Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-04T08:51:49.537Z Has data issue: false hasContentIssue false

7 - Autoimmunity at the neuromuscular junction

from Part I - Physiology and pathophysiology of nerve fibres

Published online by Cambridge University Press:  04 August 2010

J. Newsom-Davis
Affiliation:
Neurosciences Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
Hugh Bostock
Affiliation:
Institute of Neurology, London
P. A. Kirkwood
Affiliation:
Institute of Neurology, London
A. H. Pullen
Affiliation:
Institute of Neurology, London
Get access

Summary

The neuromuscular junction is arguably the best understood synapse in the human nervous system. Building on the pioneering studies in the frog (see Katz, 1969), Elmqvist et al (1964) and Elmqvist & Lambert (1968) defined the principal properties of nerve-to-muscle transmission in man, based on observations made on biopsied human intercostal muscle. At that time, the neuromuscular junction was believed to be the site of the disorder in myasthenia gravis (MG), but its physiological mechanism was not known until the studies of Elmqvist et al. (1964) revealed a reduction in the amplitudes of the miniature endplate potentials and of the endplate potentials. The later discovery of MG's antibody-mediated nature was made possible by the earlier physiological studies. Subsequently, it has become clear that MG is not the only autoimmune disorder affecting the neuromuscular junction. Its vulnerability may be because the ion channels and cell surface molecules concerned in synaptic transmission, unlike those at synapses elsewhere in the nervous system, lie outside the blood–brain barrier and thus lack the protection from systemic immune attack that the latter affords.

This chapter will first describe the background for the autoimmune process in MG, a postsynaptic disorder, before describing two other disorders distinct from MG in which the targets for immune attack are presynaptic.

Myasthenia gravis

That MG might be an autoimmune disease was first suggested by Simpson (1960) who deduced this from clinical clues: its association with other autoimmune disease (notably of the thyroid) and the transfer of the disorder transiently to babies born to myasthenic mothers.

Type
Chapter
Information
The Neurobiology of Disease
Contributions from Neuroscience to Clinical Neurology
, pp. 69 - 74
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×