Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-09-02T09:22:36.517Z Has data issue: false hasContentIssue false

Overview

from Part IV - Optical access and local area networks

Published online by Cambridge University Press:  10 May 2010

Martin Maier
Affiliation:
Université du Québec, Montréal
Get access

Summary

Future broadband optical access networks not only have to unleash the economic potential and societal benefit by opening up the first/last mile bandwidth bottleneck between bandwidth-hungry end users and high-speed backbone networks but they also must enable the support of a wide range of new and emerging services and applications (e.g., triple play, video on demand, video conferencing, peer-to-peer [P2P] audio/video file sharing, multichannel high-definition television [HDTV], multimedia/multiparty online gaming, telemedicine, telecommuting, and surveillance) to get back on the road to prosperity. Due to their longevity, low attenuation, and huge bandwidth, asynchronous transfer mode (ATM) or Ethernet-based passive optical networks (PONs) are already widely deployed in today's operational access networks (e.g., fiber-to-the-premises [FTTP] and fiber-to-the-home [FTTH] networks) (Abrams et al., 2005). Typically, these PONs are time division multiplexing (TDM) single-channel systems, where the fiber infrastructure carries a single upstream wavelength channel and a single downstream wavelength channel. To support the aforementioned emerging services and applications in a costeffective and future-proof manner and to unleash the full potential of FTTX networks, PONs need to evolve by addressing the following three tasks (Shinohara, 2005):

  1. Cost Reduction: Cost is key in access networks due to the small number of costsharing subscribers compared to that of metro and wide area networks. Devices and components that can be mass produced and widely applied to different types of equipment and situations must be developed. Importantly, installation costs which largely contribute to the overall costs must be reduced. A promising example for cutting installation costs is NTT's envisioned do-it-yourself (DIY) installation which deploys a user-friendly hole-assisted fiber which exhibits negligible loss increase and sufficient reliability, even when it is bent at right angles, clinched, or knotted, and can be produced economically.

  2. […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Overview
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Overview
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Overview
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.017
Available formats
×