Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-28T14:20:35.811Z Has data issue: false hasContentIssue false

3 - Wave, antenna, and radar polarization

Published online by Cambridge University Press:  14 October 2009

V. N. Bringi
Affiliation:
Colorado State University
V. Chandrasekar
Affiliation:
Colorado State University
Get access

Summary

The subject of polarization for completely and partially polarized waves has been extensively treated throughout the literature (e.g. Mott 1992). This chapter presents a classical approach to wave and antenna polarization for readers who have not been previously exposed to this topic. The first goal is to derive the voltage form of the dual-polarized radar range equation for scattering by a single particle in both the linear and circular bases. This is followed by a generalization of the usual (single-polarized) power form of the radar range equation to include the concepts of copolar and cross-polar response surfaces and characteristic polarizations.

For scattering by a large number of distributed particles, the ensemble-averaged Mueller matrix is formally defined and conventional radar observables, such as reflectivity, differential reflectivity, the linear depolarization ratio, and the copolar correlation coefficient, are defined in terms of Mueller matrix elements. The time-averaged polarimetric covariance matrix is formally defined from the concept of an “instantaneous” back scatter matrix and the associated “feature” vector. Dual-polarized radars which are configured to measure the three power elements and three (complex) correlation elements of the covariance matrix offer a complete characterization of scattering from precipitation particles. The relation between the covariance matrices in the linear (h/v) and circular bases is examined in detail, including simplifications afforded by symmetry arguments. A number of examples of radar measurements are presented to illustrate the theory.

Type
Chapter
Information
Polarimetric Doppler Weather Radar
Principles and Applications
, pp. 89 - 159
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×