Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-10T06:00:17.745Z Has data issue: false hasContentIssue false

21 - Neurohormonal Aspects of the Development of Psychotic Disorders

Published online by Cambridge University Press:  10 August 2009

Elaine F. Walker
Affiliation:
Professor of Psychology and Neuroscience, Emory University in Atlanta, Georgia
Deborah Walder
Affiliation:
Department of Psychology, Emory University
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

The major mental illnesses, most notably schizophrenia and other psychotic disorders, typically have their onset in young adulthood, and often lead to a lifetime of chronic disability. The possibility of preventing these illnesses has received increasing attention in the past few years (McGorry & Edwards, 1998; Wyatt, Apud, & Potkin 1996). This trend has been fueled by evidence that the longer the duration of the initial untreated episodes of psychosis, the worse the long-term prognosis (Wyatt, 1995). Also, the availability of atypical antipsychotic medications that have fewer immediate side effects has contributed to interest in psychosis prevention.

The first step in the prevention process is the identification of vulnerable individuals. It is well established that the clinical onset of schizophrenia is preceded by behavioral dysfunction. In some cases, preschizophrenic individuals manifest consistent dysfunction that is apparent within the first few years of life, extends throughout childhood, and becomes more pronounced in adolescence (Larsen, McGlashan, Johannessen, & Vibe-Hansen, 1996; Walker, Baum, & Diforio, 1998). Others show relatively normal childhood development, then a precipitous decline that begins in adolescence. Based on the best available evidence, about 70 percent of adult-onset patients manifested behavioral dysfunction in adolescence (Larsen et al., 1996; Neumann, Grimes, Walker, & Baum, 1995; Yung & McGorry, 1996). Thus, many view adolescence/early adulthood as the most plausible developmental stage for initiating prevention.

In parallel with the increasing emphasis on prevention, there has been a resurgence of interest in the neurodevelopmental changes that accompany pubertal maturation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelson, J. L., & Curtis, G. C. (1996). Hypothalamic-pituitary-adrenal axis activity in panic disorder: Predication of long-term outcome by pretreatment cortisol levels. American Journal of Psychiatry, 153, 69–73Google Scholar
Alexander, D. B., Viken, R. E., & Bates, J. E. (April, 1997). Children's dermatoglyphic asymmetry interacts with family stress in predicting school adjustment. Paper presented at the Society for Research in Child Development. Washington, DC
Angold, A., Costello, E. J., Erkanli, A., & Worthman, C. M. (1999). Pubertal changes in hormone levels and depression in girls. Psychological Medicine, 29, 1043–1053CrossRefGoogle ScholarPubMed
Antelman, S. M., & Chiodo, L. A. (1984). Stress: Its effects on interactions among biogenic amines and role in the induction and treatment of disease. In S. I. Iverson, L. L. Iverson, & S. H. Snyder (Eds.) Handbook of psychopharmacology (pp. 279–334). New York: PlenumCrossRef
Bassett, J. R., Marshall, P. M., & Spillane, R. (1987). The physiological measurement of acute stress in bank employees. International Journal of Psychophysiology, 5, 265–273CrossRefGoogle ScholarPubMed
Benes, F. M. (1994). Developmental changes in stress adaptation in relation to psychopathology. Development and Psychopathology, 6, 723–739CrossRefGoogle Scholar
Biron, D., Dauphin, C., & Di Paolo, T. (1992). Effects of adrenalectomy and glucocorticoids on rat brain dopamine receptors. Neuroendocrinology, 55: 468–476CrossRefGoogle ScholarPubMed
Brennan, P. A., Mednick, S. A., & Raine, A. (1997). Biosocial interactions and violence: A focus on perinatal factors. In A. Raine. (Ed.) Biosocial bases of violence (pp. 163–174). New York: PlenumCrossRef
Cabib, S., Oliverio, A., Ventura, R., Lucchese, F., & Puglisi-Allegra, S. (1997). Brain dopamine receptor plasticity: Testing a diathesis-stress hypothesis in an animal model. Psychopharmacology, 132, 153–160CrossRefGoogle Scholar
Cabib, S., & Puglisi-Allegra, S. (1991). Genotype-dependent effects of chronic stress on apomorphine-induced alterations of striatal and mesolimbic dopamine metabolism. Brain Research, 542, 91–96CrossRefGoogle ScholarPubMed
Cicchetti, D., & Sroufe, L. A. (2000). The past as prologue to the future: The times, they've been a-changin'. Development and Psychopathology, 12, 255–264CrossRefGoogle Scholar
Cummins, H., & Midlow, C. (1961). Fingerprints, palms and soles: An introduction to dermatoglyphics. New York: Dover
Davidson, M., Reichenberg, A., Rabinowitz, J., Weiser, M., Kaplan, Z., & Mordehai, M. (1999). Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. American Journal of Psychiatry, 156, 1328–1335Google ScholarPubMed
Davis, K. L., Khan, R. S., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia: A review and reconceptualization. American Journal of Psychiatry, 148, 1474–1486Google ScholarPubMed
Den-Boer, J. A. (1995). Advances in the neurobiology of schizophrenia. Chichester: Wiley
Deutsch, C. K., Matthysse, S., Swanson, J. M., & Farkas, L. G. (1990). Genetic latent structure analysis of dysmorphology in attention deficit disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 29, 189–194CrossRefGoogle ScholarPubMed
Diforio, D., Kestler, L., & Walker, E. (2000). Executive functions in adolescents with schizotypal personality disorder. Schizophrenia Research, 42, 125–134CrossRefGoogle ScholarPubMed
Feinberg, I. (1990). Cortical pruning and the development of schizophrenia. Schizophrenia Bulletin, 16, 567–568CrossRefGoogle ScholarPubMed
Fendrich, M., Johnson, T., Wislar, J., & Nageotte, C. (1999). Accuracy of parent mental health service reporting: Results from a reverse record-check study. Journal of the American Academy of Child and Adolescent Psychiatry, 38, 147–155CrossRefGoogle ScholarPubMed
Fenig, S., Levav, I., Kohn, R., & Yelin, N. (1993). Telephone versus face-to-face interviewing in a community psychiatric survey. American Journal of Public Health, 83, 896–898CrossRefGoogle Scholar
Fogel, C. A., Mednick, S. A., & Michelsen, N. (1985). Hyperactive behavior and minor physical anomalies. Acta Psychiatrica Scandinavica, 72, 551–556CrossRefGoogle ScholarPubMed
Franzen, G. (1971). Serum cortisol in chronic schizophrenia: Changes in the diurnal rhythm and psychiatric mental status on withdrawal of drugs. Psychiatrica Clinica, 4, 237–246Google ScholarPubMed
Goodyer, I. M., Herbert, J., Tamplin, A., & Altham, P. M. E. (2000). Recent life events, cortisol, dehydroepiandrosterone and the onset of major depression in high-risk adolescents. British Journal of Psychiatry, 177, 499–504CrossRefGoogle ScholarPubMed
Granger, P. A., Weis, J. R., McCracken, J. T., & Ikeda, S. C. (1996). Reciprocal influences among adrenocortical activation, psychosocial processes, and the behavioral adjustment of clinic-referred children. Child Development, 67, 3250–3262CrossRefGoogle ScholarPubMed
Green, M. F., Satz, P., & Christenson, C. (1994). Minor physical anomalies in schizophrenia patients, bipolar patients, and their siblings. Schizophrenia Bulletin, 20, 433–440CrossRefGoogle ScholarPubMed
Griffiths, T. D., Sigmundsson, T., Takei, N., Frangou, S., Birkett, P. B., Sharma, T., Reveley, A. M., & Murray, R. M. (1998). Minor physical anomalies in familial and sporadic schizophrenia: The Maudsley family study. Journal of Neurology, Neurosurgery, and Psychiatry, 65, 56–60CrossRefGoogle Scholar
Grossman, R. (1993). The relationship between hormonal mediators and systemic hypermetabolism after severe head injury. Journal of Trauma, 34, 806–816Google Scholar
Gualtieri, C. T., Adams, A., Chen, C. D., & Loiselle, D. (1982). Minor physical anomalies in alcoholic and schizophrenic adults and hyperactive and autistic children. American Journal of Psychiatry, 139, 640–643Google ScholarPubMed
Gupta, S., Rajaprabhakaran, R., Arndt, S., & Flaum, M. (1995). Premorbid adjustment as a predictor of phenomenological and neurobiological indices in schizophrenia. Schizophrenia Research, 16, 189–197CrossRefGoogle Scholar
Halverson, C., & Victor, J. B. (1976). Minor physical anomalies and problem behavior in elementary school children. Child Development, 47, 281–285CrossRefGoogle ScholarPubMed
Johnson, J. G., Cohen, P., Skodol, A. E., Oldham, J. M., Kasen, S., & Brook, J. S. (1999). Personality disorders in adolescence and risk of major mental disorders and suicidality during adulthood. Archives of General Psychiatry, 56, 805–811CrossRefGoogle ScholarPubMed
Kandel, E., Brennan, P. A., Mednick, S. A., & Michelson, N. M. (1989). Minor physical anomalies and recidivistic adult violent criminal behavior. Acta Psychiatrica Scandinavica, 79, 103–107CrossRefGoogle ScholarPubMed
Kenny, F. M., Gancayo, G., Heald, F. P., & Hung, W. (1966). Cortisol production rate in adolescent males in different stages of sexual maturation. Journal of Clinical Endocrinology, 26, 1232–1236CrossRefGoogle ScholarPubMed
Kenny, F. M., Preeyasambat, C., & Migeon, C. J. (1966). Cortisol production rate: II. Normal infants, children and adults. Pediatrics, 37, 34–42Google ScholarPubMed
Keshavan, M. S., & Hogarty, G. E. (1999). Brain maturational processes and delayed onset in schizophrenia. Development and Psychopathology, 11, 525–543CrossRefGoogle Scholar
Kiess, W., Meidert, A., Dressendorfer, R. A., Scheiver, K., Kessler, U., & Konig, A. (1995). Salivary cortisol levels throughout childhood and adolescence: Relation with age, pubertal stage and weight. Pediatric Research, 37, 502–506CrossRefGoogle Scholar
King, C. A., Hovey, J. D., Brand, E., & Ghaziuddin, N. (1997). Prediction of positive outcomes for adolescent psychiatric inpatients. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 1434–1442CrossRefGoogle ScholarPubMed
Kwak, Y. T., Koo, M. S., Choi, C. H., & Sunwoo, I. (2001). Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients. BMC Medical Genetics, 2, 3CrossRefGoogle ScholarPubMed
Larsen, T. K., McGlashan, T. H., Johannessen, J. O., & Vibe-Hansen, L. (1996). First-Episode Schizophrenia: II. Premorbid patterns by gender. Schizophrenia Bulletin, 22, 257–269CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M., & McEwen, B. S. (2001). Can poverty get under your skin?: Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Development and Psychopathology, 13, 653–676CrossRefGoogle Scholar
McEwen, B. (1994). Steroid hormone actions on the brain: when is the genome involved? Hormones and Behavior, 28, 396–405CrossRefGoogle ScholarPubMed
McGorry, P. D., & Edwards, J. (1998). The feasibility and effectiveness of early intervention in psychotic disorders: the Australian experience. International Clinical Psychopharmacology, 13 (suppl.1), S47–S52CrossRefGoogle Scholar
McMurray, R. G., Newbould, E., & Bouloux, G. M. (1991). High-dose naloxone modifies cardiovascular and neuroendocrine function in ambulant subjects. Psychoneuroendocrinology, 16, 447–455CrossRefGoogle ScholarPubMed
Mednick, S. A. & Kandel, E. S. (1988). Congenital determinants of violence. Bulletin of the American Academy of Psychiatry and the Law, 16, 101–109Google ScholarPubMed
Mellor, C. S. (1968). Dermatoglyphics in schizophrenia: I. Qualitative aspects. British Journal of Psychiatry, 14, 1387–1397CrossRefGoogle Scholar
Miller, T. J., & McGlashan, T. H. (2000). Early identification and intervention in psychotic illness. Connecticut Medicine, 64 (6), 339–341Google ScholarPubMed
Mirnics, K., Middleton, F. A., Lewis, D. A., & Levitt, P. (2001). Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends in Neurosciences, 24, 479–486CrossRefGoogle ScholarPubMed
Mittleman, G., Blaha, C., & Phillips, A. (1992). Pituitary-adrenal and dopaminergic modulation of schedule-induced polydipsia: Behavioral and neurochemical evidence. Behavioral Neuroscience, 106, 408–420CrossRefGoogle ScholarPubMed
Mody, M., Cao, Y., Cui, Z., Tay, K. Y., Shyong, A., Shimizu, E., Pham, K., Schultz, P., Welsh, D., & Tsien, J. Z. (2001). Genome-wide gene expression profiles of the developing mouse hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 98, 8862–8867CrossRefGoogle ScholarPubMed
Moore K. L. (1982). The developing human: clinically oriented embryology. Philadelphia: WB Saunders
Neumann, C. S., Grimes, K., Walker, E. F., & Baum, K. (1995). Developmental pathways to schizophrenia: Behavioral subtypes. Journal of Abnormal Psychology, 104, 1–9CrossRefGoogle ScholarPubMed
Newell-Morris, L. L., Fahrenbruch, C. E., & Sackett, G. P. (1989). Prenatal psychological stress, dermatoglyphic asymmetry and pregnancy outcome in the pigtailed macaque. Biology of the Neonate, 56, 61–75CrossRefGoogle ScholarPubMed
Nowakowski, R. S., & Hayes, N. L. (1999). CNS development: an overview. Development and Psychopathology. 11, 395–417CrossRefGoogle ScholarPubMed
Pine, D. S., Shaffer, D., Schonfeld, I. S., & Davies, M. (1997). Minor physical anomalies: Modifiers of environmental risks for psychiatric impairment? Journal of the American Academy of Child and Adolescent Psychiatry, 36, 395–403CrossRefGoogle ScholarPubMed
Pomeroy, J. C., Sprafkin, J., & Gadow, K. D. (1988). Minor physical anomalies as a biological marker for behavior disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 27, 466–473CrossRefGoogle Scholar
Post, R. M., Weiss, S. R., & Leverich, G. S. (1994). Recurrent affective disorder: roots in developmental neurobiology and illness progression based on changes in gene expression. Special issue: Neural plasticity, sensitive periods, and psychopathology. Development and Psychopathology, 6, 781–813CrossRefGoogle Scholar
Potts, M., Daniels, M., Burnam, M., & Wells, K. (1990). A structured interview version of the Hamilton Depression Rating Scale: Evidence of reliability and versatility of administration. Journal of Psychiatric Research, 24, 335–350CrossRefGoogle ScholarPubMed
Rahe, R. H., Karson, S., Howard, N. S., Rubin, R. T., & Poland, R. E. (1990). Psychological and physiological assessments on American hostages freed from captivity in Iran. Psychosomatic Medicine, 52, 1–16CrossRefGoogle ScholarPubMed
Raychaudhuri, S., Sutphin, P. D., Chang, J. T., & Altman, R. B. (2001). Basic microarray analysis: grouping and feature reduction. Trends in Biotechnology, 19, 189–193CrossRefGoogle ScholarPubMed
Revicki, D. A., Tohen, T. M., Gyulai, L., & Thompson, C. (1997). Telephone versus in-person clinical and health status assessment interviews in patients with bipolar disorder. Harvard Review of Psychiatry, 5 (2), 75–81CrossRefGoogle ScholarPubMed
Rothschild, A. J., Langlais, P., Schatzberg, A. F., Miller, M., Salomon, M. S., Lerbinger, J. E., Cole, J. O., & Bird, E. D. (1985). The effects of a single dose of dexamethasone on monoamine and metabolite levels in rat brain. Life Sciences, 36, 2491CrossRefGoogle ScholarPubMed
Sachar, E. J., Kanter, S. S., Buie, D., Engle, R., & Mehlman, R. (1970). Psychoendocrinology of ego disintegration. American Journal of Psychiatry, 126, 1067–1078CrossRefGoogle ScholarPubMed
Sandberg, S. T., Wieselberg, M., & Shaffer, D. (1980). Hyperkinetic and conduct problem children in a primary school population: Some epidemiological considerations. Journal of Child Psychology and Psychiatry and Allied Disciplines, 21, 293–311CrossRefGoogle Scholar
Schatzberg, A. F., Rothschild, A., Langlais, P. J., Bird, E. D., & Cole, J. O. (1985). A corticosteroid/dopamine hypothesis for psychotic depression and related states. Journal of Psychiatric Research, 19: 57–64CrossRefGoogle ScholarPubMed
Schaumann, B., & Alter, M. (1976). Dermatoglyphics in medical disorders. New York: Springer-Verlag
Shipley, J. E., Alessi, N., Wade, S. E., Haegle, A. D., & Helmbold, B. (1992). Utility of an oral diffusion sink (ODS) device for quantification of saliva corticosteroids in human subjects. Journal of Clinical Endocrinology and Metabolism, 74, 698–700Google ScholarPubMed
Silberg, J., Pickles, A., Rutter, M., Hewitt, J., Simonoff, E., Maes, H., Carbonneau, R., Murrelle, L., Foley, D., & Eaves, L. (1999). The influence of genetic factors and life stress on depression among adolescent girls. Archives of General Psychiatry, 56, 225–232CrossRefGoogle ScholarPubMed
Smith, D. (1982). Recognizable patterns of human malformation. London: WB Saunders
Sobin, C., Weissman, M. M., Goldstein, R. B., & Adams, P. (1993). Diagnostic interviewing for family studies: Comparing telephone and face-to-face methods for the diagnosis of lifetime psychiatric disorders. Psychiatric Genetics, 3, 227–233CrossRefGoogle Scholar
Sorg, B. A., & Kalivas, P. W. (1995). Stress and neuronal sensitization. In M. J. Friedman, D. S. Charney, & A. Y. Deutch (Eds.), Neurobiological and clinical consequences of stress (pp. 83–102). Philadelphia: Lippincott-Raven
Spear, L. P. (2000a). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24, 417–463CrossRefGoogle Scholar
Spear, L. P. (2000b). Neurobehavioral changes in adolescence. Current Directions in Psychological Science, 9, 111–114CrossRefGoogle Scholar
Spitzer, R. L., Williams, J. B., Gibbon, M., & First, M. B. (1990). Structured Clinical Interview for DSM-III-R Personality Disorders Questionnaire. Washington, D.C.: American Psychiatric Press
Stansbury, K., & Gunnar, M. R. (1994). Adrenocortical activity and emotion regulation. Monographs of the Society for Research in Child Development, 59, 108–134CrossRefGoogle ScholarPubMed
Steiner, H., & Levine, S. (1988). Acute stress response in anorexia nervosa: A pilot study. Child Psychiatry and Human Development, 18, 208–218Google ScholarPubMed
Susman, E. J., Dorn, L. D., Inoff-Germain, G., Nottelmann, E. D., & Chrousos, G. P. (1997). Cortisol reactivity, distress behavior, and behavioral and psychological problems in young adolescents: A longitudinal perspective. Journal of Research on Adolescence, 7, 81–105CrossRefGoogle Scholar
Tyrka, A. R., Cannon, T. D., Haslam, N., & Mednick, S. A. (1995). The latent structure of schizotypy: I: Premorbid indicators of a taxon of individuals at risk for schizophrenia-spectrum disorders. Journal of Abnormal Psychology, 104, 173–183CrossRefGoogle ScholarPubMed
Wajs-Kuto, E., Beeck, L. O., Rooman, R. P. & Caju, M. V. (1999). Hormonal changes during the first year of oestrogen treatment in constitutionally tall girls. European Journal of Endocrinology, 141 (6), 579–584CrossRefGoogle ScholarPubMed
Waldrop, M. F., & Halverson, C. F. (1971). Minor physical anomalies and hyperactive behavior in young children. In J. Helmuth (Ed.), Exceptional infant: Studies in abnormalities. New York: Brunner/Mazel
Waldrop, M. P., Pederson, F. A., & Bell, R. Q. (1968). Minor physical anomalies and behavior in preschool children. Child Development, 39, 391–400CrossRefGoogle ScholarPubMed
Walker, E. (2002). Adolescent neurodevelopment and psychopathology. Current Directions in Psychological Science, 11, 24–28CrossRefGoogle Scholar
Walker, E., Baum, K., & Diforio, D. (1998). Developmental changes in the behavioral expression of vulnerability for schizophrenia. In M. Lenzenweger and B. Dworkin (Eds)., Origins and development of schizophrenia: Advances in experimental psychopathology (pp. 469–491). Washington, D.C.: American Psychological Association PressCrossRef
Walker, E., & Diforio, D. (1997). Schizophrenia: A neural diathesis-stress model. Psychological Review 104, 1–19CrossRefGoogle ScholarPubMed
Walker, E., Walder, D. & Reynolds, F. (2001). Adolescent changes in stress sensitivity and the expression of vulnerability to psychopathology. Development and Psychopathology, 13, 721–732CrossRefGoogle Scholar
Watson, C., & Gametchu, B. (1999). Membrane-initiated steroid actions and the proteins that mediate them. Proceedings of the Society for Experimental Biology & Medicine, 220, 9–19CrossRefGoogle Scholar
Weinstein, D., Diforio, D., Schiffman, J., Walker, E., & Bonsall, B. (1999). Minor physical anomalies, dermatoglyphic abnormalities and cortisol levels in adolescents with schizotypal personality disorder. American Journal of Psychiatry 156, 617–623Google ScholarPubMed
Wolfradt, U., & Straube, E. (1998). Factor structure of schizotypal traits among adolescents. Personality and Individual Differences, 24, 201–206CrossRefGoogle Scholar
Wolkowitz, O. (1994). Prospective controlled studies of the behavioral and biological effects of exogenous corticosteroids: Review. Psychoneuroendocrinology, 19, 233–255CrossRefGoogle Scholar
Wyatt, R. (1995). Antipsychotic medication and the long-term course of schizophrenia. In C. L. Shriqui & H. A. Nasrallah (Eds.), Contemporary issues in the treatment of schizophrenia (pp. 385–410). Washington, D.C.: American Psychiatric Association Press
Wyatt, R. J., Apud, J. A., & Potkin, S. (1996). New directions in the prevention and treatment of schizophrenia: A biological perspective. Psychiatry, 59, 357–370CrossRefGoogle ScholarPubMed
Yung, A. R., & McGorry, P. D. (1996). The initial prodrome in psychosis: descriptive and qualitative aspects. Australian and New Zealand Journal of Psychiatry, 30, 587–599CrossRefGoogle ScholarPubMed
Yung, A. R., Phillips, L. J., McGorry, P. D., Hallgren, M. A., McFarlane, C. A., Jackson, H. J., Francey, S., & Patton, G. C. (1998). Can we predict the onset of first-episode psychosis in a high-risk group? International Clinical Psychopharmacology, 13(suppl 1), S23–S30CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×