Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-jp8mt Total loading time: 1.363 Render date: 2022-12-02T04:18:59.676Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Chapter 8 - Anaerobic fermentation

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Atack, J. M. & Kelly, D. J. (2006). Structure, mechanism and physiological roles of bacterial cytochrome c peroxidases. Advances in Microbial Physiology 52, 73106.CrossRefGoogle Scholar
Brioukhanov, A. L., Netrusov, A. I. & Eggen, R. I. L. (2006). The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri. Microbiology 152, 16711677.CrossRefGoogle ScholarPubMed
Fournier, M., Zhang, Y., Wildschut, J. D., Dolla, A., Voordouw, J. K., Schriemer, D. C. & Voordouw, G. (2003). Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology 185, 7179.CrossRefGoogle ScholarPubMed
Henningham, A., Döhrmann, S., Nizet, V. & Cole, J. N. (2015). Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiology Reviews 39, 488508.CrossRefGoogle ScholarPubMed
Imlay, J. A. (2006). Iron–sulphur clusters and the problem with oxygen. Molecular Microbiology 59, 10731082.CrossRefGoogle ScholarPubMed
Jennings, M. E., Schaff, C. W., Horne, A. J., Lessner, F. H. & Lessner, D. J. (2014). Expression of a bacterial catalase in a strictly anaerobic methanogen significantly increases tolerance to hydrogen peroxide but not oxygen. Microbiology 160, 270278.CrossRefGoogle Scholar
Krätzer, C., Welte, C., Dörner, K., Friedrich, T. & Deppenmeier, U. (2011). Methanoferrodoxin represents a new class of superoxide reductase containing an iron–sulfur cluster. FEBS Journal 278, 442451.CrossRefGoogle ScholarPubMed
Ramel, F., Amrani, A., Pieulle, L., Lamrabet, O., Voordouw, G., Seddiki, N., Brèthes, D., Company, M., Dolla, A. & Brasseur, G. (2013). Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation. Microbiology 159, 26632673.Google Scholar
Riebe, O., Fischer, R.-J., Wampler, D. A., Kurtz, Jr., D. M. & Bahl, H. (2009). Pathway for H2O2 and O2 detoxification in Clostridium acetobutylicum. Microbiology 155, 1624.CrossRefGoogle ScholarPubMed
Zhao, X. & Drlica, K. (2014). Reactive oxygen species and the bacterial response to lethal stress. Current Opinion in Microbiology 21, 16.CrossRefGoogle ScholarPubMed

Secondary Sources

Balodite, E., Strazdina, I., Galinina, N., McLean, S., Rutkis, R., Poole, R. K. & Kalnenieks, U. (2014). Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase. Microbiology 160, 20452052.CrossRefGoogle ScholarPubMed
Kalnenieks, U. (2006). Physiology of Zymomonas mobilis: some unanswered questions. Advances in Microbial Physiology 51, 73117.CrossRefGoogle ScholarPubMed
Kalnenieks, U., Galinina, N., Strazdina, I., Kravale, Z., Pickford, J. L., Rutkis, R. & Poole, R. K. (2008). NADH dehydrogenase deficiency results in low respiration rate and improved aerobic growth of Zymomonas mobilis. Microbiology 154, 989994.CrossRefGoogle ScholarPubMed
Zheng, T., Olson, D. G., Murphy, S. J., Shao, X., Tian, L. & Lynd, L. R. (2017). Both adhE and a separate NADPH-dependent alcohol dehydrogenase gene, adhA, are necessary for high ethanol production in Thermoanaerobacterium saccharolyticum. Journal of Bacteriology 199, e0054216.CrossRefGoogle Scholar
Baureder, M. & Hederstedt, L. (2013). Heme proteins in lactic acid bacteria. Advances in Microbial Physiology. 62, 143.CrossRefGoogle ScholarPubMed
Filannino, P., Di Cagno, R., Addante, R., Pontonio, E. & Gobbetti, M. (2016). Metabolism of fructophilic lactic acid bacteria from the Apis mellifera L. bee gut: phenolic acids as external electron acceptors. Applied and Environmental Microbiology 82, 68996911.CrossRefGoogle ScholarPubMed
Klijn, A., Mercenier, A. & Arigoni, F. (2005). Lessons from the genomes of bifidobacteria. FEMS Microbiology Reviews 29, 491509.CrossRefGoogle ScholarPubMed
Martin, M. G., Sender, P. D., Peiru, S., de Mendoza, D. & Magn, C. (2004). Acid-inducible transcription of the operon encoding the citrate lyase complex of Lactococcus lactis biovar diacetylactis CRL264. Journal of Bacteriology 186, 56495660.CrossRefGoogle ScholarPubMed
Papadimitriou, K., Alegría, Á., Bron, P. A., de Angelis, M., Gobbetti, M., Kleerebezem, M., Lemos, J. A., Linares, D. M., Ross, P., Stanton, C., Turroni, F., van Sinderen, D., Varmanen, P., Ventura, M., Zúñiga, M., Tsakalidou, E. & Kok, J. (2016). Stress physiology of lactic acid bacteria. Microbiology & Molecular Biology Reviews 80, 837890.CrossRefGoogle ScholarPubMed
Smit, G., Smit, B. A. & Engels, W. J. M. (2005). Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews 29, 591610.CrossRefGoogle ScholarPubMed
Vido, K., le Bars, D., Mistou, M. Y., Anglade, P., Gruss, A. & Gaudu, P. (2004). Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. Journal of Bacteriology 186, 16481657.CrossRefGoogle ScholarPubMed
Becattini, S., Littmann, E. R., Carter, R. A., Kim, S. G., Morjaria, S. M., Ling, L., Gyaltshen, Y., Fontana, E., Taur, Y., Leiner, I. M. & Pamer, E. G. (2017). Commensal microbes provide first line defense against Listeria monocytogenes infection. Journal of Experimental Medicine. doi 10.1084/jem.20170495CrossRef
Karst, S. M. (2016). The influence of commensal bacteria on infection with enteric viruses. Nature Reviews Microbiology 14, 197204.CrossRefGoogle ScholarPubMed
Kim, Y.-G., Sakamoto, K., Seo, S.-U., Pickard, J. M., Gillilland, M. G., Pudlo, N. A., Hoostal, M., Li, X., Wang, T. D., Feehley, T., Stefka, A. T., Schmidt, T. M., Martens, E. C., Fukuda, S., Inohara, N., Nagler, C. R. & Núñez, G. (2017). Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science 356, 315319.CrossRefGoogle ScholarPubMed
Petrova, M. I., van den Broek, M., Balzarini, J., Vanderleyden, J. & Lebeer, S. (2013). Vaginal microbiota and its role in HIV transmission and infection. FEMS Microbiology Reviews 37, 762792.CrossRefGoogle ScholarPubMed
Rauch, M. & Lynch, S. V. (2012). The potential for probiotic manipulation of the gastrointestinal microbiome. Current Opinion in Biotechnology 23, 192201.CrossRefGoogle ScholarPubMed
Santos, C. M. A., Pires, M. C. V., Leão, T. L., Hernández, Z. P., Rodriguez, M. L., Martins, A. K. S., Miranda, L. S., Martins, F. S. & Nicoli, J. R. (2016). Selection of Lactobacillus strains as potential probiotics for vaginitis treatment. Microbiology 162, 11951207.Google ScholarPubMed
Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. (2016) The central nervous system and the gut microbiome. Cell 167, 915932.CrossRefGoogle ScholarPubMed
Amador-Noguez, D., Feng, X.-J., Fan, J., Roquet, N., Rabitz, H. & Rabinowitz, J. D. (2010). Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum. Journal of Bacteriology 192, 44524461.CrossRefGoogle ScholarPubMed
Calusinska, M., Happe, T., Joris, B. & Wilmotte, A. (2010). The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Microbiology 156, 15751588.CrossRefGoogle ScholarPubMed
Louis, P. & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology 19, 2941.CrossRefGoogle ScholarPubMed
Peters, J. W., Miller, A.-F., Jones, A. K., King, P. W. & Adams, M. W. W. (2016). Electron bifurcation. Current Opinion in Chemical Biology 31, 146152.CrossRefGoogle ScholarPubMed
Saint-Amans, S., Girbal, L., Andrade, J., Ahrens, K. & Soucaille, P. (2001). Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. Journal of Bacteriology 183, 17481754.CrossRefGoogle ScholarPubMed
Thauer, R. K. (2015). My lifelong passion for biochemistry and anaerobic microorganisms. Annual Review of Microbiology 69, 130.CrossRefGoogle ScholarPubMed
Tracy, B. P., Jones, S. W. & Papoutsakis, E. T. (2011). Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis. Journal of Bacteriology 193, 14141426.CrossRefGoogle ScholarPubMed
Bizzini, A., Zhao, C., Budin-Verneuil, A., Sauvageot, N., Giard, J.-C., Auffray, Y. & Hartke, A. (2010). Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis. Journal of Bacteriology 192, 779785.CrossRefGoogle Scholar
Laurinavichene, T. V., Zorin, N. A. & Tsygankov, A. A. (2002). Effect of redox potential on activity of hydrogenase 1 and hydrogenase 2 in Escherichia coli. Archives of Microbiology 178, 437442.CrossRefGoogle ScholarPubMed
Moons, P., Van Houdt, R., Vivijs, B., Michiels, C. M. & Aertsen, A. (2011). Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1. Applied and Environmental Microbiology 77, 34223427.CrossRefGoogle ScholarPubMed
Scheu, P. D., Witan, J., Rauschmeier, M., Graf, S., Liao, Y.-F., Ebert-Jung, A., Basché, T., Erker, W. & Unden, G. (2012). CitA/CitB two-component system regulating citrate fermentation in Escherichia coli and its relation to the DcuS/DcuR system in vivo. Journal of Bacteriology 194, 636645.CrossRefGoogle ScholarPubMed
van Houdt, R., Moons, P., Hueso Buj, M. & Michiels, C. W. (2006). N-acyl-L-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1. Journal of Bacteriology 188, 45704572.CrossRefGoogle ScholarPubMed
Koussemon, M., Combet-Blanc, Y. & Ollivier, B. (2003). Glucose fermentation by Propionibacterium microaerophilum: effect of pH on metabolism and bioenergetics. Current Microbiology 46, 141145.Google Scholar
Reichardt, N., Duncan, S. H., Young, P., Belenguer, A., McWilliam Leitch, C., Scott, K. P., Flint, H. J. & Louis, P. (2014). Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8, 13231335.CrossRefGoogle ScholarPubMed
Scott, K. P., Martin, J. C., Campbell, G., Mayer, C.-D. & Flint, H. J. (2006). Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium Roseburia inulinivorans. Journal of Bacteriology 188, 43404349.CrossRefGoogle ScholarPubMed
Seeliger, S., Janssen, P. H. & Schink, B. (2002). Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiology Letters 211, 6570.CrossRefGoogle ScholarPubMed
Ato, M., Ishii, M. & Igarashi, Y. (2014). Enrichment of amino acid-oxidizing, acetate-reducing bacteria. Journal of Bioscience & Bioengineering 118, 160165.CrossRefGoogle ScholarPubMed
Buckel, W. (2001). Unusual enzymes involved in five pathways of glutamate fermentation. Applied Microbiology and Biotechnology 57, 263273.CrossRefGoogle ScholarPubMed
Debnar-Daumler, C., Seubert, A., Schmitt, G. & Heider, J. (2014). Simultaneous involvement of a tungsten-containing aldehyde: ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism. Journal of Bacteriology 196, 483492.CrossRefGoogle Scholar
Lan, J. & Newman, E. B. (2003). A requirement for anaerobically induced redox functions during aerobic growth of Escherichia coli with serine, glycine and leucine as carbon source. Research in Microbiology 154, 191197.CrossRefGoogle ScholarPubMed
Abratt, V. R. & Reid, S. J. (2010). Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Advances in Applied Microbiology. 72, 6387.CrossRefGoogle Scholar
Janssen, P. H. & Hugenholtz, P. (2003). Fermentation of glycolate by a pure culture of a strictly anaerobic Gram-positive bacterium belonging to the family Lachnospiraceae. Archives of Microbiology 179, 321328.CrossRefGoogle ScholarPubMed
Ye, L., Jia, Z., Jung, T. & Maloney, P. C. (2001). Topology of OxlT, the oxalate transporter of Oxalobacter formigenes, determined by site-directed fluorescence labeling. Journal of Bacteriology 183, 24902496.CrossRefGoogle ScholarPubMed
Kanai, T., Matsuoka, R., Beppu, H., Nakajima, A., Okada, Y., Atomi, H. & Imanaka, T. (2011). Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic archaeon Thermococcus kodakarensis. Journal of Bacteriology 193, 31093116.CrossRefGoogle ScholarPubMed
Kim, Y. J., Lee, H. S., Kim, E. S., Bae, S. S., Lim, J. K., Matsumi, R., Lebedinsky, A. V., Sokolova, T. G., Kozhevnikova, D. A., Cha, S.-S., Kim, S.-J., Kwon, K. K., Imanaka, T., Atomi, H., Bonch-Osmolovskaya, E. A., Lee, J.-H. & Kang, S. G. (2010). Formate-driven growth coupled with H2 production. Nature 467, 352355.CrossRefGoogle Scholar
Schut, G. J., Boyd, E. S., Peters, J. W. & Adams, M. W. W. (2013). The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiology Reviews 37, 182203.CrossRefGoogle ScholarPubMed
Yang, H., Lipscomb, G. L., Keese, A. M., Schut, G. J., Thomm, M., Adams, M. W. W., Wang, B. C. & Scott, R. A. (2010). SurR regulates hydrogen production in Pyrococcus furiosus by a sulfur-dependent redox switch. Molecular Microbiology 77, 11111122.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×