Cassini-CIRS: detection of an opposition effect? Geophys. Res. Lett., 36, L10105, doi:10.1029/2009GL038163.CrossRefGoogle Scholar
Ambartsumian, V. (1958). The theory of radiative transfer in planetary atmospheres. In Theoretical Astrophysics, ed. V., Ambartsumian (pp. 550–64). New York: Pergamon.Google Scholar
Arfken, G., and Weber, H. (2005). Mathematical Methods for Physicists. Boston, MA: Elsevier.Google Scholar
Arnold, G., and Wagner, C. (1988). Grain size influence on the mid-infrared spectra of the minerals. Earth, Moon and Plan., 41, 163–72.CrossRefGoogle Scholar
Aronson, J., and Emslie, A. (1973). Spectral reflectance and emittance of particulate materials. II. Application and results. Appl. Opt., 12, 2573–84.CrossRefGoogle Scholar
Aronson, J., and Emslie, A. (1975). Applications of infrared spectroscopy and radiative transfer to earth sciences. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, ed. C., Karr (pp. 143–64). New York: Academic Press.
Aronson, J., Emslie, A., Ruccia, F., et al. (1979). Infrared emittance of fibrous materials. Appl. Opt., 18, 2622–33.CrossRefGoogle ScholarPubMed
Asano, S., and Yamamoto, G. (1975). Light scattering by a spheroidal particle. Appl. Opt., 14, 29–49.CrossRefGoogle ScholarPubMed
Bandermann, L., Kemp, J., and Wolstencroft, R. (1972). Circular polarization of light scattered from rough surfaces. Mon. Not. Roy. Astron. Soc., 158, 291–304.CrossRefGoogle Scholar
Barber, P., and Yeh, C. (1975). Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl. Opt., 14, 2864–77.CrossRefGoogle ScholarPubMed
Barkey, B., Bailey, M., Liou, K., and Hallett, J. (2002). Light scattering properties of plate and column ice crystals generated in a laboratory cold chamber. Appl. Opt., 41, 5792–6.CrossRefGoogle Scholar
Beckmann, P. (1965). Shadowing of random rough surfaces. IEEE Trans. Antennas Propag., 13, 384–8.CrossRefGoogle Scholar
Belskaya, I., and Shevchenko, V. (2000). Oppostion effect of asteroids. Icarus, 147, 94–105.CrossRefGoogle Scholar
Berreman, D. (1970). Resonant reflectance anomalies: effect of shapes of surface irregularities. Phys. Rev., B1, 381–9.CrossRefGoogle Scholar
Bevington, P. (1969). Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill.Google Scholar
Blevin, W., and Brown, W. (1967). Effect of particle separation on the reflectance of semi-infinite diffusers. J. Opt. Soc. Amer., 57, 129–34.Google Scholar
Blewett, D., Lucey, P., and Hawke, B. (1997). Clementine images of the lunar samplereturn stations: refinement of FeO and TiO2 mapping techniques. J. Geophys. Res., 102, 16 319–25.CrossRefGoogle Scholar
Bloss, F. (1961). An Introduction to the Methods of Optical Crystallography. Philadelphia, PA: Holt, Rinehart, & Winston.Google Scholar
Bobrov, M. (1962). Generalization of the theory of the shadow effect on Saturn's rings to the case of particles of unequal size. Sov. Astron. Astrophys. J., 5, 508–16.Google Scholar
Bohren, C. (1986). Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmos. Sci., 43, 468–75.2.0.CO;2>CrossRefGoogle Scholar
Bohren, C., and Huffman, D. (1983). Absorption and Scattering of Light by Small Particles. New York: John Wiley.Google Scholar
Borel, C., Gerstl, S., and Powers, B. (1991). The radiosity method in optical remote sensing of structured 3-D surfaces. Rem. Sens. Environ., 36, 13–44.CrossRefGoogle Scholar
Born, M., and Wolf, E. (1980). Principles of Optics, 6th edn. New York: Pergamon.Google Scholar
Bottcher, C. (1952). Theory of Electric Polarization. Amsterdam: Elsevier.Google Scholar
Bowell, E., and Lumme, K. (1979). Polarimetry and magnitudes of asteroids. In Asteroids, ed. T., Gehrels (pp. 132–69). Tucson, AZ: University of Arizona Press.Google Scholar
Bowell, E., and Zellner, B. (1974). Polarizations of asteroids and satellites. In Planets, Stars and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 381–404). Tucson, AZ: University of Arizona Press.Google Scholar
Bowell, E., Dollfus, A., Zellner, B., and Geake, J. (1973). Polarimetric properties of the lunar surface and its interpretation. VI. Albedo determinations from polarimetric measurements. In Proc. 4th Lunar Sci. Conf., ed. W., Gose (pp. 3167–74). New York: Pergamon.Google Scholar
Bowell, E., Hapke, B., Domingue, D., et al. (1989). Applications of photometric models to asteroids. In Asteroids II, ed. R., Binzel, T., Gehrels, and M., Matthews (pp. 524–56). Tucson, AZ: University of Arizona Press.Google Scholar
Bracewell, R. (2000). The Fourier Transform and its Applications. NewYork: McGraw-Hill.Google Scholar
Browell, E., and Anderson, R. (1975). Ultraviolet optical constants of water and ammonia ices. J. Opt. Soc. Amer., 65, 919–26.CrossRefGoogle Scholar
Brown, J., and Churchill, R. (1996). Complex Variables and Applications. New York: McGraw-Hill.Google Scholar
Brown, R., and Cruikshank, D. (1983). The Uranian satellites: surface compositions and opposition brightness surges. Icarus, 55, 83–92.CrossRefGoogle Scholar
Brown, R., and Matson, D. (1987). Thermal effects of insolation propagation in the regoliths of airless bodies. Icarus, 72, 84–94.CrossRefGoogle Scholar
Bruggeman, D. (1935). Berechnung verschiedener physikalischer Konstanten von heterogen Substanzen. I. Dielectrizitätskonstanten und Leifähigkeiten der Mischkorper aus isotropen Substanzen. Ann. Phys. (Leipzig), 24, 636–79.CrossRefGoogle Scholar
Bruning, J., and Lo, Y. (1971a). Multiple scattering of EM waves by spheres. I. Multiple expansions and ray optics solutions. IEEE Trans. Antennas Propag., AP-19, 378–90.CrossRefGoogle Scholar
Bruning, J., and Lo, Y. (1971b). Multiple scattering of EM waves by spheres. II. Numerical and experimental results. IEEE Trans. Antennas Propag., AP-19, 391–400.CrossRefGoogle Scholar
Buratti, B. (1985). Application of a radiative transfer model to bright icy satellites. Icarus, 61, 208–17.CrossRefGoogle Scholar
Buratti, B., and Veverka, J. (1985). Photometry of rough planetary surfaces: the role of multiple scattering. Icarus, 64, 320–8.CrossRefGoogle Scholar
Buratti, B., Hillier, J., and Wang, M. (1996). The lunar opposition surge: observations by clementine. Icarus, 124, 490–9.CrossRefGoogle Scholar
Burns, R. (1970). Mineralogical Applications of Crystal Field Theory. Cambridge University Press.Google Scholar
Burns, R. (1993). Origin of electronic spectra of minerals in the visible to near-infrared region. In Remote Geochemical Analysis, ed. C., Pieters and P., Englert (pp. 3–29). New York: Cambridge University Press.Google Scholar
Burns, R., Nolet, D., Parkin, K., McCammon, C., and Schwartz, K. (1980). Mixedvalence minerals of iron and titanium: correlations of structural, Mossbauer and electronic spectral data. In Mixed Valence Compounds, ed. D., Brown (pp. 295–336). Boston, MA: Reidel.CrossRefGoogle Scholar
Camillo, P. (1987). A canopy reflectance model based on an analytical solution to the multiple scattering equation. Rem. Sens. Environ., 23, 453–77.CrossRefGoogle Scholar
Campbell, M., and Ulrichs, J. (1969). Electrical properties of rocks and their significance for lunar radar absorptions. J. Geophys. Res., 74, 5867–81.CrossRefGoogle Scholar
Capaccioni, F., Cerroni, P., Barucci, M., and Fuilchignoni, M. (1990). Phase curves of meteorites and terrestrial rocks: laboratory measurements and applications to asteroids. Icarus, 83, 325–48.CrossRefGoogle Scholar
Carrier, W., Mitchell, J., and Mahmood, A. (1973). The relative density of lunar soil. Proc. 4th Lunar Sci. Conf., ed. W., Gose (pp. 2403–11). New York: Pergamon.
Chamberlain, J., and Smith, G. (1970). Interpretation of the Venus CO2 absorption bands. Astrophys. J., 160, 755–65.CrossRefGoogle Scholar
Chandrasekhar, S. (1960). Radiative Transfer. New York: Dover.Google Scholar
Chapman, C. (1996). S-type asteroids, ordinary chondrites and space weathering: the evidence from Galileo's fly-bys of Gaspra and Ida. Meteorit. Planet. Sci., 31, 699–725.CrossRefGoogle Scholar
Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. II. Grazing incidence. Proc. Phys. Soc., 43, 483–501.CrossRefGoogle Scholar
Chiappetta, P. (1980). A new model for scattering by irregular absorbing particles. Astron. Astrophys., 83, 348–53.Google Scholar
Chorlton, F. (1976). Vector and Tensor Methods. New York: John Wiley.Google Scholar
Christensen, P., Bandfield, J., Fergason, R., Hamilton, V., and Rogers, A. (2008a). The compositional diversity and physical properties mapped from the Mars Odyssey Thermal Emission Imaging System (THEMIS). In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. J., Bell III, (pp. 221–41). Cambridge University Press.CrossRefGoogle Scholar
Christensen, P., Bandfield, J., Rogers, A., et al. (2008b). Global mineralogy mapped from the Mars Global Surveyor Thermal Emission Spectrometer. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. J., Bell</ne III, (pp. 195–220). Cambridge University Press.Google Scholar
Churchill, R. (1944). Modern Operational Mathematics in Engineering. New York: McGraw-Hill.Google Scholar
Chylek, P., Grams, G., and Pinnick, R. (1976). Light scattering by irregular randomly oriented particles. Science, 193, 480–2.Google Scholar
Clark, R. (1983). Spectral properties of mixtures of montmorillonite and dark carbon grains: implications for remote sensing minerals containing chemically and physically adsorbed water. J. Geophys. Res., 88, 10635–44.CrossRefGoogle Scholar
Clark, R., and Lucey, P. (1984). Spectral properties of ice-particulate mixtures and implications for remote sensing. I. Intimate mixtures. J. Geophys. Res., 89, 6341–8.CrossRefGoogle Scholar
Clark, R., and Roush, T. (1984). Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J. Geophys. Res., 89, 6329–40.CrossRefGoogle Scholar
Clark, R., Kierein, K., and Swayze, G. (1993). Experimental verification of the Hapke reflectance theory. I. Computation of reflectance as a function of grain size and wavelength based on optical constants. Preprint.
Cohen, A., and Janezic, G. (1983). Relationships among trapped hole and trapped electron centers in oxidized soda-silica glasses of high purity. Phys. Stat. Sol. (a), 77, 619–24.CrossRefGoogle Scholar
Conel, J. (1969). Infrared emissivities of silicates: experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums. J. Geophys. Res., 74, 1614–34.CrossRefGoogle Scholar
Cord, A., Pinet, P., Daydou, Y., and Chevrel, S. (2003). Planetary regolith surface analogs: optimized determination of Hapke parameters using multi-angular spectro-imaging laboratory data. Icarus, 165, 414–27.CrossRefGoogle Scholar
Coulson, K. (1971). The polarization of light in the environment. In Planets, Stars, and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 444–71). Tucson, AZ: University of Arizona Press.Google Scholar
Cox, C., and Munk, W. (1954). Measurement of the roughness of the sea surface from photographs of the sun's glitter. J. Opt. Soc. Amer., 44, 838–50.CrossRefGoogle Scholar
Crank, J. (1975). The Mathematics of Diffusion. Oxford University Press.Google Scholar
Danjon, A. (1949). Photometrie et colorimetrie des planets Mercure et Venus. Bull. Astron., 14, 315–17.Google Scholar
Dexter, D. (1956). Absorption of light by atoms in solids. Phys. Rev., 101, 48–55.CrossRefGoogle Scholar
Dickinson, R., Pinty, B., and Verstraete, M. (1990). Relating surface albedos in GCM to remotely sensed data. Agricult. Forest Meteorol., 52, 109–31.CrossRefGoogle Scholar
Dollfus, A. (1956). Polarisation de la lumière renvoyèe par les corps solides et les nuages naturels. Ann. Astrophys., 19, 83–113.Google Scholar
Dollfus, A. (1961). Polarization studies of planets. In Planets and Satellites, ed. G., Kuiper and B., Middlehurst (pp. 343–99). Chicago, IL: University of Chicago Press.Google Scholar
Dollfus, A. (1962). The polarization of moonlight. In Physics and Astronomy of the Moon, ed. Z., Kopal (pp. 131–60). New York: Academic Press.Google Scholar
Dollfus, A. (1998). Lunar surface imaging polarimetry. I. Roughness and grain size. Icarus, 136, 69–103.CrossRefGoogle Scholar
Dollfus, A., and Bowell, E. (1971). Polarimetric properties of the lunar surface and its interpretation. I. Telescopic observations. Astron. Astrophys., 10, 29–53.Google Scholar
Dollfus, A., Wolff, M., Geake, J., Lupishko, D., and Dougherty, L. (1989). Photopolarimetry of asteroids. In Asteroids II, ed. R., BinzelT., Gehrels, and M., Matthews (pp. 594–615). Tucson, AZ: University of Arizona Press.Google Scholar
Domingue, D., and Hapke, B. (1989). Fitting theoretical photometric functions to asteroid phase curves. Icarus, 74, 330–6.CrossRefGoogle Scholar
Domingue, D., and Verbiscer, A. (1997). Reanalysis of the solar phase curves of the icy Galilean satellites. Icarus, 128, 49–74.CrossRefGoogle Scholar
Domingue, D., Hapke, B., Lockwood, G., and Thompson, D. (1991). Europa's phase curve: implications for surface structure. Icarus, 90, 30–42.CrossRefGoogle Scholar
Draine, B. (1988). The discrete dipole approximation: its application to interstellar graphite grains. Astrophys. J., 333, 848–72.CrossRefGoogle Scholar
Draine, B. (2000). The discrete dipole approximation for light scattering by irregular targets. In Light Scattering by Nonspherical Particles, ed. M., MischenkoJ., Hovenier, and L., Travis (pp. 131–45). New York: Academic Press.CrossRefGoogle Scholar
Draine, B., and Flatau, P. (1994). Discrete dipole approximation for scattering calculations. J. Opt. Soc. Amer., 411, 1491–9.CrossRefGoogle Scholar
Draine, B., and Goodman, J. (1993). Beyond Clausiul–Mossotti: wave propagation on a polorizable point lattice and the discrete polar approximation. Astrophys. J., 405, 685–97.CrossRefGoogle Scholar
Drude, P. (1959). Theory of Optics. New York: Dover.Google Scholar
Dwight, H. (1947). Tables of Integrals and Other Mathematical Data. New York: Macmillan.
Egan, W. (1985). Photometry and Polarization in Remote Sensing. NewYork: Elsevier.
Egan, W., and Hilgeman, T. (1976). Retroreflectance measurements of photometric standards and coatings. Appl. Opt., 15, 1845–9.CrossRefGoogle ScholarPubMed
Egan, W., and Hilgeman, T. (1978). Spectral reflectance of particulate materials: a Monte Carlo model including asperity scattering. Appl.Opt., 17, 245–52.CrossRefGoogle ScholarPubMed
Egan, W., and Hilgeman, T. (1979). Optical Properties of Inhomogeneous Materials. New York: Academic Press.Google Scholar
Elliott, R. (1966). Electromagnetics. New York: Academic Press.
Emslie, A., and Aronson, J. (1973). Spectral reflectance and emittance of particulate materials. I. Theory. Appl. Opt., 12, 2563–72.CrossRefGoogle Scholar
Esposito, L. (1979). Extensions to the classical calculation of the effect of mutual shadowing in diffuse reflection. Icarus, 39, 69–80.CrossRefGoogle Scholar
Evans, J. (1962). Radio echo studies of the moon. In Physics and Astronomy of the Moon, ed. Z., Kopal (pp. 429–80). New York: Academic Press.Google Scholar
Evans, J., and Hagfors, T. (1968). Radar Astronomy. New York: McGraw-Hill.Google Scholar
Evans, J., and Hagfors, T. (1971). Radar studies of the moon. In Advances in Astronomy and Astrophysics, Vol. 8, ed. Z., Kopal (pp. 29–107). New York: Academic Press.Google Scholar
Fairchild, M., and Daoust, D. (1988). Goniospectrophotometric analysis of pressed PTFE powder for use as a primary transfer standard. Appl. Opt., 27, 3392–6.CrossRefGoogle ScholarPubMed
Fountain, J., and West, E. (1970). Thermal conductivity of particulate basalt as a function of density in simulated lunar and Martian environments. J. Geophys. Res., 75, 4063–70.CrossRefGoogle Scholar
Fowler, W. (1968). Physics of Color Centers. New York: Academic Press.Google Scholar
Fredricksson, K., and Keil, K. (1963). The light–dark structures in the Pantar and Kapoeta stone meteorites. Geochim. Cosmochim. Acta, 27, 717–39.CrossRefGoogle Scholar
French, R., Verbescer, A., Salo, H., McGhee, C. and Dones, L. (2007). Saturn's rings at true opposition. Pub. Astronom. Soc. Pacific, 119, 623–42.CrossRefGoogle Scholar
Frohlich, H. (1958). Theory of Dielectrics, 2nd edn. London: Oxford University Press.Google Scholar
Fuller, K., and Kattawar, G. (1988a). Consumate solutions to the problem of classical electromagnetic scattering by ensembles of spheres. I. Linear chains. Opt. Lett., 13, 90–2.CrossRefGoogle Scholar
Fuller, K., and Kattawar, G. (1988b). Consumate solutions to the problem of classical electromagnetic scattering by ensembles of spheres. II. Clusters of arbitrary configurations. Opt. Lett., 13, 1063–5.CrossRefGoogle Scholar
Fung, A., and Ulaby, F. (1983). Matter–energy interactions in the microwave region. In Manual of Remote Sensing, ed. D., Simonett (pp. 115–64). Falls Church, VA: American Society of Photogrammetry.Google Scholar
Gaffey, M., Bell, J., and Cruikshank, D. (1989). Reflectance spectroscopy and asteroid surface mineralogy. In Asteroids II, ed. R., Binzel, T., Gehrels, and M., Matthews (pp. 98–127). Tucson, AZ: University of Arizona Press.Google Scholar
Galileo, (1638). Dialogue on the Great World Systems, trans. G., De Santillana (1953). Chicago, IL: University of Chicago Press.Google Scholar
Garbuny, M. (1965). Optical Physics. New York: Academic Press.Google Scholar
Geake, J., and Dollfus, A. (1986). Planetary surface texture and albedo from parameter plots of optical polarization data. Mon. Not. Roy. Astron. Soc., 218, 75–91.CrossRefGoogle Scholar
Geake, J., Geake, M., and Zellner, B. (1984). Experiments to test theoretical models of the polarization of light by rough surfaces. Mon. Not. Roy. Astron. Soc., 210, 89–112.CrossRefGoogle Scholar
Gehrels, T. (1974). Introduction and overview. In Planets, Stars and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 3–44). Tucson, AZ: University of Arizona Press.Google Scholar
Gehrels, T., and Teska, T. (1963). The wavelength dependence of polarization. Appl. Opt., 2, 67–77.CrossRefGoogle Scholar
Gehrels, T., Coffeen, D., and Owings, D. (1964). Wavelength dependence of polarization. III. The lunar surface. Astron. J., 69, 826–52.CrossRefGoogle Scholar
Gerstl, S., and Zardecki, A. (1985a). Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing. Appl. Opt., 24, 81–93.CrossRefGoogle ScholarPubMed
Gerstl, S., and Zardecki, A. (1985b). Coupled atmosphere/canopy model for remote sensing of plant reflectance features. Appl. Opt., 24, 94–103.CrossRefGoogle ScholarPubMed
Goguen, J. (1981). A theoretical and experimental investigation of the photometric functions of particulate surfaces. Ph.D. thesis, Cornell University, Ithaca, NY.
Goody, R. (1964). Atmospheric Radiation, Vol. 1, Theoretical Basis. Oxford University Press.Google Scholar
Gradie, J., and Veverka, J. (1982). When are spectral reflectance curves comparable?Icarus, 49, 109–19.CrossRefGoogle Scholar
Greenberg, J. (1974). Some examples of exact and approximate solutions in small particle scattering: a progress report. In Planets, Stars and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 107–34). Tucson, AZ: University of Arizona Press.Google Scholar
Grum, F., and Luckey, G. (1968). Optical sphere paint and a working standard of reflectance. Appl. Opt., 7, 2289–94.CrossRefGoogle Scholar
Gustafson, B. (2000). Microwave analog to light scattering measurements. In Light Scattering by Nonspherical Particles, ed. M., Mishchenko, J., Hovenier, and L., Travis (pp. 367–92). New York: Academic Press.CrossRefGoogle Scholar
Hagfors, T. (1964). Backscatter from an undulating surface with applications to radar returns from the moon. J. Geophys. Res., 69, 3779–84.CrossRefGoogle Scholar
Hagfors, T. (1968). Relations between rough surfaces and their scattering properties as applied to radar astronomy. In Radar Astronomy, ed. J., Evans and T., Gehrels (pp. 187–218). New York: McGraw-Hill.Google Scholar
Hale, A., and Hapke, B. (2002). A time-dependent model of radiative and conductive thermal energy transport in planetary regoliths with applications to the moon and Mercury. Icarus, 156, 318–34.CrossRefGoogle Scholar
Hameen-Anttila, K. (1967). Surface photometry of the planet Mercury. Ann. Acad. Sci. Fenn., Ser. A6, 252, 1–19.Google Scholar
Hansen, J., and Arking, A. (1971). Clouds of Venus: evidence for their nature. Science, 171, 669–72.CrossRefGoogle ScholarPubMed
Hansen, J., and Travis, L. (1974). Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610.CrossRefGoogle Scholar
Hapke, B. (1963). A theoretical photometric function for the lunar surface. J. Geophys. Res., 68, 4571–86.CrossRefGoogle Scholar
Hapke, B. (1968). On the particle size distribution of lunar soil. Planet. Space Sci., 16, 101–10.CrossRefGoogle Scholar
Hapke, B. (1971). Optical properties of the lunar surface. In Physics and Astronomy of the Moon, ed. Z., Kopal (pp. 155–211). New York: Academic Press.Google Scholar
Hapke, B. (1981). Bidirectional reflectance spectroscopy. I. Theory. J. Geophys. Res., 86, 3039–54.CrossRefGoogle Scholar
Hapke, B. (1984). Bidirectional reflectance spectroscopy. III. Correction for macroscopic roughness. Icarus, 59, 41–59.CrossRefGoogle Scholar
Hapke, B. (1986). Bidirectional reflectance spectroscopy. IV. Extinction and the opposition effect. Icarus, 67, 264–80.CrossRefGoogle Scholar
Hapke, B. (1990). Coherent backscatter and the radar characteristics of outer planet satellites. Icarus, 88, 407–17.CrossRefGoogle Scholar
Hapke, B. (1993). Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press.CrossRefGoogle Scholar
Hapke, B. (1996a). A model of radiative and conductive energy trasfer in planetary regoliths. J. Geophys. Res., 101, 16 817–31.CrossRefGoogle Scholar
Hapke, B. (1996b). Applications of an energy transfer model to three problems in planetary regloliths: the solid-state greenhouse, thermal beaming and emittance spectra. J. Geophys. Res., 101, 16 833–40.CrossRefGoogle Scholar
Hapke, B. (1999). Scattering and diffraction of light by particles in planetary regoliths. J. Quant. Spectrosc. Radiat. Transf., 61, 565–81.CrossRefGoogle Scholar
Hapke, B. (2001). Space weathering from Mercury to the asteroid belt. J. Geophys. Res, 106, 10 039–073.CrossRefGoogle Scholar
Hapke, B. (2008). Bidirectional reflectance spectroscopy. VI. Effects of porosity. Icarus, 195, 918–26.CrossRefGoogle Scholar
Hapke, B., and Blewett, D. (1991). Coherent backscatter model for the unusual radar reflectivity of icy satellites. Nature, 352, 46–7.CrossRefGoogle Scholar
Hapke, B., and Nelson, R. (1975). Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry. J. Atmos. Res., 32, 1211–18.Google Scholar
Hapke, B., and Van Horn, H. (1963). Photometric studies of complex surfaces with applications to the moon. J. Geophys. Res., 68, 4545–70.CrossRefGoogle Scholar
Hapke, B., and Wells, E. (1981). Bidirectional reflectance spectroscopy. II. Experiments and observations. J. Geophys. Res., 86, 3055–60.CrossRefGoogle Scholar
Hapke, B., and Williams, A. (1988). Search for anomalous opposition spike in crystalline powders. Bull. Amer. Astron. Soc., 20, 808.Google Scholar
Hapke, B., Cassidy, W., and Wells, E. (1975). Effects of vapor phase deposition processes on the optical, chemical and magnetic properties of the lunar regolith. The Moon, 13, 339–53.CrossRefGoogle Scholar
Hapke, B., DiMucci, D., Nelson, R., and Smythe, W. (1996). The cause of the hot spot in vegetation canopies and soils. Rem. Sens. Environ., 58, 63–8.CrossRefGoogle Scholar
Hapke, B., Nelson, R., and Smythe, W. (1993). The opposition effect of the moon: the contribution of coherent backscattering. Science, 260, 509–11.CrossRefGoogle Scholar
Hapke, B., Shepard, M., Nelson, R., Smythe, W., and Piatek, J. (2009). A quantitative test of the ability of models based on the equation of radiative transfer to predict the bidirectional reflectance of a well-characterized medium. Icarus, 199, 210–18.CrossRefGoogle Scholar
Hapke, B., Wells, E., and Wagner, J. (1981). Far-UV, visible and near-IR reflectance spectra of frosts of H2O, CO2, NH3 and SO2. Icarus, 47, 361–7.CrossRefGoogle Scholar
Harris, D. (1957). Diffuse reflection from planetary atmospheres. Astrophys. J., 126, 408–12.CrossRefGoogle Scholar
Hartman, B., and Domingue, D. (1998). Scattering of light by individual particles and the implications for models of planetary surfaces. Icarus, 131, 421–48.CrossRefGoogle Scholar
Helfenstein, P. (1986). Derivation and analysis of geological constraints on the emplacement and evolution of terrains on Ganymede from applied differential photometry. Ph.D. thesis, Brown University, Providence, R.I.
Helfenstein, P. (1988). The geological interpretation of photometric surface roughness. Icarus, 73, 462–81.CrossRefGoogle Scholar
Helfenstein, P., and Shepard, M. (1999). Submillimeter-scale topography of the lunar regolith. Icarus, 141, 107–31.CrossRefGoogle Scholar
Helfenstein, P., and Veverka, J. (1987). Photometric properties of lunar terrains derived from Hapke's equation. Icarus, 72, 343–57.CrossRefGoogle Scholar
Helfenstein, P., and Veverka, J. (1989). Physical characterization of asteroid surfaces from photometric analysis. In Asteroids II, ed. R., Binzel, T., Gehrels, and M., Matthews (pp. 557–93). Tucson, AZ: University of Arizona Press.Google Scholar
Helfenstein, P., Veverka, J., and Thomas, P. (1988). Uranus satellites: Hapke parameters from Voyager disk-integrated photometry. Icarus, 78, 231–9.CrossRefGoogle Scholar
Henyey, C., and Greenstein, J. (1941). Diffuse radiation in the galaxy. Astrophys. J., 93, 70–83.CrossRefGoogle Scholar
Herbst, T., Skrutskie, M., and Nicholson, P. (1987). The phase curve of the Uranian rings. Icarus, 71, 103–14.CrossRefGoogle Scholar
Hillier, J., Buratti, B., and Hill, K. (1999). Multispectral photometry of the moon and absolute calibration of the Clementine UV/Vis camera. Icarus, 141, 205–25.CrossRefGoogle Scholar
Hisdal, B. (1965). Reflectance of perfect diffuse and specular samples in the integrating sphere. J. Opt. Soc. Amer., 55, 1122–8.CrossRefGoogle Scholar
Hodkinson, J. (1963). Light scattering and extinction by irregular particles larger than the wavelength. In Electromagnetic Scattering, ed. M., Kerker (pp. 87–100). New York: Macmillan.Google Scholar
Hodkinson, J., and Greenleaves, I. (1963). Computations of light scattering and extinction by spheres according to diffraction and geometrical optics, and some comparisons with the Mie theory. J. Opt. Soc. Amer., 53, 577–88.CrossRefGoogle Scholar
Holland, A., and Gagne, G. (1970). The scattering of polarized light by polydisperse systems of irregular particles. Appl. Opt., 9, 1113–21.CrossRefGoogle ScholarPubMed
Hopfield, J. (1966). Mechanism of lunar polarization. Science, 151, 1380–1.CrossRefGoogle ScholarPubMed
Hovenier, J. (2000). Measuring scattering metrices of small particles at optical wave-lengths. In Light Scattering by Nonspherical Particles, ed. M., Mishchenko, J., Hovenier, and L., Travis (pp. 355–66). New York: Academic Press.CrossRefGoogle Scholar
Huguenin, R., and Jones, J. (1986). Intelligent information extraction from reflectance spectra: absorption band positions. J. Geophys. Res., 91, 9585–98.CrossRefGoogle Scholar
Hunt, G. (1980). Electromagnetic radiation: the communication link in remote sensing. In Remote Sensing in Geology, ed. B., Siegal and A., Gillespie (pp. 5–46). New York: John Wiley.Google Scholar
Hunt, G., and Vincent, R. (1968). The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes. J. Geophys. Res., 73, 6039–46.CrossRefGoogle Scholar
Irvine, W. (1965). Multiple scattering by large particles. Astrophys. J., 142, 1563–75.CrossRefGoogle Scholar
Irvine, W. (1966). The shadowing effect in diffuse reflectance. J. Geophys. Res., 71, 2931–7.CrossRefGoogle Scholar
Irvine, W., and Pollack, J. (1968). Infrared properties of water and ice spheres. Icarus, 8, 324–60.CrossRefGoogle Scholar
Ishimaru, A. (1978). Wave Propagation and Scattering in Random Media. New York: Academic Press.Google Scholar
Ishimaru, A., and Kuga, Y. (1982). Attenuation of a coherent field in a dense distribution of particles. J. Opt. Soc. Amer., 72, 1317–20.CrossRefGoogle Scholar
Jackson, J. (1999). Classical Electromagnetics. New York: John Wiley.Google Scholar
Jahnke, E., and Emde, E. (1945). Tables of Functions. New York: Dover.Google Scholar
Jakowsky, B., Finiol, G., and Henderson, B. (1990). Directional variations in thermal emission from geologic surfaces. Geophys. Res. Lett., 17, 985–8.CrossRefGoogle Scholar
Jenkins, F., and White, H. (1950). Fundamentals of Optics, 2nd edn. New York: McGraw-Hill.Google Scholar
Jenkins, P., Smith, M., and Adams, J. (1985). Quantitative analysis of planetary reflectance spectra with principal components analysis. In Proc. 15th Lunar Planet. Sci. Conf., ed. G., Ryder and G., Schubert (pp. C805–10). Washington, DC: American Geophysical Union.Google Scholar
Johnson, J., Grundy, W., and Shepard, M. (2004). Visible/near-infrared spectrogonio-metric observations and modeling of dust-coated rocks. Icarus, 171, 546–56.CrossRefGoogle Scholar
Johnson, P., Smith, M., Taylor-George, S., and Adams, J. (1983). A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures. J. Geophys. Res., 88, 3557–61.CrossRefGoogle Scholar
Johnson, R., Nelson, M., McCord, T., and Gradie, J. (1988). Analysis of Voyager images of Europa: plasma bombardment. Icarus, 75, 423–36.CrossRefGoogle Scholar
Joseph, J., Wiscombe, W., and Weinman, J. (1976). The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 2452–9.2.0.CO;2>CrossRefGoogle Scholar
Kaasalainan, S. (2003). Laboratory photometry of planetary regolith analogs. I. Effects of grain and packing properties on opposition effect. Astron. Astrophys. 409, 765–9.CrossRefGoogle Scholar
Kaasalainen, S., Peltoniemi, J., Naranen, J., et al. (2005). Small angle goniometry for backscattering measurements in the broadband spectrum. Appl. Opt., 44, 1485–90.CrossRefGoogle ScholarPubMed
Kattawar, G. (1975). A three parameter analytic phase function for multiple scattering calculations. J. Quant. Spectrosc. Radiat. Transf., 15, 839–49.CrossRefGoogle Scholar
Kattawar, G. (1979). Radiative transfer in spherical shell atmospheres. III. Application to Venus. Icarus, 40, 60–6.CrossRefGoogle Scholar
Kattawar, G., and Eisner, M. (1970). Radiation from a homogeneous isothermal sphere. Appl. Opt., 9, 2685–90.CrossRefGoogle ScholarPubMed
Kattawar, G., and Humphreys, T. (1980). Electromagnetic scattering from two identical pseudospheres. In Light Scattering by Irregularly Shaped Particles, ed. D., Schuerman (pp. 177–90). New York: Plenum.CrossRefGoogle Scholar
Kemp, J. (1974). Circular polarization of planets. In Planets, Stars and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 607–16). Tucson, AZ: University of Arizona Press.Google Scholar
KenKnight, C., Rosenberg, D., and Wehner, G. (1967). Parameters of the optical properties of the lunar surface powder in relation to solar wind bombardment. J. Geophys. Res., 72, 3105–29.CrossRefGoogle Scholar
Kerker, M. (1969). The Scattering of Light. New York: Academic Press.Google Scholar
Kimes, D., and Kerchner, J. (1982). Irradiance measurement errors due to the assumption of a Lambertian reference panel. Rem. Sens. Environ., 12, 141–9.CrossRefGoogle Scholar
Kittel, C. (1976). Introduction to Solid State Physics, 5th edn. New York: John Wiley.Google Scholar
Kocinski, J., and Wojtczak, L. (1978). Critical Scattering Theory: An Introduction. New York: Elsevier.Google Scholar
Kolokolova, L. (1985). On the influence of the structure of atmosphereless bodies' surfaces to the polarimetric characteristics of reflected light. Solar Syst. Res., 19, 165–73.Google Scholar
Kolokolova, L. (1990). Dependence of polarization on optical and structural properties of the surfaces of atmosphereless bodies. Icarus, 84, 305–14.CrossRefGoogle Scholar
Kolokolova, L., Kimura, H., Ziegler, K., and Mann, I. (2006). Light scattering properties of random oriented aggregates: do they represent the properties of an ensemble of aggreagates?J. Quant. Spectrosc. Radiat. Transf., 100, 199–206.CrossRefGoogle Scholar
Kortum, G. (1969). Reflectance Spectroscopy. New York: Springer.CrossRefGoogle Scholar
Kourganoff, V. (1963). Basic Methods in Transfer Problems: Radiative Equilibrium and Neutron Diffusion. New York: Dover.Google Scholar
Kubelka, P. (1948). New contributions to the optics of intensely light-scattering materials. I. J. Opt. Soc. Amer., 38, 448–57.CrossRefGoogle Scholar
Kubelka, P. (1954). New contributions to the optics of intensely light-scattering materials. II. Nonhomogeneous layers. J. Opt. Soc. Amer., 44, 330–5.CrossRefGoogle Scholar
Kubelka, P., and Munk, F. (1931). Ein Beitrag zur Optik der Farberntricke. Z. Techn. Physik, 12, 593–601.Google Scholar
Kuga, Y., and Ishimaru, A. (1984). Retroreflection from a dense distribution of spherical particles. J. Opt. Soc. Amer., 8, 831–5.CrossRefGoogle Scholar
Landau, L., and Lifschitz, E. (1975). The Classical Theory of Fields, 4th edn. New York: Pergamon.Google Scholar
Lass, H. (1950). Vector and Tensor Analysis. New York: McGraw-Hill.Google Scholar
Lax, M. (1954). The influence of lattice vibrations on electronic transitions in solids. In Photoconductivity Conference, ed. R., Breckenridge, B., Russell, and E., Hahn (pp. 111–45). New York: John Wiley.Google Scholar
Lebofsky, L., Sykes, M., Tedesco, E., et al. (1986). A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas. Icarus, 68, 239–51.CrossRefGoogle Scholar
Leinert, C., Link, H., Pitz, E., and Giese, R. (1976). Interpretation of a rocket photometry of the inner zodiacal light. Astron. Astrophys., 47, 221–30.Google Scholar
Lenoble, J. (1985). Radiative Transfer in Scattering and Absorbing Atmospheres. Hampton, VA: Deepak Publishing.Google Scholar
Liang, C., and Lo, Y. (1967). Scattering by two spheres. Radio Sci., 2, 1481–95.CrossRefGoogle Scholar
Liou, K., and Coleman, R. (1980). Light scattering by hexagonal columns and plates. In Light Scattering by Irregularly Shaped Particles, ed. D., Schuerman (pp. 207–18). New York: Plenum.CrossRefGoogle Scholar
Liou, K., and Hansen, J. (1971). Intensity and polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory. J. Atmos. Sci., 28, 995–1004.2.0.CO;2>CrossRefGoogle Scholar
Liou, K., and Schotland, R. (1971). Multiple backscattering and depolarization from water clouds for a pulsed lidar system. J. Atmos. Sci., 28, 772–84.2.0.CO;2>CrossRefGoogle Scholar
Liou, K., Cai, Q., and Pollack, J. (1983). Light scattering by randomly oriented cubes and parallelepipeds. Appl. Opt., 22, 3001–8.CrossRefGoogle ScholarPubMed
Logan, L., Hunt, G., Salisbury, J., and Balsamo, S. (1973). Compositional implications of Christiansen frequency maximums for infrared remote sensing applications. J. Geophys. Res., 78, 4983–5003.CrossRefGoogle Scholar
Lorentz, H. (1952). The Theory of Electrons. New York: Dover.Google Scholar
Lucey, P., Blewett, D., and Hawke, B. (1998). Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J. Geophys. Res., 103 (E2), 3679–99.CrossRefGoogle Scholar
Lucey, P., Taylor, G., and Malaret, E. (1995). Abundance and distribution of iron on the Moon. Science, 268, 1150–3.CrossRefGoogle Scholar
Lucey, P., Blewett, D., Taylor, G., and Hawke, B. (2000). Imaging of lunar surface maturity. J. Geophys. Res., 105 (E8), 20 377–86.CrossRefGoogle Scholar
Lumme, K., and Bowell, E. (1981a). Radiative transfer in the surfaces of atmosphereless bodies. I. Theory. Astron. J., 86, 1694–704.CrossRefGoogle Scholar
Lumme, K., and Bowell, E. (1981b). Radiative transfer in the surfaces of atmosphereless bodies. II. Interpretation of phase curves. Astron. J., 86, 1705–12.CrossRefGoogle Scholar
Lumme, K., Rahola, J., and Hovenier, J. (1997). Light scattering by dense clusters of spheres. Icarus, 126, 455–69.CrossRefGoogle Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Ann. Obs. Paris, Vol. 8, Book 1 (translated as NASA Tech. Transl. TT-F-187, 1964).
McEwan, A. (1991). Photometric functions for photoclinometry and other applications. Icarus, 92, 298–311.CrossRefGoogle Scholar
McGuire, A., and Hapke, B. (1995). An experimental study of light scattering by large irregular particles. Icarus, 113, 134–55.CrossRefGoogle Scholar
McKay, D., Fruland, R., and Heiken, G. (1974). Grain size and the evolution of lunar soils. In Proc. 5th Lunar Sci. Conf., ed. W., Gose (pp. 887–906). New York: Pergamon.Google Scholar
Macke, A. (2000). Monte Carlo calculations of light scattering by large particles with multiple internal inclusions. In Light Scattering by Nonspherical Particles, ed. M., Mishchenko, J., Hovenier, and L., Travis (pp. 300–22). New York: Academic Press.Google Scholar
MacKintosh, F., and John, S. (1988). Coherent backscattering of light in the presence of time-reversal, non-invariant and parity-violating media. Phys. Rev., B37, 1884–97.CrossRefGoogle Scholar
MacKintosh, F., Zhu, J., Pine, D., and Weitz, D. (1989). Polarization memory of multiply scattered light. Phys. Revo, B40, 9342–45.CrossRefGoogle ScholarPubMed
Mackowski, D., and Mishchenko, M. (1996). Calculation of the T-matrix and the scattering matrix for ensembles of particles. J. Opt. Soc. Amer., 13, 2266–78.CrossRefGoogle Scholar
Margenau, H., and Murphy, G. (1956). The Mathematics of Physics and Chemistry. New York: Van Nostrand.Google Scholar
Marion, J. (1965). Classical Electromagnetic Radiation. New York: Macmillan.Google Scholar
Matson, D., and Brown, R. (1989). Solid state greenhouses and their implications for icy satellites. Icarus, 77, 67–81.CrossRefGoogle Scholar
Maxwell-Garnett, J. (1904). Colours in metal glasses and in metallic films. Phil. Trans. Roy. Soc. London, A203, 385–420.CrossRefGoogle Scholar
Melamed, N. (1963). Optical properties of powders. I. Optical absorption coefficients and the absolute value of the diffuse reflectance. II. Properties of luminescent powders. J. Appl. Phys., 34, 560–70.CrossRefGoogle Scholar
Middleton, W., and Sanders, C. (1951). The absolute spectral diffuse reflectance of magnesium oxide. J. Opt. Soc. Amer., 41, 419–24.CrossRefGoogle ScholarPubMed
Minnaert, M. (1941). The reciprocity principle in lunar photometry. Astrophys. J., 93, 403–10.CrossRefGoogle Scholar
Minnaert, M. (1961). Photometry of the moon. In Planets and Satellites, ed. G., Kuiper and B., Middlehurst (pp. 213–45). Chicago, IL: University of Chicago Press.Google Scholar
Mishchenko, M. (1995). Coherent backscattering by a two-sphere cluster. Opt. Lett. 21, 623–5.CrossRefGoogle Scholar
Mishchenko, M. (2002). Vector radiative transfer equation for arbitraritly shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Appl. Opt., 41, 7114–34.CrossRefGoogle ScholarPubMed
Mishchenko, M. (2008). Multiple scattering, radiative transfer and weak localization in discrete random media: unified microphysical approach. Rev. Geophys., 46, RG2003, doi.10.1029/2007RG200230.CrossRefGoogle Scholar
Mishchenko, M., and Liu, L. (2007). Weak localization of electromagnetic waves by densely packed many-particle groups: exact 3D results. J. Quant. Spectrosc. Radiat. Transf., 106, 616–21.CrossRefGoogle Scholar
Mishchenko, M., and Macke, A. (1997). Asymmetry parameters for the phase function for isolated and densely packed spherical particles with multiple internal inclusions in the geometric optics limit. J. Quant. Spectrosc. Radiat. Transf., 57, 767–94.CrossRefGoogle Scholar
Mishchenko, M., and Mackowski, D. (1996). Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations. J. Quant. Spectrosc. Radiat. Transf., 55, 683–694.CrossRefGoogle Scholar
Mishchenko, M., Dlugach, J., Yanovitskij, E., and Zakharova, N. (1999). Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiatve transfer solution and applications to snow and soil surfaces. J. Quant. Spectrosc. Radiat. Transf., 63, 409–32.CrossRefGoogle Scholar
Mishchenko, M., Hovenier, J., and Travis, L. (2000a). Concepts, terms and notation. In Light Scattering by Nonspherical Particles, ed. M., Mishchenko, J., Hovenier, and L., Travis (pp. 3–27). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Mishchenko, M., Liu, L., Mackowski, D., Cairns, B., and Videen, G. (2007). Multiple scattering by random particulate media: exact 3D results. Opt. Expr., 15, 2822–36.CrossRefGoogle ScholarPubMed
Mishchenko, M., Luck, J., and Nieuwenhuizen, T. (2000b). Full angular profile of the coherent polarization opposition effect. J. Opt. Soc Amer., A17, 888–91.CrossRefGoogle ScholarPubMed
Mishchenko, M., Mackowski, D., and Travis, L. (1995). Scattering of light by bispheres with touching and separated components. Appl. Opt., 34, 4589–99.CrossRefGoogle ScholarPubMed
Montgomery, W., and Kohl, R. (1980). Opposition effect experimentation. Opt. Lett., 5, 546–8.CrossRefGoogle ScholarPubMed
Morris, R., Lauer, H., Lawson, C., et al. (1985). Spectral and other physicochemical properties of submicron powders of hematite, maghemite, magnetite, goethite and lepidocrocite. J. Geophys. Res., 90, 3126–44.CrossRefGoogle ScholarPubMed
Morrison, D., and Lebofsky, L. (1979). Radiometry of asteroids. In Asteroids, ed T., Gehrels (pp. 184–205), Tucson, AZ: University of Arizona Press.Google Scholar
Morse, P., and Feshbach, H. (1953). Methods of Theoretical Physics. New York: McGraw-Hill.Google Scholar
Muhleman, D. (1964). Radar scattering from Venus and the moon. Astron. J., 69, 34–41.CrossRefGoogle Scholar
Muinonen, K. (1990). Light scattering by inhomogeneous media: backward enhancement and reversal of linear polarization. Ph.D. thesis, University of Helsinki, Finland.
Muinonen, K. (2000). Light scattering by stochastically shaped particles. In Light Scattering by Nonspherical Particles, ed. M., Mishchenko, J., Hovenier, and L., Travis (pp. 323–54). New York: Academic Press.CrossRefGoogle Scholar
Muinonen, K. (2004). Coherent backscattering of light by complex random media of spherical scatterers: numerical solution. Waves Random Media, 14, 365–88.CrossRefGoogle Scholar
Muinonen, K., Lumme, K., Peltoniemi, J., and Irvine, W. (1989). Light scattering by randomly oriented crystals. Appl. Opt., 28, 3051–60.CrossRefGoogle ScholarPubMed
Muinonen, K., Zubko, E., Tyynela, J., Shkuratov, Y., and Videen, G. (2007). Light scattering by Gaussian random particles with discrete-dipole approximation. J. Quant. Spectrosc. Radiat. Transf., 106, 360–77.CrossRefGoogle Scholar
Mukai, S., Mukai, T., Giese, R., Weiss, K., and Zerull, R. (1982). Scattering of radiation by a large particle with a random rough surface. Moon and Planets, 26, 197–208.CrossRefGoogle Scholar
Munoz, O., Volten, H., deHan, J., Vassen, W., and Hovenier, J. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astron. Astrophys., 360, 777–88.Google Scholar
Munoz, O., Volten, H., Hovenier, J., et al. (2006). Experimental and computation study of light scattering by irregular particles with extreme refractive indices: hematite and rutile. Astron. Astrophys., 446, 525–35.CrossRefGoogle Scholar
Mustard, J., and Pieters, C. (1987). Quantitative abundance estimates from bidirectional reflectance measurements. In Proc. 17th Lunar Planet. Sci. Conf., ed. G., Ryder and G., Schubert (pp. E617–26). Washington, DC: American Geophysical Union.Google Scholar
Mustard, J., and Pieters, C. (1989). Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J. Geophys. Res., 94, 13 619–34.CrossRefGoogle Scholar
Naranen, J., Kaasalainen, S., Peltoniemi, J., et al. (2004), Laboratory photometry of planetary regolith analogs. II. Surface roughness and extremes of packing density. Astron. Astrophys., 426, 1103–9.CrossRefGoogle Scholar
Nash, D. (1983). Io's 4-μm band and the role of adsorbed SO2. Icarus, 54, 511–23.CrossRefGoogle Scholar
Nash, D. (1986). Mid-infrared reflectance spectra (2.3–22μm) of sulfur, gold, KBr, MgO and halon. Appl. Opt., 25, 2427–33.CrossRefGoogle Scholar
Nash, D., and Conel, J. (1974). Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite and ilmenite. J. Geophys. Res., 79, 1615–21.CrossRefGoogle Scholar
Nelson, R., Hapke, B., Smythe, W., and Horn, L. (1998). Phase curves of selected particulate materials: the contribution of coherent backscattering to the opposition surge. Icarus, 131, 223–30.CrossRefGoogle Scholar
Nelson, R., Hapke, B., Smythe, W., and Spilker, L. (2000). The opposition effect in simulated planetary regolths: reflectance and circular polarization ratio changes at small phase angle. Icarus, 147, 545–58.CrossRefGoogle Scholar
Nelson, R., Hapke, B., Smythe, W., Hale, A., and Piatek, J. (2004). Planetary regolith microsctucture: an unexpected opposition effect result. Lunar Planet. Sci. XXXV, Lunar and Planetary Institute, Houston, TX, abstract 1089.Google Scholar
Nelson, R., Smythe, W., Hapke, B., and Hale, A. (2002) Low phase angle laboratory studies of the opposition effect: search for wavelength dependence. Planet. Space Sci., 50, 849–56.CrossRefGoogle Scholar
Nicodemus, F. (1970). Reflectance nomenclature and directional reflectance and emissivity. Appl Opt., 9, 1474–5.CrossRefGoogle ScholarPubMed
Nicodemus, F., Richmond, J., Hsia, J., Ginsberg, I., and Limperis, T. (1977). Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards Monograph 160. Gaithersburg, MD: National Bureau of Standards.CrossRefGoogle Scholar
Niklasson, G., Granqvist, C., and Hunderi, O. (1981). Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt., 20, 26–30.CrossRefGoogle ScholarPubMed
Nitsan, U., and Shankland, T. (1976). Optical properties and electronic structure of mantle silicates. Geophys. J. Roy. Astron. Soc., 45, 59–87.CrossRefGoogle Scholar
O'Donnell, K., and Mendez, E. (1987). Experimental study of scattering from characterized random surfaces. J. Opt. Soc. Amer., A4, 1194–205.CrossRefGoogle Scholar
Oetking, P. (1966). Photometric studies of diffusely reflecting surfaces with applications to the brightness of the moon. J. Geophys. Res., 71, 2505–13.CrossRefGoogle Scholar
Ohman, Y. (1955). A tentative explanation of the negative polarization in diffuse reflection. Ann. Obs. Stockholm, 18(8), 1–10.Google Scholar
Ostro, S. (1982). Radar properties of Europa, Ganymede and Callisto. In Satellites of Jupiter, ed. D., Morrison (pp. 213–36). Tucson, AZ: University of Arizona Press.Google Scholar
Ostro, S., and Shoemaker, E. (1990). The extraordinary radar echoes from Europa, Ganymede and Callisto: a geological perspective. Icarus, 85, 335–45.CrossRefGoogle Scholar
Otterman, J. (1983). Absorption of insolation by land surfaces with sparse vertical protrusions. Tellus, B35, 309–18.CrossRefGoogle Scholar
Ozrin, V. (1992). Exact solution for coherent backscattering of polarized light from a random medium of Rayleigh scatterers. Waves Random Media, 2, 141–64.CrossRefGoogle Scholar
Palik, E. (ed.) (1991). Handbook of Optical Constants of Solids. New York: Academic Press.Google Scholar
Paliouras, J. (1975). Complex Variables for Scientists and Engineers. New York: Macmillan.Google Scholar
Panofsky, W., and Phillips, M. (1962). Classical Electricity and Magnetism. Cambridge, MA: Addison-Wesley.Google Scholar
Pasrev, V., Ovcharenko, A., Shkuratov, Y., Belshaya, I., and Videen, G. (2007). Photometry of particulate surfaces at extremely small phase angles. J. Quant. Spectrosc. Radiat. Transf., 106, 455–63.CrossRefGoogle Scholar
Peltoniemi, J., Lumme, K., Muinonen, K., and Irvine, E. (1989). Scattering of light by stochastically rough particles. Appl. Opt., 28, 4088–95.CrossRefGoogle ScholarPubMed
Perrin, J., and Lamy, P. (1983). Light scattering by large rough particles. Optica Acta, 30, 1223–44.CrossRefGoogle Scholar
Perry, R., Hunt, A., and Huffman, D. (1978). Experimental determinations of Mueller scattering matrices for non-spherical particles. Appl. Opt., 17, 2700–10.CrossRefGoogle Scholar
Petrova, E., Tishkovets, V., and Jockers, K. (2007). Modeling of opposition effects with ensembles of clusters: interplay of various scattering mechanisms. Icarus, 186, 233–45.CrossRefGoogle Scholar
Piatek, J., Hapke, B., Nelson, R., Smythe, W., and Hale, A. (2004). Scattering properties of planetary regolith analogs. Icarus, 171, 531–45.CrossRefGoogle Scholar
Pinnick, R., Carroll, D., and Hofmann, D. (1976). Polarized light from monodisperse randomly oriented nonspherical aerosol particles: measurements. Appl. Opt., 15, 384–93.CrossRefGoogle ScholarPubMed
Pinty, B., and Verstraete, M. (1991). Extracting information on surface properties from bidirectional reflectance measurements. J. Geophys. Res., 96, 2865–74.CrossRefGoogle Scholar
Pinty, B., Verstraete, M., and Dickinson, R. (1989). A physical model for predicting bidirectional reflectances over bare soil. Rem. Sens. Environ., 27, 273–88.CrossRefGoogle Scholar
Pinty, B.,Verstraete, M., and Dickinson, R. (1990). A physical model of the bidirectional reflectance of vegetation canopies. II. Inversion and validation. J. Geophys. Res., 95, 11 767–75.CrossRefGoogle Scholar
Pollack, J., and Cuzzi, J. (1980). Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols. J. Atmos. Sci., 37, 868–81.2.0.CO;2>CrossRefGoogle Scholar
Pollack, J., and Whitehill, L. (1972). A multiple scattering model of the diffuse component of the lunar radar echoes. J. Geophys. Res., 77, 4289–303.CrossRefGoogle Scholar
Purcell, E. M., and Pennypacker, C. R. (1973). Scattering and absorption of light by nonspherical dielectic grains. Astrophys. J., 186, 705–14.CrossRefGoogle Scholar
Ramsey, M., and Christensen, P. (1998). Mineral abundance determination: quantitative deconvolution of thermal emission spectra. J. Geophys. Res. 103, 577–96.CrossRefGoogle Scholar
Rayleigh, Lord (1871). On the light from the sky, its polarization and colour. Philos. Mag., 41, 107–20, 274–9.Google Scholar
Reichman, J. (1973). Determination of absorption and scattering coefficients for nonhomogeneous media. I. Theory. Appl. Opt., 12, 1811–23.CrossRefGoogle Scholar
Richter, N. (1962). The photometric properties of interplanetary matter. Quart. J. Roy. Astron. Soc., 3, 179–86.Google Scholar
Ross, J., and Marshak, A. (1984). Calculation of the canopy bidirectional reflectance using the Monte-Carlo method. Rem. Sens. Environ., 24, 213–25.CrossRefGoogle Scholar
Rosenbush, V., and Kiselev, A. (2005). Polarization opposition effect for the Galilean satellites of Jupiter. Icarus, 179, 490–6.CrossRefGoogle Scholar
Rosenbush, V., Avramchuk, V., Rosenbush, A., and Mishchenko, M. (1997). Polarization properties of the Galilean satellites of Jupiter: observations and preliminary analysis. Astrophys. J., 487, 402–14.CrossRefGoogle Scholar
Rozenberg, G. (1966). Twilight. New York: Plenum.CrossRefGoogle Scholar
Russell, H. (1916). On the albedo of planets and their satellites. Astrophys. J., 43, 173–87.CrossRefGoogle Scholar
Salisbury, J. (1993). Mid-infrared spectroscopy: laboratory data. In Remote Geochemical Analysis, ed. C., Pieters and P., Englert (pp. 79–98). Cambridge University Press.Google Scholar
Salisbury, J., and Eastes, J. (1985). The effect of particle size and porosity on spectral contrast in the mid-infrared. Icarus, 64, 586–8.CrossRefGoogle Scholar
Salisbury, J., and Wald, A. (1992). The role of volume scattering in reducing spectral contrast of restrahlen bands in spectra of powdered minerals. Icarus, 96, 121–8.CrossRefGoogle Scholar
Salisbury, J., and Walter, L. (1989). Thermal infrared (2.5–13.5μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. J. Geophys. Res., 94, 9192–202.CrossRefGoogle Scholar
Salisbury, J., Hapke, B., and Eastes, J. (1987). Usefulness of weak bands in midinfrared remote sensing of particulate planetary surfaces. J. Geophys. Res., 92, 702–10.CrossRefGoogle Scholar
Saunders, P. (1967). Shadowing on the ocean and the existence of the horizon. J. Geophys. Res., 72, 4643–9.CrossRefGoogle Scholar
Schaber, G., Berlin, G., and Brown, W. Jr., (1976). Variations in surface roughness within Death Valley, California: geologic evaluation of 25-cm wavelength radar images. Geol. Soc. Amer. Bull., 87, 29–41.2.0.CO;2>CrossRefGoogle Scholar
Schatz, E. (1966). Effect of pressure on the reflectance of compacted powders. J. Opt. Soc. Amer., 56, 389–94.CrossRefGoogle Scholar
Schiffer, R., and Thielheim, K. (1982a). Light reflection from randomly oriented convex particles with rough surfaces. J. Appl. Phys., 53, 2825–30.CrossRefGoogle Scholar
Schiffer, R., and Thielheim, K. (1982b). A scattering model for the zodiacal light particles. Astron. Astrophys., 116, 1–9.Google Scholar
Schlatter, T. (1972). The local surface energy balance and subsurface temperature regime in Antarctica. J. Appl. Meteor., 11, 1048–62.2.0.CO;2>CrossRefGoogle Scholar
Schönberg, E. (1929). Theoretische Photometrie. In Handbuch der Astrophysik, Vol. 2, ed. G., Eberhard, A., Kohlschutter, and H., Ludendorff (pp. 1–280). Berlin: Springer.Google Scholar
Schuerman, D. (1980). Light Scattering by Irregularly Shaped Particles. New York: Plenum.CrossRefGoogle Scholar
Schuerman, D., Wang, R., Gustafson, B., and Schaefer, R. (1981). Systematic studies of light scattering. I. Particle shape. Appl. Opt., 20, 4039–50.CrossRefGoogle ScholarPubMed
Schulman, J., and Compton, W. (1962). Color Centers in Solids. New York: Pergamon.Google Scholar
Schuster, A. (1905). Radiation through a foggy atmosphere. Astrophys. J., 21, 1–22.CrossRefGoogle Scholar
Seeliger, H. (1887). Zur Theorie der Beleuchtung der grossen Planeten inbesondere des Saturn. Abhandl. Bayer. Akad. Wiss. Math.-Naturw. Kl. II, 16, 405–516.Google Scholar
Seeliger, H. (1895). Theorie der Beleuchtung staubformiger kosmischen Masses insbesondere des Saturinges. Abhandl. Bayer. Akad. Wiss. Math.-Naturw. Kl. II, 18, 1–72.Google Scholar
Shepard, M., and Arvidson, R. (1999). The opposition surge and photopolarimetry of fresh and coated basalts. Icarus, 141, 172–8.CrossRefGoogle Scholar
Shepard, M., and Campbell, R. (1998). Shadows on a planetary surface and implications for photometric roughness. Icarus, 134, 279–91.CrossRefGoogle Scholar
Shepard, M., and Helfenstein, P. (2007). A test of the Hapke photometric model. J. Geophys. Res., 112, E03001, doi:10.1029/2005JE0026252007.CrossRefGoogle Scholar
Shkuratov, Y. (1982). A model for negative polarization of light by cosmic bodies without atmospheres. Sov. Astron., 26, 493–6.Google Scholar
Shkuratov, Y. (1988). Diffractional model of the brightness surge of complex structure surfaces. Kin., Phys., Cel. Bodies, 4, 33–9.Google Scholar
Shkuratov, Y. (1989). New mechanism of formation of negative polarization of light scattered by the solid surfaces of cosmic bodies. Solar Syst. Res., 23, 111–13.Google Scholar
Shkuratov, Y., and Ovcharenko, A. (1998). Brightness opposition effect: a theoretical model and laboratory measurements. Solar Syst. Res., 32, 276–86.Google Scholar
Shkuratov, Y., Kreslavsky, M., Ovcharendo, A., et al. (1999a). Opposition effect from Clementine data and mechanisms of backscatter. Icarus, 141, 132–51.CrossRefGoogle Scholar
Shkuratov, Y., Starukhina, L., Hoffmann, H., and Arnold, G. (1999b). A model of spectral albedo of particulate surfaces: implications for optical properties of the Moon. Icarus, 137, 235–46.CrossRefGoogle Scholar
Shkuratov, Y., Kaldash, V., Kreslavsky, M., and Opanasenko, N. (2001). Absolute calibration of the Clementine UVVIS data: comparison with ground-based observation of the moon. Solar Syst. Res., 35, 29–34.CrossRefGoogle Scholar
Shkuratov, Y., Opanasenko, N., and Kreslavsky, M. (1992a). Polarimetric and photometric properties of the moon: telescopic observations and laboratory simulations. I. The negative polarization. Icarus, 95, 283–99.CrossRefGoogle Scholar
Shkuratov, Y., Opanasenko, N., and Kreslavsky, M. (1992b). Polarimetric and photometric properties of the moon: telescopic observations and laboratory simulations. II. The positive polarization. Icarus, 99, 468–84.CrossRefGoogle Scholar
Shkuratov, Y., Opanasenko, N., Zubko, E., et al. (2007). Multispectral polarimetry as a tool to investigate texture and chemistry of lumar regolith particles. Icarus, 187, 406–16.CrossRefGoogle Scholar
Shkuratov, Y., Ovcharenko, A., Zubko, E., et al. (2002). The opposition effect and negative polarization of structural analogs for planetary regoliths. Icarus, 159, 396–416.CrossRefGoogle Scholar
Shkuratov, Y., Ovcharenko, A., Zubko, E., et al. (2004). The negative polarization of light scattered from particulate surfaces and of independently scattring particles. J. Quant. Spectrosc. Radiat. Transf., 88, 267–84.CrossRefGoogle Scholar
Shkuratov, Y., Stankevich, D., Ovcharenko, A., and Korokhin, V. (1997). A study of light backscattering from planetary regolith type surfaces phase angles 0.2°–3.5°. Solar Syst. Res., 31, 56–63.Google Scholar
Shkuratov, Y., Stankevich, D.Petrov, D., et al. (2005). Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering. Icarus, 173, 3–15.CrossRefGoogle Scholar
Simonelli, D., and Veverka, J. (1987). Phase curves of minerals on Io: interpretation in terms of Hapke's function. Icarus, 68, 503–21.CrossRefGoogle Scholar
Simpson, R., and Tyler, G. (1982). Radar scattering laws for the lunar surface. IEEE Trans. Antennas Propag., AP30, 438–49.CrossRefGoogle Scholar
Skorobogatov, B., and Usoskin, A. (1982). Optical properties of ground surfaces of nonabsorbing materials. Opt. Spectr., 52, 310–13.Google Scholar
Smith, D. (1985). Dispersion theory, sum rules and their application to the analysis of optical data. In Handbook of Optical Constants of Solids, ed. E., Palik (pp. 35–154). New York: Academic Press.CrossRefGoogle Scholar
Smith, J. (1983). Matter–energy interactions in the optical region. In Manual of Remote Sensing, 2nd edn., ed. R., Colwell (pp. 61–113). Falls Church, VA: American Society of Photogrammetry.Google Scholar
Smith, M., Johnson, P., and Adams, J. (1985). Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis. In Proc. 15th Lunar Planet. Sci. Conf., ed. G., Ryder and G., Schubert (pp. C797–804). Washington, DC: American Geophysical Union.Google Scholar
Smythe, W. (1975). Spectra of hydrate frosts: their application to the outer solar system. Icarus, 24, 421–7.CrossRefGoogle Scholar
Sobolev, V. (1975). Light Scattering in Planetary Atmospheres. New York: Pergamon.Google Scholar
Sokolov, A. (1967). Optical Properties of Metals. New York: Elsevier.Google Scholar
Spencer, J. (1990). A rough-surface thermophysical model for airless planets. Icarus, 83, 27–38.CrossRefGoogle Scholar
Spitzer, W., and Kleinman, D. (1961). Infrared lattice bands of quartz. Phys. Rev., 121, 1324–35.CrossRefGoogle Scholar
Sproull, R., and Phillips, W. (1980). Modern Physics, 3rd edn. New York: John Wiley.Google Scholar
Stamnes, K., Tsay, S., Wiscombe, W., and Jayaweeta, K. (1988). Numerically stable algorithm for discrete-ordinate method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–9.CrossRefGoogle ScholarPubMed
Steigman, G. (1978). A polarimetric model for a dust covered planetary surface. Mon. Not. Roy. Astron. Soc., 185, 877–88.CrossRefGoogle Scholar
Stratton, J. (1941). Electromagnetic Theory. New York: McGraw-Hill.Google Scholar
Stroud, D., and Pan, F. (1978). Self-consistent approach to electromagnetic wave propagation in composite media: application to model granular metals. Phys. Rev., B17, 1602–10.CrossRefGoogle Scholar
Suits, G. (1972). The calculation of the directional reflectance of a vegetative canopy. Rem. Sens. Environ., 2, 117–25.CrossRefGoogle Scholar
Sung, C., Singer, R., Parkin, K., and Burns, R. (1977). Temperature dependence of Fe2+ crystal field spectra: implications to mineralogical mapping of planetary surfaces. In Proc. 8th Lunar Sci. Conf., ed. R., Merrill (pp. 1063–79). New York: Pergamon.Google Scholar
Sunshine, J., and Pieters, C. (1993). Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model. J. Geophys. Res., 98, 9075–87.CrossRefGoogle Scholar
Sunshine, J., Pieters, C., and Pratt, S. (1990). Deconvolution of mineral absorption bands: an improved approach. J. Geophys. Res., 95, 6955–66.CrossRefGoogle Scholar
Tanashchuk, M., and Gilchuk, L. (1978). Experimental scattering matrices of ground glass surfaces. Opt. Spectr., 45, 658–62.Google Scholar
Thompson, T., Pollack, J., Campbell, M., and O'Leary, B. (1970). Radar maps of the moon at 70 cm wavelength and their interpretation. Rad. Sci., 5, 253–62.CrossRefGoogle Scholar
Thorpe, T. (1973). Mariner 9 photometric observations of Mars from November 1971 through March 1972. Icarus, 20, 482–9.CrossRefGoogle Scholar
Thorpe, T. (1978). Viking orbiter observations of the Mars opposition effect. Icarus, 36, 204–15.CrossRefGoogle Scholar
Tishkovets, V., Shkuratov, Y., and Litvinov, P. (1999). Comparison of collective effects of scattering by randomly oriented clusters of spherical particles. J. Quant. Spectrosc. Radiat. Transf., 61, 767–73.CrossRefGoogle Scholar
Tishkovets, V., Petrova, E., and Jockers, K. (2004). Optical properties of aggregate particles comparable in size to the wavelength. J. Quant. Spectrosc. Radiat. Transf., 86, 241–65.CrossRefGoogle Scholar
Torrance, K., and Sparrow, E. (1967). Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Amer., 57, 1105–14.CrossRefGoogle Scholar
Trowbridge, T. (1978). Retroreflection from rough surfaces. J. Opt. Soc. Amer., 68, 1225–42.CrossRefGoogle Scholar
Umov, N. (1905). Chromatische Depolarization durch Lichtzerstreuung. Phys. Z., 6, 674–6.Google Scholar
Ungut, A., Grehan, G., and Gouesbet, G. (1981). Comparisons between geometrical optics and Lorentz–Mie theory. Appl. Opt., 20, 2911–18.CrossRefGoogle Scholar
Van Albada, M., Van der Mark, M., and Lagendijk, A. (1988). Polarization effects in weak localization of light. J. Phys., D21, S28–S31.Google Scholar
Van Albada, M., Van der, Mark, and Lagendijk, A. (1990). Experiments on weak localization of light and their interpretation. In Scattering and Localization of Classical Waves in Random Media, ed. P., Sheng (pp. 97–136), Teaneck, NJ: World Scientifc Publications.CrossRefGoogle Scholar
Van de Hulst, H. (1957). Light Scattering by Small Particles. New York: John Wiley.Google Scholar
Van de Hulst, H. (1974). The spherical albedo of a planet covered with a homogeneous cloud layer. Astron. Astrophys., 35, 209–14.Google Scholar
Van de Hulst, H. (1980). Multiple Light Scattering. New York: Academic Press.Google Scholar
Van der Mark, M., Van Albada, M., and Lagendijk, A. (1988). Light scattering in strongly scattering media: multiple scattering and weak localization. Phys. Rev., B37, 3575–92.CrossRefGoogle ScholarPubMed
Van Diggelen, J. (1959). Photometric properties of lunar crater floors. Rech. Obs. Utrecht, 14, 1–114.Google Scholar
Van Diggelen, J. (1965). The radiance of lunar objects near opposition. Planet. Space Sci., 13, 271–9.CrossRefGoogle Scholar
Van Ginneken, B., Stavridi, M., and Koenderink, J. (1988). Diffuse and specular reflectance from rough surfaces. Appl. Opt., 3, 130–9.Google Scholar
Vanderbilt, V., Grant, L., Biehl, L., and Robinson, B. (1985). Specular, diffuse and polarized light scattered by two wheat canopies. Appl. Opt., 24, 2408–18.CrossRefGoogle ScholarPubMed
Vaughan, D. (1990). Some contributions of spectral studies in the visible and near visible light region to mineralogy. In Absorption Spectroscopy in Mineralogy, ed. A., Mottana and T., Burragato (pp. 1–37). New York: Elsevier.Google Scholar
Verstraete, M., Pinty, B., and Dickinson, R. (1990). A physical model of the bidirectional reflectance of vegetation canopies. I. Theory. J. Geophys. Res., 95, 11755–65.CrossRefGoogle Scholar
Veverka, J., Goguen, J., Yang, S., and Elliot, J. (1978a). Near-opposition limb darkening of solids of planetary interest. Icarus, 33, 368–79.CrossRefGoogle Scholar
Veverka, J., Goguen, J., Yang, S., and Elliot, J. (1978b). How to compare the surface of Io to laboratory samples. Icarus, 34, 63–7.CrossRefGoogle Scholar
Veverka, J., Goguen, J., Yang, S., and Elliot, J. (1978c). Scattering of light from particulate surfaces. I. A laboratory assessment of multiple scattering effects. Icarus, 34, 406–14.CrossRefGoogle Scholar
Veverka, J., Helfenstein, P., Hapke, B., and Goguen, J. (1988). Photometry and polarimetry of Mercury. In Mercury, ed. F., Vilas and C., Chapman (pp. 37–58). Tucson, AZ: University of Arizona Press.Google Scholar
Videen, G., Muinonen, K., and Lumme, K. (2003). Coherence, power laws and the negative polarization surge. Appl. Opt., 42, 3647–52.CrossRefGoogle ScholarPubMed
Vilaplana, R., Moreno, F., and Molina, A. (2006). Study of the sensitivity of sizeaveraged scattering matrix elements of nonspherical particles to changes in shape, porosity and refractive index. J. Quant. Spectrosc. Radiat. Transf., 100, 415–28.CrossRefGoogle Scholar
Vincent, R., and Hunt, G. (1968). Infrared reflectance from mat surfaces. Appl. Opt., 7, 539.CrossRefGoogle ScholarPubMed
Volten, O., Munoz, O., Rol, E., et al. (2001). Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. J. Geophys. Res., 106, 17375–401.CrossRefGoogle Scholar
Wagner, J., Hapke, B.W., and Wells, E.N. (1987). Atlas of reflectance spectra of terrestrial, lunar, and meteoritic powders and frosts from 92 to 1800 nm. Icarus, 69, 14–28.CrossRefGoogle Scholar
Wagner, R. (1967). Shadowing of randomly rough surfaces. J. Acoust. Soc. Amer., 41, 138–47.CrossRefGoogle Scholar
Wallach, D., and Hapke, B. (1985). Light scattering in a spherical exponential atmosphere, with applications to Venus. Icarus, 63, 354–73.CrossRefGoogle Scholar
Walter, L., and Salisbury, J. (1989). Spectral characterization of igneous rocks in the 8 to 12μm region. J. Geophys. Res., 94, 9203–13.CrossRefGoogle Scholar
Warren, S. (1982). Optical properties of snow. Rev. Geophys. Space Phys., 20, 67–89.CrossRefGoogle Scholar
Waterman, T. (1965). Matrix formulation of electromagnetic scattering. Proc. IEEE, 53, 805–12.CrossRefGoogle Scholar
Waterman, T. (1979). Matrix methods in potential theory and electromagnetic scattering. J. Appl. Phys., 50, 455–66.CrossRefGoogle Scholar
Watson, G. (1958). A Treatise on the Theory of Bessel Functions. Cambridge University Press.Google Scholar
Watson, K. (1969). Multiple scattering of electromagnetic waves in underdense plasma. J. Mathemat. Phys., 16, 688–702.CrossRefGoogle Scholar
Weaver, R. (1993). Anomalous diffusivity and localization of classical waves in disordered media: the effect of dissipation. Phys. Rev., B47, 1077–80.CrossRefGoogle Scholar
Weidner, V., and Hsia, J. (1981). Reflection properties of pressed polytetrafluoroethylene powder. J. Opt. Soc. Amer., 71, 856–61.CrossRefGoogle Scholar
Weidner, V., Hsia, J., and Adams, B. (1985). Laboratory intercomparison study of pressed polytetrafluoroethylene powder reflectance standards. Appl. Opt., 24, 2225–30.CrossRefGoogle ScholarPubMed
Weiss-Wrana, K. (1983). Optical properties of interplanetary dust: comparison with light scattering by larger meteoritic and terrestrial grains. Astron. Astrophys., 126, 240–50.Google Scholar
Wells, E. (1977). Optical absorption bands in glasses of lunar composition. Ph.D. thesis, University of Pittsburgh, PA.
Wells, E., and Hapke, B. (1977). Lunar soil: iron and titanium bands in the glass fraction. Science, 195, 977–9.CrossRefGoogle ScholarPubMed
Wells, E., Veverka, J., and Thomas, P. (1984). Mars: experimental study of albedo changes caused by dust fallout. Icarus, 58, 331–8.CrossRefGoogle Scholar
Wendtland, W., and Hecht, H. (1966). Reflectance Spectroscopy. New York: Wiley-Interscience.Google Scholar
Wesselink, A. (1948). Heat conductivity and the nature of the lunar surface material. Bull. Astron. Inst. Netherlands, 66, 3033–45.Google Scholar
Whitaker, E. (1969). An investigation of the lunar heiligenschein. In Analysis of Apollo 8 Photography and Visual Observations (pp. 38–9). NASA SP-201. Washington, DC: NASA.Google Scholar
White, W., and Keester, K. (1966). Optical absorption spectra of iron in the rock-forming silicates. Amer. Min., 51, 774–91.Google Scholar
Widorn, T. (1967). Zur photometrischen Bestimmung der Durchmesser derkleinen Planeten. Ann. Univ. Sternw. Wien, 27, 112–19.Google Scholar
Wildey, R. (1978). The moon in heiligenschein. Science, 200, 1265–7.CrossRefGoogle Scholar
Woessner, P., and Hapke, B. (1987). Polarization of light scattered by clover. Rem. Sens. Environ., 21, 243–61.CrossRefGoogle Scholar
Wolf, P., and Maret, G. (1985). Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett., 55, 2696–9.CrossRefGoogle ScholarPubMed
Wolf, P., Maret, G., Akkermans, E., and Maynard, R. (1988). Optical coherent backscattering by random media: an experimental study. J. Phys. France, 49, 63–75.CrossRefGoogle Scholar
Wolff, M. (1975). Polarization of light reflected from rough planetary surface. Appl. Opt., 14, 1395–405.CrossRefGoogle ScholarPubMed
Wolff, M. (1980). Theory and application of the polarization-albedo rules. Icarus, 44, 780–92.CrossRefGoogle Scholar
Wolff, M. (1981). Computing diffuse reflection from particulate planetary surface with a new function. Appl. Opt., 20, 2493–8.CrossRefGoogle ScholarPubMed
Wooten, F. (1972). Optical Properties of Solids. New York: Academic Press.Google Scholar
Yolken, H., and Kruger, J. (1965). Optical constants of iron in the visible region. J. Opt. Soc. Amer., 55, 842–4.CrossRefGoogle Scholar
Xu, Y. (1995). Electromagnetic scattering by a aggregate of spheres. Appl. Opt., 34, 4573–88.CrossRefGoogle Scholar
Young, A. (1973). Are the clouds of Venus sulfuric acid?Icarus, 18, 564–82.CrossRefGoogle Scholar
Zellner, B., and Gradie, J. (1976). Polarimetric evidence for the albedos and compositions of 94 asteroids. Astron. J., 81, 262–80.CrossRefGoogle Scholar
Zellner, B., Gehrels, T., and Gradie, J. (1974). Polarimetric diameters. Astron. J., 79, 1100–10.CrossRefGoogle Scholar
Zerull, R. (1976). Scattering measurements of dielectric and absorbing non-spherical particles. Contr. Atmos. Phys., 49, 168–88.Google Scholar
Zerull, R., and Giese, R. (1974). Microwave analogue studies. In Planets, Stars and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 901–15). Tucson, AZ: University of Arizona Press.Google Scholar
Zubko, E., Shkuratov, Y., Mishchenko, M., and Videen, G. (2008). Light scattering in a finite multi-particle system. J. Quant. Spectrosc. Radiat. Transf. 109, 2195–206.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Bruce Hapke, University of Pittsburgh
  • Book: Theory of Reflectance and Emittance Spectroscopy
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025683.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Bruce Hapke, University of Pittsburgh
  • Book: Theory of Reflectance and Emittance Spectroscopy
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025683.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Bruce Hapke, University of Pittsburgh
  • Book: Theory of Reflectance and Emittance Spectroscopy
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025683.022
Available formats
×