Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-96qlp Total loading time: 0.446 Render date: 2022-12-02T19:22:31.786Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true
Object Categorization Object Categorization
Computer and Human Vision Perspectives
Buy print or eBook[Opens in a new window]

Book contents

26 - Multimodal Categorization

Published online by Cambridge University Press:  20 May 2010

Sven J. Dickinson
Affiliation:
University of Toronto
Aleš Leonardis
Affiliation:
University of Ljubljana
Bernt Schiele
Affiliation:
Technische Universität, Darmstadt, Germany
Michael J. Tarr
Affiliation:
Carnegie Mellon University, Pennsylvania
Get access

Summary

Introduction

Imagine entering a room for the very first time (Fig. 26.1) and then being asked to look around and to see what is in it. The first glance already tells you what kind of room it is (in our case it clearly is a scene set in a museum); immediately afterwards you begin to notice objects in the room (the prominent statue in the foreground, several other statues on pedestals, paintings on the walls, etc.). Your attention might be drawn more towards certain objects first and then wander around taking in the remaining objects. Very rarely will your visual system need to pause and take more time to investigate what a particular object is – even more rarely will it not be able to interpret it at all (perhaps the four-horned statue in the back of the room will be confusing at first, but it still can be interpreted as a type of four-legged, hoofed animal). The remarkable ability of the (human) visual system to quickly and robustly assign labels to objects (and events) is called categorization.

The question of how we learn to categorize objects and events has been at the heart of cognitive and neuroscience research for the last decades. At the same time, advances in the field of computational vision – both in terms of the algorithms involved as well as in the capabilites of today's computers – have made it possible to begin to look at how computers might solve the difficult problem of categorization. In this chapter, we will therefore address some of the key challenges in categorization from a combined cognitive and computational perspective.

Type
Chapter
Information
Object Categorization
Computer and Human Vision Perspectives
, pp. 488 - 501
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×