Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-29T04:34:20.484Z Has data issue: false hasContentIssue false

1 - Basic electromagnetism

Published online by Cambridge University Press:  06 July 2010

Denny D. Tang
Affiliation:
MagIC Technologies, Inc., California
Yuan-Jen Lee
Affiliation:
MagIC Technologies, Inc., California
Get access

Summary

Introduction

Two thousand years ago, the Chinese invented the compass, a special metallic needle with one end always pointing to the North Pole. That was the first recorded human application of magnetism. Important understandings and developments were achieved in the mid 19th century and continue into the present day. Indeed, today, magnetic devices are ubiquitous. For example, to name just two: energy conversion devices provide electricity to our homes and magnetic recording devices store data in our computers. This chapter provides an introduction to basic magnetism. Starting from the simple attractive (or repelling) force between magnets, we define magnetic field, dipole moment, torque, energy and its equivalence to current. Then we will state the Maxwell equations, which describe electromagnetism, or the relationship between electricity and magnetism.

A great tutorial is provided by Kittel, which may be used to support students studyingChapters 1–4.

Magnetic forces, poles and fields

In the early days, magnetic phenomena were described as analogous to electrical phenomena: like an electric charge, a magnetic pole was considered to be the source of magnetic field and force. The magnetic field was defined through the concept of force exerted on one pole by another.

Type
Chapter
Information
Magnetic Memory
Fundamentals and Technology
, pp. 1 - 12
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kittel, C., Introduction to Solid State Physics, 3rd edn (New York: John Wiley & Sons, Inc., 1968).Google Scholar
Spaldin, N., Magnetic Materials Fundamentals and Device Applications (Cambridge: Cambridge University Press, 2003).Google Scholar
Brown, W. E., Jr., IEEE Trans. Magnetics 20(1), 112 (1984).CrossRef
Collin, R. E., Field Theory of Guided Waves (New York: McGraw-Hill, 1960), sect. 1.1.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×