Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-28T01:56:20.722Z Has data issue: false hasContentIssue false

4 - Perinatal mortality and morbidity: outcome of neonatal intensive care

from Part I - General issues

Published online by Cambridge University Press:  08 January 2010

Janet M. Rennie
Affiliation:
Department of Neonatal Medicine, University College London Hospitals, UK
Mark D. Stringer
Affiliation:
University of Otago, New Zealand
Keith T. Oldham
Affiliation:
Children's Hospital of Wisconsin
Pierre D. E. Mouriquand
Affiliation:
Debrousse Hospital, Lyon
Get access

Summary

Introduction: historical aspects

Perinatal mortality

Perhaps no other medical subspecialty has achieved such a dramatic improvement in survival as that documented in neonatal medicine over the last 40 years. Since the 1960s the survival rate for infants born weighing less than 1500 g (very low birthweight, VLBW) has increased from 45% to over 80%. For the small group born weighing less than 1 kg (extremely low birthweight, ELBW) the increase in survival has been from 20% to almost 70%. These changes have occurred against a background of improving perinatal, infant and childhood mortality in the United Kingdom and elsewhere, although it remains true that a VLBW infant is 100 times more likely to be stillborn or die during the first month of life than an infant born weighing 3000 g or more (Table 4.1). The UK definition of a stillbirth was changed to include all fetuses delivered dead after 24 complete weeks of pregnancy in October 1992. This caused a step up of about 1 per 1000 in the UK perinatal mortality rate, which at 8.0 per 1000 total births remains similar to that in other European countries and the USA (Fig. 4.1). Whilst prematurity remains the leading cause of perinatal and neonatal death, significant contributions continue to be made from perinatal asphyxia, sepsis and congenital malformations. Group B streptococcal infection and chorioamnionitis, where the organism is rarely isolated, are important causes of fetal and neonatal deaths.

Type
Chapter
Information
Pediatric Surgery and Urology
Long-Term Outcomes
, pp. 39 - 53
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Draper, E. S., Manktelow, B., Field, D. J., & James, D. Tables for predicting survival for preterm births are updated. Br. Med. J. 2003; 327:872.CrossRefGoogle ScholarPubMed
Wood, N. S., Marlow, N., Costeloe, K., Gibson, A. T., & Wilkinson, A. R. Neurologic and developmental disability after extremely preterm birth. N. Engl. J. Med. 2000; 343(6):378–384.CrossRefGoogle ScholarPubMed
Rennie, J. M.Perinatal management at the lower margin of viability. Arch. Dis. Child. 1996; 74:214–218.CrossRefGoogle ScholarPubMed
Synnes, A. R., Ling, E. W., Whitfield, M. F.et al. Perinatal outcomes of a large cohort of extremely low gestational age infants (23–28 completed weeks of gestation). J. Pediatr. 1994; 125:952–960.CrossRefGoogle Scholar
Lemons, J. A., Bauer, C. R., Oh, W.et al. Very low birth weight outcomes of the national institute of child health and human development neonatal research network, January 1995 through December 1996. Pediatrics 2001; 107(1):e1–e8.CrossRefGoogle ScholarPubMed
International Neonatal Network. The CRIB (clinical risk index for babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units. Lancet 1993; 342:193–198.CrossRef
Parry, G., Tucker, J., & Tarnow-Mordi, W. Crib II: an update of the clinical risk index for babies score. Lancet 2003; 361:1789–1791.CrossRefGoogle ScholarPubMed
O'Donnell, A. L., Gray, P. H., & Rogers, Y. M. Mortality and neurodevelopmental outcome for infants receiving adrenaline in neonatal resuscitation. J. Paediatr. Child. Health 1998; 34:551–556.CrossRefGoogle ScholarPubMed
Sims, D. G., Heal, C. A., & Bartle, S. M. Use of adrenaline and atropine in neonatal resuscitation. Arch. Dis. Child. 1994; 70:f3–f10.CrossRefGoogle ScholarPubMed
Jain, L., Ferre, C., Vidyasagar, D., Nath, S., & Sheffel, D. Cardiopulmonary resuscitation of apparently stillborn infants. J. Pediatr. 1991; 118:778–782.CrossRefGoogle ScholarPubMed
Morrison, J. J., Rennie, J. M., & Milton, P. J. Neonatal respiratory morbidity and mode of delivery at term: influence of timing of elective caesarean section. Br. J. Obstet. Gynaecol. 1995; 102:101–106.CrossRefGoogle ScholarPubMed
Rennie, J. M.Neonatal Cerebral Ultrasound. 1st edn. Cambridge: Cambridge University Press; 1997.Google Scholar
Debillon, T., N'Guyen, S., Quere, M. P., Moussaly, F., & Roze, J. C. Limitations of ultrasonography for diagnosing white matter damage in preterm infants. Arch. Dis. Child. 2003; 88(4):275–279.CrossRefGoogle ScholarPubMed
Vries, L. S., Haastert, I. L., Rademaker, K. J., Koopman, C., & Groenendaal, F. Ultrasound abnormalities preceding cerebral palsy in high risk preterm infants. J. Pediatr. 2004; 144:815–820.CrossRefGoogle ScholarPubMed
Vollmer, B., Roth, S., Baudin, J., Stewart, A. L., Neville, B. G. R., & Wyatt, J. S. Predictors of long-term outcome in very preterm infants: gestational age versus neonatal cranial ultrasound. Pediatrics 2003; 112:1108–1114.CrossRefGoogle ScholarPubMed
Fujimoto, S., Togari, H., Takashima, S.et al. National survey of periventricular leukomalacia in Japan. Acta. Paediatr. Jpn 1998; 40:239–243.CrossRefGoogle ScholarPubMed
Resch, B., Vollaard, E., Maurer, U., Haas, J., Rosegger, H., & Muller, W. Risk factors and determinants of neurodevelopmental outcome in cystic periventricular leucomalacia. Eur. J. Pediatr. 2000; 159:663–670.CrossRefGoogle ScholarPubMed
Counsell, S. J., Allsop, J. M., Harrison, M. C.et al. Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003; 112(1):1–7.CrossRefGoogle ScholarPubMed
Cornette, L. G., Tanner, S. F., Ramenghi, L. A.et al. Magnetic resonance imaging of the infant brain: anatomical characteristics and clinical significance of punctate lesions. Arch. Dis. Child. 2002; 86(3):171–177.CrossRefGoogle ScholarPubMed
Volpe, J. J.Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res. 2001; 50:553–562.CrossRefGoogle ScholarPubMed
Nelson, K. B., Grether, J. K., Damabrosia, J. M.et al. Neonatal cytokines and cerebral palsy in very preterm infants. Pediatr. Res. 2003; 53:600–607.CrossRefGoogle ScholarPubMed
Dammann, O., Allred, E. N., Kuban, K. C. K.et al. Systemic hypotension and white-matter damage in preterm infants. Dev. Med. Child. Neurol. 2002; 44:82–90.CrossRefGoogle ScholarPubMed
Myers, R. E.Four patterns of perinatal brain damage and their occurrence in primates. Adv. Neurol. 1975; 10:223–224.Google ScholarPubMed
Rennie, J. M. Seizures in the newborn. In Textbook of Neonatology, 3rd edn. ed. Rennie, J. M. and Robertson, N. R. C., Edinburgh: Churchill Livingstone; 1999. pp. 1213–1223.Google Scholar
Colver, A. F., Gibson, M., Hey, E. N., Jarvis, S. N., Mackie, P. C., & Richmond, S. Increasing rates of cerebral palsy across the severity spectrum in north-east England 1964–1993. Arch. Dis. Child. 2000; 83(1):F7–F12.CrossRefGoogle ScholarPubMed
Pinto-Martin, J. A., Riolo, S., Cnaan, A., Holzman, C., Susser, M. W., & Paneth, N. Cranial ultrasound prediction of disabling and nondisabling cerebral palsy at age two in a low birth weight population. Pediatrics 1995; 95:249–254.Google Scholar
Marlow, N.Neurocognitive outcome after very preterm birth. Arch. Dis. Child 2004; 89(3):224–228.CrossRefGoogle ScholarPubMed
Pharoah, P. O. D., Cooke, T., Johnson, M. A., King, R., & Mutch, L. Epidemiology of cerebral palsy in England and Scotland 1984–1989. Arch. Dis. Child. 1998; 79:F21–F25.CrossRefGoogle Scholar
Stanley, F. J. & Watson, F. Trends in perinatal mortality and cerebral palsy in Western Australia 1967–1985. Br. Med. J. 1992; 304:1658–1663.CrossRefGoogle Scholar
Cummins, S. K., Nelson, K. B., Grether, J. K., & Velie, E. M.Cerebral palsy in four northern Californian counties: births 1983 through 1985. J. Pediatr. 1993; 123:230–237.CrossRefGoogle Scholar
Winter, S., Autry, A., Boyle, C., & Yeargin-Allsopp, M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics 2002; 110:1220–1225.CrossRefGoogle ScholarPubMed
Surman, G., Newdick, H., & Johnson, A. Cerebral palsy rates among low-birthweight infants fell in the 1990s. Dev. Med. Child. Neurol. 2003; 45:456–462.CrossRefGoogle ScholarPubMed
Nelson, K. B., Dambrosia, J. M., Ting, T. Y., & Grether, J. K.Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N. Engl. J. Med. 1996; 334:613–618.CrossRefGoogle ScholarPubMed
Nelson, K. B.Can we prevent cerebral palsy?N. Engl. J. Med. 2003; 349:1765–1770.CrossRefGoogle ScholarPubMed
Hannah, M. E., Hannah, W. J., Hewson, S. A., Hodnett, E. D., Saigal, S., & Willian, A. R. Planned caesarean section versus planned vaginal birth for breech presentation at term: a randomised mulicentre trial. Lancet 2000; 356:1375–1383.CrossRefGoogle ScholarPubMed
Petterson, B., Nelson, K. B., Watson, L., & Stanley, F. Twins, triplets, and cerebral palsy in Western Australia in the 1980s. Br. Med. J. 1993; 307:1239–1243.CrossRefGoogle ScholarPubMed
Pharoah, P. O. D., Price, T. S., & Plomin, R. Cerebral palsy in twins: a national study. Arch. Dis. Child. 2002; 87(2):122–124.CrossRefGoogle ScholarPubMed
Pharoah, P. O. D.Cerebral palsy in the surviving twin associated with infant death of the co-twin. Arch. Dis. Child. 2001; 84:f111–f116.CrossRefGoogle ScholarPubMed
Simmons, R., Doyle, P., Maconochie, N. Dramatic reduction in triplet and higher order births in England and Wales. Br. J. Obstet. Gyn. 2004; 111:856–858.CrossRefGoogle ScholarPubMed
Pinborg, A., Loft, A., Greisen, G., Rasmussen, S., & Andersen, A. N. Neurological sequelae in twins born after assisted conception: controlled national cohort study. Br. Med. J. 2004; 329:311–314.CrossRefGoogle ScholarPubMed
Blair, E. & Stanley, F. Intrauterine growth and spastic cerebral palsy. Am. J. Obstet. Gynecol. 1990; 162:229–237.CrossRefGoogle ScholarPubMed
Nelson, K. B. & Willoughby, R. E. Infection, inflammation and the risk of cerebral palsy. Curr. Opin. Neurol. 2000; 13:133–139.CrossRefGoogle ScholarPubMed
Wu, Y. W. & Colford, J. M. Chorioamnionitis as a risk factor for cerebral palsy. J. Am. Med. Assoc. 2000; 284(11):1417–1424.CrossRefGoogle ScholarPubMed
Damman, O., Kuban, K. C. K., & Leviton, A. Perinatal infection, fetal infllammatory response, white matter damage, and cognitive limitations in children born preterm. Ment. Retard. Dev. Disabil. Res. Rev. 2002; 46–50.CrossRefGoogle Scholar
Perrott, S., Dodds, L., & Vincer, M. A population-based study of prognostic factors related to major disability in very preterm survivors. J. Perinatol. 2003; 23:111–116.CrossRefGoogle ScholarPubMed
Fleck, B. W.Therapy for retinopathy of prematurity. Lancet 1999; 353:166–168.CrossRefGoogle ScholarPubMed
Cheung, P.-Y., Haluschak, M. M., Finer, N. N., & Robertson, C. M. T. Sensorineural hearing loss in survivors of neonatal extracorporeal membrane oxygenation. Early Hum. Dev. 1996; 44:225–233.CrossRefGoogle ScholarPubMed
Hendricks-Munoz, K. D.Hearing loss in infants with persistent fetal circulation. Pediatrics 1988; 81:650–656.Google ScholarPubMed
Newton, V.Adverse perinatal conditions and the inner ear. Semin. Neonatol. 2001; 6:543–541.CrossRefGoogle ScholarPubMed
Marlow, E. S., Hunt, L. P., & Marlow, N. Sensorineural hearing loss and prematurity. Arch. Dis. Child. 2000; 82(2):F141–F144.CrossRefGoogle ScholarPubMed
Tekin, M., Arnos, K. S., & Pandya, A. Advances in hereditary deafness. Lancet 2001; 358:1082–1090.CrossRefGoogle ScholarPubMed
Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M., & Anand, K. J. S. Cognitive and behavioral outcomes of school age children who were born preterm. J. Am. Med. Assoc. 2002; 288(728):737.CrossRefGoogle ScholarPubMed
Hollo, O., Rautavana, P., Korhonen, T., Helenius, H., Kero, P., & Sillanpaa, M. Academic achievement of small for gestational age children at age 10 years. Arch. Pediat. Adolesc. Med. 2002; 156:179–187.CrossRefGoogle ScholarPubMed
Strauss, R. S.Adult functional outcome of those born small for gestational age. J. Am. Med. Assoc. 2000; 283:625–632.CrossRefGoogle ScholarPubMed
Hack, M.Outcomes in young adulthood for very low birth weight infants. N. Engl. J. Med. 2002; 346:149–157.CrossRefGoogle ScholarPubMed
Manktelow, B. N., Draper, E. S., Annamalai, S., & Field, D. Factors affecting the incidence of chronic lung disease of prematurity in 1987, 1992, and 1997. Arch. Dis. Child. 2001; 85(1):f33–f35.CrossRefGoogle ScholarPubMed
Jardine, E., O'Toole, M., paton, J. Y., & Wallis, C. Current status of long term ventilation of children in the United Kingdom: questionnaire survey. Br. Med. J. 1999; 318:295–299.CrossRefGoogle ScholarPubMed
Doyle, L. W.Evaluation of neonatal intensive care for extremely low birth weight infants in Victoria over two decades: I. effectiveness. Pediatrics 2004; 113(3):505–509.CrossRefGoogle ScholarPubMed
Stevenson, R. C., McCabe, C. J., & Pharoah, P. O. D. Cost of care for a geographically determined population of low birth weight infants to age 8–9 years. I. Children without disability. Arch. Dis. Child. 1996; 74:F114–F117.CrossRefGoogle ScholarPubMed
Stevenson, R. C., Pharoah, P. O. D., Stevenson, C. J., Cooke, R. W. I. cost of care for a geographically determined population of low birthweight infants to age 8–9 years. II: Children with disability. Arch. Dis. Child. 1996; 74:F118–F121.CrossRefGoogle ScholarPubMed
Saigal, S . Comprehensive assesment of the health status of elbw children at 8 years: comparison with a reference group. J. Pediatr. 1994; 125:411–424.CrossRefGoogle Scholar
Saigal, S., Feeny, D., Rosenbaum, P., Furlong, W., Burrows, E., & Stoskopf, B. Self-perceived health status and health-related quality of life of extremely low birth weight infants at adolescence. J. Am. Med. Assoc. 1996; 276:453–459.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×