Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-26T18:44:51.391Z Has data issue: false hasContentIssue false

5 - Thermal Characterization and Modeling

Published online by Cambridge University Press:  19 August 2009

Peter Aaen
Affiliation:
Freescale Semiconductor, AZ
Jaime A. Plá
Affiliation:
Freescale Semiconductor, AZ
John Wood
Affiliation:
Maxim Integrated Products
Get access

Summary

Introduction

In previous chapters, we have discussed the importance of capturing the transistor performance as a function of temperature and the changes that occur to the material parameters. While it is necessary to characterize and model this behaviour, transistors designed for high power densities also generate heat as a by-product of current flow within the junction area. This self-heating degrades the performance of the transistor and these effects must be included within our models.

To quantify the amount of self-heating we need only look at the definition of power-added efficiency η, (PoutPin)/Pdc, where Pin and Pout are the input and output power at the operational frequency of the transistor, respectively, and Pdc is the supplied DC power. Power that is not converted from DC to RF or is transferred into the device, approximately Pdc(1 − η), is dissipated as heat. The vast amount of generated heat flows away from the junction into the bulk semiconductor, down into the package flange, and then into the heatsink of the power amplifier. Maximum junction temperatures for transistors used within wireless base-stations are often specified to be around 150–200°C, depending on the device technology in use.

High-power transistors are operated close to the maximum limits of their electrical and thermal specifications, to extract the best possible device performance as economically as possible, in other words, to produce the maximum RF power per dollar of expenditure [1].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×