Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T11:18:46.802Z Has data issue: false hasContentIssue false

2 - Dark matter content and tidal effects in Local Group dwarf galaxies

Published online by Cambridge University Press:  05 November 2013

Steven R. Majewski
Affiliation:
University of Virginia
David Martínez-Delgado
Affiliation:
Max-Planck-Institut für Astronomie, Heidelberg
Get access

Summary

2.1 Somewhat historical: overview of the Local Group, dwarf galaxies, and their observed structures

Before taking on a discussion of the dynamics of Local Group (LG) galaxies and the contributing and competing effects of dark matter and tides, it is useful to have an understanding of the spatial distribution of these galaxies, the distribution of their types and masses, and their morphologies – all of which play critical roles in defining how dark matter and tides play out their dynamical tug-of-war. The most common types of galaxies – the dwarfs – which are the most dark matter dominated as well as those among LG galaxies to show the greatest evidence for tidal effects, are the primary focus of this chapter.

2.1.1 The Local Group in context

Large-scale galaxy redshift surveys over the past decades (e.g., Davis et al., 1982; Geller and Huchra, 1989; Shectman et al., 1996; York et al., 2000; Colless et al., 2001; Strauss et al., 2002; Abazajian et al., 2009; Jones et al., 2009) have revealed clearly the filamentary structure of the distribution of galaxies in the Universe. The nearest 100 Mpc shows vast voids but several large mass concentrations, such as the Perseus-Pisces, Pegasus, Pavo, Coma, Hydra-Centaurus, and Virgo Superclusters. The Milky Way (MW) and the LG of galaxies live on the outskirts of the Virgo Supercluster, whose center lies about 15 Mpc away.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, M. 1983. Accurate radial velocities for carbon stars in Draco and Ursa Minor – The first hint of a dwarf spheroidal mass-to-light ratio. ApJ, 266(Mar.), L11–L15.Google Scholar
Abazajian, K. N., and 203 colleagues 2009. The seventh data release of the Sloan Digital Sky Survey. ApJS, 182(June), 543–558.Google Scholar
Angus, G. W. 2008. Dwarf spheroidals in MOND. MNRAS, 387(July), 1481–1488.Google Scholar
Angus, G. W., Famaey, B., and Zhao, H. S. 2006. Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry. MNRAS, 371 (Sept.), 138–146.Google Scholar
Armandroff, T. E. and Da Costa, G. S. 1986. The radial velocity, velocity dispersion, and mass-to-light ratio of the Sculptor dwarf galaxy. AJ, 92(Oct.), 777–786.Google Scholar
Armandroff, T. E., Olszewski, E. W., and Pryor, C. 1995. The mass-to-light ratios of the Draco and Ursa Minor Dwarf Spheroidal Galaxies. I. Radial velocities from multifiber spectroscopy. AJ, 110(Nov.), 2131–2165.Google Scholar
Baade, W. 1944. The resolution of Messier 32, NGC 205, and the central region of the Andromeda Nebula. ApJ, 100(Sept.), 137–146.Google Scholar
Baade, W. and Hubble, E. 1939. The new stellar systems in Sculptor and Fornax. PASP, 51 (Feb.), 40–44.Google Scholar
Battaglia, G., Helmi, A., Tolstoy, E., Irwin, M., Hill, V., and Jablonka, P. 2008. The kinematic status and mass content of the Sculptor dwarf spheroidal galaxy. ApJ, 681 (July), L13–L16.Google Scholar
Beaton, R. L., and 8 colleagues. 2007. Unveiling the boxy bulge and bar of the Andromeda Spiral Galaxy. ApJ, 658(Apr.), L91–L94.Google Scholar
Belokurov, V., and 20 colleagues. 2006a. The field of streams: Sagittarius and its siblings. ApJ, 642(May), L137–L140.Google Scholar
Belokurov, V., and 32 colleagues. 2006b. A faint new Milky Way satellite in Bootes. ApJ, 647(Aug.), L111–L114.Google Scholar
Belokurov, V., and 25 colleagues. 2007a. The Hercules-Aquila Cloud. ApJ, 657(Mar.), L89–L92.Google Scholar
Belokurov, V., and 33 colleagues. 2007b. Cats and dogs, hair and a hero: a quintet of new Milky Way companions. ApJ, 654(Jan.), 897–906.Google Scholar
Besla, G., Kallivayalil, N., Hernquist, L., Robertson, B., Cox, T. J., van der Marel, R. P., and Alcock, C. 2007. Are the Magellanic Clouds on their first passage about the Milky Way?ApJ, 668(Oct.), 949–967.Google Scholar
Bizyaev, D., and 9 colleagues 2006. The Space Interferometry Mission Astrometric Grid Giant Star Survey. I. Stellar parameters and radial velocity variability. AJ, 131(Mar.), 1784–1796.Google Scholar
Brown, T. M., Ferguson, H. C., Smith, E., Kimble, R. A., Sweigart, A. V., Renzini, A., Rich, R. M., and VandenBerg, D. A. 2003. Evidence of a significant intermediate-age population in the M31 halo from main-sequence photometry. ApJ, 592(July), L17–L20.Google Scholar
Bullock, J. S. and Johnston, K. V. 2005. Tracing galaxy formation with stellar halos. I. Methods. ApJ, 635(Dec.), 931–949.Google Scholar
Bullock, J. S., Kravtsov, A. V., and Weinberg, D. H. 2000. Reionization and the abundance of galactic satellites. ApJ, 539(Aug.), 517–521.Google Scholar
Bullock, J. S., Kravtsov, A. V., and Weinberg, D. H. 2001. Hierarchical galaxy formation and substructure in the Galaxy's stellar halo. ApJ, 548(Feb.), 33–46.Google Scholar
Cannon, R. D., Hawarden, T. G., and Tritton, S. B. 1977. A new Sculptor-type dwarf elliptical galaxy in Carina. MNRAS, 180(Sept.), 81P–82P.Google Scholar
Casetti-Dinescu, D. I., Carlin, J. L., Girard, T. M., Majewski, S. R., Penarrubia, J., and Pañerson, R. J. 2008. Kinematics of stars in Kapteyn Selected Area 71: sampling the Monoceros and Sagittarius tidal streams. AJ, 135(June), 2013–2023.Google Scholar
Chapman, S. C., and 11 colleagues. 2007. Strangers in the night: discovery of a dwarf spheroidal galaxy on its first Local Group infall. ApJ, 662(June), L79–L82.Google Scholar
Chilingarian, I., Cayatte, V., Revaz, Y., Dodonov, S., Durand, D., Durret, F., Micol, A., and Slezak, E. 2009. A population of compact elliptical galaxies detected with the Virtual Observatory. Science, 326(Dec.), 1379–1382.Google Scholar
Chou, M.-Y., and 11 colleagues. 2007. A 2MASS all-sky view of the Sagittarius Dwarf Galaxy. V. Variation of the metallicity distribution function along the Sagittarius stream. ApJ, 670(Nov.), 346–362.Google Scholar
Clowe, D., Randall, S. W., and Markevitch, M. 2007. Catching a bullet: direct evidence for the existence of dark matter. Nuclear Physics B Proceedings Supplements, 173(Nov.), 28–31.Google Scholar
Clutton-Brock, M. 1972. How are intergalactic filaments made?Ap&SS, 17(Aug.), 292–324.Google Scholar
Colless, M., and 28 colleagues 2001. The 2dF Galaxy Redshift Survey: spectra and redshifts. MNRAS, 328(Dec.), 1039–1063.Google Scholar
Connors, T. W., Kawata, D., and Gibson, B. K. 2006. N-body simulations of the Magellanic stream. MNRAS, 371(Sept.), 108–120.Google Scholar
Connors, T. W., Kawata, D., Maddison, S. T., and Gibson, B. K. 2004. High-resolution N-body simulations of galactic cannibalism: the Magellanic stream. PASA, 21, 222–227.Google Scholar
Dalcanton, J. J., and 26 colleagues. 2009. The ACS Nearby Galaxy Survey Treasury. ApJS, 183(July), 67–108.Google Scholar
Davies, R. D. and Wright, A. E. 1977. A tidal origin for the Magellanic Stream. MNRAS, 180(July), 71–88.Google Scholar
Davis, M., Huchra, J., Latham, D. W., and Tonry, J. 1982. A survey of galaxy redshifts. II – The large scale space distribution. ApJ, 253(Feb.), 423–445.Google Scholar
Dolphin, A. E., and 8 colleagues. 2003. Deep Hubble Space Telescope imaging of Sextans A. III. The star formation history. AJ, 126(July), 187–196.Google Scholar
Duffau, S., Zinn, R., Vivas, A. K., Carraro, G., Méndez, R. A., Winnick, R., and Gallart, C. 2006. Spectroscopy of QUEST RR Lyrae Variables: The New Virgo Stellar Stream. ApJ, 636(Jan.), L97–L100.Google Scholar
Elson, R. A. W. 1999. Stellar dynamics in globular clusters. Globular Clusters, 209–248.
Eskridge, P. B. 1988. The structure of the sculptor dwarf elliptical galaxy. I – The radial profile. AJ, 95(June), 1706–1716.Google Scholar
Evans, N. W. and Wilkinson, M. I. 2000. The mass of the Andromeda galaxy. MNRAS, 316(Aug.), 929–942.Google Scholar
Feltzing, S., Gilmore, G., and Wyse, R. F. G. 1999. The Faint Optical Stellar Luminosity function in the Ursa Minor Dwarf Spheroidal Galaxy. ApJ, 516(May), L17–L20.Google Scholar
Fisher, J. R. and Tully, R. B. 1975. Neutral hydrogen observations of DDO dwarf galaxies. A&A, 44 (Nov.), 151–171.Google Scholar
Fleck, J.-J. and Kuhn, J. R. 2003. Parametric dwarf spheroidal tidal interaction. ApJ, 592(July), 147–160.Google Scholar
Freese, K., Gondolo, P., and Newberg, H. J. 2005. Detectability of weakly interacting massive particles in the Sagittarius dwarf tidal stream. Phys. Rev. D, 71 (Feb.), 043516–043531.Google Scholar
Fuchs, B., Phleps, S., and Meisenheimer, K. 2006. CADIS has seen the Virgo overdensity and parts of the Monoceros and “Orphan” streams in retrospect. A&A, 457(Oct.), 541–543.Google Scholar
Fujimoto, M., Sawa, T., and Kumai, Y. 1999. The Magellanic Stream and the Magellanic Cloud System. IAU Symposium, 186, 31–38.Google Scholar
Gardiner, L. T. 1999. N-body simulations of the Magellanic Stream. Stromlo Workshop on High-Velocity Clouds, 166, 292–301.Google Scholar
Gardiner, L. T. and Noguchi, M. 1996. N-body simulations of the Small Magellanic Cloud and the Magellanic Stream. MNRAS, 278(Jan.), 191–208.Google Scholar
Geha, M., Willman, B., Simon, J. D., Strigari, L. E., Kirby, E. N., Law, D. R., and Strader, J. 2009. The least-luminous galaxy: spectroscopy of the Milky Way satellite Segue 1. ApJ, 692(Feb.), 1464–1475.Google Scholar
Geller, M. J. and Huchra, J. P. 1989. Mapping the Universe. Science, 246(Nov.), 897–903.Google Scholar
Gelmini, G., Gondolo, P., and Soldatenko, A. 2004. Detectability of the Sgr dwarf leading tidal stream with Auger, EUSO, or OWL. Phys. Rev. D, 70(July), 023010–023015.Google Scholar
Gerhard, O. 2002. The Galactic Bar. The dynamics, structure and history of galaxies: a workshop in honour of Professor Ken Freeman, 273, 73–83.Google Scholar
Gilmore, G., Wilkinson, M. I., Wyse, R. F. G., Kleyna, J. T., Koch, A., Evans, N. W., and Grebel, E. K. 2007. The observed properties of dark matter on small spatial scales. ApJ, 663(July), 948–959.Google Scholar
Goerdt, T., Moore, B., Read, J. I., Stadel, J., and Zemp, M. 2006. Does the Fornax dwarf spheroidal have a central cusp or core?MNRAS, 368(May), 1073–1077.Google Scholar
Gondolo, P. and Gelmini, G. 2005. Compatibility of DAMA dark matter detection with other searches. Phys. Rev. D, 71(June), 123520–123530.Google Scholar
Gottesman, S. T., Hunter, J. H., and Boonyasait, V. 2002. On the mass of M31. MNRAS, 337(Nov.), 34–40.Google Scholar
Graham, A. W. 2002. Evidence for an outer disk in the prototype “compact elliptical” Galaxy M32. ApJ, 568(Mar.), L13–L17.Google Scholar
Grebel, E. K. 2004. The evolutionary history of Local Group irregular galaxies. Origin and Evolution of the Elements, 237–257.
Grebel, E. K., Gallagher, J. S. III., and Harbeck, D. 2003. The progenitors of dwarf spheroidal galaxies. AJ, 125(Apr.), 1926–1939.Google Scholar
Grillmair, C. J. 2006. Detection of a 60°;-long dwarf galaxy debris stream. ApJ, 645(July), L37–L40.Google Scholar
Grillmair, C. J. 2009. Four new stellar debris streams in the Galactic Halo. ApJ, 693(Mar.), 1118–1127.Google Scholar
Grillmair, C. J. and Dionatos, O. 2006a. A 22° tidal tail for Palomar 5. ApJ, 641(Apr.), L37–L39.Google Scholar
Grillmair, C. J. and Dionatos, O. 2006b. Detection of a 63° cold stellar stream in the Sloan Digital Sky Survey. ApJ, 643(May), L17–L20.Google Scholar
Grillmair, C. J., Freeman, K. C., Irwin, M., and Quinn, P. J. 1995. Globular clusters with tidal tails: deep two-color star counts. AJ, 109(June), 2553–2585.Google Scholar
Hayashi, E., Navarro, J. F., Taylor, J. E., Stadel, J., and Quinn, T. 2003. The structural evolution of substructure. ApJ, 584(Feb.), 541–558.Google Scholar
Hargreaves, J. C., Gilmore, G., and Annan, J. D. 1996. The influence of binary stars on dwarf spheroidal galaxy kinematics. MNRAS, 279(Mar.), 108–120.Google Scholar
Harrington, R. G. and Wilson, A. G. 1950. Two new stellar systems in Leo. PASP, 62(June), 118–120.Google Scholar
Hernquist, L. and Ostriker, J. P. 1992. A self-consistent field method for galactic dynamics. ApJ, 386(Feb.), 375–397.Google Scholar
Hodge, P. W. 1961a. The Fornax dwarf galaxy. II. The distribution of stars. AJ, 66(Aug.), 249–257.Google Scholar
Hodge, P. W. 1961b. The distribution of stars in the Sculptor dwarf galaxy. AJ, 66(Oct.), 384–389.Google Scholar
Hodge, P. W. 1962. Distribution of stars in the Leo II Dwarf Galaxy. AJ, 67(Mar.), 125–129.Google Scholar
Hodge, P. W. 1971. Dwarf Galaxies. ARA&A, 9, 35–66.Google Scholar
Hodge, P. W. and Michie, R. W. 1969. The structure of dwarf elliptical galaxies of the Local Group. AJ, 74(June), 587–596.Google Scholar
Howley, K. M., Geha, M., Guhathakurta, P., Montgomery, R. M., Laughlin, G., and Johnston, K. V. 2008. Darwin tames an Andromeda Dwarf: unraveling the orbit of NGC 205 using a genetic algorithm. ApJ, 683(Aug.), 722–749.Google Scholar
Howley, K., Guhathakurta, P., Geha, M., Kalirai, J., van der Marel, R., Yniguez, B., Cuillandre, J., and Gilbert, K. 2011. The Splash Survey: internal stellar kinematics of the nearby compact elliptical M32. Bull. Am. Astron. Soc., 43(Jan.), #207.04.Google Scholar
Ibata, R., Lewis, G. F., Irwin, M., Totten, E., and Quinn, T. 2001. Great circle tidal streams: evidence for a nearly spherical massive dark halo around the Milky Way. ApJ, 551(Apr.), 294–311.Google Scholar
Ibata, R., Gilmore, G., and Irwin, M. J. 1994. A dwarf satellite galaxy in Sagittarius. Nature, 370(July), 194–196.Google Scholar
Ibata, R., Martin, N. F., Irwin, M., Chapman, S., Ferguson, A. M. N., Lewis, G. F., and McConnachie, A. W. 2007. The haunted halos of Andromeda and Triangulum: a panorama of galaxy formation in action. ApJ, 671(Dec.), 1591–1623.Google Scholar
Ibata, R., Wyse, R. F. G., Gilmore, G., Irwin, M. J., and Suntzeff, N. B. 1997. The kinematics, orbit, and survival of the Sagittarius Dwarf Spheroidal Galaxy. AJ, 113(Feb.), 634–655.Google Scholar
Illingworth, G. 1976. The masses of globular clusters. II – Velocity dispersions and mass-to-light ratios. ApJ, 204(Feb.), 73–93.Google Scholar
Innanen, K. A. and Papp, K. A. 1979. Extratidal variables and the dynamics of the Sculptor dwarf galaxy. AJ, 84(May), 601–603.Google Scholar
Irwin, M. and Hatzidimitriou, D. 1995. Structural parameters for the Galactic dwarf spheroidals. MNRAS, 277(Dec.), 1354–1378.Google Scholar
Irwin, M. J., Bunclark, P. S., Bridgeland, M. T., and McMahon, R. G. 1990. A new satellite galaxy of the Milky Way in the constellation of Sextans. MNRAS, 244(May), 16P–19P.Google Scholar
Johnston, K. V. 1998. A prescription for building the Milky Way's halo from disrupted satellites. ApJ, 495(Mar.), 297–308.Google Scholar
Jones, D. H., and 32 colleagues. 2009. The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures. MNRAS, 399(Oct.), 683–698.Google Scholar
Kalberla, P. M. W., Burton, W. B., Hartmann, D., Arnal, E. M., Bajaja, E., Morras, R., and Pöppel, W. G. L. 2005. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. A&A, 440(Sept.), 775–782.Google Scholar
Kallivayalil, N., van der Marel, R. P., Alcock, C., Axelrod, T., Cook, K. H., Drake, A. J., and Geha, M. 2006a. The proper motion of the Large Magellanic Cloud using HST. ApJ, 638(Feb.), 772–785.Google Scholar
Kallivayalil, N., van der Marel, R. P., and Alcock, C. 2006b. Is the SMC bound to the LMC? The Hubble Space Telescope proper motion of the SMC. ApJ, 652(Dec.), 1213–1229.Google Scholar
Karachentsev, I. D., Kashibadze, O. G., Makarov, D. I., and Tully, R. B. 2009. The Hubble flow around the Local Group. MNRAS, 393(Mar.), 1265–1274.Google Scholar
Kauffmann, G., White, S. D. M., and Guiderdoni, B. 1993. The formation and evolution of galaxies within merging dark matter haloes. MNRAS, 264(Sept.), 201–218.Google Scholar
Keenan, D. W. and Innanen, K. A. 1975. Numerical investigation of galactic tidal effects on spherical stellar systems. AJ, 80(Apr.), 290–302.Google Scholar
King, I. 1962. The structure of star clusters. I. an empirical density law. AJ, 67(Oct.), 471–485.Google Scholar
King, I. R. 1966. The structure of star clusters. III. Some simple dynamical models. AJ, 71 (Feb.), 64–75.Google Scholar
King, I. R. and Minkowski, R. 1972. External Galaxies and Quasi-Stellar Objects, IAU Symposium: Evans, D. S. and Wills, D. and Wills, B. J.
Klessen, R. S. and Kroupa, P. 1998. Dwarf spheroidal satellite galaxies without dark matter: results from two different numerical techniques. ApJ, 498(May), 143–155.Google Scholar
Klessen, R. S. and Zhao, H. 2002. Are dwarf spheroidal galaxies dark matter dominated or remnants of disrupted larger satellite galaxies? A possible test. ApJ, 566(Feb.), 838–844.Google Scholar
Klessen, R. S., Grebel, E. K., and Harbeck, D. 2003. Draco: a failure of the tidal model. ApJ, 589(June), 798–809.Google Scholar
Kleyna, J., Geller, M., Kenyon, S., and Kurtz, M. 1999. Measuring the dark matter scale of Local Group dwarf spheroidals. AJ, 117(Mar.), 1275–1284.Google Scholar
Kleyna, J., Wilkinson, M. I., Evans, N. W., Gilmore, G., and Frayn, C. 2002. Dark matter in dwarf spheroidals – II. Observations and modelling of Draco. MNRAS, 330(Mar.), 792–806.Google Scholar
Kleyna, J. T., Wilkinson, M. I., Gilmore, G., and Evans, N. W. 2003. A dynamical fossil in the Ursa Minor Dwarf Spheroidal Galaxy. ApJ, 588(May), L21–L24.Google Scholar
Klimentowski, J., Łokas, E. L., Kazantzidis, S., Prada, F., Mayer, L., and Mamon, G. A. 2007. Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way. MNRAS, 378(June), 353–368.Google Scholar
Klypin, A., Kravtsov, A. V., Valenzuela, O., and Prada, F. 1999. Where are the missing galactic satellites?ApJ, 522(Sept.), 82–92.Google Scholar
Klypin, A., Zhao, H., and Somerville, R. S. 2002. ACDM-based models for the Milky Way and M31. I. Dynamical models. ApJ, 573(July), 597–613.Google Scholar
Koch, A., Kleyna, J. T., Wilkinson, M. I., Grebel, E. K., Gilmore, G. F., Evans, N. W., Wyse, R. F. G., and Harbeck, D. R. 2007. Stellar kinematics in the remote Leo II Dwarf Spheroidal Galaxy-another brick in the wall. AJ, 134(Aug.), 566–578.Google Scholar
Kravtsov, A. V., Gnedin, O. Y., and Klypin, A. A. 2004. The tumultuous lives of Galactic Dwarfs and the missing satellites problem. ApJ, 609(July), 482–497.Google Scholar
Kroupa, P. 1997. Dwarf spheroidal satellite galaxies without dark matter. New A, 2(July), 139–164.Google Scholar
Kuhn, J. R. 1993. Unbound dwarf spheroidal galaxies and the mass of the Milky Way. ApJ, 409(May), L13–L16.Google Scholar
Kuhn, J. R. and Miller, R. H. 1989. Dwarf spheroidal galaxies and resonant orbital coupling. ApJ, 341(June), L41–L45.Google Scholar
Kuhn, J. R., Smith, H. A., and Hawley, S. L. 1996. Tidal disruption and tails from the Carina Dwarf Spheroidal Galaxy. ApJ, 469(Oct.), L93–L96.Google Scholar
Kunkel, W. E. 1979. On the origin and dynamics of the Magellanic Stream. ApJ, 228(Mar.), 718–733.Google Scholar
Law, D. R. and Majewski, S. R. 2010. The Sagittarius Dwarf Galaxy: a model for evolution in a triaxial Milky Way halo. ApJ, 714(May), 229–254.Google Scholar
Law, D. R., Johnston, K. V., and Majewski, S. R. 2005. A Two Micron All-Sky Survey view of the Sagittarius Dwarf Galaxy. IV. Modeling the Sagittarius tidal tails. ApJ, 619(Feb.), 807–823.Google Scholar
Lewis, M. J. and Freese, K. 2004. Phase of the annual modulation as a tool for determining the mass of the weakly interacting massive particle. Phys. Rev. D, 70(Aug.), 043501–043508.Google Scholar
Lin, D. N. C. and Lynden-Bell, D. 1977. Simulation of the Magellanic Stream to estimate the total mass of the Milky Way. MNRAS, 181(Oct.), 59–81.Google Scholar
Lin, D. N. C. and Lynden-Bell, D. 1982. On the proper motion of the Magellanic Clouds and the halo mass of our galaxy. MNRAS, 198(Feb.), 707–721.Google Scholar
Lo, K. Y., Sargent, W. L. W., and Young, K. 1993. The H I structure of nine intrinsically faint dwarf galaxies. AJ, 106(Aug.), 507–529.Google Scholar
Lokas, E. L., Kazantzidis, S., Majewski, S. R., Law, D. R., Mayer, L., and Frinchaboy, P. M. 2010. The Inner structure and kinematics of the Sagittarius Dwarf Galaxy as a product of tidal stirring. ApJ, 725(Dec.), 1516–1527.Google Scholar
Łokas, E. L., Mamon, G. A., and Prada, F. 2005. Dark matter distribution in the Draco dwarf from velocity moments. MNRAS, 363(Nov.), 918–928.Google Scholar
Lu, L., Sargent, W. L. W., Savage, B. D., Wakker, B. P., Sembach, K. R.,and Oosterloo, T. A. 1998. The metallicity and dust content of HVC 287.5+22.5+240 – evidence for a Magellanic Clouds origin. AJ, 115(Jan.), 162–167.Google Scholar
Lu, L., Savage, B. D., and Sembach, K. R. 1994. Probing the galactic disk and halo: metal abundances in the Magellanic Stream. ApJ, 437(Dec.), L119–L122.Google Scholar
Majewski, S. R., and 8 colleagues. 2005. Exploring halo substructure with giant stars. VI. Extended distributions of giant stars around the Carina Dwarf Spheroidal Galaxy: how reliable are they?AJ, 130(Dec.), 2677–2700.Google Scholar
Majewski, S. R., and 11 colleagues. 2007. Discovery of Andromeda XIV: a dwarf spheroidal dynamical rogue in the Local Group?ApJ, 670(Nov.), L9–L12.Google Scholar
Majewski, S. R., and 10 colleagues. 2002. Modes of Star Formation and the Origin of Field Populations, Astronomical Society of the Pacific Conference Series: Grebel, E. K. and Brandner, W. eds.
Majewski, S. R., and 12 colleagues. 2004. A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. II. Swope Telescope spectroscopy of M giant stars in the dynamically cold Sagittarius Tidal Stream. AJ, 128(July), 245–259.Google Scholar
Majewski, S. R., et al. In preparation.
Majewski, S. R., Ostheimer, J. C., Patterson, R. J., Kunkel, W. E., Johnston, K. V., and Geisler, D. 2000. Exploring halo substructure with giant stars. II. Mapping the extended structure of the Carina Dwarf Spheroidal Galaxy. AJ, 119(Feb.), 760–776.Google Scholar
Majewski, S. R., Skrutskie, M. F., Weinberg, M. D., and Ostheimer, J. C. 2003. A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius core and tidal arms. ApJ, 599(Dec.), 1082–1115.Google Scholar
Martin, N. F., and 12 colleagues 2009. PAndAS' CUBS: discovery of two new dwarf galaxies in the surroundings of the Andromeda and Triangulum Galaxies. ApJ, 705(Nov.), 758–765.Google Scholar
Martin, N. F., de Jong, J. T. A., and Rix, H.-W. 2008. A comprehensive maximum likelihood analysis of the structural properties of faint Milky Way satellites. ApJ, 684(Sept.), 1075–1092.Google Scholar
Martin, N. F., Ibata, R. A., Irwin, M. J., Chapman, S., Lewis, G. F., Ferguson, A. M. N., Tanvir, N., and McConnachie, A. W. 2006. Discovery and analysis of three faint dwarf galaxies and a globular cluster in the outer halo ofthe Andromeda galaxy. MNRAS, 371(Oct.), 1983–1991.Google Scholar
Martínez-Delgado, D., Peñarrubia, J., Gabany, R. J., Trujillo, I., Majewski, S. R., and Pohlen, M. 2008. The ghost of a dwarf galaxy: fossils of the hierarchical formation of the nearby spiral galaxy NGC 5907. ApJ, 689(Dec.), 184–193.Google Scholar
Martínez-Delgado, D., Peñarrubia, J., Jurić, M., Alfaro, E. J., and Ivezić, Z. 2007. The Virgo stellar overdensity: mapping the infall of the Sagittarius tidal stream onto the Milky Way disk. ApJ, 660(May), 1264–1272.Google Scholar
Mashchenko, S., Couchman, H. M. P., and Sills, A. 2005. Modeling star formation in dwarf spheroidal galaxies: a case for extended dark matter halos. ApJ, 624(May), 726–741.Google Scholar
Mastropietro, C., Moore, B., Mayer, L., Wadsley, J., and Stadel, J. 2005. The gravitational and hydrodynamical interaction between the Large Magellanic Cloud and the Galaxy. MNRAS, 363(Oct.), 509–520.Google Scholar
Mathewson, D. S. 1976. The Magellanic Stream and other gas concentrations in the Local Group (invited review). The Galaxy and the Local Group. Royal Greenwich Observatory Bulletins: Dickens, R. J. and Perry, J. E. and Smith, F. G. and King, I. R. eds.
Mathewson, D. S. and Schwarz, M. P. 1976. The origin of the Magellanic Stream. MNRAS, 176(Aug.), 47P–51P.Google Scholar
Mathewson, D. S., Cleary, M. N., and Murray, J. D. 1974. The Magellanic stream. ApJ, 190(June), 291–296.Google Scholar
Mathewson, D. S., Schwarz, M. P., and Murray, J. D. 1977. The Magellanic stream – The turbulent wake of the Magellanic clouds in the halo of the Galaxy. ApJ, 217(Oct.), L5–L8.Google Scholar
Mathewson, D. S., Wayte, S. R., Ford, V. L., and Ruan, K. 1987. The ‘high velocity cloud’ origin of the Magellanic system. Astronomical Society of Australia, Proceedings, vol. 7, no. 1, 19–25.Google Scholar
Mateo, M. L. 1998. Dwarf galaxies of the Local Group. ARA&A, 36, 435–506.Google Scholar
Mateo, M., Olszewski, E., Pryor, C., Welch, D. L., and Fischer, P. 1993. The Carina dwarf spheroidal galaxy – How dark is it?AJ, 105(Feb.), 510–526.Google Scholar
Mateo, M., Olszewski, E., Welch, D. L., Fischer, P., and Kunkel, W. 1991. A kinematic study of the Fornax dwarf spheroidal galaxy. AJ, 102(Sept.), 914–926.Google Scholar
Mayer, L., Governato, F., Colpi, M., Moore, B., Quinn, T., Wadsley, J., Stadel, J., and Lake, G. 2001. The Metamorphosis of Tidally Stirred Dwarf Galaxies. ApJ, 559(Oct.), 754–784.Google Scholar
McConnachie, A. W., Peñarrubia, J., and Navarro, J. F. 2007. Multiple dynamical components in Local Group dwarf spheroidals. MNRAS, 380(Sept.), L75–L79.Google Scholar
Merrifield, M. R. 2004. The Galactic Bar. Milky Way surveys: the structure and evolution of our Galaxy, 317(Dec.), 289–302.Google Scholar
Meurer, G. R., Bicknell, G. V., and Gingold, R. A. 1985. A drag dominated model of the Magellanic stream. Astronomical Society of Australia, Proceedings, vol. 6, no. 2, 195–198.Google Scholar
Milgrom, M. 1983a. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. ApJ, 270(July), 365–370.Google Scholar
Milgrom, M. 1983b. A modification of the Newtonian dynamics – implications for galaxies. ApJ, 270(July), 371–389.Google Scholar
Mirabel, I. F. and Turner, K. C. 1973. A search for neutral hydrogen remnants of strong tidal disruption of the Small Magellanic Cloud. A&A, 22(Feb.), 437–440.Google Scholar
Miyamoto, M. and Nagai, R. 1975. Three-dimensional models for the distribution of mass in galaxies. PASJ, 27, 533–543.Google Scholar
Moore, B. 1996. Constraints on the global mass-to-light ratios and on the extent of dark matter halos in globular clusters and dwarf spheroidals. ApJ, 461(Apr.), L13–L16.Google Scholar
Moore, B. and Davis, M. 1994. The origin of the Magellanic stream. MNRAS, 270(Sept.), 209–221.Google Scholar
Moore, B., Diemand, J., Madau, P., Zemp, M., and Stadel, J. 2006. Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks. MNRAS, 368(May), 563–570.Google Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., and Tozzi, P. 1999. Dark matter substructure within galactic halos. ApJ, 524(Oct.), L19–L22.Google Scholar
Muñoz, R. R., and 8 colleagues. 2005. Exploring halo substructure with giant stars: the velocity dispersion profiles of the Ursa Minor and Draco Dwarf spheroidal galaxies at large angular separations. ApJ, 631(Oct.), L137–L141.Google Scholar
Muñoz, R. R., and 12 colleagues. 2006. Exploring halo substructure with giant stars. XI. The tidal tails of the Carina Dwarf Spheroidal Galaxy and the discovery of Magellanic Cloud stars in the Carina foreground. ApJ, 649(Sept.), 201–223.Google Scholar
Muñoz, R. R., Majewski, S. R., and Johnston, K. V. 2008. Modeling the structure and dynamics of dwarf spheroidal galaxies with dark matter and tides. ApJ, 679(May), 346–372.Google Scholar
Murai, T. and Fujimoto, M. 1980. The Magellanic Stream and the Galaxy with a massive halo. PASJ, 32, 581–604.Google Scholar
Murai, T. and Fujimoto, M. 1986. Dynamics of the Magellanic system and the galaxy – present status of theoretical understanding. Ap&SS, 119(Feb.), 169–171.Google Scholar
Navarro, J. F., Frenk, C. S., and White, S. D. M. 1996. The structure of cold dark matter halos. ApJ, 462(May), 563–575.Google Scholar
Newberg, H. J., and 18 colleagues. 2002. The ghost of Sagittarius and lumps in the halo of the Milky Way. ApJ, 569(Apr.), 245–274.Google Scholar
Nidever, D. L., Majewski, S. R., and Burton, W. B. 2008. The origin of the Magellanic Stream and its leading arm. ApJ, 679(May), 432–459.Google Scholar
Odenkirchen, M., and 9 colleagues 2003. The extended tails of Palomar 5: a 10° arc of globular cluster tidal debris. AJ, 126(Nov.), 2385–2407.Google Scholar
Odenkirchen, M., and 19 colleagues 2001. Detection of massive tidal tails around the globular cluster Palomar 5 with Sloan Digital Sky Survey commissioning data. ApJ, 548(Feb.), L165–L169.Google Scholar
Odenkirchen, M., Grebel, E. K., Dehnen, W., Rix, H.-W., and Cudworth, K. M. 2002. Kinematic study of the disrupting globular cluster Palomar 5 using VLT spectra. AJ, 124(Sept.), 1497–1510.Google Scholar
Odenkirchen, M., Grebel, E. K., Kayser, A., Rix, H.-W., and Dehnen, W. 2009. Kinematics of the tidal debris of the globular cluster Palomar 5. AJ, 137(Feb.), 3378–3387.Google Scholar
Oh, K. S., Lin, D. N. C., and Aarseth, S. J. 1992. Tidal evolution of globular clusters. I – method. ApJ, 386(Feb.), 506–518.Google Scholar
Oh, K. S., Lin, D. N. C., and Aarseth, S. J. 1995. On the tidal disruption of dwarf spheroidal galaxies around the galaxy. ApJ, 442(Mar.), 142–158.Google Scholar
Olano, C. A. 2004. The high-velocity clouds and the Magellanic Clouds. A&A, 423(Sept.), 895–907.Google Scholar
Olszewski, E. W., Pryor, C., and Armandroff, T. E. 1996. The mass-to-light ratios of the Draco and Ursa Minor Dwarf Spheroidal Galaxies. II. The binary population and its effects on the measured velocity dispersions of dwarf spheroidals. AJ, 111 (Feb.), 750–767.Google Scholar
Oort, J. H. 1970. The formation of galaxies and the origin of the high-velocity hydrogen. A&A, 7(Sept.), 381–404.Google Scholar
Palma, C., Majewski, S. R., Siegel, M. H., Patterson, R. J., Ostheimer, J. C., and Link, R. 2003. Exploring halo substructure with giant stars. IV. The extended structure of the Ursa Minor Dwarf Spheroidal Galaxy. AJ, 125(Mar.), 1352–1372.Google Scholar
Peñarrubia, J., McConnachie, A. W., and Navarro, J. F. 2008a. The cold dark matter halos of Local Group dwarf spheroidals. ApJ, 672(Jan.), 904–913.Google Scholar
Peñarrubia, J., Navarro, J. F., and McConnachie, A. W. 2008b. The tidal evolution of Local Group dwarf spheroidals. ApJ, 673(Jan.), 226–240.Google Scholar
Piatek, S. and Pryor, C. 1995. The effect of galactic tides on the apparent mass-to-light ratios in dwarf spheroidal galaxies. AJ, 109(Mar.), 1071–1085.Google Scholar
Piatek, S., Pryor, C., Olszewski, E. W., Harris, H. C., Mateo, M., Minniti, D., and Tinney, C. G. 2003. Proper motions of dwarf spheroidal galaxies from Hubble Space Telescope imaging. II. Measurement for Carina. AJ, 126(Nov.), 2346–2361.Google Scholar
Pietrzyński, G., and 10 colleagues. 2008. The Araucaria Project: the distance to the Sculptor Dwarf Spheroidal Galaxy from infrared photometry of RR Lyrae stars. AJ, 135(June), 1993–1997.Google Scholar
Pryor, C. 1996. Models of dwarf galaxy destruction. Formation of the Galactic Halo … Inside and Out, 92(Apr.), 424–433.Google Scholar
Putman, M. E., and 25 colleagues 1998. Tidal disruption of the Magellanic Clouds by the Milky Way. Nature, 394(Aug.), 752–754.Google Scholar
Putman, M. E., Staveley-Smith, L., Freeman, K. C., Gibson, B. K., and Barnes, D. G. 2003. The Magellanic Stream, high-velocity clouds, and the Sculptor Group. ApJ, 586(Mar.), 170–194.Google Scholar
Reid, M. J., and 13 colleagues 2009. Trigonometric parallaxes of massive star-forming regions. VI. Galactic structure, fundamental parameters, and noncircular motions. ApJ, 700(July), 137–148.Google Scholar
Richstone, D. O. and Tremaine, S. 1986. Measuring mass-to-light ratios of spherical stellar systems by core fitting. AJ, 92(July), 72–74.Google Scholar
Roberts, M. S. 1962. A study of neutral hydrogen in IC 10.. AJ, 67, 431–436.Google Scholar
Rood, H. J., Page, T. L., Kintner, E. C., and King, I. R. 1972. The structure of the Coma Cluster of Galaxies. ApJ, 175(Aug.), 627–648.Google Scholar
Rubin, V. C., Thonnard, N., and Ford, W. K. Jr. 1978. Extended rotation curves of high-luminosity spiral galaxies. IV – Systematic dynamical properties, SA through SC. ApJ, 225(Nov.), L107–L111.Google Scholar
Sánchez-Salcedo, F. J. and Hernandez, X. 2007. Masses, tidal radii, and escape speeds in dwarf spheroidal galaxies under MOND and dark halos compared. ApJ, 667(Oct.), 878–890.Google Scholar
Sánchez-Salcedo, F. J., Reyes-Iturbide, J., and Hernández, X. 2006. An extensive study of dynamical friction in dwarf galaxies: the role of stars, dark matter, halo profiles and MOND. MNRAS, 370(Aug.), 1829–1840.Google Scholar
Sandage, A. 1986. The redshift-distance relation. IX – Perturbation of the very nearby velocity field by the mass of the Local Group. ApJ, 307(Aug.), 1–19.Google Scholar
Sanders, R. H. and McGaugh, S. S. 2002. Modified Newtonian dynamics as an alternative to dark matter. ARA&A, 40, 263–317.Google Scholar
Sanders, R. H. and Verheijen, M. A. W. 1998. Rotation curves of Ursa Major Galaxies in the context of modified Newtonian dynamics. ApJ, 503(Aug.), 97–108.Google Scholar
Savage, C., Freese, K., and Gondolo, P. 2006. Annual modulation of dark matter in the presence of streams. Phys. Rev. D, 74(Aug.), 043531–043539.Google Scholar
Saviane, I., Monaco, L., and Hallas, T. 2010. Morphological transformation of NGC 205?IAU Symposium, 262(Apr.), 426–427. Eds. G., Bruzual and S., Charlot.
Seigar, M. S., Barth, A. J., and Bullock, J. S. 2008. A revised ACDM mass model for the Andromeda Galaxy. MNRAS, 389(Oct.), 1911–1923.Google Scholar
Sellwood, J. A. and Pryor, C. 1998. Pulsation modes of spherical stellar systems. Highlights of Astronomy, 11, 638–648.Google Scholar
Shapley, H. 1938. A stellar system of a new type. Harvard College Observatory Bulletin, 908(Mar.), 1–11.Google Scholar
Shapley, H. 1939. Galactic and extragalactic studies, II. Notes on the peculiar stellar systems in Sculptor and Fornax. Proceedings of the National Academy of Science, 25(Nov.), 565–569.Google Scholar
Shectman, S. A., Landy, S. D., Oemler, A., Tucker, D. L., Lin, H., Kirshner, R. P., and Schechter, P. L. 1996. The Las Campanas Redshift Survey. ApJ, 470(Oct.), 172–188.Google Scholar
Shuter, W. L. H. 1992. A new tidal model of the Magellanic Stream. ApJ, 386(Feb.), 101–105.Google Scholar
Simon, J. D. and Geha, M. 2007. The kinematics of the ultra-faint Milky Way satellites: solving the missing satellite problem. ApJ, 670(Nov.), 313–331.Google Scholar
Skillman, E. D., Côté, S., and Miller, B. W. 2003. Star formation in Sculptor group dwarf irregular galaxies and the nature of “transition” galaxies. AJ, 125(Feb.), 593–609.Google Scholar
Sofue, Y. 1994. Fate of the Magellanic Stream. PASJ, 46(Aug.), 431–440.Google Scholar
Sohn, S. T., and 9 colleagues. 2007. Exploring halo substructure with giant stars. X. Extended dark matter or tidal disruption?: The case for the Leo I Dwarf Spheroidal Galaxy. ApJ, 663(July), 960–989.Google Scholar
Somerville, R. S. 2002. Can photoionization squelching resolve the substructure crisis?ApJ, 572(June), L23–L26.Google Scholar
Sparke, L. S. and Gallagher, J. S. III 2000. Galaxies in the universe : an introduction. Galaxies in the Universe, Cambridge, UK: Cambridge University Press
Staveley-Smith, L., Kim, S., Calabretta, M. R., Haynes, R. F., and Kesteven, M. J. 2003. A new look at the large-scale HI structure of the Large Magellanic Cloud. MNRAS, 339(Feb.), 87–104.Google Scholar
Strauss, M. A., and 35 colleagues. 2002. Spectroscopic target selection in the Sloan Digital Sky Survey: the main galaxy sample. AJ, 124(Sept.), 1810–1824.Google Scholar
Strigari, L. E., Bullock, J. S., and Kaplinghat, M. 2007. Determining the nature of dark matter with astrometry. ApJ, 657(Mar.), L1–L4.Google Scholar
Strigari, L. E., Bullock, J. S., and Kaplinghat, M. Determining the nature of dark matter with astrometry. in preparation.
Strigari, L. E., Bullock, J. S., Kaplinghat, M., Simon, J. D., Geha, M., Willman, B., and Walker, M. G. 2008. A common mass scale for satellite galaxies ofthe Milky Way. Nature, 454(Aug.), 1096–1097.Google Scholar
Tanaka, K. I. 1981. The Magellanic Stream and the interacting galaxies. PASJ, 33, 247–255.Google Scholar
van der Marel, R. P., Cretton, N., de Zeeuw, P. T., and Rix, H.-W. 1998. Improved evidence for a black hole in M32 from HST/FOS spectra. II. Axisymmetric dynamical models. ApJ, 493(Jan.), 613–620.Google Scholar
van Kuilenburg, J. 1972. A systematic search for high-velocity hydrogen outside the Galactic plane II. A&A, 16(Jan.), 276–281.Google Scholar
Vivas, A. K., and 35 colleagues. 2001. The QUEST RR Lyrae Survey: Confirmation of the Clump at 50 Kiloparsecs and Other Overdensities in the Outer Halo. ApJ, 554(June), L33–L36.Google Scholar
Vogt, S. S., Mateo, M., Olszewski, E. W., and Keane, M. J. 1995. Internal kinematics of the Leo II dwarf spherodial galaxy. AJ, 109(Jan.), 151–163.Google Scholar
Walker, M. G., Mateo, M., Olszewski, E. W., Gnedin, O. Y., Wang, X., Sen, B., and Woodroofe, M. 2007. Velocity dispersion profiles of seven dwarf spheroidal galaxies. ApJ, 667(Sept.), L53–L56.Google Scholar
Wannier, P. and Wrixon, G. T. 1972. An unusual high-velocity hydrogen feature. ApJ, 173(May), L119–L123.Google Scholar
Wayte, S. R. 1991. Review: the interacting Magellanic System. The Magellanic Clouds, 148, 447–452.Google Scholar
Westfall, K. B., Majewski, S. R., Ostheimer, J. C., Frinchaboy, P. M., Kunkel, W. E., Patterson, R. J., and Link, R. 2006. Exploring halo substructure with giant stars. VIII. The extended structure of the Sculptor dwarf spheroidal galaxy. AJ, 131(Jan.), 375–406.Google Scholar
Willman, B., and 14 colleagues. 2005. A new Milky Way dwarf galaxy in Ursa Major. ApJ, 626(June), L85–L88.Google Scholar
Wilson, A. G. 1955. Sculptor-type systems in the Local Group of galaxies. PASP, 67(Feb.), 27–29.Google Scholar
Wright, A. E. 1972. Computational models of gravitationally interacting galaxies. MNRAS, 157, 309–315.Google Scholar
York, D. G., and 144 colleagues. 2000. The Sloan Digital Sky Survey: technical summary. AJ, 120(Sept.), 1579–1587.Google Scholar
Young, L. M. and Lo, K. Y. 1997. The neutral interstellar medium in nearby dwarf galaxies. III. Sagittarius DIG, LGS 3, and PHOENIX. ApJ, 490(Dec.), 710–718.Google Scholar
Zucker, D. B., and 31 colleagues 2006a. A curious Milky Way satellite in Ursa Major. ApJ, 650(Oct.), L41–L44.Google Scholar
Zucker, D. B., and 32 colleagues. 2006b. A new Milky Way Dwarf satellite in Canes Venatici. ApJ, 643(June), L103–L106.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×