Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-27T16:11:51.119Z Has data issue: false hasContentIssue false

7 - Identification of FOPTD Model using Single Symmetrical Relay Test

Published online by Cambridge University Press:  05 June 2014

M. Chidambaram
Affiliation:
Indian Institute of Technology, Madras
Vivek Sathe
Affiliation:
Dr. Babasaheb Ambedkar Technological University, Lonere Maharashtra
Get access

Summary

Using a single symmetric relay feedback test, a method is proposed to identify all the three parameters of a first order plus time delay (FOPTD) model. On identifying a higher order dynamics system by an FOPTD model, the conventional method identifies a negative time constant (Li et al., 1991) due to the error in neglecting higher order dynamics in the system output. In the present work, all the parameters of an FOPTD model are estimated with adequate accuracy. Four simulation examples are given. The estimated model parameters of an FOPTD model are compared with those obtained by Li et al. (1991) and also those with the exact model parameters of the system. The performance of the controller designed on the identified model is compared with that identified by Li et al. (1991) and with that of the actual process. The method gives results close to that of the actual system. Simulation results for stable and unstable systems are given.

Introduction

Identification of transfer function models from experimental data is essential for model based controller design. Often derivation of a rigorous mathematical model is difficult due to the complex nature of chemical processes. Hence, system identification is a valuable tool to identify low order models, based on the input-output data. The relay feedback is a single-shot experiment and the magnitude of oscillations can be varied. From the principal harmonics approximation, the ultimate gain (Ku) and ultimate frequency (ωu) are found.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×