Skip to main content Accessibility help
×
Hostname: page-component-cd4964975-4wks4 Total loading time: 0 Render date: 2023-03-27T18:35:03.420Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

1 - Magnetism, Magnetic Materials, and Nanoparticles

Published online by Cambridge University Press:  10 February 2019

Nicholas J. Darton
Affiliation:
Arecor Limited
Adrian Ionescu
Affiliation:
University of Cambridge
Justin Llandro
Affiliation:
Tohoku University, Japan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gubin, S. P., Koksharov, Y. A., Khomutov, G. B. and Yurkov, G. Y., Magnetic nanoparticles: Preparation, structure and properties. Russ. Chem. Rev., 74:6 (2005), 489520.CrossRefGoogle Scholar
Batlle, X. and Labarta, A., Finite-size effects in fine particles: Magnetic and transport properties. J. Phys. D: Appl. Phys., 35:6 (2002), R15–42.CrossRefGoogle Scholar
Skomski, R., Nanomagnetics. J. Phys. Cond. Matter., 15:20 (2003), R841–96.CrossRefGoogle Scholar
Bansmann, J., Baker, S. H., Binns, C., et al., Magnetic and structural properties of isolated and assembled clusters. Surf. Sci. Rep., 56:6–7 (2005), 189275.CrossRefGoogle Scholar
Mills, D. L. L. and Bland, J. A. C., Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures, 1st edn (Amsterdam: Elsevier, 2006).Google Scholar
Mørup, S. and Hansen, M. F., Superparamagnetic particles. In Kronmüller, H. and Parkin, S. S., eds., Handbook of Magnetism and Advanced Magnetic Materials, Vol. 4 of Novel Materials. (Chichester: J. Wiley & Sons Ltd., 2007), pp. 2159–76.Google Scholar
Aktas, B. and F. Mikailov, eds., Advances in Nanoscale Magnetism, 1st edn (Berlin, Heidelberg: Springer, 2007).Google Scholar
Guimaraes, A. P., Principles of Nanomagnetism, 1st edn (Berlin, Heidelberg: Springer, 2009).CrossRefGoogle Scholar
Shinjo, T., ed., Nanomagnetics and Spintronics, 1st edn (Oxford: Elsevier, 2009).Google Scholar
Bozorth, R., Ferromagnetism, 3rd edn (New York, NY: Wiley-IEEE Press, 1993).CrossRefGoogle Scholar
Chikazumi, S., Physics of Ferromagnetism, 2nd edn, (Oxford: Oxford University Press, 2009).Google Scholar
Smart, J. S., Effective Field Theories of Magnetism, (Philadelphia, PA: W.B. Saunders Co., 1966).CrossRefGoogle Scholar
Odom, B., Hanneke, D., d’Urso, B. and Gabrielse, G., New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett., 97:3 (2006), 030801.CrossRefGoogle ScholarPubMed
Figgis, B. N. and Lewis, J., The magnetochemistry of complex compounds. In Lewis, J. and Wilkins, R. G., eds., Modern Coordination Chemistry (New York, NY: Wiley, 1960).Google Scholar
Goodenough, J. B., Magnetism and the Chemical Bond, 1st edn (New York, NY: J. Wiley & Sons, 1963).Google Scholar
Kittel, C., Introduction to Solid State Physics, 8th edn (New York, NY: Wiley, 2005).Google Scholar
Martin, D. H., Magnetism in Solids, 1st edn (Cambridge, MA: MIT Press, 1967).Google Scholar
Eriksson, O., Johansson, B., Albers, R. C., Boring, A. M., and Brooks, M. S. S., Orbital magnetism in Fe, Co, and Ni. Phys. Rev. B., 42:4 (1990), 2707–10.CrossRefGoogle ScholarPubMed
Haynes, W. M., ed., Handbook of Chemistry and Physics, 92nd edn (Boca Raton, FL: CRC Press, 2011).Google Scholar
Hesjedal, T., Kretzer, U. and Ney, A., Magnetic susceptibility of n-type GaAs. Semicond. Sci. Technol., 27:5 (2012), 055018.CrossRefGoogle Scholar
Goryunova, N. A., Slozhnye Almazopodobnye Poluprovodniki (Complex Diamond-like Semiconductors), 1st edn (Moscow: Sovietskoye Radio (Soviet Radio), 1968).Google Scholar
Crangle, J., Magnetic Properties of Solids, 1st edn (London: Edward Arnold, 1977).Google Scholar
Darby, M. I., Tables of the Brillouin function and of the related function for the spontaneous magnetization. Br. J. Appl. Phys., 18:10 (1967), 1415–7.CrossRefGoogle Scholar
Callen, E. R. and Callen, H. B., Static magnetoelastic coupling in cubic crystals. Phys. Rev., 129:2 (1963), 578–93.CrossRefGoogle Scholar
Chudnovsky, E. M. and Gunther, L., Quantum tunneling of magnetization in small ferromagnetic particles. Phys. Rev. Lett., 60:8 (1988), 661–4.CrossRefGoogle ScholarPubMed
Meiklejohn, W. H. and Bean, C. P., New magnetic anisotropy. Phys. Rev., 102:5 (1956), 1413–4.CrossRefGoogle Scholar
Carey, R. and Isaac, E. D., Magnetic Domains and Techniques for their Observation (New York, NY: Academic Press, 1966).Google Scholar
Craik, D. J. and Tebble, R. S., Magnetic domains. Rep. Prog. Phys., 24 (1961), 116–66.CrossRefGoogle Scholar
De Hosson, J. T. M., Chechenin, N. G. and Vystavel, T., Nano-structured magnetic films investigated with Lorentz transmission electron microscopy and electron holography. Nato Science Series II, 128 (2003), 463–80.Google Scholar
Allenspach, R., Sallemik, H., Bischof, A. and Weibel, E., Tunneling experiments involving magnetic tip and magnetic sample. Z. Phys. B: Condens. Matter, 67 (1987), 125–8.CrossRefGoogle Scholar
Schippan, F., Behme, G., Däweritz, L., et al., Magnetic structure of epitaxially grown MnAs on GaAs(001). J. Appl. Phys. 88:5 (2000), 2766–70.CrossRefGoogle Scholar
Baruchel, J., Schlenker, M., Kurosawa, K. and Saito, S., Antiferromagnetic S-domains in NiO. Phil. Mag. B, 43:5 (1981), 853–60.Google Scholar
Tanner, B. K., Antiferromagnetic domains. Contemp. Phys., 20:2 (1979), 187210.CrossRefGoogle Scholar
Stöhr, J., Padmore, H. A., Anders, S., Stammler, T. and Scheinfein, M. R., Principles of X-ray magnetic dichroism spectromicroscopy. Surf. Rev. and Lett., 5:6 (1998), 1297–308.CrossRefGoogle Scholar
Brown, P. J., Spherical neutron polarimetry. In Chatterji, T., ed., Neutron Scattering from Magnetic Materials (Amsterdam: Elsevier, 2005).Google Scholar
McHenry, M. E. and Laughlin, D. E., Nano-scale materials development for future magnetic applications. Acta mater., 48:1 (2000), 223–38.CrossRefGoogle Scholar
Néel, L., Some theoretical aspects of rock-magnetism. Adv Phys., 4:14 (1955), 191243.CrossRefGoogle Scholar
Coey, J. M. D., Magnetism and Magnetic Materials, 2nd edn (Cambridge: Cambridge University Press, 2010).CrossRefGoogle Scholar
Kneller, E. F. and Luborsky, F. E., Particle size dependence of coercivity and remanence of single-domain particles. J. Appl. Phys., 34:3 (1963), 656–8.CrossRefGoogle Scholar
McIntyre, D. A., The size dependence of the coercivity of small particles: a statistical approach. J. Phys. D: Appl. Phys., 3:10 (1970), 1430–3.CrossRefGoogle Scholar
Herzer, G., Nanocrystalline soft magnetic materials. Phys. Scripta, T49 (1993), 307–14.Google Scholar
Rowlands, G., The variation of coercivity with particle size. J. Phys. D: Appl. Phys., 9:8 (1976), 1267–9.CrossRefGoogle Scholar
Stoner, E. C. and Wohlfarth, E. P., Interpretation of high coercivity in ferromagnetic materials. Nature, 160 (1947), 650–1.CrossRefGoogle Scholar
Néel, L., Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Geophys. C.N.R.S., 5 (1949), 99136.Google Scholar
Brown, W. F. Jr., Thermal fluctuations of a single-domain particle. Phys. Rev., 130:5 (1963), 1677–86.CrossRefGoogle Scholar
Wohlfarth, E. P., The coefficient of magnetic viscosity. J. Phys. F: Met. Phys., 14:8 (1984), L155–9.CrossRefGoogle Scholar
Wernsdorfer, W., Hasselbach, K., Benoit, A., et al., Measurement of the dynamics of the magnetization reversal in individual single-domain Co particles. J. Magn. Magn. Mater., 151:1–2 (1995), 3844.CrossRefGoogle Scholar
Wernsdorfer, W., Doudin, B., Mailly, D., et al., Nucleation of magnetization reversal in individual nanosized nickel wires. Phys. Rev. Lett. 77:9 (1996), 1873–6.CrossRefGoogle ScholarPubMed
Donahue, M. J. and Porter, D. G., Object Oriented MicroMagnetic Framework (OOMMF) Users’ Guide. NIST Interagency Report 6376. National Institute of Standards and Technology (1999).Google Scholar
Vansteenkiste, A., Leliaert, J., Dvornik, M., et al., The design and verification of MuMax3. AIP Adv., 4:10 (2014), 107133.CrossRefGoogle Scholar
McHenry, M. E., Majetich, S. A., Artman, J. O., Degraef, M. and Staley, S. W., Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process. Phys. Rev. B, 49:16 (1994), 11358.CrossRefGoogle ScholarPubMed
Ionescu, A., Darton, N. J., Vyas, K. and Llandro, J., Detection of endogenous magnetic nanoparticles with a tunnelling magneto-resistance sensor. Phil. Trans. Roy. Soc. A, 368:1927 (2010), 4371–87.CrossRefGoogle ScholarPubMed
Hansen, M. F. and Mørup, S., Models for the dynamics of interacting magnetic nanoparticles. J. Mag. Magn. Mater., 184:3 (1998), L262–74.CrossRefGoogle Scholar
Billas, I. M. L., Châtelain, A. and de Heer, W. A., Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science, 265:5179 (1994), 1682–4.CrossRefGoogle ScholarPubMed
Knickelbein, M. B., Adsorbate-induced enhancement of the magnetic moments of iron clusters. Chem. Phys. Lett., 353:3–4 (2002), 221–5.CrossRefGoogle Scholar
Stoner, E. C. and Wohlfarth, E. P., A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. Roy. Soc. A, 240:826 (1948), 599642.CrossRefGoogle Scholar
Tannous, C. and Gieraltowski, J., The Stoner–Wohlfarth model of ferromagnetism. Eur. J. Phys., 29:3 (2008), 475–87.CrossRefGoogle Scholar
Hansen, M. F. and Mørup, S., Estimation of blocking temperatures from ZFC/FC curves. J. Magn. Magn. Mater., 203:1–3 (1999), 214–6.CrossRefGoogle Scholar
Arrott, A., Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev., 108:6 (1957), 1394–6.CrossRefGoogle Scholar
Lifshitz, E. M. and Pitaevskii, L. P., Statistical Physics Part 2, Vol. 9 of Course of Theoretical Physics, 3rd edn (Oxford: Butterworth-Heinemann, 1991).Google Scholar
Noakes, J. E. and Arrott, A., Surface of magnetization, field, and temperature for nickel near its Curie temperature, J. Appl. Phys., 38:3 (1967), 973–4; Magnetization of nickel near its critical temperature, J. Appl. Phys., 39:2 (1968) 1235–6.CrossRefGoogle Scholar
Widom, B., Degree of the critical isotherm. J. Chem. Phys., 41:6 (1964), 1633–4.CrossRefGoogle Scholar
van Hove, L., Temperature variation of the magnetic inelastic scattering of slow neutrons, Phys. Rev., 93:2 (1954), 268–9; Correlations in space and time and Born approximation scattering in systems of interacting particles, Phys. Rev., 95:1 (1954), 249–62; Time-dependent correlations between spins and neutron scattering in ferromagnetic crystals, Phys. Rev., 95:6 (1954), 1374–84.Google Scholar
Lovesey, S. W., Theory of Neutron Scattering from Condensed Matter, Vol. 2, 1st edn (Oxford: Clarendon Press, 1984).Google Scholar
Kadanoff, L. P., Scaling laws for Ising models near Tc. Physics, 2:6 (1966), 263–72.Google Scholar
Fisher, M. E., The theory of equilibrium critical phenomena. Rep. Prog. Phys., 30:Part II (1967), 615730. Corrigendum: M.E. Fisher, Rep. Prog. Phys., 31:1 (1968), 418–20.CrossRefGoogle Scholar
Pelissetto, A. and Vicari, E., Critical phenomena and renormalization-group theory. Phys. Rep., 368:6 (2002), 549727.CrossRefGoogle Scholar
Campostrini, M., Hasenbusch, M., Pelissetto, A. and Vicari, E., Theoretical estimates of the critical exponents of the superfluid transition in 4He by lattice methods. Phys. Rev. B, 74:14 (2006), 144506.CrossRefGoogle Scholar
Chantrell, R. W. and Wohlfarth, E. P., Dynamic and static properties of interacting fine ferromagnetic particles. J. Magn. Magn. Mater., 40:1 (1983), 111.CrossRefGoogle Scholar
Bødker, F., Mørup, S., Pedersen, M. S., et al., Superparamagnetic relaxation in α-Fe particles. J. Mag. Mag. Mat., 177–181:Part 2 (1998), 925–7.Google Scholar
Mørup, S. and Topsøe, H., Mössbauer studies of thermal excitations in magnetically ordered microcrystals. Appl. Phys., 11:1 (1976), 63–6.Google Scholar
Mørup, S., Hansen, M. F. and Frandsen, C., Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol., 1 (2010), 182–90.CrossRefGoogle ScholarPubMed
Tronc, E., Nanoparticles. Il Nuovo Cimento D, 18:2–3 (1996), 163–80.CrossRefGoogle Scholar
Mørup, S., Christensen, P. H. and Clausen, B.S., Magnetic hyperfine splitting in superparamagnetic particles in external magnetic fields. J. Magn. Magn. Mater. 68:2 (1987), 160–70.Google Scholar
Squires, G. L., Introduction to the Theory of Thermal Neutron Scattering, 1st edn (Cambridge: Cambridge University Press, 1978).Google Scholar
Mørup, S. and Hansen, B. R., Uniform magnetic excitations in nanoparticles. Phys. Rev. B, 72:2 (2005), 024418.CrossRefGoogle Scholar
Hennion, M., Bellouard, C., Mirebeau, I., Dormann, J. L. and Nogues, M., Dual spin dynamics of small Fe particles. Europhys. Lett., 25:1 (1994), 43–8.CrossRefGoogle Scholar
Kubo, R., Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan., 12:6 (1957), 570–86.Google Scholar
van der Laan, G. and Figueroa, A. I., X-ray magnetic circular dichroism – A versatile tool to study magnetism. Coord. Chem. Rev., 277–278 (2014), 95129.CrossRefGoogle Scholar
Funk, T., Deb, A., George, S. J., Wang, H. and Cramer, S. P., X-ray magnetic circular dichroism – A high energy probe of magnetic properties. Coord. Chem. Rev., 249:1–2 (2005), 330.CrossRefGoogle Scholar
Thole, B. T., Carra, P., Sette, F. and van der Laan, G., X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett., 68:12 (1992), 1943–6.CrossRefGoogle ScholarPubMed
Carra, P., Thole, B. T., Altarelli, M. and Wang, X., X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett., 70 (1993), 694–7.CrossRefGoogle ScholarPubMed
Imada, S., Suga, S., Kuch, W. and Kirchner, J., Magnetic microspectroscopy by a combination of XMCD and PEEM. Surf. Rev. Lett., 9:2 (2002), 877–81.CrossRefGoogle Scholar
Guinier, A., X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, 1st edn (San Francisco, CA: W.H. Freeman & Co., 1963).Google Scholar
Rodriguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction. Physica B, 192:1–2 (1993), 5569.CrossRefGoogle Scholar
Scherrer, P., Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2 (1918), 98100.Google Scholar
Stokes, A. R. and Wilson, A. J. C., The diffraction of X-rays by distorted crystal aggregates. I. Proc. Phys. Soc., 56:3 (1944), 174–81.Google Scholar
Mote, V. D., Purushotham, Y. and Dole, B. N., Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys., 6 :6 (2012).CrossRefGoogle Scholar
Cooper, J. F. K., Ionescu, A., Langford, R. M., et al., Core/shell magnetism in NiO nanoparticles. J. Appl. Phys., 114:8 (2013), 083906.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×