Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T01:10:54.996Z Has data issue: false hasContentIssue false

3 - The Growth Function and VC-Dimension

Published online by Cambridge University Press:  26 February 2010

Martin Anthony
Affiliation:
London School of Economics and Political Science
Peter L. Bartlett
Affiliation:
Australian National University, Canberra
Get access

Summary

Introduction

The previous chapter gave a formal definition of the learning problem, and showed that it can be solved if the class HN of functions is finite. However, many interesting function classes are not finite. For example, the number of functions computed by the perceptron with real-valued weights and inputs is infinite. Many other neural networks can also be represented as a parameterized function class with an infinite parameter set. We shall see that learning is possible for many (but not all) function classes like this, provided the function class is not too complex. In this chapter, we examine two measures of the complexity of a function class, the growth function and the VC-dimension, and we show that these are intimately related. In the next two chapters, we shall see that the growth function and VC-dimension of a function class determine the inherent sample complexity of the learning problem.

The Growth Function

Consider a finite subset S of the input space X. For a function class H, the restriction of H to the set S (that is, the set of restrictions to S of all functions in H) is denoted by H|s. If H|s is the set of all functions from S to {0, 1}, then clearly, H is as powerful as it can be in classifying the points in S. We can view the cardinality of H|s (and in particular how it compares with 2|s|) as a measure of the classification complexity of H with respect to the set S.

Type
Chapter
Information
Neural Network Learning
Theoretical Foundations
, pp. 29 - 41
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×