Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-07T15:19:41.389Z Has data issue: false hasContentIssue false

Chapter 20 - Cerebral Cortex, Including Germinal Matrix

from Neuroanatomic Site Development

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access

Summary

Basic organization of the CNS is established during the embryonic and early fetal period (see Chapter 19). However, at this stage, the human brain is barely formed. From the 20th to the 40th week of gestation, brain weight increases tenfold. It doubles again during the first year of postnatal life, and continues to increase another 50% during the next 10 to 15 years when adult weight is finally reached (see Chapter 26) (1). Growth is accomplished through several processes. The quantity of brain cells increases at a brisk rate in the periventricular germinal matrix until approximately 30 weeks gestation and at a much lesser rate until approximately full-term gestation (2).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvord, EC. Head circumference, brain weight, and tumor burden. J Child Neurol. 1986;1(3):240–50.Google Scholar
Del Bigio, MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain. 2011;134(Pt 5):1344–61.Google Scholar
Abraham, H, Tornoczky, T, Kosztolanyi, G, Seress, L. Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci. 2001;19(1):5362.Google Scholar
Yakovlev, PI, Lecours, AR. The myelogenetic cycles of regional maturation of the brain. In: Minkowski, A, editor. Regional Development of the Brain in Early Life. Oxford: Blackwell Scientific Publications; 1967. p. 370.Google Scholar
Zhu, Y, Sousa, AMM, Gao, T, Skarica, M, Li, M, Santpere, G, et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science. 2018;362(6420):eaat8077.Google Scholar
Breen, MS, Ozcan, S, Ramsey, JM, Wang, Z, Ma’ayan, A, Rustogi, N, et al. Temporal proteomic profiling of postnatal human cortical development. Transl Psychiatry. 2018;8(1):267.Google Scholar
Bystron, I, Blakemore, C, Rakic, P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008;9(2):110–22.Google Scholar
Malik, S, Vinukonda, G, Vose, LR, Diamond, D, Bhimavarapu, BB, Hu, F, et al. Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J Neurosci. 2013;33(2):411–23.CrossRefGoogle ScholarPubMed
Ulfig, N. Ganglionic eminence of the human fetal brain-new vistas. Anat Rec. 2002;267(3):191–5.Google Scholar
Kinoshita, Y, Okudera, T, Tsuru, E, Yokota, A. Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses. Am J Neuroradiol. 2001;22(2):382–8.Google Scholar
Johansson, CB, Svensson, M, Wallstedt, L, Janson, AM, Frisen, J. Neural stem cells in the adult human brain. Exp Cell Res. 1999;253(2):733–6.Google Scholar
Sanai, N, Nguyen, T, Ihrie, RA, Mirzadeh, Z, Tsai, HH, Wong, M, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011.Google Scholar
Curtis, MA, Kam, M, Nannmark, U, Anderson, MF, Axell, MZ, Wikkelso, C, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315(5816):1243–9.Google Scholar
Guerrero-Cazares, H, Gonzalez-Perez, O, Soriano-Navarro, M, Zamora-Berridi, G, Garcia-Verdugo, JM, Quinones-Hinojosa, A. Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain. J Comp Neurol. 2011;519(6):1165–80.Google Scholar
Ma, T, Wang, C, Wang, L, Zhou, X, Tian, M, Zhang, Q, et al. Subcortical origins of human and monkey neocortical interneurons. Nat Neurosci. 2013;16(11):1588–97.Google Scholar
Zecevic, N, Chen, Y, Filipovic, R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol. 2005;491(2):109–22.CrossRefGoogle Scholar
Arshad, A, Vose, LR, Vinukonda, G, Hu, F, Yoshikawa, K, Csiszar, A, et al. Extended production of cortical interneurons into the third trimester of human gestation. Cereb Cortex. 2016;26(5):2242–56.Google Scholar
Rakic, P, Sidman, RL. Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entwicklungsgesch. 1969;129(1):5382.Google Scholar
Letinic, K, Kostovic, I. Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol. 1997;384(3):373–95.Google Scholar
Hansen, DV, Lui, JH, Parker, PR, Kriegstein, AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464(7288):554–61.CrossRefGoogle ScholarPubMed
Alzu’bi, A, Clowry, GJ. Expression of ventral telencephalon transcription factors ASCL1 and DLX2 in the early fetal human cerebral cortex. J Anat. 2019;235(3):555–68.Google Scholar
Pollen, AA, Nowakowski, TJ, Chen, J, Retallack, H, Sandoval-Espinosa, C, Nicholas, CR, et al. Molecular identity of human outer radial glia during cortical development. Cell. 2015;163(1):5567.Google Scholar
Clowry, G, Molnar, Z, Rakic, P. Renewed focus on the developing human neocortex. J Anat. 2010;217(4):276–88.Google ScholarPubMed
Korzhevskii, DE, Otellin, VA. Initial stage of vascular bed development in telencephalon of human embryo. Bull Exp Biol Med. 2000;129(5):508–10.CrossRefGoogle ScholarPubMed
O’Rahilly, R, Muller, F. The meninges in human development. J Neuropathol Exp Neurol. 1986;45(5):588608.Google Scholar
Marin-Padilla, M. The human brain intracerebral microvascular system: development and structure. Front Neuroanat. 2012;6:38.Google Scholar
Bar, T. Patterns of vascularization in the developing cerebral cortex. Ciba Fdn Symp. 1983;100:2036.Google Scholar
Sweeney, MD, Zhao, Z, Montagne, A, Nelson, AR, Zlokovic, BV. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):2178.Google Scholar
Obermeier, B, Daneman, R, Ransohoff, RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584–96.CrossRefGoogle ScholarPubMed
Yamazaki, T, Mukouyama, YS. Tissue specific origin, development, and pathological perspectives of pericytes. Front Cardiovasc Med. 2018;5:78.CrossRefGoogle ScholarPubMed
Dalkara, T, Gursoy-Ozdemir, Y, Yemisci, M. Brain microvascular pericytes in health and disease. Acta Neuropathol. 2011;122(1):19.Google Scholar
Smyth, LCD, Rustenhoven, J, Scotter, EL, Schweder, P, Faull, RLM, Park, TIH, et al. Markers for human brain pericytes and smooth muscle cells. J Chem Neuroanat. 2018;92:4860.Google Scholar
Virgintino, D, Errede, M, Robertson, D, Capobianco, C, Girolamo, F, Vimercati, A, et al. Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol. 2004;122(1):51–9.Google Scholar
Virgintino, D, Errede, M, Girolamo, F, Capobianco, C, Robertson, D, Vimercati, A, et al. Fetal blood-brain barrier P-glycoprotein contributes to brain protection during human development. J Neuropathol Exp Neurol. 2008;67(1):5061.Google Scholar
Saunders, NR, Dziegielewska, KM, Mollgard, K, Habgood, MD. Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. J Physiol. 2018;596(23):5723–56.CrossRefGoogle Scholar
Mito, T, Konomi, H, Houdou, S, Takashima, S. Immunohistochemical study of the vasculature in the developing brain. Pediatr Neurol. 1991;7(1):1822.CrossRefGoogle ScholarPubMed
Chang, H, Cho, KH, Hayashi, S, Kim, JH, Abe, H, Rodriguez-Vazquez, JF, et al. Site- and stage-dependent differences in vascular density of the human fetal brain. Childs Nerv Syst. 2014;30(3):399409.Google Scholar
Ballabh, P. Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol. 2014;41(1):4767.Google Scholar
Kuban, KC, Gilles, FH. Human telencephalic angiogenesis. Ann Neurol. 1985;17(6):539–48.CrossRefGoogle ScholarPubMed
Rhee, CJ, Fraser, CD, 3rd, Kibler, K, Easley, RB, Andropoulos, DB, Czosnyka, M, et al. The ontogeny of cerebrovascular pressure autoregulation in premature infants. J Perinatol. 2014;34(12):926–31.Google Scholar
O’Rahilly, RR, Müller, F. The Embryonic Human Brain: An Atlas of Developmental Stages, 3rd edition. New York: Wiley; 2006. p. 358.CrossRefGoogle Scholar
Yang, P, Zhang, J, Shi, H, Zhang, J, Xu, X, Xiao, X, et al. Developmental profile of neurogenesis in prenatal human hippocampus: an immunohistochemical study. Int J Dev Neurosci. 2014;38:19.Google Scholar
Hines, M. Studies in the growth and differentiation of the telencephalon in man. The fissura hippocampi. J Comp Neurol. 1922;34:73171.Google Scholar
Kostovic, I, Seress, L, Mrzljak, L, Judas, M. Early onset of synapse formation in the human hippocampus: a correlation with Nissl-Golgi architectonics in 15- and 16.5-week-old fetuses. Neuroscience. 1989;30(1):105–16.Google Scholar
Arnold, SE, Trojanowski, JQ. Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol. 1996;367(2):274–92.Google Scholar
Zaidel, DW. Quantitative morphology of human hippocampus early neuron development. Anat Rec. 1999;254(1):8791.Google Scholar
Yang, P, Zhang, J, Zhao, L, Jiao, Q, Jin, H, Xiao, X, et al. Developmental distribution pattern of metabotropic glutamate receptor 5 in prenatal human hippocampus. Neurosci Bull. 2012;28(6):704–14.CrossRefGoogle ScholarPubMed
Insausti, R, Cebada-Sanchez, S, Marcos, P. Postnatal development of the human hippocampal formation. Adv Anat Embryol Cell Biol. 2010;206:186.Google Scholar
Johnson, M, Perry, RH, Piggott, MA, Court, JA, Spurden, D, Lloyd, S, et al. Glutamate receptor binding in the human hippocampus and adjacent cortex during development and aging. Neurobiol Aging. 1996;17(4):639–51.Google Scholar
Seress, L, Abraham, H, Tornoczky, T, Kosztolanyi, G. Cell formation in the human hippocampal formation from mid-gestation to the late postnatal period. Neuroscience. 2001;105(4):831–43.Google Scholar
Sorrells, SF, Paredes, MF, Cebrian-Silla, A, Sandoval, K, Qi, D, Kelley, KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377–81.Google Scholar
Cipriani, S, Ferrer, I, Aronica, E, Kovacs, GG, Verney, C, Nardelli, J, et al. Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer’s disease adults. Cereb Cortex. 2018;28(7):2458–78.Google Scholar
Boldrini, M, Fulmore, CA, Tartt, AN, Simeon, LR, Pavlova, I, Poposka, V, et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell. 2018;22(4):589–99.e5.Google Scholar
Dennis, CV, Suh, LS, Rodriguez, ML, Kril, JJ, Sutherland, GT. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42(7):621–38.Google Scholar
Kuhn, HG, Toda, T, Gage, FH. Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci. 2018;38(49):10401–10.CrossRefGoogle ScholarPubMed
Hevner, RF. Layer-specific markers as probes for neuron type identity in human neocortex and malformations of cortical development. J Neuropathol Exp Neurol. 2007;66(2):101–9.Google Scholar
Tichy, J, Zinke, J, Bunz, B, Meyermann, R, Harter, PN, Mittelbronn, M. Expression profile of sonic hedgehog pathway members in the developing human fetal brain. Biomed Res Int. 2015;2015:494269.Google Scholar
Fame, RM, MacDonald, JL, Macklis, JD. Development, specification, and diversity of callosal projection neurons. Trends Neurosci. 2011;34(1):4150.CrossRefGoogle ScholarPubMed
Bagasrawala, I, Memi, F, Radonjic NV, Zecevic N. N-methyl D-aspartate receptor expression patterns in the human fetal cerebral cortex. Cereb Cortex. 2017;27(11):5041–53.Google Scholar
Bar-Peled, O, Ben-Hur, H, Biegon, A, Groner, Y, Dewhurst, S, Furuta, A, et al. Distribution of glutamate transporter subtypes during human brain development. J Neurochem. 1997;69(6):2571–80.Google Scholar
Letinic, K, Zoncu, R, Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature. 2002;417(6889):645–9.Google Scholar
Tiu, SC, Yew, DT, Chan, WY. Development of the human cerebral cortex: a histochemical study. Prog Histochem Cytochem. 2003;38(1):3149.Google Scholar
Ulfig, N, Nickel, J, Bohl, J. Monoclonal antibodies SMI 311 and SMI 312 as tools to investigate the maturation of nerve cells and axonal patterns in human fetal brain. Cell Tissue Res. 1998;291(3):433–43.Google Scholar
Conel, JL. The Postnatal Development of the Human Cerebral Cortex. Volume III: The Cortex of the Three-Month Infant. Cambridge, MA: Harvard University Press; 1947. p. 158.Google Scholar
Duque, A, Krsnik, Z, Kostovic, I, Rakic, P. Secondary expansion of the transient subplate zone in the developing cerebrum of human and nonhuman primates. Proc Natl Acad Sci U S A. 2016;113(35):9892–7.Google Scholar
Bayatti, N, Moss, JA, Sun, L, Ambrose, P, Ward, JF, Lindsay, S, et al. A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb Cortex. 2008;18(7):1536–48.Google Scholar
Kostovic, I, Sedmak, G, Vuksic, M, Judas, M. The relevance of human fetal subplate zone for developmental neuropathology of neuronal migration disorders and cortical dysplasia. CNS Neurosci Ther. 2015;21(2):7482.Google Scholar
Krsnik, Z, Majic, V, Vasung, L, Huang, H, Kostovic, I. Growth of thalamocortical fibers to the somatosensory cortex in the human fetal brain. Front Neurosci. 2017;11:233.Google Scholar
Ulfig, N, Neudorfer, F, Bohl, J. Transient structures of the human fetal brain: Subplate, thalamic reticular complex, ganglionic eminence. Histol Histopathol. 2000;15(3):771–90.Google Scholar
Hoerder-Suabedissen, A, Molnar, Z. Development, evolution and pathology of neocortical subplate neurons. Nat Rev Neurosci. 2015;16(3):133–46.Google Scholar
Judas, M, Sedmak, G, Pletikos, M, Jovanov-Milosevic, N. Populations of subplate and interstitial neurons in fetal and adult human telencephalon. J Anat. 2010;217(4):381–99.Google Scholar
Wilkinson, M, Hume, R, Strange, R, Bell, JE. Glial and neuronal differentiation in the human fetal brain 9–23 weeks of gestation. Neuropathol Appl Neurobiol. 1990;16:193204.Google Scholar
Stagaard Janas, M, Nowakowski, RS, Mollgard, K. Glial cell differentiation in neuron-free and neuron-rich regions. II. Early appearance of S-100 protein positive astrocytes in human fetal hippocampus. Anat Embryol (Berl). 1991;184(6):559–69.Google Scholar
Wierzba-Bobrowicz, T, Lechowicz, W, Kosno-Kruszewska, E. A morphometric evaluation of morphological types of microglia and astroglia in human fetal mesencephalon. Folia Neuropathol. 1997;35(1):2935.Google Scholar
Roessmann, U, Gambetti, P. Astrocytes in the developing human brain. An immunohistochemical study. Acta Neuropathol. 1986;70(3–4):308–13.Google Scholar
Sasaki, A, Hirato, J, Nakazato, Y, Ishida, Y. Immunohistochemical study of the early human fetal brain. Acta Neuropathol. 1988;76(2):128–34.Google Scholar
Reske-Nielsen, E, Oster, S, Reintoft, I. Astrocytes in the pretnatal central nervous system. From 5th to 28th week of gestation. An immunohistochemical study on paraffin-embedded material. Acta Pathol Microbiol Immunol Scand A. 1987;95(6):339–46.Google Scholar
Brazel, CY, Romanko, MJ, Rothstein, RP, Levison, SW. Roles of the mammalian subventricular zone in brain development. Prog Neurobiol. 2003;69(1):4969.Google Scholar
Ulfig, N, Neudorfer, F, Bohl, J. Distribution patterns of vimentin-immunoreactive structures in the human prosencephalon during the second half of gestation. J Anat. 1999;195 (Pt 1):87100.Google Scholar
Miller, JA, Ding, SL, Sunkin, SM, Smith, KA, Ng, L, Szafer, A, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508(7495):199206.Google Scholar
Reske-Nielsen, E, Gregersen, M, Lund, E. Astrocytes in the postnatal central nervous system. From birth to 14 years of age. An immunohistochemical study on paraffin-embedded material. Acta Pathol Microbiol Immunol Scand A. 1987;95(6):347–56.Google Scholar
Mota, B, Herculano-Houzel, S. Cortical folding scales universally with surface area and thickness, not number of neurons. Science. 2015;349(6243):74–7.Google Scholar
Gilles, FH, Leviton, A, Dooling, EC. The Developing Human Brain: Growth And Epidemiologic Neuropathology. Littleton: John Wright-PSG; 1983. p. 349.Google Scholar
Dorovini-Zis, K, Dolman, CL. Gestational development of brain. Arch Pathol Lab Med. 1977;101(4):192–5.Google Scholar
Feess-Higgins, A, Larroche, J-C. Development of the Human Foetal Brain: An Anatomical Atlas. Paris: Institut national de la santé et de la recherche médicale (INSERM); 1987. p. 200.Google Scholar
Rajagopalan, V, Scott, J, Habas, PA, Kim, K, Corbett-Detig, J, Rousseau, F, et al. Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci. 2011;31(8):2878–87.CrossRefGoogle ScholarPubMed
Griffiths, PD, Naidich, TP, Fowkes, M, Jarvis, D. Sulcation and gyration patterns of the fetal brain mapped by surface models constructed from 3D MR image datasets. Neurographics. 2018;8(2):124–9.Google Scholar
Andescavage, NN, du Plessis, A, McCarter, R, Serag, A, Evangelou, I, Vezina, G, et al. Complex trajectories of brain development in the healthy human fetus. Cereb Cortex. 2016;27(11):5274–83.Google Scholar
Huang, H, Xue, R, Zhang, J, Ren, T, Richards, LJ, Yarowsky, P, et al. Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci. 2009;29(13):4263–73.Google Scholar
Dubois, J, Lefevre, J, Angleys, H, Leroy, F, Fischer, C, Lebenberg, J, et al. The dynamics of cortical folding waves and prematurity-related deviations revealed by spatial and spectral analysis of gyrification. Neuroimage. 2019;185:934–46.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×