Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-23T01:28:36.165Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 August 2009

Raouf A. Ibrahim
Affiliation:
Wayne State University, Michigan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Liquid Sloshing Dynamics
Theory and Applications
, pp. 833 - 939
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aa E. V. and Sanders J. A. (1979), The 1:2:1-resonance, its periodic orbits and integrals, in Asymptotic Analysis from Theory to Application, Lecture Notes in Mathematics 711: Editor Verhulst, F., 187–208, Springer-Verlag, Berlin.Google Scholar
Abdalla K. L., Flage R. A., and Jackson R. G. (1964), Zero gravity performance of ullage control surface with liquid hydrogen while subjected to unsymmetrical radiant heating, NASA TM X-1001.
Gawad, Abdel A. F., Ragab, S. A., Nayfeh, A. H., and Mook, D. T. (2001), Roll stabilization by anti-roll passive tanks, Ocean Engrg. 28, 457–469.CrossRefGoogle Scholar
Abramowitz, G. L. and Segun, I. A. (1968), Handbook of Mathematical Functions, New York, Dover Publications.Google Scholar
Abramson, H. N. (1961a), Amazing motions of liquid propellant, Astronaut 6, 35–37.Google Scholar
Abramson H. N. (1961b), Liquid dynamic behavior in rocket propellant tanks, Proc. ONR/AIAA Symp Struct. Dynamics of High Speed Flight, Los Angeles, April 1961, 287–318.
Abramson H. N. (1961c), Total force response resulting from liquid propellant sloshing in a rigid cylindrical tank with vertical center wall baffle, Tech. Rept. 9, SwRI, May.
Abramson H. N. (1961d), Theoretical and experimental studies of liquid sloshing in rigid cylindrical tanks, Tech. Rept. (Final Report), SwRI, May.
Abramson H. N. (1963a), Studies of liquid dynamics in rocket propellant tanks, SwRI, May.
Abramson, H. N. (1963b), Dynamic behavior of liquid in moving containers, ASME Appl. Mech. Rev. 16(7), 501–506.Google Scholar
Abramson, H. N. (1964), Some measurements of the effects of ring baffles in cylindrical tanks, J. Spacecraft Rock. 1(9/10), 560–562.CrossRefGoogle Scholar
Abramson H. N. (1965), Further studies of liquid sloshing in rocket propellant tanks, Final Report, Contract NAS8–1555, SwRI, Dec 1965.
Abramson, H. N. (Ed), (1966a), The Dynamic Behavior of Liquids in Moving Containers, NASA SP 106.Google Scholar
Abramson H. N. (1966b), Some current aspects of the dynamic behavior of liquids in rocket propellant tanks, in Applied Mechanical Surveys, Abramson, H. N., Liebowitz, H, Crowley, J. M., and Juhasz, S., eds. Washington, DC, Sparton Books, 941–949.Google Scholar
Abramson, H. N. (1968), Liquid propellant dynamics, AGARD Manual of Aeroelasticity (1), Chapter 8, Revised Edition, NATO, Paris.Google Scholar
Abramson, H. N. (1969), Slosh Suppression, NASA SP-8031.Google Scholar
Abramson, N. H. (2003), Dynamics of contained liquids: A personal odyssey, ASME Appl. Mech. Rev. 56(1), R1–R7.CrossRefGoogle Scholar
Abramson H. N., Bass R. L., Faltinsen O., and Olsen H. A. (1974), Liquid slosh in LNG carriers, 10th Symp. Naval Hydrodynamics, MIT, Cambridge, MA.
Abramson H. N., Chu W. H., and Garza L. R. (1962a), Liquid sloshing in 45 degree sector compartmented cylindrical tanks, Tech. Rept. 3, SwRI, Nov 1962.
Abramson H. N., Chu W. H., Garza L. R., and Ransleben G. E. Jr (1962b), Some studies of liquid rotation and vortexing in rocket propellant tanks, NASA TN D-1212, June 1962.
Abramson, H. N., Chu, W. H., and Garza, L. R. (1963), Liquid sloshing in spherical tanks, AIAA J. 1(2), 384–389.CrossRefGoogle Scholar
Abramson, H. N., Chu, W. H., and Kana, D. D. (1966), Some studies of nonlinear lateral sloshing in rigid containers, J. Appl. Mech. 33(4), also NASA CR-375, January.CrossRefGoogle Scholar
Abramson H. N., Chu W. H., Kana D. D., and Lindholm U. S. (1962c), Bending vibrations of a circular cylindrical shell containing an internal liquid with a free surface, Tech. Rept. 4, SwRI, March.
Abramson, H. N. and Garza, L. R. (1964), Some measurements of the effects of ring baffles in cylindrical tanks, J. Spacecraft Rock. 1(5), 560–562.CrossRefGoogle Scholar
Abramson, H. N. and Garza, L. R. (1965), Some measurements of liquid frequencies and damping in compartmented cylindrical tanks, J. Spacecraft Rock. 2(5/6), 453–455.CrossRefGoogle Scholar
Abramson, H. N., Garza, L. R., and Kana, D. D. (1962d), Some notes on liquid sloshing in compartmented cylindrical tanks, Amer. Rocket Soc. J. 32(6), 978–980.Google Scholar
Abramson H. N., Garza L. R., and Squire W. (1961), An exploratory study of the effect of sloshing on heat transfer in similitude cryogenic liquid, Tech. Rept. 2, SwRI, February.
Abramson, H. N. and Kana, D. D. (1967), Some recent research on the vibrations of elastic shells containing liquids, Proc. Symp. Shell Theory, University of Houston, Texas.Google Scholar
Abramson H. N. and Kana D. D. (1970), Some experimental studies of the dynamic stability of thin shells containing liquid, 60th Anniversary volume in honor of V. Novozhilov, the USSR National Committee on Theor. and Appl. Mech., Academy of Science USSR, Moscow, May 18.
Abramson H. N., Martin R. J., and Ransleben G. E. Jr (1958), Application of similitude theory to the problem of fuel sloshing in rigid tanks, Tech. Rept. 1, SwRI, May.
Abramson H. N. and Nevill G. E. Jr (1963), Some modern developments in the application of scale models in dynamic testing, ASME Colloquium on Use of Models and Scaling in Shock and Vibration, November.
Abramson H. N. and Ransleben G. E. Jr (1959a), Simulation of fuel characteristics in missile tanks by use of small models, Tech. Rept. 3 SwRI, March.
Abramson H. N. and Ransleben G. E. Jr (1959b), A note on the effectiveness of two type slosh suppression devices, Tech. Rept. 6, SwRI, June.
Abramson, H. N. and Ransleben, G. E. Jr (1960), Simulation of fuel sloshing characteristics in missile tanks by use of small models, Amer. Rocket Soc. J. 30(7), 603–612.Google Scholar
Abramson, H. N. and Ransleben, G. E. Jr (1961a), Some comparisons of sloshing behavior in cylindrical tanks having flat and conical bottoms, Amer. Rocket Soc. J. 31, 542–544.Google Scholar
Abramson, H. N. and Ransleben, G. E. Jr (1961b), A note on wall pressure distribution during sloshing in rigid tanks, Amer. Rocket Soc. J. 31, 545–547.Google Scholar
Abramson, H. N. and Ransleben, G. E. Jr (1961c), Representation of fuel sloshing in cylindrical tanks by an equivalent mechanical model, Amer. Rocket Soc. J. 31(12), 1697–1705.Google Scholar
Abramson H. N. and Ransleben G. E. Jr (1961d), Some studies of a floating lid type device for suppression of liquid sloshing in rigid cylindrical tanks, Tech. Rept. 10, SwRI, May.
Abramson H. N. and Ransleben G. E. (1961e), Liquid sloshing in rigid cylindrical tanks undergoing pitching motion, Tech. Rept. 11, SwRI, May.
Abzug, M. J. (1996), Fuel slosh in skewed tanks, J. Guid. Contr. Dyn. 19(5), 1172–1177.CrossRefGoogle Scholar
Ackerberg, R. C. (1965), The viscous incompressible flow inside a cone, J. of Fluid Mech. 21(1), 47–81.CrossRefGoogle Scholar
Addington, J. W. (1960), Dynamics of fuel in tanks, Note 99, College of Aeronautics, Cranfield, England.Google Scholar
Addriaans, M. J., Moeu, W. A., Boyd, S. T. P., Strayer, D. M., and Duncan, R. V. (1996), Cryogenic design of the liquid helium experiment: Critical dynamics in microgravity, Cryogenics 36, 787–794.CrossRefGoogle Scholar
Adler, W. F. (1979), The mechanics of liquid impact, in Treatise on Material Science and Technology, CM Proc., ed., 16, Erosion, Academic Press 127–183.Google Scholar
Advani, S. H. and Lee, Y. C. (1970), Free vibrations of fluid-filled spherical shells, J. Sound and Vib. 12(4), 453–462.Google Scholar
Aganovic, I. (1981), On a spectral problem of hydroelasticity, J. de Mec. 20(3) 409–414.Google Scholar
Agnon, Y. and Golzman, M. (1996), Periodic solutions for a complex Hamiltonian system: New standing water waves, Wave Motion 24, 139–150.CrossRefGoogle Scholar
Agrawal, B. N. (1987), Interaction between liquid propellant slosh modes and attitude control in a dual-spin spacecraft, Proc. AIAA/ASME/ASCE/AFS 28thStruct. Dyn. Mat. Conf., Part 2B, 774–780.Google Scholar
Agrawal, B. N. (1993), Dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft, J. Guidance, Control, and Dynamics 16(4), 636–640.CrossRefGoogle Scholar
Aita, S. and Girbert, R. J. (1986), Fluid-elastic instability of a flexible weir: a theoretical model, ASME Proc. Flow-Induced Vib., 104, 51–58.Google Scholar
Aita, S., Tigeot, Y., Bertaut, C., and Serpantie, J. P. (1986), Fluid-elastic instability of a flexible weir: experimental observations, ASME Proc. Flow-Induced Vib., 104, 41–50.Google Scholar
Aitta, A. (1991), Nonlinear phenomena at an air–fluid interface in a horizontal rotating cylinder, Eur. J. Mech. B/ Fluids 10 (suppl 2), 175–180.Google Scholar
Akita, Y. (1967), Dynamic pressure of cargo oil due to pitching and effectiveness of swash bulkhead in long tanks, Japan Shipbuilding & Marine Eng. 2(5), 42–55.Google Scholar
Albanese, C., Carotenuto, L., Castagnolo, D., Ceglia, E., and Monti, R. (1995), An investigation on the “onset” of oscillatory Marangoni flow, Adv. Space Res. 16(7), 87–94.CrossRefGoogle Scholar
Albright N. (1977), Mathematical and computational studies of the stability of axisymmetric annular capillary free surfaces, NASA, NTIS, Washington, DC.
Alexander, J. I. D. (1990), Low-gravity experiment sensitivity to residual acceleration: a review, Microgravity Sci. Techno. 3, 52–68.Google Scholar
Alexander J. I. D. (1997), Drops, jets and bubbles, in Free Surface Flows, Kuhlamann, H. C., and Rath, H. J., eds., New York, Springer-Verlag.Google Scholar
Alexander, J. I. D., Garandet, J. P., Favier, J. J., and Lizee, A. (1997), G-jitter effects on segregation during directional solidification of tin-bismuth in the Mephisto furnace facility, J. Crystal Growth 178, 657–661.Google Scholar
Alexander, J. I. D., Ouzzani, J., and Rosenberger, F. (1991), Analysis of the low gravity tolerance of Bridgman–Stockbarger crystal growth, J. Crystal Growth 112, 21–38.CrossRefGoogle Scholar
Alexander J. I. D, Slobozhanin L. A., Resnick A. H., Ramus J. F., and Delafontaine S. (2000), Stability limits and dynamics of nonaxisymmetric liquid bridges, Proc. Center for Microgravity Res., Cleveland, OH, 564–569.
Alfriend, K. (1974), Partially filled viscous ring nutation damper, J. Spacecraft 11, 456–462.CrossRefGoogle Scholar
Alfriend K. T. and Spencer T. (1981), Comparison of filled and partly filled nutation dampers, AAS/AIAA Astrodyn Spec. Conf., Lake Tahoe, NV, Paper 81–141.
Aliabadi, S., Johnson, A., and Abedi, J. (2003), Comparison of finite element and pendulum models for simulation of sloshing, Comput. & Fluids 32, 535–545.CrossRefGoogle Scholar
Allingham W. D. (1968), Zero gravity expulsion of cryogens with metal bellows, AIAA/Aerospace Corp. Symp. Low Gravity Orientation and Expulsion, Los Angeles, 199–208.
Amabili, M. (1996a), Free vibration of partially filled, horizontal cylindrical shells, J. Sound Vib. 191, 757–780.CrossRefGoogle Scholar
Amabili, M. (1996b), Effect of finite fluid depth on the hydroelastic vibrations of circular and annular plates, J. Sound Vib. 193, 909–925.CrossRefGoogle Scholar
Amabili, M. (1997a), Bulging modes of circular bottom plates in rigid cylindrical containers filled with liquid, Shock and Vibration 4, 51–68.CrossRefGoogle Scholar
Amabili, M. (1997b), Shell-plate interaction in the free vibrations of circular cylindrical tanks partially filled with a liquid: the artificial spring method, J. Sound Vib. 199, 431–452.CrossRefGoogle Scholar
Amabili, M. (1997c), Ritz method and sub-structuring in the study of vibration with strong fluid–structure interaction, J. Fluids Struct. 11, 507–523.CrossRefGoogle Scholar
Amabili, M. (2000a), Eigenvalue problems for vibrating structures coupled with quiescent fluids with free surface, J. Sound Vib. 231, 79–97.CrossRefGoogle Scholar
Amabili, M. (2000b), Vibrations of fluid-filled hermetic cans, J. Fluid Struct. 14, 235–255.CrossRefGoogle Scholar
Amabili, M. (2003), Theory and experiments for large-amplitude vibrations of empty and fluid-filled circular cylindrical shells with imperfections, J. Sound Vib. 262, 921–975.CrossRefGoogle Scholar
Amabili, M. and Dalpiaz, G. (1995), Breathing vibrations of a horizontal circular cylindrical tank shell, partially filled with liquid, ASME J. Vib. Acoust. 117, 187–191.CrossRefGoogle Scholar
Amabili, M., and Dalpiaz, G. (1998), Vibrations of base plates in annular cylindrical containers: theory and experiments, J. Sound Vib. 210, 329–350.CrossRefGoogle Scholar
Amabili, M. and Garziera, R. (2000), Vibrations of circular cylindrical shells with non-uniform constraints, elastic bed and added mass, part I: Empty and fluid-filled shells, J. Fluid Struct. 14(1), 669–690.CrossRefGoogle Scholar
Amabili, M., and Garziera, R. (2002), Vibrations of circular cylindrical shells with non-uniform constraints, elastic bed and added mass, part II: Shells containing or immersed in axial flow, J. Fluid Struct. 16(1), 31–51.CrossRefGoogle Scholar
Amabili, M., Garziera, R., and Negri, A. (2002), Experimental study on large-amplitude vibrations of water-filled circular cylindrical shells, J. Fluid Struct. 16(2), 213–227.CrossRefGoogle Scholar
Amabili, M. and Kwak, M. K. (1996), Free vibration of circular plates coupled with liquid: revising the Lamb problem, J. Fluids Struct. 10, 743–761.CrossRefGoogle Scholar
Amabili, M. and Kwak, M. K. (1999), Vibration of circular plates on a free fluid surface: effect of surface waves, J. Sound Vib. 226, 407–424.CrossRefGoogle Scholar
Amabili, M. and Paidoussis, M. P. (2003), Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid–structure interaction, ASME Appl. Mech. Rev. 56(4), 349–381.CrossRefGoogle Scholar
Amabili, M., Paidoussis, M. P., and Lakis, A. A. (1998a), Vibrations of partially filled cylindrical tanks with ring-stiffeners and flexible bottom, J. Sound Vib. 213, 259–299.CrossRefGoogle Scholar
Amabili, M., Pellicano, F., and Paidoussis, M. P. (1998b), Nonlinear vibrations of simply supported, circular cylindrical shells, coupled with quiescent fluid, J. Fluids Struct. 12, 883–918.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Paidoussis, M. P. (1999a), Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid, part I: Stability, J Sound Vib. 225(4), 655–699.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Paidoussis, M. P. (1999b), Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid, part II: large-amplitude vibrations without flow, J. Sound Vib. 228(5), 1103–1124.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Paidoussis, M. P. (1999c), Further comments on nonlinear vibrations of shells, J. Fluids Struct. 13, 159–160.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Paidoussis, M. P. (2000a), Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid, part III: truncation effect without flow and experiments, J. Sound Vib. 237(4), 617–640.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Paidoussis, M. P. (2000b), Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid, part IV: large-amplitude vibrations with flow, J. Sound Vib. 237(4), 641–666.CrossRefGoogle Scholar
Amabili, M., Pellicano, F., and Vakakis, A. F. (2000c), Nonlinear vibrations and multiple resonances of fluid-filled, circular shells, part I: equations of motion and numerical results, ASME J. Vib. Acoust. 122, 346–354.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Vakakis, A. F. (2000d), Nonlinear vibrations and multiple resonances of fluid-filled, circular shells, part II: perturbation analysis, ASME J. Vib. Acoust. 122, 355–364.CrossRefGoogle Scholar
Amakhin, V. M., Kalayzin, E. I., and Voronokov, A. V. (1975), Method of numerical calculation of emptying and filling a tank in a weak force field, Tr. Moscow Aviats. Inst. 323, 110 (in Russian).Google Scholar
Amano, K., and Iwano, R. (1991), Experimental and analysis of jet-induced sloshing in a tank, Tran. JSME (in Japanese) B57, 1947–1954.CrossRefGoogle Scholar
Amano, K., Koizumi, M., and Yamakawa, M. (1989), Three dimensional analysis method for potential flow with a moving liquid surface using a boundary element method, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP 157, 127–132.Google Scholar
Ambrazyavichus, A. P. (1981a), Solvability of problem on conical capillary, Probl. Mat. Analiza. (Leningrad) 8, 3–9 (in Russian).Google Scholar
Ambrazyavichus, A. P. (1981b), Construction of barrier functions for solving capillary problems in conical regions, Lit. Mat. Sb. 24, 3–15 (in Russian).Google Scholar
Amick, C. J. and Tolland, J. F. (1987), The semi-analytic theory of standing waves, Proc. Royal Soc. London A 411, 123–137.CrossRefGoogle Scholar
Amieux, J. C. and Dureigne, M. (1972), Analytical design of optimal nutation damper, J. Spacecraft Rock. 9(12), 934–935.CrossRefGoogle Scholar
Amiro, I. Y. and Prokopenko, N. Y. (1997), Nonlinear oscillations of cylindrical shells, Int Appl. Mech. 33(11), 903–908.CrossRefGoogle Scholar
Amsden A. A. and Harlow F. H. (1971), The SMAC method: a numerical technique for calculating incompressible fluid flows, Los Alamos Scientific Laboratory Rept. LA-4370.
Ananthakrishnan, P. and Yeung, R. W. (1994), Nonlinear interaction of a vortex pair with clean and surfactant-covered free surface, Wave Motion 19, 343–360.CrossRefGoogle Scholar
Anderson, J. G., Semercigil, S. E., and Turan, O. F. (2000a), A standing-wave-type sloshing absorber to control transient oscillations, J. Sound Vib. 232(5), 839–856.CrossRefGoogle Scholar
Anderson, J. G., Semercigil, S. E., and Turan, O. F. (2000b), An improved standing-wave-type sloshing absorber, J. Sound Vib. 235(4), 702–710.CrossRefGoogle Scholar
Anderson, J. G., Turan, O. F., and Semercigil, S. E. (2001), Experiments to control sloshing in cylindrical containers, J. Sound Vib. 240(2), 394–404.CrossRefGoogle Scholar
Andracchio C. R. and Abdalla K. L. (1968), An experimental study of liquid flow into a baffled spherical tank during weightlessness, NASA TM X-1526.
Paramasivam, Ang T. Balendra P. K. K., and Lee, S. L. (1982), Free vibration analysis of cylindrical liquid storage tanks, Int. J. Mech. Sci. 24, 47–59.Google Scholar
Anilkumar, A. V., Grugel, R. N., Shen, X. F., and Wang, T. G. (1993), Control of thermocapillary convection in a liquid bridge by vibrations, J. Appl. Phys. 73(9), 4165–4170.CrossRefGoogle Scholar
Anisimov, A. M. (1963), Axi-symmetrical vibrations of a spherical shell filled by a fluid, IVUZ Aviatsionnaya Teknika (Proc. of Institutions of Higher Education, Aviation Technology) 2, 51–58.Google Scholar
Anisimov, A. M. (1968), Application of finite-difference methods to the calculations of axially symmetric vibrations of shells of revolution with liquid, IVUZ Aviatsionnaya Teknika (Proc. of Institutions of Higher Education, Aviation Technology) 3, 23–30.Google Scholar
Anosov Yu, N. (1966), The nonlinear vibrations of a liquid in a cylindrical cavity, Soviet Appl. Mech. (Prikl. Mekh.) 2(10), 22–28.Google Scholar
Anzai T., Ikeuchi M., Igarashi K., and Okanuma T. (1981), Active nutation damping system of engine test satellite-IV, 22nd Congress Int. Astronaut. Fed., IAF 81–350.
Arai, M. (1986), Experimental and numerical studies of sloshing in liquid cargo tanks with internal structures, Ishikawajima-harima Heavy Indust. Eng. Rev. 19(2), 51–56.Google Scholar
Arai, M., Cheng, L. Y., and Inoue, Y. (1993), Numerical simulation of sloshing and swirling in cubic and cylindrical tank, J. Kansai Soc. Naval Arch, Japan N219, 97–101.Google Scholar
Arai, M.Cheng, L. Y., and Inoue, Y. (1994), 3-D numerical simulation of impact load due to liquid cargo sloshing, J. Soc. Naval Arch. Japan 171, 177–184.Google Scholar
Arbell, H. and Fineberg, J. (1998), Spatial and temporal dynamics of two interacting modes in parametrically driven surface waves, Phys. Rev. Lett. 81, 4384–4387.CrossRefGoogle Scholar
Arbell, H., and Fineberg, J (2000a), Two-mode rhomboidal states in driven surface waves, Phys. Rev. Lett. 84, 654–657.CrossRefGoogle Scholar
Arbell H., and Fineberg J. (2000b), Temporally harmonic oscillations in Newtonian fluids, Europhys. Lett. Reprint.
Armenio, V. and Rocca, M. L. (1996), On the analysis of sloshing of water in rectangular containers: numerical study and experimental validation, Ocean Eng. 23(8), 705–739.CrossRefGoogle Scholar
Armstrong G. L. and Kachigan K. (1961), Propellant sloshing, in Handbook of Astronautical Eng, H. H. Koelle, ed., Chapter 14, sections 14–27.
Arnold, R. N., and Warburton, G. B. (1949), Flexural vibrations of the walls of thin cylindrical shells having freely supported ends, Proc. Royal Soc. (London) A197, 238.CrossRefGoogle Scholar
Asaki, T. J. and Marston, P. L. (1995), Free decay of shape oscillations of bubbles acoustically trapped in water and seawater, J. Fluid Mech. 300, 149–167.CrossRefGoogle Scholar
Ashmore, J., Hosoi, A. E., and Stone, H. A. (2003), The effect of surface tension on rimming flows in a partially filled rotating cylinder, J. Fluid Mech. 479, 65–98.CrossRefGoogle Scholar
Aslam, M., Godden, W. G., and Scanline, D. T. (1979), Earthquake sloshing in annular and cylindrical tanks, ASCE J. Eng. Mech. Div. 105, 371–389.Google Scholar
Atluri, S. (1972), A perturbation analysis of nonlinear free flexural vibrations of a circular cylindrical shell, Int. J. Solids & Struct. 8, 549–569.CrossRefGoogle Scholar
Auli W., Fischer F. D., and Rammerstofer F. G. (1985), Uplifting of earthquake-loaded liquid-filled tanks, ASME PVP-987.
Au-Yang, M. K. (1976), Free vibration of fluid-coupled coaxial cylindrical shells of different lengths, J. Appl Mech. 34, 480–484.CrossRefGoogle Scholar
Aydelott J. C. (1995), Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility Program, AIAA Paper AIAA-95–1229.
Azuma, H. and Yoshinara, S. (1999), Three-dimensional large-amplitude drop oscillations: experiments and theoretical analysis, J. Fluid Mech. 393, 309–332.CrossRefGoogle Scholar
Babenko, K. I. and Yurev, S. P. (1980), On the shape of the surface of a capillary liquid in a vertical cylinder of arbitrary cross section, Dokl. Akad. Nauk. SSSR 251, 1326–1334.Google Scholar
Babitsky, V. I. (1966), Vibro-impact motions of pendulum with inertial suspension in vibrating container, Analysis and Synthesis of Automatic Machines, Moscow, Nauka, 20–30.Google Scholar
Babitsky, V. I. (1998), Theory of Vibro-Impact Systems and Applications, Berlin, Springer-Verlag.CrossRefGoogle Scholar
Babskii, V. G., Kopachevskii, N. D., Myshkis, A. D., Slobozhanin, L. A., and Tyuptsov, A. D. (1976a), The Hydrodynamics of Weightlessness, Moscow, Nauka.Google Scholar
Babskii V. G., Kopachevskii N. D., Myshkis A. D., Slobozhanin L. A., and Tyuptsov A. D. (1976b), Approximate methods in zero-gravity fluid mechanics, in Problems of Mathematical Physics and Functional Analysis, Kiev, Naukova Dumka, 83–94 (in Russian).
Babskii, V. G.Kopachevskii, N. D.Myshkis, A. D.Slobozhanin, L. A., and Tyuptsov, A. D. (1980), On some unresolved problems of zero gravity hydromechanics, Nonlin. Anal. Theo. Meth. Appl. 4(3), 607–621.CrossRefGoogle Scholar
Babu, S. S. and Bhattacharayya, S. K. (1996), Finite element analysis of fluid-structure interaction effect on liquid retaining structure due to sloshing, Comp. Struct. 59(6), 1165–1171.CrossRefGoogle Scholar
Bagdasaryan, G. E., and Gnuni, V. T. (1966), The parametric vibrations of a cylindrical shell filled with a liquid to different depths, Soviet Appl. Mech. (Prikl. Mekh.) 2(3), 21–26.Google Scholar
Bagno, A. M. and Guz, A. N. (1997), Elastic waves in prestressed bodies interacting with a liquid (review), Soviet Appl. Mech. (Prikl. Mekh.) 33(6), 3–39.Google Scholar
Baines, P. G. (1967), Forced oscillations of an enclosed rotating fluid, J. Fluid Mech. 30(3), 533–546.CrossRefGoogle Scholar
Baird, M. H. I. (1963), Resonance bubbles in a vertical liquid column, Can. J. Chem. Eng. 41, 52–56.Google Scholar
Balabukh L. I. (1966), Interaction of shells with a liquid and gas, Proc. All-Union Conf. on Theory of Shells and Plates, Baku, Moscow, Nauka, 935–944.
Balabukh, L. I. and Molchanov, A. G. (1967), Axi-symmetric oscillations of a spherical shell partially filled with fluid, Inzh. Zh. Mekh. Tverd. Tela 5, 56–61.Google Scholar
Balakirev, Y. G. (1967), Axi-symmetric oscillations of a shallow spherical shell containing a fluid, Inzh. Zh. Mekh. Tverd. Tela 5, 116–123.Google Scholar
Balendra, T., Ang, K. K., Paramasivam, P., and Lee, S. (1982a), Free vibration analysis of cylindrical liquid storage tanks, Int. J. Mech. Sci. 24(1), 47–59.CrossRefGoogle Scholar
Balendra, T., Ang, K. K., Paramasivan, P., and Lee, S. L. (1982b), Seismic design of flexible cylindrical liquid storage tanks, Earthquake Eng. Struct. Dyn. 10, 477–496.CrossRefGoogle Scholar
Balendra T. and Nash W. A. (1978), Earthquake analysis of a cylindrical liquid storage tank with a dome by finite element method, University of Massachusetts, Amherst, MA.
Balendra T. and Nash W. A. (1980), Seismic analysis of a cylindrical liquid storage tank with a dome by the finite element method, Century 2, ASME Pressure Vess. Piping Conf., San Francisco, 1.
Balendra, T., Wang, C. M., and Cheong, H. F. (1994), Effectiveness of tuned liquid column dampers for vibration control towers, J. Eng. Struct. 17(9), 668–675.CrossRefGoogle Scholar
Balendra, T., Wang, C. M., and Rakesh, G. (1998), Vibration control of tapered building using TLCD, J. Wind Eng. Indust. Aerodyn. 77/78, 245–257.CrossRefGoogle Scholar
Balendra, T., Wang, C. M., and Rakesh, G. (1999), Vibration control of various types of buildings using TLCD, J. Wind. Eng. Indust. Aerodyn. 83, 197–208.CrossRefGoogle Scholar
Balendra, T., Wang, C. M., and Yan, N. (2001), Control of wind-excited towers by active tuned liquid column damper, Eng. Struct. 23, 1054–1067.CrossRefGoogle Scholar
Bandyopadhyay K. K. (1991), Overview of seismic panel activities, Proc. 3rd DOE Natural Phenomena Hazards Mitigation Conf., St. Louis, MO, 423–429.
Banner, M. L. and Peregrine, D. H. (1993), Wave breaking in deep water, Annu. Rev. Fluid. Mech. 25, 373–397.CrossRefGoogle Scholar
Banner, M. L., and Tian, X. (1996), Energy and momentum growth rates in breaking water waves, Phys. Rev. Lett. 77, 2953–2956.CrossRefGoogle ScholarPubMed
Banning, D. A., Hengeveld, L. D., and Modi, V. J. (1966), Apparatus for demonstrating dynamics of sloshing liquids, Bull. Mech. Eng. Edu. 5, 65–70.Google Scholar
Bao, G. W., and Pascal, M. (1997), Stability of a spinning liquid-filled spacecraft, Archive Appl. Mech. 67(6), 407–421.CrossRefGoogle Scholar
Barber N. F. and Ghey G. (1969), Water Waves, The Wykeham Sci. Series, London.
Barnyak, O. M. (1997), Normal oscillations of a viscous liquid partially filling a circular horizontal channel, Int. Appl. Mech. 33(4), 335–343.CrossRefGoogle Scholar
Barnyak, M. Y. (1971a), Determination of natural frequencies and small oscillation forms of an ideal liquid in a vessel in weak gravitational field, Mat. Fiz. 9, 3–11 (in Russian).Google Scholar
Barnyak M. Y. (1971b), Approximate methods of solving problems on the statics and dynamics of a liquid in a vessel under near zero-gravity conditions, Ph.D. thesis, Inst. Mat. Akad. Nauk. Ukraine, Kiev, SSSR (in Russian).
Barnyak, M. Y. and Barnyak, O. M. (1996), Normal oscillations of viscous liquid in a horizontal channel, Int. Appl. Mech. 32(7), 560–566.CrossRefGoogle Scholar
Baron M. L. and Bleich H. H. (1959), The dynamic analysis of empty and partially full cylindrical tanks and transient response by mode analysis, Final Report, DASA No 1123A, 22 May 1959, Paul Weidlinger, ASTIA No 220236.
Baron, M. L. and Skalak, R. (1962), Free vibrations of fluid filled cylindrical shells, ASCE J. Eng. Mech. 88(1), 17–43.Google Scholar
Barr, R. A. and Ankudinov, V. (1977), Ship rolling: Its prediction and reduction using roll stabilization, Marine Tech. 14(1), 19–41.Google Scholar
Barron, R. and Chang, S. W. R. (1989), Dynamic analysis and measurement of sloshing of fluid in containers, Trans. ASME D.S. 111, 83–90.Google Scholar
Barton, D. C. and Parker, J. V. (1987), Finite element analysis of the seismic response of anchored and unanchored liquid storage tanks, Earthquake Eng. Struct. Dyn. 15, 299–322.CrossRefGoogle Scholar
Bass, D. W. (1998), Roll stabilization for small fishing vessels using paravenes and anti-roll tanks, Marine Technol. 35(2), 74–84.Google Scholar
Bass R. L. (1975), Dynamic slosh induced loads on liquid cargo tank bulkheads, Soc. Naval Archit. and Marine Eng., Rept. No R-19.
Basset, A. B. (1914), On the steady motion and stability of liquid in an ellipsoid vessel, Quart. J. Math. 45.Google Scholar
Bateman, H. (1944), Partial Differential Equations of Mathematical Physics, New York, Dover Publications.Google Scholar
Bauer H. F. (1957), Approximate effect of ring stiffener on the pressure distribution in an oscillating cylindrical tank partially filled with a liquid, ABMA, DA, Memo. No 264, DA-M-114, 12 September.
Bauer H. F. (1958a), Determination of approximate first natural frequencies of fluid in a spherical tank, ABMA, DA-TN-75–58.
Bauer H. F. (1958b), The influence of fluid in the tanks on the moment of inertia of Jupiter AM8, ABMA, DA-Memo No 333, DA-M-1–58, 31 March.
Bauer H. F. (1958c), Fluid oscillations in a circular cylindrical tank, Rept. No DA-TR-1–58, April.
Bauer H. F. (1958d), Fluid oscillations of a circular cylindrical tank performing lissajous-oscillations, ABMA, DA-TR-2–58, April.
Bauer H. F. (1958e), Fluid oscillations in a circular cylindrical tank due to bending of tank walls, ABMA, DA-TR-3–58, April.
Bauer H. F. (1958f), Fluid oscillations in a cylindrical tank with damping, ABMA, DA-TR-4–58, April.
Bauer H. F. (1958g), The moment of inertia of a liquid in a circular cylindrical tank, ABMA, Rept. No DA-TR-5–58, April.
Bauer H. F. (1958h), Damped fluid oscillations in circular cylindrical tank due to bending tank wall, ABMA, DA-TR-9–58, 16 May.
Bauer H. F. (1958i), Propellant sloshing, ABMA, DA-TR-18–58, 5 November.
Bauer H. F. (1959a), Force and moment of a liquid on a rigid fixed lid on the free fluid surface due to translational and rotational oscillation of a tank, ABMA, DA-TN-25–59, 20 March.
Bauer H. F. (1959b), Damped oscillations in a connected fluid system, ABMA, DA-TN-57–59, 1 May.
Bauer H. F. (1959c), The effective moment of inertia in roll of propellant and roll damping, ABMA, DA-TR-67–59, May.
Bauer H. F. (1960a), Mechanical model for the description of the liquid motion in a rectangular container, Lockheed Company, RN ER-8559, June.
Bauer H. F. (1960b), Theory of fluid oscillations in a circular cylindrical ring tank partially filled with liquid, NASA TN-D-557.
Bauer H. F. (1961a), The effects of interaction of structure, control, and propellant sloshing upon the stability of large space vehicles, MSFC, NASA, MTP-AERO-61–83.
Bauer, H. F. (1961b), Parametric study of the influence of propellant sloshing on the stability of spacecraft, Aero. /Space Sci. J. 28(10), 819–820.CrossRefGoogle Scholar
Bauer H. F. (1961c), Mechanical analogy of fluid oscillations in cylindrical tanks with circular and annular cross-section, MSFC, NASA, MTP-AERO61–4.
Bauer H. F. (1961d), Dynamics of liquid propellant vehicles, Proc. ONR/AIAA Symp. on Struct. Dynamics of High Speed Flight, 319–355 (Office of Naval Res., Los Angeles, CA).
Bauer H. F. (1962a), Theory of fluid oscillations in partially filled cylindrical containers, MSFC, NASA, MTP-AERO-62–1, January.
Bauer H. F. (1962b), Mechanical model of fluid oscillations in cylindrical containers and introduction of damping, MTP-AERO-62–16.
Bauer H. F. (1962c), The damping factor provided by flat annular ring baffles for free surface oscillations, MTP-AERO-62–81, November.
Bauer, H. F. (1963a), Tables and graphs of zero of cross product Bessel functions, MTP-AERO-63–50. Also J. Math. Computation 18, 128–135, 1964.Google Scholar
Bauer, H. F. (1963b), Stability boundaries of liquid propellant space-vehicles with sloshing, AIAA J. 1(7), 1583–1589.CrossRefGoogle Scholar
Bauer, H. F. (1963c), Theory of liquid sloshing in compartmented cylindrical tanks due to bending excitation, AIAA J. 1(7), 1590–1596.CrossRefGoogle Scholar
Bauer H. F. (1963d), The effect of propellant sloshing on the stability of an accelerometer controlled rigid vehicle, NASA TN-D-1831.
Bauer, H. F. (1963e), Liquid sloshing in a cylindrical quarter tank, AIAA J. 1(11), 2601–2606.CrossRefGoogle Scholar
Bauer H. F. (1964a), Fluid oscillations in the containers of a space vehicle and their influence on stability, NASA TR-R-187.
Bauer, H. F. (1964b), Fuel vibration in rocket containers and their influence on the overall stability, Zeit fur Flugweissenschaften 12(3/6), 85–101 and 222–229 (in German).Google Scholar
Bauer, H. F. (1964c), Discussion of ‘breathing vibrations of a partially filled cylindrical tank-linear theory’, J. Appl. Mech. 31(3), 569–570.CrossRefGoogle Scholar
Bauer, H. F. (1964d), Liquid sloshing in a 45 degree sector compartmented cylindrical tank, AIAA J. 2(4), 768–770.CrossRefGoogle Scholar
Bauer H. F. (1964e), Propellant oscillations in the containers of a roll oscillating space vehicle and moment of inertia of liquid, Proc. 5th Annual Struct. and Materials Conf., 184–190.
Bauer H. F. (1965a), The response of propellant in an arbitrary cylindrical tank due to single pulse excitation, in Developments in Theoretical and Appl. Mech.2, Shaw, W. A., ed., 351–383.Google Scholar
Bauer H. F. (1965b), Nonlinear propellant sloshing in a rectangular container of infinite length, North Amer. Avia. Inc., S&ID Report, SID 64–1593.
Bauer H. F. (1966a), Liquid behavior in the reservoir of the sound-suppressor system, NASA TN-D-3165.
Bauer, H. F. (1966b), Stability boundaries of liquid propelled elastic space-vehicles with sloshing, J. Spacecraft Rock. 3(2), 240–246.CrossRefGoogle Scholar
Bauer H. F. (1966c), Theory of liquid sloshing in a rectangular container, Rept. No ER-8390, Lockheed-Georgia Company, June.
Bauer, H. F. (1966d), Comment on moment of inertia and damping of liquids in baffled cylindrical tanks, J. Spacecraft Rock. 3(6), 957–959.Google Scholar
Bauer, H. F. (1966e), Nonlinear mechanical model for the description of propellant sloshing, AIAA J. 4(9), 1662–1668.CrossRefGoogle Scholar
Bauer, H. F. (1966f), Response of liquid in a rectangular container, ASCE J. Eng. Mech. Div. 92, 1–23.Google Scholar
Bauer H. F. (1967), Nonlinear propellant sloshing in a rectangular container of infinite length, in Developments in Theoretical and Appl Mech, 3, Shaw, W. A., ed., New York, Pergamon Press, 725–759.Google Scholar
Bauer H. F. (1968a), Response of the fuel in a rectangular container to a roll maneuver with numerical examples for C-5A-wing, Rept. No SMN-217, Lockheed-Georgia Company.
Bauer H. F. (1968b), Dynamics of the airplane with fuel sloshing, Rept. No SMN-246, Lockheed-Georgia Company.
Bauer H. F. (1969a), Fuel sloshing in accelerating rectangular container, Rept. No SMN-282, Lockheed-Georgia Company.
Bauer, H. F. (1969b), Note on linear hydroelastic sloshing, Zeit. Ang. Math. Meck. (ZAMM) 49(10), 577–589.CrossRefGoogle Scholar
Bauer, H. F. (1970), Hydroelastic oscillations in an upright circular cylindrical container, (in German), Zeitsch. fur Flug. 18(4), 117–134.Google Scholar
Bauer, H. F. (1971a), Hydroelastic vibrations of a uniformly rotating infinitely long circular cylindrical container, Acta Mech. 12(3/4), 307–326.CrossRefGoogle Scholar
Bauer, H. F. (1971b), Migration of a large gas-bubble under the lack of gravity in a rotating liquid, AIAA J. 9, 1426–1427.CrossRefGoogle Scholar
Bauer, H. F. (1972), On the destabilizing effect of liquids in various vehicles, part I, Vehicle Syst. Dyn., Int. J. Vehicle Mech. and Mobility 1, 227–260.CrossRefGoogle Scholar
Bauer, H. F. (1973), On the destabilizing effect of liquids in various vehicles, part II, Vehicle Syst. Dyn., Int. J. Vehicle Mech. and Mobility 2, 33–48.CrossRefGoogle Scholar
Bauer, H. F. (1981a), Dynamic behavior of an elastic separating wall in vehicle containers: part I, Int. J. Vehicle Des. 2(1), 44–77.Google Scholar
Bauer, H. F. (1981b), Hydroelastic vibrations in a rectangular container, Int. J. Solids Struct. 17, 639–652.CrossRefGoogle Scholar
Bauer, H. F. (1981c), Flüssigkeitsschwingungen mit freir oberfläche in keilförmigen behälten, Acta Mech. 38, 31–34.CrossRefGoogle Scholar
Bauer, H. F. (1982a), Coupled oscillations of a solidly rotating liquid bridge, Acta Astron. 9, 547–563.CrossRefGoogle Scholar
Bauer, H. F. (1982b), Dynamic behavior of an elastic separating wall in vehicle container, Part I. I., Int. J. Vehicle Des. 3, 307–332.Google Scholar
Bauer, H. F. (1982c), Oscillations of immiscible liquids in free space or in spherical containers in zero gravity environment, Ing. Arch. 51, 363–381.CrossRefGoogle Scholar
Bauer, H. F. (1982d), Rotating finite liquid systems under zero gravity, Forschung im Ingenieurwesen 48, 159–179.CrossRefGoogle Scholar
Bauer, H. F. (1982e), Velocity distribution due to Marangoni-effect for angular temperature field along infinite liquid bridge, Forschung im Ingenieurwesen 48, 50–55.CrossRefGoogle Scholar
Bauer, H. F. (1982f), Marangoni-convection in a freely floating liquid sphere due to axial temperature field, Ing. Arch. 52, 263–273.CrossRefGoogle Scholar
Bauer, H. F. (1982g), Velocity distribution due to thermal Marangoni-effect in a liquid column under zero gravity environment, Zeit. Angew. Math. Mech. (ZAMM) 62, 471–482.CrossRefGoogle Scholar
Bauer, H. F. (1982h), Velocity distribution in a liquid bridge due to thermal Marangoni-effect, Zeit. fur Flugwissenschaften und Weltraumforschung 6, 252–260.Google Scholar
Bauer, H. F. (1982i), Sloshing in conical tanks, Acta Mech. 43(3/4), 185–200 (in German).CrossRefGoogle Scholar
Bauer, H. F. (1983a), Natural damped frequencies of an infinitely long column of immiscible viscous liquids, Forsch. Ing. Wes. 49, 117–126.CrossRefGoogle Scholar
Bauer, H. F. (1983b), Surface and interface oscillations of freely floating spheres of immiscible viscous liquids, Ing. Arch. 53, 371–383.CrossRefGoogle Scholar
Bauer, H. F. (1983c), Marangoni-effect velocity distribution due to time-oscillatory temperature gradients in zero gravity environment, Acta Mech. 46, 167–187.CrossRefGoogle Scholar
Bauer, H. F. (1983d), Liquid surface oscillations in a viscous liquid column induced by temperature fluctuations, Forschung im Ingenieurwesen 49, 58–65.CrossRefGoogle Scholar
Bauer, H. F. (1983e), Surface oscillations due to the Marangoni-effect in the freely floating sphere, Ing. Arch. 53, 275–287.CrossRefGoogle Scholar
Bauer, H. F. (1983f), Transient thermal Marangoni-convection in a liquid bridge, Zeit. fur Flugwissenschaften und Weltraumforschung 7, 120–133.Google Scholar
Bauer, H. F. (1983g), Liquid surface oscillations induced by temperature fluctuations, Zeit. fur Flugwissenschaften und Weltraumforschung 7, 274–278.Google Scholar
Bauer, H. F. (1983h), Transient convection due to the sudden change of the temperature gradient, Forschung im Ingenieurwesen 49, 181–188.CrossRefGoogle Scholar
Bauer, H. F. (1984a), Oscillations of immiscible liquids in a rectangular container: a new damper for excited structures, J. Sound Vib. 93(1), 117–133.CrossRefGoogle Scholar
Bauer, H. F. (1984b), Natural damped frequencies of an infinitely long column of immiscible viscous liquids, Zeit. Angew. Math. Mech. (ZAMM) 64, 475–490.CrossRefGoogle Scholar
Bauer, H. F. (1984c), Free liquid surface response induced by fluctuations of thermal Marangoni convection, AIAA J. 22(3), 421–428.CrossRefGoogle Scholar
Bauer, H. F. (1984d), Forced liquid oscillations in paraboloid-containers, Zeit. fur Flugwissenschaften und Weltraumforschung 8, 49–55.Google Scholar
Bauer, H. F. (1984e), Surface and interface oscillations of a rotating viscous liquid column of immiscible liquids, Forsch. Ing. Wes. 50, 21–31.CrossRefGoogle Scholar
Bauer, H. F. (1984f), Combined Marangoni and natural convection in a variable micro-gravity field, Mech. Res. Comm. 11, 11–20.CrossRefGoogle Scholar
Bauer, H. F. (1984g), A theoretical study of Marangoni convection in a liquid column in zero gravity, Acta Astron. 11, 301–311.CrossRefGoogle Scholar
Bauer, H. F. (1984h), Combined thermo-capillary and natural convection and g-jitter in a constant micro-gravity field, Forsch. Ing. Wes. 50, 169–200.CrossRefGoogle Scholar
Bauer, H. F. (1985a), Surface and interface oscillations in an immiscible spherical visco-elastic system, Acta Mech. 55, 127–149.CrossRefGoogle Scholar
Bauer, H. F. (1985b), Induced free liquid surface oscillations in a visco-elastic liquid column due to angular temperature fluctuations, Forsch. Ing. Wes. 51, 133–140.CrossRefGoogle Scholar
Bauer, H. F. (1985c), Combined residual natural and Marangoni convection in a liquid sphere subjected to a constant and variable micro-gravity field, Zeito Angew. Math. Mech. (ZAMM) 65, 461–470.CrossRefGoogle Scholar
Bauer, H. F. (1986a), Free surface- and interface oscillations of an infinitely long visco-elastic liquid column, Acta Astron. 13(1), 9–22.CrossRefGoogle Scholar
Bauer, H. F. (1986b), Coupled frequencies of a hydroelastic viscous liquid system, Int. J. Solids and Structures 22, 1471–1484.CrossRefGoogle Scholar
Bauer, H. F. (1986c), Induced free surface oscillations in a freely floating visco-elastic liquid sphere imposed to an oscillatory temperature gradient, Forsch. Ing. Wes. 52, 81–88.CrossRefGoogle Scholar
Bauer, H. F. (1986d), Thermo-capillary-induced axisymmetric free liquid surface oscillations in a visco-elastic column, Zeit. Angew. Math. Mech. (ZAMM) 66, 283–295.CrossRefGoogle Scholar
Bauer, H. F. (1987a), Coupled frequencies of a hydroelastic system consisting of an elastic shell and frictionless liquid, J. Sound Vib. 113, 217–232.CrossRefGoogle Scholar
Bauer, H. F. (1987b), Hydroelastic oscillations of a viscous infinitely long liquid column, J. Sound Vib. 119(2), 249–265.CrossRefGoogle Scholar
Bauer, H. F. (1987c), Natural frequencies and stability of immiscible cylindrical z-independent liquid systems, Applied Micro Gravity Techn. 1, 11–26.Google Scholar
Bauer, H. F. (1987d), Thermo-capillary and residual natural convection in an orbiting spherical liquid system, Forsch. Ing. Wes. 53, 83–93.CrossRefGoogle Scholar
Bauer, H. F. (1988a), Nonlinear oscillations of axially independent liquid column under zero gravity environment, Forsch. Ing. Wes. 54, 82–93.CrossRefGoogle Scholar
Bauer, H. F. (1988b), Coupled frequencies of a rotating hydroelastic shell–liquid system under zero gravity, J. Fluids Struct. 2, 407–423.CrossRefGoogle Scholar
Bauer, H. F. (1988c), Natural frequencies and stability of immiscible spherical liquid systems, Applied Micro Gravity Techn. 1, 90–102.Google Scholar
Bauer, H. F. (1988d), Marangoni convection in finite cylindrical liquid bridges, Zeit. fur Flugwissenschaften und Weltraumforschung 12, 332–340.Google Scholar
Bauer, H. F. (1989a), Response of a spinning liquid column to axial excitation, Acta Mech. 77(1–4), 153–170.CrossRefGoogle Scholar
Bauer, H. F. (1989b), Natural frequencies and stability of circular cylindrical immiscible liquid systems, Appl. Microgravity Tech. II., 27–44.Google Scholar
Bauer, H. F. (1989c), Response of an annular cylindrical liquid column in zero gravity, Forschung im Ingenieurwesen 55, 79–88.CrossRefGoogle Scholar
Bauer, H. F. (1989d), Damped response of an axially excited rotating liquid bridge under zero gravity, Acta Mech. 79, 295–301.CrossRefGoogle Scholar
Bauer, H. F. (1989e), Response of a finite rotating annular liquid layer to axial excitation, Forschung im Ingenieurwesen 55, 120–127.CrossRefGoogle Scholar
Bauer, H. F. (1989f) Vibrational behavior of a viscous column with a free liquid surface, Zeit. fur Flugwissenschaften und Weltraumforschung 13, 248–253.Google Scholar
Bauer, H. F. (1989g), Marangoni convection in rotating liquid systems, Applied Micro Gravity Techn. 2, 142–157.Google Scholar
Bauer, H. F. (1990a) Response of a liquid column to one-sided axial excitation in zero gravity, Forschung im Ingenieurwesen 56, 14–21.CrossRefGoogle Scholar
Bauer, H. F. (1990b), Axial response and transient behavior of a cylindrical liquid column in zero gravity, Zeit. fur Flugwissenschaften und Weltraumforschung 14, 174–182.Google Scholar
Bauer, H. F. (1990c), Response of a liquid column to unequal axial excitations under zero gravity, Applied Micro Gravity Techn. 3, 34–40.Google Scholar
Bauer, H. F. (1990d), Oscillatory response of a liquid column to counter rotational excitation, J. Sound Vib. 142, 125–133.CrossRefGoogle Scholar
Bauer, H. F. (1990e), Response of a liquid column with respect to oscillatory rotational top and bottom excitation, J. Sound Vib. 142, 379–390.CrossRefGoogle Scholar
Bauer, H. F. (1990f), Response of a viscous liquid to various pitch excitations, Acta Astron. 21, 553–569.CrossRefGoogle Scholar
Bauer, H. F. (1990g), Response of a liquid column to counter-directional excitation under zero gravity, J. Spacecraft Rock. 27, 675–680.Google Scholar
Bauer, H. F. (1990h), Response of an annular cylindrical liquid column to various axial excitations in zero gravity, Forschung im Ingenieurwesen 56, 183–188.CrossRefGoogle Scholar
Bauer, H. F. (1990i), Response of a viscous liquid column to axial excitation in zero gravity, Zeit. Angew. Math. Mech. (ZAMM) 70, 359–369.CrossRefGoogle Scholar
Bauer, H. F. (1990j), Response of differently axial-excited spinning liquid columns, Acta Mech. 84, 155–173.CrossRefGoogle Scholar
Bauer, H. F. (1990k), Response of a spinning liquid column to pitch excitation, Acta Mech. 84, 1–12.CrossRefGoogle Scholar
Bauer, H. F. (1991a), Axi-symmetric natural frequencies and response of a spinning liquid column under strong surface tension, Acta Mech. 90, 21–35.CrossRefGoogle Scholar
Bauer H. F. (1991b), Liquid oscillations under strong surface tension in a circular cylindrical container, Tech. Rept. LRT-WE-9-FB-26–1991, Universitat der Bundeswehr Muenchen, Neubiberg.
Bauer, H. F. (1991c), Liquid sloshing response in a spinning container due to pitching excitation, Zeit. fur Flugwissenschaften und Weltraumforschung 15, 386–392.Google Scholar
Bauer, H. F. (1991d), Response of a viscous liquid column to pitching and roll excitations, Zeit. Angew. Math. Mech. (ZAMM) 71, 479–491.CrossRefGoogle Scholar
Bauer, H. F. (1991e), Response of a viscous liquid layer around a center-core to axial excitation in zero gravity, Forschung im Ingenieurwesen 57, 14–21.CrossRefGoogle Scholar
Bauer, H. F. (1991f), Response of a rotating finite annular liquid layer to various axial excitations in zero gravity, J. Sound Vib. 149, 219–234.CrossRefGoogle Scholar
Bauer, H. F. (1991g), Response of a viscous liquid layer to pitching- and roll excitations in zero gravity environment, Forschung im Ingenieurwesen 57, 18–131.Google Scholar
Bauer, H. F. (1991h), Natural axisymmetric frequencies of cylindrical liquid column with anchored free surface, JSME Int. J. Ser. III 34, 475–480.Google Scholar
Bauer, H. F. (1991i), Response of a non-viscous liquid column and layer with anchored liquid surface to axial excitation, JSME Int. J. Ser. II 34, 474–481.Google Scholar
Bauer, H. F. (1991j), Liquid sloshing response in a spin-stabilized missile or satellite due to axial excitation, Zeit. fur Flugwissenschaften und Weltraumforschung 15, 252–256.Google Scholar
Bauer, H. F. (1992a), Response of a viscous liquid column with anchored edges to axial excitation, Zeit. fur Flugwissenschaften und Weltraumforschung 16, 42–48.Google Scholar
Bauer, H. F. (1992b), Asymmetric natural damped frequencies of a rotating infinitely long viscous liquid column, Zeit. for Flugwissenshaften and Weltraumforschung 16, 317–324.Google Scholar
Bauer, H. F. (1992c), Natural damped frequencies and axial response of a rotating finite viscous liquid column, Acta Mech. 93, 29–52.CrossRefGoogle Scholar
Bauer, H. F. (1992d), Liquid oscillations in a circular container with “sliding” contact line, Forsch. Ingenieurwes. – Engineering Research 58, 240–251.CrossRefGoogle Scholar
Bauer, H. F. (1992e), Hydroelstic oscillations of rotating liquid–structure systems in zero gravity, J. Fluid Struct. 6, 603–632.CrossRefGoogle Scholar
Bauer, H. F. (1992f), Liquid oscillations of spherical and conical systems with anchored edges under zero gravity, Archive Appl. Mech. 62, 517–529.Google Scholar
Bauer, H. F. (1992g), Response of a liquid bridge with rotationally excited bottom, ASME J. Appl Mech. 59, 191–195.CrossRefGoogle Scholar
Bauer, H. F. (1992h), Response of a viscous annular liquid layer in zero gravity to different excitations of the rigid boundary plates, Appl Sci. Res. 49, 283–309.CrossRefGoogle Scholar
Bauer, H. F. (1992i), Response of a viscous spherical and conical liquid system to axial excitation, Micro Gravity Sci. Techn. 5, 35–42.Google Scholar
Bauer, H. F. (1992j), The effect of rotation on the vibrational and thermocapillary behavior of liquid columns, Micro Gravity Sci. Techn. 3, 124–133.Google Scholar
Bauer, H. F. (1992k), Asymmetric natural damped frequencies of a rotating infinitely long viscous liquid column, Zeit. fur Flugwissenschaften und Weltraumforschung 6, 317–324.Google Scholar
Bauer, H. F. (1992l), Response of axially excited spherical and conical liquid systems with anchored edges, Forsch. Ingenieurwes. 58, 96–103.CrossRefGoogle Scholar
Bauer, H. F. (1993a), Frequencies of a hydroelastic rectangular system, Forsch. Ingenieurwes. – Engineering Research 59, 18–28.CrossRefGoogle Scholar
Bauer, H. F. (1993b), Natural frequencies and response of spinning liquid column with apparently sliding contact line, Acta Mech. 97, 115–122.CrossRefGoogle Scholar
Bauer, H. F. (1993c), Natural damped frequencies of a rotating viscous cylindrical liquid layer, Forsch. Ingenieurwes. – Engineering Research 59, 217–227.CrossRefGoogle Scholar
Bauer, H. F. (1993d), Theoretical micro-gravity fluid dynamics, Proc. Symp. Aerospace and Fluid Science, Inst. Fluid Sci., Tokyo University, 30–49.Google Scholar
Bauer, H. F. (1993e), Axial response of differently excited anchored viscous liquid bridges in zero gravity, Ing. Archiv. – Arch. Appl. Mech. 63, 322–336.CrossRefGoogle Scholar
Bauer, H. F. (1993f), Marangoni-convection in a rotating liquid container, Wärme-und Stoffübertragung 28, 131–138.CrossRefGoogle Scholar
Bauer, H. F. (1994a), Axisymmetric natural frequencies of a rotating infinitely long viscous liquid column, Zeit. Angew. Math. Mech. (ZAMM) 74, 201–210.CrossRefGoogle Scholar
Bauer, H. F. (1994b), Response of an anchored viscous liquid layer to axial excitation in zero gravity, Zeit. Angew. Math. Mech. (ZAMM) 74, 369–383.CrossRefGoogle Scholar
Bauer, H. F. (1994c), Transient response of a viscous liquid bridge of finite length and anchored edges, Micro Gravity Sci. Techn. VII(3), 258–265.Google Scholar
Bauer, H. F. (1994d), Response of a rotating anchored finite liquid layer to axial excitation, Acta Astron. 32, 191–197.CrossRefGoogle Scholar
Bauer, H. F. (1994e), Natural damped frequencies and axial response of a sloshing rotating finite viscous liquid layer in a cylindrical container, Forsch. Ingenieurwes. – Engineering Research 60, 193–205.CrossRefGoogle Scholar
Bauer, H. F. (1994f), Transient response of a viscous and anchored liquid bridge to an axial pulse, Zeit. fur Flugwissenschaften und Weltraumforschung 18, 113–119.Google Scholar
Bauer, H. F. (1995a), Coupled frequencies of a liquid in a circular cylindrical container with elastic liquid surface cover, J. Sound Vib. 180, 689–704.CrossRefGoogle Scholar
Bauer, H. F. (1995b), Liquid oscillations in a spherical system with sliding edges bounded by two conical solid surfaces in zero gravity, Zeit. Angew. Math. Mech. (ZAMM) 75, 141–151.CrossRefGoogle Scholar
Bauer H. F. (1995c), Free fall liquid column dynamics in a fall tower, Festschrift zum 70. Geburtstag von Herrn Professor J. Siekmann, Universitat Gesamthochschule Essen, 229–242.
Bauer, H. F. (1995d), Oscillations of a frictionless liquid with anchored edges in a circular cylindrical ring in zero gravity, Micrograv. Quart. 5, 75–90.Google Scholar
Bauer H. F. (1999), Oscillations of non-viscous liquid in various container geometries, Forschungbericht LRT-WE-9-FB-1.
Bauer, H. F. and Buchholz, A. (1998), Marangoni convection in a rectangular container, Forsch. Ingenieurwes. – Engineering Research 63, 339–348.CrossRefGoogle Scholar
Bauer, H. F., Chang, S. S., and Wang, J. T. S. (1971), Nonlinear-liquid motion in a longitudinally excited container with elastic bottom, AIAA J. 9(12), 2333–2339.Google Scholar
Bauer, H. F. and Chiba, M. (1998), Free hydroelastic vibrations of a liquid attached to a cylindrical sector shell in a zero gravity condition, ASME J. Vib. Acoust. 120, 54–62.Google Scholar
Bauer, H. F. and Chiba, M. (2000a), Hydroelastic viscous oscillations in a circular cylindrical container with an elastic cover, J. Fluids Struct. 14, 917–936.CrossRefGoogle Scholar
Bauer, H. F. and Chiba, M. (2000b), Interaction of elastic container bottom with free surface of a viscous liquid in a cylindrical container, ISTS–Japan Soc Aeron. Space Sciences C-5, 1–6.Google Scholar
Bauer, H. F. and Chiba, M. (2001), Viscous hydroelastic vibrations in a cylindrical container with an elastic bottom, J. Sound Vib. 247, 33–57.CrossRefGoogle Scholar
Bauer, H. F., Chiba, M., and Sasaki, H. (1998), Influence of attached liquid layers on free hydroelastic vibrations of a cylindrical sector in a zero gravity condition, J. Sound Vib. 214(2), 245–260.Google Scholar
Bauer, H. F., Chiba, M., and Watanabe, H. (2002), Hydroelastic coupled vibrations in a cylindrical container with a membrane bottom containing liquid with surface tension, J. Sound Vib. 251, 717–740.Google Scholar
Bauer H. F., Clark C. D., and Woodward J. H. (1965), Analytical mechanical model for the description of the rotary propellant sloshing motion, Final Report, Contract NAS8–11159, Eng. Experiment Station, Georgia Tech., Atlanta.
Bauer, H. F. and Eidel, W. (1986), Nonlinear liquid oscillations in spherical systems under zero gravity, Acta Mech. 65, 107–126.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1987a), Vibration of a visco-elastic spherical immiscible liquid system, Zeit. Ang. Math. Mech. (ZAMM) 67, 525–535.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1987b), Marangoni-convection in a spherical liquid system, Acta Astron. 15, 275–290.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1987c), Induced surface oscillations due to time oscillatory temperature distribution in a viscoelastic spherical system, Ing. Arch. 57, 209–222.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1988a), Non-linear hydroelastic vibrations in rectangular containers, J. Sound Vib. 125(1), 93–114.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1988b), Non-linear liquid motion in conical containers, Acta Mech. 73, 11–31.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1988c), Non-linear liquid oscillations in paraboloidal containers, Zeit. fur Flugwissenschaften und Weltaumforschung 12, 246–252.Google Scholar
Bauer, H. F. and Eidel, W. (1988d), Nonlinear oscillations of an inviscid liquid column under zero gravity, Ing. Archiv. 58, 276–284.Google Scholar
Bauer, H. F. and Eidel, W. (1989a), Nonlinear oscillations of a non-viscous cylindrical liquid system in weightlessness condition, Zeit. Ang. Math. Phys. (ZAMP) 40(4), 510–525.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1989b), Liquid oscillations in a prolate spheroidal container, Ing. Archiv. 59(5–6), 371–381.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1989c), Small amplitude liquid oscillations in a rectangular container under zero gravity, Aeron. J., 379–386, also L'Aeronautique et L'Astronautique 139, 35–42.Google Scholar
Bauer, H. F. and Eidel, W. (1990), Linear liquid oscillations in a cylindrical container under zero gravity, Appl. Microgravity Tech. II 4, 212–220.Google Scholar
Bauer, H. F. and Eidel, W. (1991a), Vibrations of a cylindrical liquid column under the influence of a steady axial micro gravity field, Micro Gravity Sci. Techn. 4, 238–245.Google Scholar
Bauer, H. F. and Eidel, W. (1991b), Axial response of an amphora-type liquid column, Acta Astron. 25, 699–707.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1991c), Vibrational behavior of amphora liquid column in micro-gravity fields, Micro Gravity Sci. Techn. 4, 72–74.Google Scholar
Bauer, H. F. and Eidel, W. (1991d), Stationary geometry of liquid column and liquid drop under the influence of a temperature gradient in zero gravity, Zeit. fur Flugwissenschaften und Weltaumforschung 15, 297–299.Google Scholar
Bauer, H. F. and Eidel, W. (1992), Nonlinear axial vibrations of a cylindrical liquid column in zero gravity, Zeit. Ang.Math. Phys. (ZAMP) 43, 726–741.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1993a), Hydroelastic vibrations in a circular cylindrical container with flexible bottom in zero gravity, J. Fluid. Struct. 7, 783–802.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1993b), Hydroelastic vibrations in a rectangular container under zero gravity, Micrograv. Quart. 3, 7–16.Google Scholar
Bauer, H. F. and Eidel, W. (1993c), Natural frequencies of a spinning amphora-type liquid column, J. Sound Vib. 167, 331–346.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1994), Response of a solidly rotating amphora-type liquid column to axial excitation, Acta Astron. 32, 113–119.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1995), Anchored-edge pitching response of a spinning frictionless liquid column due to bottom and/or top excitation, Forschung im Ingenieurwesen – Engineering Research 61, 258–270.Google Scholar
Bauer, H. F. and Eidel, W. (1996a), Response of an anchored frictionless rotating liquid column to various excitations, Zeit. fur Flugwissenschaften und Weltaumforschung 20, 39–48.Google Scholar
Bauer, H. F. and Eidel, W. (1996b), Pitching response of an anchored liquid bridge to bottom and/or top disc excitation, Zeit. Angew. Math. Mech. (ZAMM) 76, 127–143.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1996c), Axisymmetric damped frequencies of a rotating finite visco-elastic liquid column, Acta Astron. 38, 689–698.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1996d), Viscous response of an anchored spinning liquid column to various axial excitations, Acta Mech. 116, 153–170.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1996e), Natural damped frequencies of a rotating visco-elastic infinite column, Forschung im Ingenieurwesen – Engineering Research 62(7/8), 214–227.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1997a), Axisymmetric viscous liquid oscillations in a cylindrical container, Forschung im Ingenieurwesen – Engineering Research 63, 189–201.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1997b), Axisymmetric oscillations in a slowly rotating cylindrical container filled with viscous liquid, Forschung im Ingenieurwesen – Engineering Research 63, 215–223.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1997c), Oscillations of a viscous liquid in a cylindrical container, Aerospace Sci. Tech. 8, 519–532.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1997d), Oscillations and response of a viscous liquid with anchored edges in a cylindrical ring in zero gravity, Micrograv. Quart. 7, 59–88.Google Scholar
Bauer, H. F. and Eidel, W. (1998a), Axisymmetric thermocapillary convection in a slowly rotating annular cylindrical container, Heat Mass Trans. 34(1), 79–90.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1998b), Transient motion of a viscous liquid with free surface in a cylindrical container, Zeit. Angew. Math. Mech. (ZAMM) 79, 97–106.3.0.CO;2-B>CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1998c), Marangoni convection in an annular cylindrical tank, Heat Mass Transf. 33, 457–464.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1998d), Oscillatory thermo-capillary convection in a spinning cylindrical liquid bridge under micro-gravity condition, Forsch. Ingenieurwes. – Engineering Research 64, 197–214.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1999a), Axisymmetric natural damped frequencies of a viscous liquid in a circular cylindrical container: an alternative semi-analytical solution, Forschung im Ingenieurwesen – Engineering Research 65, 191–199.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1999b), Free oscillations and response of a viscous liquid in a cylindrical container, Aerospace Sci. Tech. 3, 495–512.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1999c), Frictionless liquid sloshing in circular cylindrical container configurations, Aerospace Sci. Tech. 3(5), 301–311.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (2000), Free and forced oscillations of a frictionless liquid in a long rectangular tank with structural obstructions at the free liquid surface, Arch. Appl. Mech. 70(8/9) 550–560.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (2002a), Linear response of a viscous liquid to translational oscillations, Forsch. Ing. Wes. 67, 72–83.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (2002b), Axisymmetric damped natural frequencies in a slowly spinning cylindrical container filled with viscous liquid, Forsch. Ing. Wes. 67, 93–99.CrossRefGoogle Scholar
Bauer H. F., Hsu T. M., and Wang J. T.S. (1967), Liquid sloshing in elastic containers, NASA CR-882, September.
Bauer, H. F., Hsu, T. M., and Wang, J. T. S. (1968), Interaction of a sloshing liquid with elastic containers, J. Basic Eng., Series D 68, 373–377.CrossRefGoogle Scholar
Bauer, H. F. and Kammerer, L. (1992), Natural frequencies and axial response of a liquid layer under the influence of an axial steady micro-gravity field, Forschung im Ingenieurwesen 58, 26–34.CrossRefGoogle Scholar
Bauer, H. F. and Kammerer, L. (1993), Natural frequencies and axial response of a spinning liquid layer in micro-gravity field, Zeit. Ang. Math. Phys. (ZAMP) 44, 348–369.CrossRefGoogle Scholar
Bauer H. F. and Knölker E. (1981), Theoretische und experimentelle bestimmung der eigenfrequenzen in einem teilweise gefüllten elliptischen zylinder. Diploma thesis, Hochschule der Bundeswehr München, Intitute für Raumfahrttechnik.
Bauer, H. F. and Komatsu, K. (1994a), Coupled frequencies of a hydroelastic system of an elastic two-dimensional sector-shell and frictionless liquid in zero gravity, J. Fluids Struct. 8, 817–831.CrossRefGoogle Scholar
Bauer, H. F. and Komatsu, K. (1994b), Response of an anchored frictionless liquid bridge to pitching bottom and/or top excitation, Forschung im Ingenieurwesen – Engineering Research 60, 237–243.CrossRefGoogle Scholar
Bauer, H. F. and Komatsu, K. (1998), Vibration of a hydroelastic system consisting of a sector shell and viscous liquid in zero gravity, J. Fluids Struct. 12, 367–385.CrossRefGoogle Scholar
Bauer, H. F. and Komatsu, K. (2000), Coupled frequencies of a frictionless liquid in a circular cylindrical tank with an elastic partial surface cover, J. Sound Vib. 230(5), 1147–1163.CrossRefGoogle Scholar
Bauer H. F. Langbein D., Falk F., Grossbach R., Heide W., Meseguer J., Perales J. M., and Sanz A. (1994), LICOR-Liquid columns' resonance, Proc. Norderney Symp. Scientific Results of German Spacelab Mission D-2, P. R. Sahm, M. H. Keller, and B. Schiene, eds., 209–219.
Bauer, H. F. and Offenbach, D. (1986), Thermo-capillary convection in a semi-spherical drop, Zeit. fur Flugwissenschaften und Weltaumforschung 10, 92–96.Google Scholar
Bauer H. F. and Reinfurth, MH (1959), Oscillations in a connected fluid system, ABMA DA-TN-52–59, 9 April.
Bauer, H. F. and Siekmann, J. (1969), Note on linear hydroelastic sloshing, Zeit. Angew. Math. Mech. (ZAMM) 49, 577–589.CrossRefGoogle Scholar
Bauer, H. F. and Siekmann, J. (1971a), Dynamic interaction of liquid with elastic structure of a circular cylindrical container, Ing. Archiv. 40, 266–280.CrossRefGoogle Scholar
Bauer, H. F. and Siekmann, J. (1971b), On the shape of a rotating fluid system consisting of a gas bubble enclosed in a liquid globe, Zeit. Ang. Math. Phys. (ZAMP) 22, 532–542.CrossRefGoogle Scholar
Bauer, H. F. and Siekmann, J., and Wang, J. T. S. (1968), Axi-symmetric hydroelastic sloshing in an annular cylindrical container, J. Spacecraft Rock. 5(8), 981–983.CrossRefGoogle Scholar
Bauer, H. F. and Strasser, U. (1993), Marangoni-convection in a rotating liquid column, Micro Gravity Sci. Techn. VI(3), 164–175.Google Scholar
Bauer H. F. and Villenueva J. (1966), Theory of liquid sloshing in a rectangular container with numerical examples for C-45A wing, Lockheed-Georgia Co., Rept. No ER 8390.
Bauer H. F. and Villenueva J. (1967a), Theory of liquid sloshing in a rectangular container with numerical examples for C-45A wing, Lockheed-Georgia Co., Marietta, G Rept. No ER-8790.
Bauer H. F. and Villenueva J. (1967b), Mechanical model for the description of the liquid motion in a rectangular container with numerical examples for C-45A wing, Lockheed-Georgia Co., Marietta, G Rept No. ER-8559.
Bauer, H. F., Wang, J. T. S., and Chen, P. Y. (1972), Axisymmetric hydroelastic sloshing in a circular cylindrical container, The Aeronautical J. of the Aeron. Soc. 76, 704–712.Google Scholar
Beal T. R., Coale C. W., and Nagano M. (1965), Influence of shell inertia and bending stiffness on the axi-symmetric modes of a partially filled cylindrical tank, AIAA Paper No 65–412, AIAA Annual Meeting.
Beam R. M. and Guist L. R. (1967), The axially symmetric response of an elastic shell partially filled with liquid, NASA TN-D-3877, February.
Bechhoefer, J. (1996), A simple model of Faraday waves, Am. J. Phys. 64(12), 1482–1487.CrossRefGoogle Scholar
Bechhoefer, J., Ego, V., Manneville, S., and Johnson, B. (1995), An experimental study of the onset of parametrically pumped surface waves in viscous fluid, J. Fluid Mech. 288, 325–350.CrossRefGoogle Scholar
Beig H. G. (1984), Study of slosh dynamics of fluid filled containers on 3-axis spin stabilized spacecraft, 1, Fluid Slosh Studies 5328/83/NL/Bi(Sc), ESA.
Belik, O., Bishop, R. E. D., and Price, W. G. (1988), Influence of bottom and flare slamming on structural responses, Trans. RINA 130, 325–337.Google Scholar
Belik, O. and Price, W. G. (1982), Comparison of slamming theories in the time simulation of ship responses, Trans. RINA 130, 325–337.Google Scholar
Belinfante, J. G., Kolman, B., and Smith, H. (1966), An introduction to Lie groups algebras with applications, SIAM Review 8(1), 11–46.CrossRefGoogle Scholar
Bell, J. and Walker, W. P. (1966), Activated and passive controlled fluid tank system for ship stabilization, Soc. Naval Archit. Marine Engrg. (SNAME) Transactions 74, 150–193.Google Scholar
Bellman, R. and Pennington, R. H. (1954), Effects of surface tension and viscosity on Taylor instability, Quart. J. Mech. Appl. Math. 12(2), 151–160.Google Scholar
Benard, H. (1901), Les tourbillons cellulars dans une nappe liquide propageant de la chaleu par convection, Paris, Gouthier-Villers, 88.Google Scholar
Benedict, E. T. (1959), Scale of separation phenomena in liquids under conditions of nearly free fall, J. Amer. Rocket. Soc. 29, 150–155.Google Scholar
Benedict E. T. (1960), General behavior of a liquid in a zero or near-zero gravity environment, in Benedict, E. T., ed., Weightlessness – Physical Phenomena and Biological Effect, New York, Plenum Press, Proc. Symp. Physical and Biological Phenomena under Zero G Conditions.Google Scholar
Benjamin, T. B. and Feir, J. E. (1967), The disintegration of wave trains on deep water, J. Fluid Mech. 27, 417–430.CrossRefGoogle Scholar
Benjamin, T. B. and Scott, J. C. (1979), Gravity-capillary waves with edge constraints, J. Fluid Mech. 92, 241–267.CrossRefGoogle Scholar
Benjamin, T. B. and Ursell, F. (1954), The stability of a plane free surface of a liquid in vertical periodic motion, Proc. Royal Soc. (London) A 225, 505–515.CrossRefGoogle Scholar
Berger, H., Boujot, J., and Ohayon, R. (1975), On a spectral problem in vibration mechanics computation of elastic tanks partially filled with liquids, J. Math. Anal. Appl. 51, 272–298.CrossRefGoogle Scholar
Berlamont J. and Vanderstappen N. (1979), The effect of baffles in a water tower tank, Proc. 5th Int. Conf. Wind Engineering, Fort Collins, CO.
Berlot, R. R. (1959), Production of rotation in a confined liquid through translational motion of the boundaries, ASME J. Appl. Mech., 513–516.Google Scholar
Berlot R. R., Birkhoff G., and Miles J. (1957), Slosh damping in a rigid cylindrical tank, RWC, Electronics Lab., Rept. No GM-TR-263, October.
Berlot, R. R. and Freed L. F. (1956), Comparison of experimental sloshing results with spherical pendulum theorem, Space Technol. Labs, Memo. GM42–6–54, January.
Bermann, A. S., Lundgren, T. S., and Cheng, A. (1985), Asynchronous whirl in a rotating cylinder partially filled with liquid, J. Fluid Mech. 15, 311–427.CrossRefGoogle Scholar
Bermudez, A. and Rodriguez, R. (1994), Finite element computation of the vibration modes of a fluid-solid system, Comp. Methods in Mech. Eng. 119, 355–370.CrossRefGoogle Scholar
Bernard, B. J. S., Mahony, J. J., and Pritchard, W. G. (1977), The excitation of surface waves near cut-off frequency, Phil. Trans. R. Soc. Lon. A 286, 87–123.CrossRefGoogle Scholar
Bernard, B. J. S. and Pritchard, W. G. (1972), Cross-waves, part 2: experiment, J. Fluid Mech. 55, 245–255.CrossRefGoogle Scholar
Berry, J. G. and Reissner, E. (1958), The effect of an internal compressible fluid column on the breathing vibrations of a thin pressurized cylindrical shell, J. of Aero./Space Sci. 25(5), 288–294.CrossRefGoogle Scholar
Berry R. I., Demchak L. J., and Tegart J. R. (1981), Analytical tool for simulating large amplitude propellant slosh, AIAA Paper 81–0500-CP.
Bessem, T., Edwards, W. S., and Tuckerman, L. (1996), Two-frequency parametric excitation of surface waves, Phys. Rev.E 54, 507–513.Google Scholar
Betchov, R. (1958), Nonlinear oscillations of a column of gas, Phys. Fluids 1, 3.CrossRefGoogle Scholar
Beyer, J. and Friedrich, R. (1995), Faraday instability: linear analysis for viscous fluids, Phys. Rev.E 51, 1162–1168.Google ScholarPubMed
Bezdenezhnikh N. K., Briskman B. A., Lapin A. Yu, Lyubimov D. V., Lyubimov T. P., Cherepanov A. A., and Zakharov I. V. (1991), The influence of high frequency tangential vibrations on stability of the fluid in microgravity, Proc. IUTAM Symp. Microgravity Fluid Mechanics, Bremen, Berlin, Springer, 1992, 137–144.
Bezdenezhnikh N. K., Briskman B. A., Lyubimov D. V., Cherepanov A. A., and Sharov M. T. (1984), Control of stability of two-fluid interface by means of vibrations, electric and magnetic fields, All-Union Seminar on Hydromechanics and Heat and Mass Transfer: Abstracts, Chernogolovka, 18–20.
Bhattacharyya, R., (1978), Dynamics of Marine Vehicles, New York, John Wiley & Sons.Google Scholar
Bhuta P. G., Hutton R. E., Abramson H. N., and Stephens D. G. (1968), Propellant slosh loads, NASA-SP-8009, August.
Bhuta, P. G. and Koval, I. R. (1964a), Coupled oscillations of a liquid in a tank having a flexible bottom, Zeit. Ang. Math. Phys. (ZAMP) 15(4), 466–488.CrossRefGoogle Scholar
Bhuta, P. G. and Koval, L. R. (1964b), Hydroelastic solution of the sloshing of a cylindrical tank, J. Acoust. Soc. Amer. 36(11), 2071–2079.CrossRefGoogle Scholar
Bhuta, P. G. and Koval, L. R. (1965), Sloshing of a liquid in a draining or filling tank under variable “g” conditions, Symp. Fluid Mech. and Heat Transfer under Low Gravitational Conditions, Lockheed Missiles & Space Co, June 24–25.Google Scholar
Bhuta, P. G., Pravin, G., and Koval, L. R. (1964), Coupled oscillations of a liquid with a free surface in a tank, Zeit. Ang. Math. Phys. (ZAMP) 15, 466–480.CrossRefGoogle Scholar
Bhuta, P. G. and Yeh, G. C. K. (1965), Liquid sloshing due to a time dependent discontinuous boundary, Int. J. Mech. Sci., 475–488.CrossRefGoogle Scholar
Biesel, F. (1949), Calculation of wave damping in a viscous liquid of unknown depth, La Houille Blanche 4, 630–634.CrossRefGoogle Scholar
Binks, D. and Water, W. (1997), Nonlinear pattern formation of Faraday waves, Phys. Rev. Lett. 78, 4043–4046.CrossRefGoogle Scholar
Binks, D., Westra, M. T., and Water, W. (1997), Effect of depth on the pattern formation of Faraday waves, Phys. Rev. Lett. 79, 5010–5013.CrossRefGoogle Scholar
Binnie, A. M. (1941), Waves in an open oscillating tank, Eng. 151, 224–226.Google Scholar
Binnie, A. M. (1955), Self-excited oscillations in an open circular water tank, Phil. Mag. 46, 327–337.CrossRefGoogle Scholar
Birkhoff G. (1956), Liquid oscillations in static containers, Space Technol. Labs, Memo. GM-TN 12, 18 April, Los Angeles, CA.
Biswal K. C., Bhattacharayya S. K. and Sinha P. K. (2002), Coupled dynamic response of liquid filled composite cylindrical tanks with baffles, Proc. ASME WAM IMECE2002–32953.
Biswal, K. C., Bhattacharayya, S. K., and Sinha, P. K. (2003), Free vibration analysis of liquid filled tank with baffles, J. Sound Vib. 259(2), 177–192.CrossRefGoogle Scholar
Blackhear W. T. and Eide D. G. (1964), The equilibrium free surface of a contained liquid under low gravity and centrifugal forces, NASA TN-D-2471, October.
Blacklock, J. H. (1965), Effects of propellant sloshing, in Automatic Control of Aircraft and Missiles, NY, John Wiley, 254–259.Google Scholar
Blak, A. M. (1996), Lagrangian for water waves, Phys. Fluids 8, 416–420.CrossRefGoogle Scholar
Bleich, H. H. (1956a), Longitudinal forced vibrations of cylindrical fuel tanks, Jet. Prop. ARS, 109–111.CrossRefGoogle Scholar
Bleich, H. H. (1956b), Effect of vibrations on the motion of small gas bubble in a liquid, Amer. Rocket Soc. J. 26(10), 958–964.Google Scholar
Block, M. J. (1956), Surface tension as the cause of Benard cells and surface deformation in a liquid film, Nature (London) 178, 650–651.CrossRefGoogle Scholar
Bogoryad, I. B. (1962), On the solution by a variational method of a problem on oscillations of a fluid partially filled cavity, Prikl. Math. Mekh. (PMM) 26, 1122–1127.Google Scholar
Bogoryad, I. B. (1980), The Dynamics of a Viscous Liquid with a Free Surface, Izd. Tomskogo University, Tomskogo, (in Russian).Google Scholar
Bogoryad, I. B. (1990), Damping factors for damping due to the presence of fluid with a free surface in a moving vessel, Prikl. Mekhaniks 26(4), 397–402.Google Scholar
Bogoryad, I. B., Druzhinin, I. A., Druzhinina, G. Z., and Libin, E. E. (1977), Introduction to the Dynamics of Vessels Filled with a Liquid, Izd. Tomskogo University, Tomskogo, (in Russian).Google Scholar
Bolotin, V. V. (1956), On the motion of a fluid on an oscillating vessel, Prikl. Math. Mekh. (PMM) 20(2), 293–294.Google Scholar
Bolotin, V. V. (1964), The Dynamic Stability of Elastic Systems, San Francisco, Holden-Day, Inc.Google Scholar
Bonneau, E. (1964), Sloshing of liquids in missiles, Bull. Assoc. Tech. Marit. Aeronaut. 64, 163–177 (in French).Google Scholar
Bontozoglou, V. and Hanratty, T. J. (1990), Capillary-gravity Kelvin–Helmholtz waves close to resonance, J. Fluid Mech. 217, 71–78.CrossRefGoogle Scholar
Borisova E. P. (1962), Free oscillations of a fluid in an inclined cylinder, in Variational Methods in Problems of Oscillations of a Fluid and of a Body with a Fluid, Vychislit. Tsentr. Akad. Nauk. SSSR, 203–210.
Bosch, E., Lambermont, H., and Water, W. (1994), Average pattern in Faraday waves, Phys. Rev. E 4, R3580–R3583.CrossRefGoogle Scholar
Bosch, E. and Water, W. (1993), Spatio-temporal intermittency in the Faraday experiment, Phys. Rev. Lett. 2, 3420–3423.CrossRefGoogle Scholar
Boudet M. (1968), The frequency spectra of sloshing liquids, Laboratoire de Recherches Balistiques et Aerodynamiques, Vernon, (France), NT-4/68/EN, 2 May (in French).
Boujot, J. (1973), Sur le probleme spectral associe aux vibrations d'un reservoir deformable, C. R. Acad. Sci. Paris, T 277, Serie A.Google Scholar
Boussinesq, J. (1878), J. Math. Pures. Appl. 4, 335.
Bowman T. E. (1966a), Response of the free surface of a cylindrically contained liquid to off-axis accelerations, Proc. 1966 Heat Transfer and Fluid Mech. Inst., University of Santa Clara, CA, Saad, M. A. and Miller, J. A., eds., Stanford University Press, 295–314.Google Scholar
Bowman T. E. (1966b), Cryogenic liquid experiment in orbit, I – Liquid Settling and Interface Dynamics, NASA CR-651.
Box, G. E. P. and Muller, M. E. (1958) A note on the generation of random normal deviatas, Ann. Math. Stat. 28, 610–611.CrossRefGoogle Scholar
Boyarshina, L. G. (1984), Resonance effects in the nonlinear vibrations of cylindrical shells containing a liquid, Soviet Appl. Mech. 20(8), 765–770.CrossRefGoogle Scholar
Boyarshina, L. G. (1988), Nonlinear wave modes of an elastic cylindrical shell partially filled with a liquid under conditions of resonance, Soviet Appl. Mech. 24(5), 528–534.CrossRefGoogle Scholar
Boyarshina, L. G. (1994), Nonlinear-wave motions of a liquid in a cylindrical vessel with elastic bottom, Int. Appl. Mech. 30(5), 385–391.CrossRefGoogle Scholar
Boyarshina, L. G. and Ganiev, R. F. (1976), On nonlinear oscillations of deformable bodies with fluid performing motion in space, Soviet Appl. Mech. 12(7), 62–69.CrossRefGoogle Scholar
Boyarshina, L. G. and Kholopova, V. V. (1994), On resonance in the nonlinear oscillations of a liquid bilayer, Int. Appl. Mech. 30(10), 810–814.CrossRefGoogle Scholar
Boyarshina, L. G. and Koval'chuk, P. S. (1986), The wave modes of the free surface of a liquid contained in a cylindrical vessel, Soviet Appl. Mech. (Prikl Mekh) 22(3), 113–116.Google Scholar
Boyarshina, L. G. and Koval'chuk, P. S. (1990), Analysis of nonlinear wave motions of a fluid in a cylindrical vessel performing given angular oscillations, Soviet Appl. Mech. 26(6), 601–607.CrossRefGoogle Scholar
Boyarshina, L. G., Koval'chuk, P. S., Puchka, G. N., and Kholopova, V. V. (1987), Dynamic instability of the free surface of a fluid in a cylindrical container subjected to a longitudinal excitation, Prikl. Mekh. 23(7), 82–87.Google Scholar
Boyarshina L. G., Koval'chuk P. S., Puchka G. N., and Kholopova V. V. (1998), Constructing periodic solutions of one class of nonautonomous systems of nonlinear second-order equations in a resonance case, Proc. M Kravchuk 7th Int. Sci. Conf. Kiev, May 14–16, 66–70 (in Russian).
Boyarshina, L. G. and Puchka, G. N. (1985), On nonlinear oscillations of a stratified liquid in a cylindrical container, Appl. Mech. (Prikl. Mekh.) 21(11), 118–123.Google Scholar
Brand, R. P. and Nyborg, W. L. (1965), Parametrically excited surface waves, J. Acoust. Soc. Amer. 37(3), 509–515.CrossRefGoogle Scholar
Bratu, C. (1971), Oscillations of liquid masses in reservoirs, (in French), Bulletin de l' Assoc. Tech. Maritime et Aeronaut. 71, 221–241.Google Scholar
Brathu M. C., Huther M., and Planeix J. M. (1972), Computer calculations of liquid motions in tanks, Shipping World and Shipbuilder, December.
Bredmose, H., Brocchini, M., Peregrine, D. H., and Thais, L. (2003), Experimental investigation and numerical modeling of steep forced water waves, J. Fluid Mech. 490, 217–249.CrossRefGoogle Scholar
Bridges, T. J. (1982), A numerical simulation of large amplitude sloshing, Proc. 3rd Int. Numerical Ship Hydrodynamics, 269–281.Google Scholar
Bridges, T. J. (1987), Secondary bifurcation and change of type of three-dimensional standing waves in a finite depth, J. Fluid Mech. 179, 137–153.CrossRefGoogle Scholar
Briskman, V. A., Ivanova, A. A., and Shaidurov, G. F. (1976), Parametric oscillations of fluid in communicating vessels, Izvestiya Akademii Nauk. SSSR, Mekhanik Zhidkosti i Gaza, 2, 36–42.Google Scholar
Briskman, V. A. and Shaidurov, G. F. (1968), Parametric instability of a fluid surface in an alternating electric field, Sov. Phys.-Doklady. 13(6), 540–542.Google Scholar
Brocchini M., Beregrine D. H., and Thais L. (1997), Violent free-surface motion: Some wave-tank experiments, Tech. Rept. AM-97–01, School of Mathematics, University of Bristol.
Brodkey, R. S. (1967), The Phenomena of Fluid Motions, Massachusetts, Addison-Wesley.Google Scholar
Brooks J. E. (1959), Dynamics of fluids in moving containers, Space Tech. Lab. Rept. No GM-TR-4–26, 9 February.
Brosset, L. (1995), Numerical simulation of liquid sloshing in moving tanks, J. Marine Merchande, Nouveautes Techniques Maritimes 9.Google Scholar
Brown K. M. (1954), Laboratory test of fuel sloshing, Douglas Aircraft, CA, Rep. Dev 782, 18 March.
Brown S. J. (1980), Theoretical-experimental seismic tests of fluid coupled co-axial cylinders, ASME, Century 2, Pressure Vess. Piping Conf., San Francisco, PVPD, 80-C/PVP-45, 12–24.
Brown S. J. (1982a), Hydrodynamic response of fluid coupled cylinders: simplified damping and inertia coefficients, Welding Research Council Bulletin, No 281.
Brown, S. J. (1982b), A survey of studies into the hydrodynamic response of fluid coupled cylinders, ASME J. Pressure Vessel Tech. 104(1) 2–20.CrossRefGoogle Scholar
Brown S. J. (1982c), The effect of fluid axial forces on flexible finite length co-axial cylinders, in Dynamic and Seismic Analysis of Systems and Components, Yan, M. J., ed., PVP69.Google Scholar
Brown, S. J. and Chu, M. (1983), A case study of the seismic response of fluid-coupled-flexible cylinders, Exp. Mech., 270–281.Google Scholar
Brown S. J. and Hsu K. H. (1978), On the use of the finite element displacement method to solve solid–fluid interaction vibration problems, ASME Symp. on Fluid Transients and Acoust. in the Power Industry.
Bryant, P. J. (1989), Nonlinear progressive waves in a circular basin, J. Fluid Mech. 205, 453–467.CrossRefGoogle Scholar
Bryant, P. J. (1993), Breakdown to chaotic motion of a forced, damped, spherical pendulum, Physica D 64, 324–339.CrossRefGoogle Scholar
Bryant, P. J. and Stiassnie, M. (1994), Different forms for nonlinear standing waves in deep water, J. Fluid Mech. 272, 135–156.CrossRefGoogle Scholar
Bublik, B. N. and Merkulov, V. N. (1960), On the dynamic stability of thin elastic shells filled with fluid, Prikl. Math. Mekh. (PMM) 24, 941–946.Google Scholar
Buchanan H. J. (1966), Effect of Reynolds number on slosh damping by flat ring baffles, NASA TM X-53559.
Buchanan H. J. (1968), Drag on flat plates oscillating in incompressible fluid at low Reynolds numbers, M.S. thesis, University of Alabama, Also NASA TM-X-53759, 22 July.
Buchanan H. J. and Bugg F. M. (1966), Orbital investigation of propellant dynamics in a large rocket booster, NASA TM X-53442.
Buchanan, R. H., Jameson, G., and Oedjoe, D. (1962), Cyclic migration of bubbles in vertically vibrating liquid columns, Indust. Eng. Chem. Fund. 1(2), 82–86.CrossRefGoogle Scholar
Buchner B. (1995), On the impact of green water loading on ship and offshore unit design, The 6th Int. Sym. Practical Design of Ships and Mobile Units (PRADS), September.
Buckle, U. and Peric, M. (1992), Numerical simulation of buoyant and thermocapillary convection in a square cavity, Numer. Heat Trans., A 21, 121–141.CrossRefGoogle Scholar
Budiansky, B. (1960), Sloshing of liquids in circular canals and spherical tanks, J. Aero./Space Sciences 27(3), 161–172.CrossRefGoogle Scholar
Bustamante, J. I. and Flores, A. (1966), Water pressure on dams subjected to earthquakes, ASCE J. Eng. Mech. Div. 92, 115–127.Google Scholar
Burris L., et al. (1987), The application of electro-refining for recovery and purification of fuel discharged from the integral fast reactor, AICHE Symp. Series 83(254), 1986, 36 pages, available from NTIS, PC A03/MF A01;1: Conference AICHE Winter Ann. Meeting, Miami, 2 Nov 1986; 87(6):37472 Energy.
Buzhinskii, V. A. (1990), The energy of vortex formation for oscillations in a fluid of a body with sharp edges, Dkl. Akad. Nauk. SSSR 313(2), 1072–1074.Google Scholar
Buzhinskii, V. A. (1998a), Vortex drag of a plate in the case of oscillations in a low viscous fluid, J. Appl. Mat. Mech. (PMM) 54(2), 233–238.Google Scholar
Buzhinskii, V. A. (1998b), Vortex damping of sloshing in tanks with baffles, J. Appl. Math. Mech. (PMM) 62, 217–224.CrossRefGoogle Scholar
Buzhinskii, V. A. and Stolbetsov, V. I. (1987), Determination of hydrodynamic characteristics of a cavity, partially filled with a fluid, with a pendulum inside, Izv. Akad. Nauk. SSSR, MZhG 6, 91–100.Google Scholar
Campbell, I. J. (1953), Wave motion in an annular tank, Phil. Mag. Series 7(44), 845–854.CrossRefGoogle Scholar
Canard A. (1956), Hydrodynamic forces induced in fluid containers by earthquakes, Thesis, Caltech, Pasadena.
Candless C. E. and Walls J. C. (1969), Slosh test analysis for the 200 inch multicell tank, NASA-CR-61268.
Capodano, P. (2001), The stability of configuration of a liquid layer in an axially symmetric container uniformly rotating under conditions of weightlessness, J. Appl. Mat. Mech. 65(4), 605–615.CrossRefGoogle Scholar
Cariou, A. and Casella, G. (1999), Liquid sloshing in ship tanks: a comparative study of numerical simulation, Marine Struct. 12(3), 183–198.CrossRefGoogle Scholar
Carotenuto, L., Castagnolo, D., Albanese, C., and Monti, R. (1998), Instability of thermocapillary convection in liquid bridges, Phys. Fluids 10, 1–11.CrossRefGoogle Scholar
Carpenter, B. M. and Homsy, G. M. (1990), High Marangoni number convection in a square cavity, part 2, Phys. Fluids A 2(12), 137–148.CrossRefGoogle Scholar
Carrier, G. F. and Di Pima, R. C. (1956), On the torsional oscillations of a solid sphere in a viscous fluid, ASME J. Appl Mech. 23, 601–605.Google Scholar
Carruthers J. R., Gibson E. G., Klett M. G., and Facemire B. R. (1975), Studies of rotating liquid floating zones on Skylab IV, AIAA 10th Thermophysics Conf., Denver CO, AIAA-Paper 75–692.
Carruthers, J. R. and Grasso, M. (1972), Studies of floating liquid zones in simulated zero gravity, J. Appl. Phys. 43(2), 436–445.CrossRefGoogle Scholar
Casademunt, J., Zhang, W., Viňals, J., and Sekerka, R. F. (1993), Stability of a fluid in a microgravity environment, AIAA Journal 31, 2027.Google Scholar
Case K. and Parkinson W. (1956a), On the motion of a vessel containing fluid with a free surface, Memo. Space Tech. Lab., Feb.
Case K. and Parkinson W. (1956b), The damping of liquid in a right circular cylindrical tank, Memo. GM45–75, Space Tech. Lab., 17 September.
Case, K. and Parkinson, W. (1957), Damping of surface waves in an incompressible liquid, J. Fluid Mech. 2(2), 172–184.CrossRefGoogle Scholar
Casella G. and Dogliani M. (1996), Evaluation of sloshing-induced fatigue damage on a FSO tanker, 6th ISOPE Conf., Los Angeles, May, 304–314.
Casella G., Sebastiani L., and Valdenazzi F. (1996), Fluid–structure interaction in numerical simulation of liquid sloshing, Catena International Seminar on Hydroelasticity for Ship Structural Design, Genoa, Italy, February Rept. No 5882.
Castagnolo, D. and Carotenuto, L. (1999), A numerical simulation of three-dimensional thermocapillary flows in liquid bridges, Num. Heat Transfer: Part A Applications 36(8), 859–877.Google Scholar
Castagnolo D. and Monti R. (2001), Thermal Marangoni flows, in Physics of Fluids in Microgravity, Monti, R, ed., London, Taylor & Francis, 78–125.Google Scholar
Celebi, M. S. and Akyildiz, H. (2002), Nonlinear modeling of liquid sloshing in a moving rectangular tank, Ocean Eng. 29(12), 1527–1553.CrossRefGoogle Scholar
Celebi, M. E., Kim, M. H., and Beck, R. F. (1998), Fully nonlinear 3-D numerical wave tank simulation, J. Ship Res. 42(1), 33–45.Google Scholar
Cerda, E. A. and Tirapegul, E. L. (1997), Faraday's instability for viscous fluids, Phys. Rev. Lett. 78, 859–862.CrossRefGoogle Scholar
Cerda, E. A. and Tirapegul, E. L. (1998), Faraday's instability in viscous fluid, J. Fluid Mech. 368, 195–228.CrossRefGoogle Scholar
Cesari, L. (1963), Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, NY, Academic Press.CrossRefGoogle Scholar
Chadwick, J. H. and Klotter, K. (1954), On the dynamics of anti-roll tanks, Schiffstechnik 2, 23–45.Google Scholar
Chaiseri, P., Fujino, Y., Pacheco, B. M., and Sun, L. M. (1989), Interaction of tuned liquid damper (TLD) and structure – theory, experimental verification and application, JSCE Struct. Eng./Earthquake Eng. 6(2), 103–112.Google Scholar
Chalhoub, M. S. and Kelly, J. M. (1990), Shake table test of cylindrical water tanks in base-isolated structure, J. Engrg. Mech. 116, 1451–1472.CrossRefGoogle Scholar
Chan, E. S. (1994), Mechanics of deep-water plunging-wave impacts on vertical structures, Coast. Engrg. 22, 115–133.CrossRefGoogle Scholar
Chan K. C. and Street R. L. (1970), SUMMAC – A numerical method for water waves, Report 135, Stanford University.
Chandrasekhar, S. (1961), Hydrodynamic and Hydromagnetic Stability, New York, Dover.Google Scholar
Chang, C. C. and Gu, M. (1999), Suppression of vortex-excited vibration of tall buildings using tuned liquid dampers, J. Wind Eng. Indust. Aerodyn. 83, 225–237.CrossRefGoogle Scholar
Chang, C. C. and Hsu, C. T. (1998), Control performance of liquid column vibration absorbers, Eng. Struct. 20(7), 580–586.CrossRefGoogle Scholar
Chang, C. C. and Shen, M. C. (2000), Chaotic motion and internal resonance of forced surface waves in a water-filled circular basin, Wave Motion 31(4), 317–331.CrossRefGoogle Scholar
Chang, C. E. and Wilcox, W. R. (1975), Inhomogeneities due to thermocapillary flow in floating zone melting, J. Crystal Growth 28, 8–12.CrossRefGoogle Scholar
Chang, C. E. and Wilcox, W. R. (1976), Analysis of surface tension driven flow in floating zone melting, Int. J. Heat Mass Transfer 19, 355–366.CrossRefGoogle Scholar
Chang, P. M., Lou, J. Y. K., and Lutes, L. D. (1998), Model identification and control of tuned liquid damper, Eng Struct. 20(3), 155–163.CrossRefGoogle Scholar
Chang S. C. (1966), On sub-gravity hydroelastic sloshing of a liquid with a curved free surface in a cylindrical tank having flexible bottom, Thesis, University of Florida.
Chang S. S. (1969), Longitudinally excited nonlinear liquid motion in a circular cylindrical tank with elastic bottom, Ph.D. Dissertation., Georgia Institute of Tech., Atlanta, Georgia.
Chang Y. W., Ma D. C., and Gvildys J. (1987), EPRI/CRIEPI/joint program on seismic sloshing of LMR reactors. part II-Numerical solutions, Trans. Struct. Mech. in Reactor Techn.-9 Conf., Lausanne, Switzerland, E, 253–258.
Chao, L., Kamotani, Y., and Ostrach, S. (1992), G-jitter effects on the capillary surface motion in an open container under weightless condition, ASME WAMSymp. Fluid Mech. Phen. Microgravity, AMD-154/FED-142, 133–143.Google Scholar
Chato D. J., Dalton P. J., Dodge F. T., and Green S. T. (1998) Liquid motion experiment flight-test results, AIAA Paper 98–3197, 34th AIAA/ASME/SAE/ASE Joint Propulsion Conf. and Exhibit., Cleveland, OH.
Chautard, J. P. (1963), Effect on stability of the axial rotation of a missile containing a liquid mass, Rech. Aeronaut. 93, 3–9 (in French).Google Scholar
Chen, B. F. (1994), Nonlinear hydrodynamic pressures by earthquakes on dam faces with arbitrary reservoir shapes, J. Hyd. Res. 32(3), 401–413.CrossRefGoogle Scholar
Chen, B. F. (1997), 3-D nonlinear hydrodynamic analysis of vertical cylinder during earthquakes, I: Rigid motion, J. Eng. Mech. 123(5), 458–465.CrossRefGoogle Scholar
Chen, B. F. and Chiang, H. W. (2000), Complete two-dimensional analysis of sea-wave-induced fully nonlinear sloshing fluid in a rigid floating tank, Ocean Eng. 27(9), 953–977.CrossRefGoogle Scholar
Chen, B. and Saffman, P. G. (1979), Steady gravity-capillary waves on deep water I: Weakly nonlinear waves, Stud. Appl. Maths. 60, 183–210.CrossRefGoogle Scholar
Chen, C. C. (1961), On the hydrodynamic pressure on a dam caused by its aperiodic or impulsive vibrations and vertical vibrations on the earth surface, Prikl. Math. Mekh. (PMM) 25, 1060–1076.CrossRefGoogle Scholar
Chen, H. H., Kelecy, F. J. and Pletcher, R. J. (1994), Numerical and experimental study of three-dimensional liquid sloshing-flows, J. Thermophys. Heat Trans. 8(3), 507–513.CrossRefGoogle Scholar
Chen, H. H. and Pletcher, R. H. (1993), Simulation of three-dimensional liquid sloshing flows using a strongly implicit calculation procedure, AIAA J. 31(5), 901–910.CrossRefGoogle Scholar
Chen, J. C. and Babcock, C. D. (1975), Nonlinear vibration of cylindrical shells, AIAA J. 13, 868–876.CrossRefGoogle Scholar
Chen, J. C. and Chin, G. H. (1995), Linear stability analysis of thermocapillary convection in the floating zone, J. Cryst. Growth 154, 98–107.CrossRefGoogle Scholar
Chen, J. C. and Hwu, F. S. (1993), Oscillatory thermocapillary flow in a rectangular cavity, Int. J. of Heat and Mass Transfer 36(15), 3743–3749.CrossRefGoogle Scholar
Chen, P. and Viňals, J. (1999), Amplitude equations and pattern selection in Faraday waves, Phys. Rev.E 60, 559–570.Google ScholarPubMed
Chen P. Y. (1977), Nonlinear characteristics of liquid sloshing in rigid tanks, Proc. Int. Conf. Pressure Vessel Technology 3, P 1: Anal. Des. Insp., Tokyo, 357–387.
Chen, Q. S. and Hu, W. R. (1998), Influence of liquid bridge volume on instability of floating half zone convection, Int. J. Heat Mass Transfer 41(6–7), 825.CrossRefGoogle Scholar
Chen, S. S. (1981), Fluid damping for circular cylindrical structures, Nuclear Eng. and Design 63, 81–100.CrossRefGoogle Scholar
Chen, S. S. (1987), Flow-Induced Vibration of Circular Cylindrical Tubes, New York, Hemisphere Publications.Google Scholar
Chen, S. S. and Rosenberg, G. S. (1975), Dynamics of coupled shell-filled system, Nuclear Eng. Des. 32, 302–310.CrossRefGoogle Scholar
Chen S. S., Johnson D. B., and Raad P. B. (1994), Velocity boundary conditions for the simulation of free surface fluid flow, Individual Papers in Fluid Eng., ASME FED-202, 55–66.
Chen, W. Q. and Ding, H. J. (1999), Natural frequencies of fluid-filled transversely isotropic cylindrical shells, Int. J. Mech. Sci. 41, 677–684.CrossRefGoogle Scholar
Chen, W. Q., Ding, H. J., Guo, Y. H., and Yang, Q. D. (1997), Free vibrations of fluid-filled transversely orthotropic cylindrical shells, ASCE J. Engrg. Mech. 123, 1130–1133.Google Scholar
Chen, W. W. (1991), Seismic analysis of a sodium-filled tank, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP-223, 35–43.Google Scholar
Chen, W., Haroun, M. A., and Liu, F. (1996), Large amplitude liquid sloshing in seismically excited tanks, Earthquake Eng. Struct. Dyn. 25, 653–669.3.0.CO;2-H>CrossRefGoogle Scholar
Chen, Y. H., Hwang, W. S., Chiu, L. T., and Sheu, S. M. (1995), Flexibility of LTD to high-rise building by simple experiment and comparison, Comput. Struct. 57(5), 855–861.CrossRefGoogle Scholar
Chermykh, S. V. (1966), On the stability of rigid body filled with liquid, Inzh. Zh. Mekh. Tv. Tela. 3, 33–39 (in Russian).Google Scholar
Chernous'ko, F. L. (1965), Motion of a rigid body with cavities filled with a viscous fluid for low Reynolds numbers, Zh. Vychisl. Matem. i Matem. Fiz. 5(6), 1049–1070.Google Scholar
Chernous'ko, F. L. (1966), The motion of a body with a cavity partly filled with a viscous liquid, Prikl. Math. Mekh. (PMM) 30(6), 1167–1184.CrossRefGoogle Scholar
Chernousko, F. L. (1967a), Motion of a body with a cavity filled with a viscous fluid at large Reynolds numbers, Prikl. Math. Mekh. (PMM) 30(3), 568–589.CrossRefGoogle Scholar
Chernousko, F. L. (1967b), Oscillations of a rigid body with a cavity filled with a viscous fluid, Inzh. Zh. MTT, 1.Google Scholar
Chernousko, F. L. (1967c), On free oscillations of a viscous fluid in a vessel, Prikl. Math. Mekh. (PMM) 30(5), 990–1003.CrossRefGoogle Scholar
Chernousko F. L. (1969), The Motion of a Rigid Body with Cavities Containing a Viscous Liquid, Vychisl. Tsentr. Akad. Nauk. SSSR, Moscow.
Chester, W. (1964), Resonant oscillations in closed tubes, J. Fluid Mech. 18, 44–64.CrossRefGoogle Scholar
Chester, W. (1968), Resonance oscillations of water waves, I: Theory, Proc. of the Royal Soc. A306, 5–22.CrossRefGoogle Scholar
Chester, W. and Bones, J. A (1968), Resonance oscillations of water waves, I: Experiment, Proc. Royal Soc. A306, 23–39.CrossRefGoogle Scholar
Chetayev, N. G. (1957), On the stability of rotational motions of a rigid body with a cavity with an ideal fluid, Prikl. Math. Mekh. (PMM) 21(2) 419–421.Google Scholar
Cheung, Y. K. and Zhou, D. (2000), Coupled vibratory characteristics of a rectangular container bottom plate, J. Fluid Struct. 14, 339–357.CrossRefGoogle Scholar
Cheung, Y. K., and Zhou, D. (2002), Hydroelastic vibration of a circular container bottom plate using the Galerkin method, J. Fluids Struct. 16(4), 561–580.CrossRefGoogle Scholar
Chiba, M. (1986), Dynamic stability of liquid-filled cylindrical shells under horizontal excitation, part I: Experiment, J. Sound Vib. 104(2), 301–319.CrossRefGoogle Scholar
Chiba M. (1989), Nonlinear axisymmetric free vibration of a cylindrical tank with an elastic bottom, Forschungsberichte, Universitat der Bundeswehr, Munich, LRT-WE-9-FB-17.
Chiba, M. (1992), Nonlinear hydroelastic vibration of a cylindrical tank with an elastic bottom, containing liquid, part I: Experiment, J. Fluids Struct. 6(2), 181–206.CrossRefGoogle Scholar
Chiba, M. (1993a), Nonlinear hydroelastic vibration of a cylindrical tank with an elastic bottom, containing liquid, part II: Linear axi-symmetric vibration analysis, J. Fluid Struct. 7(1), 57–73.CrossRefGoogle Scholar
Chiba, M. (1993b), Non-linear hydroelastic vibration of a cantilever cylindrical tank – I: Experiment (empty case), Int. J. Non-Linear Mech. 28(5), 591–599.CrossRefGoogle Scholar
Chiba, M. (1993c), Non-linear hydroelastic vibration of a cantilever cylindrical tank – II: Experiment (liquid-filled case), Int. J. Non-Linear Mech. 28(5), 601–612.CrossRefGoogle Scholar
Chiba, M. (1993d), Nonlinear hydroelastic vibration of a cylindrical tank with an elastic bottom, containing liquid, part I: Experiment, J. Fluid Struct. 6, 181–206.CrossRefGoogle Scholar
Chiba, M. (1993e), Experimental studies on a nonlinear hydroelastic vibration of a clamped cylindrical tank partially filled with liquid, J. Pressure Vessel Tech. 115(4), 381–388.CrossRefGoogle Scholar
Chiba, M. (1994), Axi-symmetric free hydroelastic vibration of a flexural bottom plate in a cylindrical tank supported on an elastic foundation, J. Sound Vib. 169(3), 387–394.CrossRefGoogle Scholar
Chiba, M. (1995), Free vibration of a clamped-free circular cylindrical shell partially submerged in a liquid, J. Acoust. Soc. Amer. 97(4), 2238–2248.CrossRefGoogle Scholar
Chiba, M. (1996a), Free vibration of a partially liquid-filled and partially submerged, clamped-free circular cylindrical shell, J. Acoust. Soc. Amer. 100(4), 2170–2180.CrossRefGoogle Scholar
Chiba, M. (1996b), Non-linear hydroelastic vibration of a cylindrical tank with an elastic bottom containing liquid – III: Nonlinear analysis with Ritz averaging method, Int. J. Non-Linear Mech. 31(2), 155–165.CrossRefGoogle Scholar
Chiba, M. (1997), The influence of elastic bottom plate motion on the resonant response of a liquid free surface in a cylindrical container: A linear analysis, J. Sound Vib. 202(3), 417–426.CrossRefGoogle Scholar
Chiba, M. and Abe, K. (1999), Nonlinear hydroelastic vibration of a cylindrical tank with an elastic bottom containing liquid – analysis using harmonic balance method, Thin-Walled Struct. 34(3), 233–260.CrossRefGoogle Scholar
Chiba, M. and Bauer, H. F. (1998), Free hydroelastic vibrations of a liquid attached to a cylindrical sector shell in a zero gravity condition, J. Vib. Acoust. 120(1), 54–62.CrossRefGoogle Scholar
Chiba, M., Bauer, H. F., and Sasaki, H. (1998), Influence of attached liquid layers on free hydroelastic vibrations of a cylindrical sector shell in a zero gravity condition, J. Sound Vib. 214(2), 245–260.CrossRefGoogle Scholar
Chiba, M., Kiuchi, H., and Tani, J. (1997), Unstable sloshing vibration in a thin cylindrical weir, J. Press. Vessel Tech. 119(1), 68–73.CrossRefGoogle Scholar
Chiba, M. and Tani, J. (1987), Dynamic Stability of liquid-filled cylindrical shells under vertical excitation, part I: Experimental results, J. Earthquake Eng. Struct. Dyn. 15(1), 23–26.CrossRefGoogle Scholar
Chiba, M., Tani, J., Hashimoto, H., and Sudo, S. (1986), Dynamic stability of liquid-filled cylindrical shells under horizontal excitation, part I: Experiment, J. Sound Vib. 104, 301–319.CrossRefGoogle Scholar
Chiba, M., Tani, J., and Yamaki, N. (1987), Dynamic stability of liquid-filled cylindrical shells under vertical excitation, part II: Theoretical results, J. of Earthquake Eng. Struct. Dyn. 15(1), 37–51.CrossRefGoogle Scholar
Chiba, M., Watanabe, H., and Bauer, H. F. (2002), Hydroelastic coupled vibrations in a cylindrical container with a membrane bottom containing liquid with surface tension, J. Sound Vib. 251(4), 717–740.CrossRefGoogle Scholar
Chiba, M., Yamaki, N., and Tani, J. (1984a), Free vibration of a clamped-free circular cylindrical shell partially filled with liquid, part I: Theoretical analysis, Thin Walled Struct. 2, 265–284.CrossRefGoogle Scholar
Chiba, M., Yamaki, N., and Tani, J. (1984b), Free vibration of a clamped-free circular cylindrical shell partially filled with liquid, part II: Numerical results, Thin Walled Struct. 2, 307–324.CrossRefGoogle Scholar
Chiba, M., Yamaki, N., and Tani, J. (1985), Free vibration of a clamped-free circular cylindrical shell partially filled with liquid, part III: Experimental results, Thin Walled Struct. 3, 1–14.CrossRefGoogle Scholar
Chiba, M., Yamashita, T., Sugiyama, H., and Tani, J. (1989), Dynamic stability of liquid-filled cylindrical shells under periodic shearing forces, J. Pressure Vessel Tech. 111(4), 420–427.CrossRefGoogle Scholar
Chiba, T., Nakajima, S., Mieda, T., Ogawa, N., and Shibata, H. (1995), The sloshing behavior of high viscous liquid in cylindrical tanks, in Fluid-Sloshing and Fluid-Structure Interaction, ASME Press Vess Piping Conf, PVP-314, 57–82.Google Scholar
Chin, J. H. and Gallagher, L. W. (1964), Effect of fluid motion on free surface shape under reduced gravity, AIAA J. 2(12), 2215–2217.CrossRefGoogle Scholar
Cho, J. R., Lee, H. W., and Kim, K. W. (2002), Free vibration analysis of baffled liquid-storage tanks by the structural-acoustic finite element formulation, J. Sound Vib. 258(5), 847–866.CrossRefGoogle Scholar
Cho, J. R., Song, J. M., and Lee, J. K. (2001), Finite element techniques for the free-vibration and seismic analysis of liquid-storage tanks, Finite Elements in Analysis and Design 37, 467–483.CrossRefGoogle Scholar
Chobotov V. and Fowler J. (1957), Experimental investigation of the moment of inertia in a cylindrical tank, Space Technol. Labs, Memo. GM61–2–3, 18 February.
Chopra, A. K. (1967), Hydrodynamic pressures on dams during earthquakes, J. of Eng. Mech. Div. 93(EM6), 205–223.Google Scholar
Chorin, A. J. (1967), A numerical method for solving incompressible viscous flow problems, J. Compt. Phys. 2, 12–26.CrossRefGoogle Scholar
Chorin, A. J. (1976), Random choice solution of hyperbolic systems, J. Comput. Phys. 22(4), 517–533.CrossRefGoogle Scholar
Chorin, A. J. (1977), Random choice methods with application to reacting gas flow, J. Comput Phys. 25(3), 253–272.CrossRefGoogle Scholar
Crandall, S. H. and Mroszczyk, J. (1986), Whirling of flexible cylinder filled with fluid, Proc. Int. Conf. Rotordynamics, Tokyo, JSME.Google Scholar
Christiansen, B., Alstrom, P., and Levinson, M. T. (1992), Ordered capillary-wave states: quasi-crystals, hexagons, and radial waves, Phys. Rev. Lett. 68, 2157–2160.CrossRefGoogle Scholar
Chu, B. T. and Ying, S. J. (1963), Thermally driven nonlinear oscillations in a pipe with traveling shock waves, Phys. Fluids 6, 11.CrossRefGoogle Scholar
Chu, H. N. (1961), Influence of large amplitudes on flexural vibrations of a thin circular cylindrical shell, J. Aerospace Sci. 28, 602–609.Google Scholar
Chu, M. L. and Brown, S. J. (1981), Experiments on the dynamic behavior of fluid-coupled concentric cylinders, Exper. Mech. 21, 129–137.CrossRefGoogle Scholar
Chu M. L., Brown S. J., Lieb E., and Lestingi J. P. (1979), An experimental study of gap and thickness influence on the vibration response and damping of flexible fluid-coupled coaxial cylinders, ASME Pressure Vess. Piping Conf., PVP-39, 1–19.
Chu, W. H. (1960a), Sloshing of liquids in cylindrical tanks of elliptic cross-section, Amer. Rocket Soc. J. 30, 360–363.Google Scholar
Chu, W. H. (1960b), Free surface conditions for sloshing resulting from pitching and some corrections, Amer. Rocket Soc. J. 30(11), 1093–1094.Google Scholar
Chu, W. H. (1963), Breathing vibrations of a partially filled cylindrical tank – linear theory, ASME J. Appl. Mech. 30, 532–536.CrossRefGoogle Scholar
Chu, W. H. (1964a), Fuel sloshing in a spherical tank filled to an arbitrary depth, AIAA J. 2, 1972–1979.CrossRefGoogle Scholar
Chu, W. H. (1964b), Liquid sloshing in a spherical tank filled to an arbitrary depth, AIAA J. 2(11), 1972–1979.CrossRefGoogle Scholar
Chu W. H. (1964c), An analysis of the quasi-steady liquid-gas interface in an axi-symmetric tank during low gravity transfer, SwRI, Final Rept. (Contract NAS8–5468).
Chu, W. H. (1968), Subharmonic oscillations in arbitrary axi-symmetric tank resulting from axial excitation, J. Appl Mech. 35(1), 148–154.CrossRefGoogle Scholar
Chu, W. H. (1970), Low-gravity fuel sloshing in an arbitrary axi-symmetric rigid tank, J. Appl Mech. 37(3), 828–837.CrossRefGoogle Scholar
Chu, W. H. (1971), Sloshing of an arbitrary two-dimensional tank with flat mean free surface, CASI Transactions 4(7), (Technical Forum), 48–60.Google Scholar
Chu, W. H. and Gonzales, R. (1964), Supplement to breathing vibrations of a partially filled cylindrical tank – linear theory, ASME J. Appl Mech 31(4), 722–723.CrossRefGoogle Scholar
Chu, W. H. and Kana, D. D. (1967), A theory for nonlinear transverse vibrations of a partially filled elastic tank, AIAA J. 5(10), 1828–1835.CrossRefGoogle Scholar
Chun, C. H. (1980a), Experiments on steady and oscillatory temperature distribution in a floating zone due to the Marangoni convection, Acta Astron. 7, 479–488.CrossRefGoogle Scholar
Chun, C. H. (1980b), Marangoni convection in a floating zone under reduced gravity, J. Crystal Growth 48, 600–610.CrossRefGoogle Scholar
Chun, C. H. (1984), Numerical study on the thermal Marangoni convection and comparison with experimental results from the TEXUS-rocket program, Acta Astron. 11(3–4).CrossRefGoogle Scholar
Chun, C. H., Ehmann, M., Siekmann, J., Wozniak, G. (1987), Vibrations of rotating menisci, Proc. 6th Europ. Symp. Material Sciences under Microgravity Conditions, Borde France ESA-SP-256, 226–234.Google Scholar
Chun, C. H. and Siekmann, J. (1994), Higher modes and their instabilities of the oscillatory Marangoni convection in a large cylindrical liquid column, Proc. Norderney Symp. Scientific Results of the German Spacelab Mission D-2, 235–241.Google Scholar
Chun, C. H. and Wuest, W. (1979), Experiments on the transition from steady to the oscillatory Marangoni-convection of a floating zone under reduced gravity effects, Acta Astron. 6, 1073–1082.CrossRefGoogle Scholar
Chun, C. H. and Wuest, W. (1982), Suppression of temperature oscillations of thermal Marangoni convection in a floating zone by superimposing of rotating flow, Acta Astron. 9, 225–230.CrossRefGoogle Scholar
Ciliberto, S. and Gollub, J. P. (1984), Pattern competition leads to chaos, Phys. Rev. Lett. 52(11), 922–925.CrossRefGoogle Scholar
Ciliberto, S. and Gollub, J. P. (1985a), Phenomenological model of chaotic mode competition in surface waves, IL Nouvo Cimento 6(4), 309–316.CrossRefGoogle Scholar
Ciliberto, S. and Gollub, J. P. (1985b), Chaotic mode competition in parametrically forced surface waves, J. Fluid Mech. 158, 381–398.CrossRefGoogle Scholar
Clark C. D. (1959), Effect of propellant oscillations on SATURN roll moment of inertia, Army Ballistic Missile Agency, Rept. No DA-TN-87–59.
Clark L. V. and Stephens D. G. (1967), Simulation and scaling of low-gravity slosh frequencies and damping, Second ASTM, IES and AIAA Space Simulation Conf., ASTM, 43–49.
Clary R. R. and Turner L. J. Jr (1970), Measured and predicted longitudinal vibrations of a liquid propellant two stage launch vehicle, NASA TN-D-5943, August.
Clough D. P. (1977), Experimental evaluation of seismic design methods for broad cylindrical tanks, Rept. No UCB/EERC-77/10, University of California, Berkeley.
Clough D. P. (1979), Experimental evaluations of seismic design method for broad cylindrical tanks, UCA, Berkeley/EERC-79/06.
Clough D. P. and Niwa A. (1979), Static tilt tests of a tall cylindrical liquid storage tank, Rept. No UCB/EERC-79/06, UCA, Berkeley.
Clough, R. W., Niwa, A., and Clough, D. P. (1979), Experimental seismic study of cylindrical tanks, ASCE J. Struct. Division 105(ST12).Google Scholar
Coale, C. W. and Nagano, M. (1969), Axi-symmetric vibrations of a cylindrical hemispherical tank partially filled with a liquid, AIAA J. 7(2), 235–243.Google Scholar
Cocciaro, B., Faetti, S., and Nobili, M. (1991), Capillary effects on surface gravity waves in a cylindrical container: wetting boundary conditions, J. Fluid Mech. 231, 325–343.CrossRefGoogle Scholar
Cocciaro, B., Faetti, S., and Festa, C. (1993), Experimental investigation of capillary effects on surface gravity waves: non-wetting boundary conditions, J. Fluid Mech. 246, 43–66.CrossRefGoogle Scholar
Cochran, W. G (1934), The flow due to a rotating disc, Proc. Camb. Phil. Soc. 30, 365–375.CrossRefGoogle Scholar
Cointe, R. (1989), Two-dimensional fluid–solid impact, ASME J. Offshore Mech. & Arctic Engrg. 111(2), 109–114.CrossRefGoogle Scholar
Cointe, R. and Armand, J. L. (1987), Hydrodynamic impact analysis of a cylinder, ASME J. Offshore Mech. & Arctic Engrg. 109(3), 237–243.CrossRefGoogle Scholar
Cokonis T. J., Tomassoni J. E., and Seiferth R. W. (1963), Dome impact analysis – an approximate solution, Martin Co. Rept., TN LV 211, May.
Cole H. A. Jr (1966a), On a fundamental damping law for fuel sloshing, NASA TN-D-3240, March.
Cole H. A. Jr (1966b), Baffle thickness effects in fuel sloshing experiments, NASA TN-D-3716.
Cole H. A. Jr and Gambucci B. J. (1961a), Measured two dimensional damping effectiveness of fuel sloshing baffles applied to ring baffles in cylindrical tanks, NASA TN-D-694.
Cole H. A. Jr and Gambucci B. J. (1961b), Tests of an asymmetrical baffle for fuel sloshing suppression, NASA TN-D-1036.
Concus P. (1963), Capillary stability in an inverted rectangular tank, Proc. Symp. Physical and Biological Phenomena in a Weightless State, Bendikt, E. T. and Halliburton, R. W., eds., AAS, 14, 21–37.Google Scholar
Concus, P. (1964), Capillary stability in an inverted rectangular channel for free surfaces with curvature of changing sign, AIAA J. 2(12), 2228.CrossRefGoogle Scholar
Concus, P. (1968), Static menisci in a vertical right circular cylinder, J. Fluid Mech. 34, 481.CrossRefGoogle Scholar
Concus, P., Crane, G. E., and Perko, L. M. (1965), Inviscid fluid flow in an accelerating axi-symmetric container, Symp. Fluid Mechanics and Heat Transfer under Low Gravitational Conditions, Lockheed Missiles & Space Co.Google Scholar
Concus P., Crane G. E., and Satterlee H. M. (1967), Small-amplitude lateral sloshing in a cylindrical tank with a hemispherical bottom under low gravitational conditions, NASA – CR 54700.
Concus P. Crane G. E., and Satterlee H. M. (1968), Low gravity lateral sloshing in a hemispherically bottomed cylindrical tank, Proc. 1968 Heat Transfer and Fluid Mechanics Institute held at Seattle, A. F. Emery and C. A. Depew, eds., Stanford University Press, (June17–18), 80–97.
Concus P. Crane G. E., and Satterlee H. M. (1969), Small-amplitude lateral sloshing in spheroidal containers under low gravitational conditions, Final Report, NASA – CR 72500.
Concus, P. and Finn, R. (1974a), On capillary free surfaces in the absence of gravity, Acta Math. 132, 177–198.CrossRefGoogle Scholar
Concus, P., and Finn, R. (1974b), On capillary free surfaces in gravitational field, Acta Math. 132, 207–218.CrossRefGoogle Scholar
Concus, P., and Finn, R. (1976), On the height of a capillary surface, Math. Z. 147, 93–108.CrossRefGoogle Scholar
Concus P., and Finn R. (1987), Continuous and discontinuous disappearance of capillary surfaces, in Variational Methods for Free Surface Interface, Concus, P and Finn, R., eds., New York, Springer-Verlag, 197–204.CrossRefGoogle Scholar
Concus P. and Finn R., (1990a), Capillary surfaces in microgravity, in Low-Gravity Fluid Dynamics and Transport Phenomena, JN Koster and R. L. Sani, eds., 130, Progress in Astronaut. and Aeronaut., AIAA, Washington, DC, 183–205.
Concus, P., and Finn, R. (1990b), Dichotomous behavior of capillary surfaces in zero gravity, Microgravity Science and Technology III, 87–92, Errata, III, (1991), 230.Google Scholar
Concus, P., and Finn, R. (1991a), Exotic containers for capillary surfaces, J. Fluid Mech. 224, 383–394.CrossRefGoogle Scholar
Concus P. and Finn R. (1991b), On accurate determination of contact angle, Microgravity Science and Technology, IV, 69–70.
Concus, P., and Finn, R. (1992), On canonical cylinder sections for accurate determination of contact angle in microgravity, ASME WAM Symp. Fluid Mech. Phenomena in Microgravity, D. A. Siginer and M. M. Weislogel, AMD-154/FED-142, 125–131.Google Scholar
Concus, P., and Finn, R. (1998), Discontinuous behavior of liquids between parallel tilted plates, Phys. Fluids 10, 39–43.CrossRefGoogle Scholar
Concus, P., Finn, R., and Weislogel, M. (1999), Capillary surfaces in an exotic container: results from space experiments, J. Fluid Mech. 394, 119–135.CrossRefGoogle Scholar
Concus P., Crane G. E., and Satterlee H. M. (1968), Low gravity lateral sloshing in a hemispherically bottomed cylindrical tank, Proc. Heat Transf. Fluid Mech. Inst., Seattle, WA, (University Press, Stanford, CA) 80–90.
Coney T. A. and Masica W. J. (1969), Effect of flow rate on the dynamic contact angle for wetting liquids, NASA TN-D-5115.
Coney T. A. and Salzman J. A. (1971), Lateral sloshing in oblate spheroidal tanks under reduced-and normal-gravity conditions, NASA TN-D-6250.
Conly J. F. (1963), Surface waves on a rotating fluid, Ph.D. dissertation, Columbia University, New York.
Cooker, M. J. (1994), Water waves in a suspended container, Wave Motion 20, 385–395.CrossRefGoogle Scholar
Cooker, M. J. and Peregrine, D. H. (1992), Wave impact pressure and its effect upon bodies lying on the bed, Coastal Engrg. 18, 205–229.CrossRefGoogle Scholar
Cooker, M. J. and Peregrine, D. H. (1995), Pressure-impulse theory for liquid impact problems, J. Fluid Mech. 297, 193–214.CrossRefGoogle Scholar
Cooper, R. M. (1960), Dynamics of liquids in moving containers, Amer. Rocket Soc. J. 30(8), 725–729.Google Scholar
Courant, R. and Friedrichs, K. O. (1948), Supersonic Flow and Shock Waves, New York, Wiley Interscience.Google Scholar
Cox P. A., Bowles E. B., and Bass R. L. (1980), Evaluation of liquid dynamic loads in slack LNG cargo tanks, Tech. Rept. SSC-297, SwRI.
Craik, A. D. D. (1986), Wave Interactions and Fluid Flows, Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Craik, A. D. D. (1995), The stability of some three-dimensional and time-dependent flows, IUTAM Symp. Nonlinear Instability of Nonparallel Flows, Lin, S. P., Pillips, W. R. C., and Valentine, D. T., eds., Springer, 382–396.Google Scholar
Craik, A. D. D. and Armitage, J (1995), Faraday excitation, hysteresis and wave instability in a narrow rectangular wave tank, Fluid Dyn. Research 15, 129–143.CrossRefGoogle Scholar
Crandall, S. H. and Mroszczyk, J. (1986), Whirling of a flexible cylinder filled with liquid, Proc. Int. Conf. Rotordynamics, Tokyo, 449–452.Google Scholar
Crawford, J. D. (1991a), Normal forms for driven surface waves: Boundary conditions, symmetry, and genericity, Physica D 52, 429–457.CrossRefGoogle Scholar
Crawford, J. D. (1991b), Surface waves in nonsquare containers with square symmetry, Phys. Rev. Lett. 67, 441–444.CrossRefGoogle Scholar
Crawford, J. D., Gollub, J. P., and Lane, D. (1993), Hidden symmetries of parametrically forced waves, Nonlinearity 6, 119–164.CrossRefGoogle Scholar
Crawford, J. D. and Knobloch, E. (1991), Symmetry and symmetry-breaking in fluid dynamics, Ann. Rev. Fluid Mech. 23, 341–387.CrossRefGoogle Scholar
Crawford, J. D., Knobloch, E., and Riecke, H. (1990), Period-doubling mode interactions with circular symmetry, Physica D 44, 340–396.CrossRefGoogle Scholar
Crews, A. A. and Earth, R. L. (1963), Instrument to measure water wave height, J. Acoust. Soc. Amer. 35(5), 737–738.CrossRefGoogle Scholar
Curvelier, C. (1985), A capillary free boundary problem governed by the Navier–Stokes equations, Comp. Methods Appl. Mech. Eng. 48, 45–80.CrossRefGoogle Scholar
Curvelier, C. and Schulkes, R. M. S. M. (1990), Some numerical methods for the computation of capillary free boundaries governed by the Navier–Stokes equations, SIAM Rev. 32, 355–423.CrossRefGoogle Scholar
Cutshall W. K., Dodge F. T., Gree S. T., and Unruh J. F. (1996), Modeling low-g liquid motions in spinning spacecraft tanks, Final Report, SwRI Project 04–9769.
Daich, I. M. (1971), Nonconservative problems on oscillations of a rigid partially filled with ideal liquid, Appl. Mech. (Prikl. Mech.) 11(7), 44–48.Google Scholar
Daich, I. M. and Bar, I. L. (1973), Oscillations of rotating rigid body having cavity filled with viscous fluid, Appl. Mech. (Prikl. Mech.) 13(5), 64–69.Google Scholar
Daich, I. M., Bar, I. L., and Korzovskaya, I. D. (1976), Nonlinear oscillations of rotating rigid body partially filled with ideal liquid, Appl. Mech. (Prikl. Mech.) 12(6), 111–115.Google Scholar
Daly, B. J. (1969a), Numerical study of the effect of surface tension on interface instability, Phys. Fluids 12, 1340.CrossRefGoogle Scholar
Daly, B. J. (1969b), A technique for including surface tension effects in hydrodynamic calculations, J. Comput. Phys. 4, 97.CrossRefGoogle Scholar
Dalzell J. F. (1967a), Exploratory studies of liquid behavior in randomly excited tanks: longitudinal excitation, SwRI, Tech. Rept. 1.
Dalzell J. F. (1967b), Exploratory studies of liquid behavior in randomly excited tanks: lateral excitation, SwRI, Tech. Rept. 2, Contract NAS8–20319.
Dalzell J. F., Chu W. H., and Modisette J. E. (1964), Studies of ship roll stabilization tanks, SwRI, Tech. Rept. 1.
Dalzell J. F. and Garza I. R. (1964), An exploratory study of simulation of liquid impact in space vehicle and booster tanks, SwRI, Tech. Rept. 9, Contract NAS8–1555.
Danabasoglu G. and Biringen S. (1988), Computational of convective flow with g-jitter in rectangular cavities, AIAA Paper 88–3727.
Da-Riva, I. and Martinez, I. (1979), Floating zone stability, Proc. 3rd Europ. Symp. Material Science in Space, Grenoble, ESA-SP-142, 67–73.Google Scholar
Davis, S. H. (1987), Thermocapillary instabilities, Ann. Rev. Fluid Mech. 19, 403–435.CrossRefGoogle Scholar
Dean, R. G. and Dalrymple, R. A. (1992), Water Wave Mechanics for Engineering and Scientists, Singapore, World Scientific.Google Scholar
Debnath, L. (1994), Nonlinear Water Waves, New York, Academic Press.Google Scholar
Debonginie, J. F. (1986), On a purely Lagrangian formulation of sloshing and fluid-induced vibrations of tanks eigenvalue problems, Com. Meth. Appl. Mech. Eng. 58, 1–18.CrossRefGoogle Scholar
Decent S. P. (1995), Hysteresis and mode competition in Faraday waves, Ph.D. thesis, University of St Andrews, Scotland.
Decent, S. P. (1997), The nonlinear damping of parametrically excited two-dimensional gravity waves, Fluid Dyn. Res. 19, 201–217.CrossRefGoogle Scholar
Decent, S. P. and Craik, A. D. D. (1995), Hysteresis in Faraday resonance, J. Fluid Mech. 293, 237–268.CrossRefGoogle Scholar
Decent, S. P. and Craik, A. D. D. (1997), On limit cycles arising from the parametric excitation of standing waves, Wave Motion 25(3), 275–294.CrossRefGoogle Scholar
Decent, S. P., and Craik, A. D. D. (1999), Sideband instability and modulations of Faraday waves, Wave Motion 30(1), 43–55.CrossRefGoogle Scholar
Defelice D. M. (1987), Cryogenic fluid management flight experiment (CFMFE), in R. Vernon, ed., Microgravity Fluid Management Symposium, NASA Lewis Research Center, Cleveland O. H., 119–124, NASA Conference Publication NASA-CP-2465.
Deffenbaugh D. M., Dodge F. T., and Green S. T. (1998), Liquid motion in a rotating tank experiment (LME), Final Report, SwRI Project 04–6322, Document No. 6322-FNL-01, NASA Contract NAS3–27252.
Gennes, P. G. and Prost, J. (1994) The Physics of Liquid Crystals, Oxford, Clarendon.Google Scholar
DeLombard R., McPherson K., Moskowitz M., and Hrovat K. (1997), Comparison tools for assessing the microgravity environment of missions, carriers and conditions, NASA Tech. Rept. TM 107446.
Hartog, J. P. (1985), Mechanical Vibrations, New York, Dover Publications.Google Scholar
Derdul J. D., Grubb L. S., and Petrash D. A. (1966), Experimental investigation of liquid outflow from cylindrical tanks during weightlessness, NASA TN D-3746.
Derendyayev N. V. (1988), Andronov–Hopf bifurcation in dynamics of rotor system contained liquid, Rept. Academy Sciences USSR 301, 789–801.
Derendyayev, N. V. and Sanalov, V. M. (1982), On stationary rotation stability of the cylinder partially filled with viscous incompressible liquid, Appl. Math. Mech. (PMM) 4.Google Scholar
Desyatov, V. T. (1986), Experimental investigation of stability of rotary motion of bodies filled with liquid, in Space Apparatus Dynamics and Outer Space Investigation, Moscow, Mashinostroyeniye.Google Scholar
Devitt, E. B. and Melcher, J. R. (1965), Surface electrodynamics with high-frequency fluids, Phys. Fluids 8(6), 1193–1195.CrossRef
Dias, F. and Kharif, C. (1999), Nonlinear gravity and capillary-gravity waves, Annu. Rev. Fluid Mech. 31, 301–346.CrossRefGoogle Scholar
Dillingham, J. (1981), Motion studies of a vessel with water on deck, Marine Technology 18(1), 38–50.Google Scholar
DiMaggio, F. L. (1975), Dynamic response of fluid-filled shells, Shock Vib. Digest 7(5), 5–12.CrossRefGoogle Scholar
DiMaggio, F. L. (1978), Recent research on the dynamic response of fluid-filled shells, Shock. Vib. Dig 10(7), 15–19.CrossRefGoogle Scholar
DiMaggio, F. L. (1981), Dynamic response of fluid-filled shells – an update, Shock Vib. Digest 13(6), 3–6.CrossRefGoogle Scholar
DiMaggio, F. L. (1984), Dynamic response of shells containing fluid, Shock Vib. Digest 16(6), 3–9.CrossRefGoogle Scholar
DiMaggio, O. D. and Rehm, A. S. (1965), Nonlinear free oscillations of a perfect fluid in a cylindrical container, AIAA Symp. Structural Dyn. Aeroelasticity 30, 156–161.Google Scholar
Dimentberg, M. F. (1988), Statistical Dynamics of Non-linear and Time-varying Systems, New York, John Wiley & Sons.Google Scholar
Dodge F. T. (1963), A review of research studies on bubble motion in liquids contained in vertically vibrating tanks, SwRI Tech. Rept. 1, (Contract NAS8–11045).
Dodge, F. T. (1968), Discussion of bubble trajectory and equilibrium levels in vibrated columns, J. Basic Eng. 90(4), 629.CrossRefGoogle Scholar
Dodge F. T. (1971), Study of flexible baffles for slosh suppression, NASA CR-1880.
Dodge, F. T. (1990), Fluid management in low gravity, Prog. Astronautics and Aeronautics, Low-Gravity Fluid Dynamics and Transport Phenomena 130, 3–14.Google Scholar
Dodge F. T. (1991), Fluid management technology liquid slosh dynamics and control: Interim report, SwRI, NASA-NTIS Washington, DC.
Dodge F. T. (1996), Liquid motion analytical models and pre-flight simulations for the liquid motion in a rotating tank experiment (LME), SwRI Project 04–6322.
Dodge F. T. (1999), Modeling liquid motions in spinning spacecraft tanks, Final Report SwRI Project 18-R9946.
Dodge F. T. and Abramson N. H. (2000), Liquid propellant dynamics in the SATURN/APOLLO vehicles – a look back, AIAA Paper 2000–1676.
Dodge, F. T. and Bowles, E. B. (1984), Vapor flow into a capillary propellant-acquisition device, J. Spacecraft and Rock. 21(3), 267–273.CrossRefGoogle Scholar
Dodge, F. T. and Garza, L. R. (1967a), Experimental and theoretical studies of liquid sloshing at simulated low gravity, ASME J. Appl. Mech. 34(3), 555–562.CrossRefGoogle Scholar
Dodge F. T. and Garza L. R. (1967b), Simulated low-gravity sloshing in cylindrical tanks including effects of damping and small liquid depth, NASA Tech. Rept. No 5, Contract NAS8–20290, 1–32.
Dodge F. T. and Garza L. R. (1968), Simulated low-gravity sloshing in cylindrical tanks including effects of damping and small liquid depth, Proc. 1968 Heat Transfer and Fluid Mechanics Institute held at Seattle, A. F. Emery and C. A. Depew, eds., Stanford University, 67–79.
Dodge F. T. and Garza L. R. (1970a), Simulated low-gravity sloshing in spherical, ellipsoidal, and cylindrical tanks, J. Spacecraft Rock. 7(1), 204–206.
Dodge F. T. and Garza L. R. (1970b), Magnetic fluid simulation of liquid sloshing in low gravity, NASA Tech. Rep. 9, 1–29.
Dodge F. T. and Garza L. R. (1971), Propellant dynamics in an aircraft type launch vehicle, NASA CR-119891.
Dodge, F. T. and Garza, L. R. (1972), Free surface vibrations of a magnetic liquid, J. Eng. for Indust., 103–108.CrossRefGoogle Scholar
Dodge F. T. and Green S. T. (2000), Spinning slosh test rig: Data analysis and determination of nutation time constant model parameters for the genesis spacecraft, Final Report, 1, SwRI Project 18.03513, Boeing/NASA-KSC Contract K59000001.
Dodge, F. T., Green, S. T., and Cruise, M. W. (1991), Analysis of small-amplitude low gravity sloshing in axisymmetric tanks, Micrograv. Sci. and Technol. IV(4), 228–234.Google Scholar
Dodge F. T., Green S. T., Petullo S. P., and Kuhl C. A., (1999), A forced motion spin table for launch vehicle slosh, Final Report SwRI Project 18–03303, Boeing Contract L5999006.
Dodge, F. T. and Kana, D. D. (1966), Moment of inertia and damping of liquid in baffled cylindrical tanks, J. Spacecraft Rock. 3(1), 153–155. (Also NASA CR-383, February).CrossRefGoogle Scholar
Dodge, F. T., and Kana, D. D. (1987), Dynamics of liquid sloshing in upright and inverted bladdered tanks, ASME J. Fluids Engineering 109(1), 58–63.CrossRefGoogle Scholar
Dodge, F. T., Kana, D. D., and Abramson, H. N. (1965), Liquid surface oscillations in longitudinally excited rigid cylindrical containers, AIAA J. 3(4), 685–695. (Also SwRI Tech Rept. No 2, 30 April, 1964.)Google Scholar
Dodge F. T., Unruh S. T., and Green S. T. (2000), A boundary layer estimate of viscous energy dissipation in spinning spacecraft tanks, AIAA Paper 2000–5215, AIAA Space 2000 Conference.
Dodge, F. T., Unruh, S. T., Green, S. T., and Cruse, M. W. (1994), A mechanical model of liquid inertial waves for use with spinning spacecraft, ASME FED 198, 13021.Google Scholar
Doǧangün, A.Durmuş, A., and Ayvaz, Y. (1996), Static and dynamic analysis of rectangular tanks by using the Lagrangian fluid finite element, Computers Struct. 59(1), 547–552.CrossRefGoogle Scholar
Dokuchaev, L. V. (1964), On the solution of a boundary value problem on the sloshing of a liquid in conical cavities, J. Appl. Math. Mech. (PMM) 28(1), 151–154.CrossRefGoogle Scholar
Dommermuth, D. G. (1993), The laminar interaction of a pair of vortex tubes with a free surface, J. Fluid Mech. 246, 91–112.CrossRefGoogle Scholar
Dong, R. G. (1978), Sloshing in pools under earthquake-like ground motions, J. Power Div. 104(2), 157–167.Google Scholar
Donnell, L. H. (1976), Beams, Plates, and Shells, New York, McGraw-Hill.Google Scholar
Donnelly, R. J. (1988), Superfluid turbulence, Scientific American 259(5), 100–108.CrossRefGoogle Scholar
Donnelly, R. J. (1991), Quantized Vortices in Helium I.I., Cambridge, Cambridge University Press.Google Scholar
Douady, S. (1990), Experimental study of the Faraday instability, J. Fluid Mech. 221, 383–409.CrossRefGoogle Scholar
Douady, S., Fauve, S., and Thual, O. (1989), Oscillatory phase modulation of parametrically forced surface waves, Europhys. Lett. 62, 309.CrossRefGoogle Scholar
Dowell, E. H. (1967), On the nonlinear flexural vibrations of rings, AIAA J. 5, 1508–1509.CrossRefGoogle Scholar
Dowell, E. H. (1998), Comments on the nonlinear vibrations of cylindrical shells, J. Fluids and Struct. 12, 1087–1089.CrossRefGoogle Scholar
Dowell, E. H. and Ventres, C. S. (1968), Modal equations for nonlinear flexural vibrations of a cylindrical shell, Int. J. Solids Struct. 4, 975–991.CrossRefGoogle Scholar
Drake, K. R. (1999), The effect of internal pipes on the fundamental frequency of liquid sloshing in a circular tank, Appl. Ocean Res. 21(3), 133–143.CrossRefGoogle Scholar
Drolet F. and Viñals J. (1998), Fluid physics in a fluctuating acceleration environment, Proc. 4th Microgravity Fluid Phys. and Transport Phenomena Conf., Cleveland, Ohio, August 12–14.
Druz, B. I. and Magula, V. Z. (1967), Small longitudinal vibrations of a fluid in a perfectly flexible, elastic, cylindrical shell, (in Russian)Inzh. Zh. Mekh. Tverdogo Tela. 6, 63–67.Google Scholar
Dupont, P. E. (1992), The effect of Coulomb friction on the existence and uniqueness of the forward dynamics problems, Proc. 1992IEEE Int. Conf. on Robotics and Automation1442–1447.Google Scholar
Dussan, V. E. B. (1976), The moving contact line: The slip boundary condition, J. Fluid Mech. 77, 665–668.CrossRefGoogle Scholar
Dussan, V. (1979), On the spreading of liquids on solid surfaces: Static and dynamic contact-lines, Annals Rev. Fluid Mech. 11, 371–400.CrossRefGoogle Scholar
Dussan, V. and Davis, S. H. (1974), On the motion of fluid–fluid interface along a solid surface, J. Fluid Mech. 77, 71–95.CrossRefGoogle Scholar
Dzyuba, V. V. and Kubenko, V. D. (2002), Axisymmetric interaction problem for a sphere pulsating inside an elastic cylindrical shell filled with and immersed into a liquid, Int. Appl. Mech. 38(10), 1210–1219.CrossRefGoogle Scholar
Easton, C. R. and Catton, I. (1970), Nonlinear free surface effects in tank draining at low gravity, AIAA J. 8(12), 2195–2199.Google Scholar
Ebert E. (1984), Study of slosh dynamics of fluid filled containers on a 3-axis spin stabilized spacecraft, 2, Fluid Slosh Studies 5328/83/NL/Bi(Sc), ESA.
Ebert E. (1989), Modeling of liquid sloshing effects in multi-body systems, Proc. Int. Conf. Spacecraft Structures and Mechanical Testing, Noordwijk, NL, 19–21 Oct 1988, ESA SP-289, 269–275.
Eckhardt, K. and Netter, G. (1982), Experiment for investigation of the dynamic behavior of fluid in a surface tension tank under microgravity condition, Acta Astronautica 9(9), 565–571.CrossRefGoogle Scholar
Edwards N. W. (1969), A procedure for dynamic analysis of thin walled cylindrical liquid storage tanks subjected to lateral ground motions, Ph.D. dissentation., University of Michigan, Ann Arbor, MI.
Edwards, W. S. and Fauve, S. (1993), Parametrically excited quasicrystalline surface waves, Phys. Rev. E 47, R788–791.CrossRefGoogle ScholarPubMed
Edwards, W. S. and Fauve, S. (1994), Patterns and quasi-patterns in the Faraday experiment, J. Fluid Mech. 278, 123–148.CrossRefGoogle Scholar
Eggleston D. M. (1968), Dynamic stability of space vehicles, XIV: Testing for booster propellant sloshing parameters, NASA CR-948.
Ehrlich L. W. (1959), Exact solutions for sloshing problems, Space Tech. Lab., Memo-PA 2450/79, 22 September.
Ehrlich, L. W., Riley, J. D., Strange, W. G., and Troesch, B. A. (1961), Finite difference techniques for a boundary problem with an eigenvalue in a boundary condition, J. Soc. Indust. Appl. Math. 9, 149–164.CrossRefGoogle Scholar
Eide D. G. (1964), Preliminary analysis of variation of pitch motion of a vehicle in a space environment due to fuel sloshing in a rectangular tank, NASA TN-D-2336.
Eidel, W. (1989), Nonlinear liquid oscillations in prolate spheroidal containers, Z. Flugwiss. Weltraumorsch 13, 159–165.Google Scholar
Eidel, W. and Bauer, H. F. (1988), Nonlinear oscillations of an inviscid liquid column under zero gravity, Ing. Arch. 58, 276–284.CrossRefGoogle Scholar
Einfeldt, J., Kutschke, K. H., and Weber, S. V. (1969), Computation of the shape of the free liquid surface in containers with axial symmetry, Monatsberichte der Deutschen Akademic der Wissenschaften Zu Berlin 11(8/9), 610–615 (in German).Google Scholar
Elliott, G. E. P. and Riddiford, A. C. (1967), Dynamic contact angles, I: The effect of increased motion, J. Colloid. Interface Sci. 23, 389–398.CrossRefGoogle Scholar
El-Rahib, M. and Wagner, P. (1981), Vibration of a liquid with a free surface in a spinning spherical tank, J. Sound Vib. 76, 83–93.CrossRefGoogle Scholar
Engin, A. E. (1969a), Vibrations of fluid-filled spherical shells, J. Acoust. Soc. Amer. 46(1), part 2, 184–190.CrossRefGoogle Scholar
Engin, A. E. (1969b), The axi-symmetric response of a fluid-filled spherical shell to a local radial impulse – a model for head injury, J. Biomech. 2, 325–341.CrossRefGoogle Scholar
Enright P. J. and Wong E. C. (1994), Propellant slosh models for the Cassini spacecraft, AIAA Paper 94–3730.
Epperson T. B. and Brown R. (1957), Dynamic loads due to fuel motion in missile tanks, SwRI, Final Report, Contract No DA-23–072-ORD-1062.
Epperson, T. B., Brown, R., and Abramson, H. N. (1961), Dynamic loads resulting from fuel motion in missile tanks, in Advances in Ballistic Missile & Space Tech, II, NY, Pergamon Press, 313–327.Google Scholar
Ergin, A. (1997), An approximate method for the free vibration analysis of partially filled and submerged, horizontal cylindrical shells, J. Sound Vib. 207, 761–767.CrossRefGoogle Scholar
Ergin, A. and Temarel, P. (2002), Free vibrations of a partially liquid-filled and submerged, horizontal cylindrical shell, J. Sound Vib. 254(5), 951–965.CrossRefGoogle Scholar
Erneux, T. and Mandel, P. (1986), Imperfect bifurcation with a slowly-varying control parameter, SIAM J. Appl. Math. 46(1), 1–15.CrossRefGoogle Scholar
Espinosa, F. M. and Gallego-Juarez, J. A. (1984), On the resonance frequencies of water-loaded circular plates, J. Sound Vib. 94, 217–222.CrossRefGoogle Scholar
Eulitz W. R. (1957), The sloshing phenomenon and the mechanics of a liquid in motion in an oscillating missile container, Army Ballistic Missile Agency, Rept. No. DS-R-31-Div. Operation.
Eulitz W. R. (1958), A Can Type anti-slosh device derived from basis slosh studies, Army Ballistic Missile Agency, Rept. No. DSD-TR-4–58.
Eulitz W. R. (1961), Analysis and control of liquid propellant sloshing during missile flight, NASA-MSFC, MTP-P and VE-P-61, December.
Eulitz W. R. (1963), Practical consequences of liquid propellant slosh characteristics derived by nomographic methods, NASA-MSFC, MTP-P and VE-P-63–7.
Eulitz W. R. and Glaser R. F. (1961), Comparative experimental and theoretical considerations on the mechanism of fluid oscillations in cylindrical containers, Army Ballistic Missile Agency, Rept. No. MTP-M-S and M-61, 29 May.
Evan-Iwanowski, R. M. (1976), Resonance Oscillations in Mechanical Systems, New York, Elsevier Science.Google Scholar
Evans, D. V. (1990), The wide-spacing approximation applied to multiple scattering and sloshing problems, J. Fluid Mech. 210, 647–658.CrossRefGoogle Scholar
Evans, D. V. and Linton, C. M. (1993), Sloshing frequencies, Quart. J. Mech. and Appl. Math. 46, 71–87.CrossRefGoogle Scholar
Evans, D. V. and McIver, P. (1987), Resonant frequencies in a container with vertical baffles, J. Fluid Mech. 175, 295–307.CrossRefGoogle Scholar
Evensen, D. A. (1963), Some observations on the nonlinear vibration of thin cylindrical shells, AIAA J. 1, 2857–2858.CrossRefGoogle Scholar
Evensen D. A. (1964), Nonlinear flexural vibrations of thin circular rings, Ph.D. thesis, California Inst. Tech.
Evensen, D. A. (1966), A theoretical and experimental study of the nonlinear flexural vibrations of thin circular rings, ASME J. Appl. Mech. 33, 553–560.CrossRefGoogle Scholar
Evensen D. A. (1967), A nonlinear flexural vibrations of thin-walled circular cylinders, NASA TND 4090.
Evensen, D. A. (1974), Nonlinear vibrations of circular cylindrical shells, in Thin Walled Structures: Theory, Experiment and Design, Fung, Y. C., and Sechler, E. E., eds., 133–155. Englewood Cliffs, Prentice-Hall.Google Scholar
Evensen, D. A. (1999), Nonlinear vibrations of cylindrical shells – logical rationale, J. Fluids & Struct. 13, 161–164.CrossRefGoogle Scholar
Ewart D. G. (1956), Fuel oscillations in cylindrical tanks and the forces produced thereby, De Havilland Propellers Ltd, G. W. Dynamics Dept, Tech. Note No 2050, 8 November.
Faltinsen, O. M. (1974), A nonlinear theory of sloshing in rectangular tanks, J. Ship Res. 18(4), 224–241.Google Scholar
Faltinsen, O. M. (1978), A numerical nonlinear method of sloshing in tanks with two-dimensional flow, J. Ship Res. 18(4), 224–241.Google Scholar
Faltinsen, O. M. and Rognebakke, O. F. (1999), Sloshing and slamming in tanks, in Hydona'99- Manoeuvring'99, Gdansk-Ostroda, Poland Technical University of Gdansk.Google Scholar
Faltinsen O. M., Olsen H. A., Abramson H. N., and Bass R. L. (1974), Liquid slosh in LNG carriers, Det. Norske Veritas, Norway, Publication No 85.
Faltinsen, O. M., Rognebakke, O. F., Lukovskii, I. A., and Timokha, A. N. (2000), Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth, J. Fluid Mech. 407, 201–234.CrossRefGoogle Scholar
Faltinsen, O. M., Rognebakke, O. F., and Timokha, A. N. (2003), Resonant three-dimensional nonlinear sloshing in a square base basin, J. Fluid Mech. 487, 1–42.CrossRefGoogle Scholar
Faltinesn, O. M. and Timokha, A. N. (2001), An adaptive multidimensional approach to nonlinear sloshing in a rectangular tank, J. Fluid Mech. 432, 167–200.Google Scholar
Faltinesn, O. M. and Timokha, A. N. (2002a), Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth, J. Fluid Mech. 470, 319–357.Google Scholar
Faltinesn, O. M. and Timokha, A. N. (2002b), Analytically-oriented approaches to two-dimensional fluid sloshing in a rectangular tank (survey), in Problems of Analytical Mechanics and its Applications 44, 321–345, Proc. Inst. Math. Ukrakian National Akad. Sci.Google Scholar
Faraday, M. (1831), On the forms and states assumed by fluids in contact with vibrating elastic surfaces, Phil. Trans. Royal Soc. (London) 121, 319–340.Google Scholar
Farooq, A. and Homsy, G. M. (1994), Streaming flows due to g-jitter-induced natural convection, J. Fluid Mech. 271, 351–378.CrossRefGoogle Scholar
Fauve, S., Kumar, K., Laroche, C., Beysens, D., and Garabos, Y. (1992), Parametric instability of a liquid-vapor interface close to the critical point, Phys. Rev. Lett. 68, 3160–3163.CrossRefGoogle ScholarPubMed
Fediw, A. A., Isyumov, N., and Vickery, B. J. (1995), Performance of a tuned sloshing water damper, J. Wind Eng. Indust. Aerodyn. 57(2/3), 237–247.CrossRefGoogle Scholar
Felippa, C. (1991), Mixed Variational Formulations of Finite Element Analysis of Elastoacoustic/Slosh Fluid Structure Interaction, NASA, NTIS, Washington, DC.Google Scholar
Felippa, C. A. and Ohayon, R. (1990), Mixed variational formulation of finite element analysis of acoustoelastic/slosh fluid-structure interaction, Int. J. Fluid Struct. 4, 35–57.CrossRefGoogle Scholar
Feng G. C. (1973), Dynamic loads due to moving liquid, AIAA Paper No 73–409.
Feng G. C. and Robertson S. J. (1971), Study on propellant dynamics during docking, Interim Rept., NASA-CR-119904, June.
Feng G. C., and Robertson S. J. (1972), Study on propellant dynamics during docking, NASA-CR-124055, 15 March.
Feng Z. C. (1990), Bifurcation analysis of surface waves, Ph.D. dissertation, University of Minnesota.
Feng, Z. C. and Sethna, P. R. (1989), Symmetry-breaking bifurcations in resonance surface waves, J. Fluid Mech. 199, 495–518.CrossRefGoogle Scholar
Ferrant, P. and Touze, D. (2001), Simulation of sloshing waves in a 3D tank based on a pseudo-spectral method, Proc. 16th Int. Workshop on Water Waves and Floating Bodies, Hiroshima, Japan.Google Scholar
Field, S. B. and Martin, J. P. (1976), Comparative effects of U-tube and free surface type passive roll stabilization systems, Royal Inst. Naval Archit. 2, 73–92.Google Scholar
Figarov N. G. (1971), Vibrations of fluids in elliptical reservoirs, in Structural Dynamics, Koreneva, B. G., ed., Moscow, Izdatelsvo Literatury po Stroitelstvu.Google Scholar
Filippov, A. (1964), Differential Equations with Discontinuous Right-Hand Sides, Rhode Island: Amer. Math. Soc. Translations 42, Series 2.Google Scholar
Filstead, C. G. Jr (1972), The design and operation of LNG ships with regard to safety, Shipping World and Shipbuilder 165(3866), 259–262.Google Scholar
Finn, R. (1974), A note on capillary problem, Acta Math. 132, 199–207.CrossRefGoogle Scholar
Finn, R. (1978), Some comparison properties and bounds for capillary surfaces, in Complex Analysis and its Applications (Moscow, Nauka), 555–562.Google Scholar
Finn, R. (1979), Existence and nonexistence of capillary surfaces, Manuscr. Math. 28, 1–9.CrossRefGoogle Scholar
Finn, R. (1983), Existence criteria for capillary free surfaces without gravity, Indiana University Math. J. 32, 439–460.CrossRefGoogle Scholar
Finn, R. (1984), A subsidiary variational problem and existence criteria for capillary surfaces, J. Reine. Angew. Math. 353, 196–214.Google Scholar
Finn, R. (1986), Equilibrium Capillary Surfaces, New York, Springer-Verlag.CrossRefGoogle Scholar
Finn, R. (1999), Capillary surface interface, Notices AMS 46, 770–781.Google Scholar
Fischer, D. F. (1979), Dynamic fluid effects in liquid filled flexible cylindrical tanks, Earthquake Eng. Struct. Dyn. 7, 587–601.CrossRefGoogle Scholar
Fischer, D. F. and Rammerstorfer, F. G. (1982), The stability of liquid-filled cylindrical shells under dynamic loading, in Buckling of Shells, Proc. State-of-the-Art Colloq., Berlin, 569–597.Google Scholar
Fischer D. F. and Rammerstorfer F. G. (1984), Stability of liquid storage tanks under earthquake excitation, Proc. 8th World Conf. Earthquake Eng., San Francisco, CA 5, 215–222.
Fischer, D. F., and Rammerstorfer, F. G. (1999), A refined analysis of sloshing effects in seismically excited tanks, Int. J. Pressure Vess. Piping 76(10), 693–709.CrossRefGoogle Scholar
Fischer D. F., Rammerstorfer F. G., and Scharf K. (1991), Earthquake resistant design of anchored and unanchored liquid storage tanks under three-dimensional earthquake excitation, in Structural Dynamics: Recent Advances, Schueller, G. I., ed., Berlin, Springer, 317–371.CrossRefGoogle Scholar
Floryan, J. M. and Rasmussen, H. (1989), Numerical methods for viscous flows with moving boundaries, ASME Appl. Mech. Rev. 42, 323–349.CrossRefGoogle Scholar
Flugrad, D. R. and Obermaier, L. A. (1992), Computer simulation of a test rig to model sloshing in spin-stabilized satellites, J. Dyn. Syst., Measurement and Control 114, 689–698.CrossRefGoogle Scholar
Fogiel, M. (1994), Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, Transforms, Piscataway, NJ, Research & Education Association.Google Scholar
Fontenot L. L. (1968), The dynamics of liquids in fixed and moving containers, VII in Dynamic Stability of Space Vehicles, NASA CR-941.
Fontenot, L. L. and Lianis, G. (1963), The free vibrations of thin elastic pressurized cylindrical shells filled with a perfect and incompressible liquid having a free surface, Int. Symp. on Space Technology and Science, Tokyo.Google Scholar
Fontenot L. L. and Lomen D. O. (1964), Dynamic behavior of partially filled containers of arbitrary geometry executing prescribed vertical excitation, Convair Rep. EER-AN-533.
Fontenot, L. L., McDonough, G. F., and Lomen, D. O. (1965), Liquid free surface instability resulting from random vertical acceleration, Proc. 6th Int. Symp. on Space Technology and Science, Tokyo.Google Scholar
Fossen, T. L. (1994), Guidance and Control of Ocean Vehicles, New York, John Wiley & Sons.Google Scholar
Foster, G. K. and ADD, Craik (1997), Second-harmonic resonance with Faraday excitation, Wave Motion 26, 361–377.CrossRefGoogle Scholar
Fox, D. W. and Kuttler, J. R. (1981), Upper and lower bounds for sloshing frequencies by intermediate problems, J. Appl. Math. Phys. (ZAMP) 32, 667–682.CrossRefGoogle Scholar
Fox, D. W., and Kuttler, J. R. (1983), Sloshing frequencies, J. Appl. Math. Phys. (ZAMP) 34, 668–696.CrossRefGoogle Scholar
Frahm, H. (1911), Results of trials of the anti-rolling tanks at sea, Transactions of the Inst. Naval Architecture 53, 183–197.Google Scholar
Francescutto A. and Contento G. (1994), An experimental study of the coupling between roll motion and sloshing in a compartment, ISOPE'94, Osaka, Japan, 3, 283–288.
Frandsen J. B. (2002), Sloshing effects in periodically and seismically excited tanks, 5th World Cong. Comput. Mech., Vienna, Austria.
Frandsen J. B. and Borthwick AGL (2002), Nonlinear sloshing in fixed and vertically excited containers, Proc. ASME WAM IMECE 2002–32948.
Frank, S. and Schwabe, D. (1998), Temporal and spatial elements of thermocapillary convection in floating zones, Experiments in Fluids 23, 234–251.CrossRefGoogle Scholar
Frasier, J. T. and Scott, W. E. (1971), Stability of a liquid-filled gyroscope: Inviscid analysis, viscous corrections and experiments, J. Spacecraft and Rock. 8(5), 523–526.CrossRefGoogle Scholar
Freed L. E. (1957), Stability of motion of conical pendulums, Space Technol. Labs. Memo. GM 45.3–434, October.
Froude, W. (1874), Considerations respecting the rolling of ships at sea, Transactions of the Inst Naval. Architecture 14, 96–116Google Scholar
Fu, R. D. (1993), Finite element analysis of lateral sloshing response in axi-symmetric tanks with triangular elements, Comp. Mech. 12, 51–58.Google Scholar
Fujii, K., Tamura, Y., Sato, T., and Wakahara, T. (1988), Wind-induced vibration of tower and practical applications of tuned sloshing damper, J. Wind Eng. 37, 537–646.Google Scholar
Fujii, K., Tamura, Y., Sato, T., and Wakahara, T. (1990), Wind-induced vibration of tower and practical applications of tuned sloshing damper, J. Wind Eng. and Indus. Aerodyn. 33, 263–272.CrossRefGoogle Scholar
Fujino, Y. and Abe, M. (1993), Design formulas for tuned dampers based on a perturbation technique, Earthquake Eng. Struct. Dyn. 22, 833–854.CrossRefGoogle Scholar
Fujino, Y., Pacheco, B. M., Chaiseri, P., and Fujii, K. (1988a), An experimental study on tuned liquid damper using circular containers, JSCE J. Struct. Eng. 34A, 603–616.Google Scholar
Fujino, Y., Pacheco, B. M., Chaiseri, P., and Sun, L. M. (1988b), Parametric study on tuned liquid damper (TLD) using circular containers by free-oscillation experiments, JSCE Struct. Eng./Earthquake Eng. 5(2), 177–187.Google Scholar
Fujino, Y., Pacheco, B. M., Chaiseri, P., Sun, L. M., and Koga, K. (1990), Understanding of LTD properties based on TMD analogy, JSCE J. Struct. Eng. 36A, 577–590.Google Scholar
Fujino, Y., Pacheco, B. M., Sun, L. M., Chaiseri, P., and Isobe, M. (1989), Simulation of nonlinear waves in rectangular tuned liquid damper (TLD) and its verification, JSCE J. Struct. Eng. 35A, 561–574.Google Scholar
Fujino, Y. and Sun, L. M. (1993), Vibration control by multiple tuned liquid dampers (MTLDs), ASCE J. Struct. Eng. 119(12), 3482–3502.CrossRefGoogle Scholar
Fujino, Y., Sun, L. M., and Koga, K. (1991), Simulation and experiment on tuned liquid damper subjected to pitching motion, JSCE J. Struct. Eng. 37A, 805–814.Google Scholar
Fujino, Y., Sun, L. M., Pacheco, B. M., and Chaiseri, P. (1992), Tuned liquid damper (LTD) for suppressing horizontal motion of structures, ASCE J. Eng. Mech. 118, 2017–2030.CrossRefGoogle Scholar
Fujino, Y.et al. (1992), Tuned liquid dampers for suppressing horizontal motion of structures, ASCE J. Eng. Mech. 118, 2017–2030.CrossRefGoogle Scholar
Fujita, K. (1981), A seismic response analysis of a cylindrical liquid storage tank including the effect of sloshing, Bull. JSME 24(195), 1634–1641.CrossRefGoogle Scholar
Fujita, K. (1985), Vibration analysis of fluid-coupled two coaxial axisymmetric shells containing fluid, Trans. JSME (in Japanese) 51, 1170–1179.CrossRefGoogle Scholar
Fujita, K., Ito, T., Kodama, T., Adachi, S., Sekine, K., Ozaki, H, Eguchi, Y., and Yamamoto, K. (1993), A study on flow-induced vibration of a flexible weir due to fluid discharge: effect of weir stiffness, ASME Proc. Flow-Induced Vib. and Fluid–Structure Interaction 258, 143–150.Google Scholar
Fujita, K., Ito, T., Kodama, T., Eguchi, Y., and Yamamoto, K. (1996), Flow-induced vibration of a flexible weir due to fluid discharge: effect of weir stiffness, J. of Fluid and Structures 10, 79–98.CrossRefGoogle Scholar
Fujita, K., Ito, T., Shiraishi, T., Kodama, T., Akutsu, M., and Okabe, Y. (1991), Study on sloshing characteristics in the reactor vessel of top entry system of FBR, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 223, 91–96.Google Scholar
Fujita, K., Ito, T., and Wada, H. (1990), Experimental study on the dynamic buckling of cylindrical shell due to seismic excitation, inFlow-Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 31–36.Google Scholar
Fukaya M., Baba M., Okamoto K., and Madarame H. (1995), Self-induced sloshing caused by a jet from a rectangular tank wall, Proc. HYDRA-2000, 26th Congress IAHR 1, 468–473.
Fukaya M., Madarame H., and Okamoto K. (1996), Growth mechanism of self-induced sloshing caused by vertical plane jet, Proc. ASME– JSME 4th Int. Conf.Nuclear Engineering, Rao, A. S., Duffey, R. B., and Elias, D., eds., New Orleans, 1, 781–787.Google Scholar
Fukaya M., Okamot K., Madarame H., and Iida M. (1993), Effect of tank geometries on self-induced sloshing caused by upward plane jet, Proc Asia-Pacific Vib. Conf., 93, 1, 271–276.
Fuller, C. R. and Fahy, F. J. (1982), Characteristics of wave propagation and energy distribution in cylindrical elastic shells filled with fluid, J. Sound Vib. 81(4), 501–518.CrossRefGoogle Scholar
Fultz, D. (1962), An experimental note on finite-amplitude standing gravity waves, J. Fluid Mech. 13, 193–212.CrossRefGoogle Scholar
Funakoshi, M. and Inoue, S. (1987), Chaotic behavior of resonantly forced surface waves, Phys. Lett A 121, 229–232.CrossRefGoogle Scholar
Funakoshi, M. and Inoue, S. (1988), Surface waves due to resonant horizontal oscillation, J. Fluid Mech. 192, 219–247.CrossRefGoogle Scholar
Funakoshi, M. and Inoue, S. (1991), Bifurcations in resonantly forced water waves, European J. Mech. B/Fluids 10, 31–36.Google Scholar
Fung, F. W. (1965), Dynamic response of liquids in partially filled containers suddenly experiencing weightlessness, Symp. on Fluid Mechanics and Heat Transfer under Low Gravitational Conditions, Lockheed Missiles & Space Co, 24–25 June.Google Scholar
Fung, Y. C.Sechler, E. E., and Kaplan, A. (1957), On the vibration of thin cylindrical shells under internal pressure, J. Aeron. Sci. 24(9), 650–660.CrossRefGoogle Scholar
Galiev Sh, U. (1977), The Dynamics of the Interaction of Structural Elements with a Pressure Wave in a Liquid, Kiev, Naukova Dumka (in Russian).Google Scholar
Galiev Sh, U. (1981), The Dynamics of Hydroelastoplastic Systems, Kiev, Naukova Dumka (in Russian).Google Scholar
Ganapathi, M. and Vardan, T. K. (1996), Large amplitude vibrations of circular cylindrical shells, J. Sound Vib. 192, 1–14.CrossRefGoogle Scholar
Ganiev, R. F. (1977), Nonlinear resonance oscillations of bodies with a liquid, Soviet Appl. Mech. 13(10), 978–984.CrossRefGoogle Scholar
Ganiev, R. F. and Kholopova, V. V. (1975), Nonlinear oscillations of a body with a fluid performing motion in space, Soviet Appl. Mech. 11(11), 65–77.CrossRefGoogle Scholar
Ganiev, R. F. and Koval'chuk, P. S. (1980), The Dynamics of Systems of Rigid and Elastic Bodies, Moscow, Mashinostroyeniye (in Russian).
Ganiev, R. F., Lakiza, V. D., and Tsapenko, A. S. (1976), On resonance effects for vibrating bodies containing a liquid under zero gravity, in Space Studies in the Ukrane9, 26–37, Kiev, Naukova Dumka.Google Scholar
Ganiev, R. F.Lakiza, V. D., and Tsapenko, A. S. (1977), On dynamic behavior of a free liquid surface under low gravity and vibrational effects, Soviet Appl. Mech. 13(5), 102–107.CrossRefGoogle Scholar
Gans R. F. and Yalisover S. M. (1981), Observations and measurements of flow in a partially-filled horizontally rotating cylinder, ASME Paper 81-WA/FE-21.
Gao, H. and Kwok, K. C. S. (1997), Optimization of tuned liquid column dampers, Eng. Struct. 19(6), 476–486.CrossRefGoogle Scholar
Gao, H., Kwok, K. C. S., and Samali, B. (1999), Characteristics of multiple tuned liquid column dampers in suppressing structural vibration, Eng. Struct. 21, 316–331.CrossRefGoogle Scholar
Gardarsson S. (1997), Shallow-water sloshing, Ph.D. thesis, University of Washington, Seattle.
Gardarsson, S., Yeh, H., and Reed, D. (2001), Behavior of sloped-bottom tuned liquid dampers, ASCE J. Eng. Mech. 127(3), 266–271.CrossRefGoogle Scholar
Garrett, C. (1970), On cross-waves, J. Fluid Mech. 41(4), 837–849.CrossRefGoogle Scholar
Garza L. R. (1963), A brief comparison of ring and asymmetrical baffle characteristics, SwRI Tech. Rept. 6.
Garza L. R. (1964), Measurements of liquid natural frequencies and damping in compartmented cylindrical tanks, SwRI Tech. Rept. 8.
Garza, L. R. (1966), Theoretical and experimental pressures and forces on a ring baffle under sloshing conditions, J. Spacecraft Rock. 3(2), 276–278.CrossRefGoogle Scholar
Garza L. R. and Abramson H. N. (1963), Measurements of liquid damping provided by ring baffles cylindrical tanks, SwRI, Tech. Rept. No 5, April.
Garza, L. R. and Dodge, F. T. (1967), Comparison of flexible and rigid ring baffles for slosh suppression, J. Spacecraft Rock. 4(6), 805–806.Google Scholar
Gau J. S. (1985), Deterministic behavior of elevated water tanks under vertical motion, Master thesis, Texas Tech University, Lubbock, TX.
Gauss K. F. (1829), Principia generalia theoriae figurae fluidorum in statu aequilibrii, Gött. Gelehrte Anz. 1829: 1641–1648, Werke 5, 287–292. Göttingen: K. Ges. Wiss. Gött. 1867, Hildesheim: Olms, 1973.
Gavrilyuk, I., Lukovsky, I. A., and Timokha, A. N. (2000), A multimodal approach to nonlinear sloshing in a circular cylindrical tank, Hybrid Methods in Engineering 2(4), 469–484.CrossRefGoogle Scholar
Gavrilyuk, I.Lukovsky, I. A., and Timokha, A. N. (2001), Nonlinear sloshing in a circular conical tank, Hybrid Methods in Engineering 3(4), 1–39.CrossRefGoogle Scholar
Gedikli, A., and Ergüven, M. E. (1999), Seismic analysis of a liquid storage tank with a baffle, J. Sound Vib. 223(1), 141–155.CrossRefGoogle Scholar
Genevaux, J. M., and Lu, D. (2000), On sloshing in a container with moving wall, J. Fluid Struct. 14(2), 275–278.CrossRefGoogle Scholar
Gerlach, C. R. (1968), Surface disintegration of liquid in longitudinally excited containers, J. Spacecraft Rock. 5(5), 553–560.CrossRefGoogle Scholar
Gerrits J. (2001), Dynamics of liquid-filled spacecraft: Numerical simulation of coupled solid–liquid dynamics, Ph.D. thesis, Rijksaniversiteit Groningen.
Gerrits J., Loots G. E., Fekken G., and Veldman AEP (1999), Liquid sloshing in space and on earth, in Moving BoundariesSarler, V. B., Brebbia, C. A., and Power, H., eds., Southampton, WIT Press, 111–120.Google Scholar
Gershuni, G. Z. and Lyubimov, D. V. (1998), Thermal Vibrational Convection, New York, Wiley.Google Scholar
Gershuni, G. Z. and Zhukhovitskii, E. M. (1963), On parametric excitation of convective instability, Prikl. Mat. Mekh. (PMM) 27(5), 1197–1204.CrossRefGoogle Scholar
Gershuni, G. Z. and Zhukhovitskii, E. M. (1964), On parametric excitation of a rigid rotating fluid, Prikl. Mat. Mekh. (PMM) 28(5), 1010–1016.CrossRefGoogle Scholar
Gershuni, G. Z. and Zhukhovitskii, E. M. (1976), Convective Stability of Incompressible Fluids, Jerusalem, Keter.Google Scholar
Gershuni, G. Z. and Zhukhovitskii, E. M. (1986), Vibrational thermal convection in zero gravity, Fluid Mech. – Sov. Res. 15, 63–84.Google Scholar
Ghali S. A. (1965), The dynamics of liquids in rectangular moving containers, Ph.D. thesis, University of Leeds, Dept. Civil Eng.
Giancaglia, G. E. O. (1972), Perturbation Methods in Nonlinear Systems, Berlin, Springer.CrossRefGoogle Scholar
Gilbert C. R. (1985), Gas payload No G-025: Study of liquid sloshing behavior in microgravity, NASA Goddard Space Flight Center's 1985 Get Away Special Experimenter's Symposium 165–176, NASA CP-2401.
Gilbert, C. R., Netter, G., and Vits, P. (1984), Study of liquid sloshing behavior in microgravity, Goddard Space Flight Center's 1984Get Away Special Experimenter's Symposium38–54.Google Scholar
Gillard P. (1963), Theoretical and experimental research of nonlinear oscillations of liquids in containers and channels of constant depth, Publ. Sci. Tech. Minist. l'Air, France, No 412 (in French).
Gillis, J. (1961), Stability of a column of rotating viscous liquid, Proc. Cambridge Phil. Soc. 57, 152–159.CrossRefGoogle Scholar
Gillis, J. and Kaufman, B. (1961), The stability of a rotating viscous jet, Quart. Appl. Math. 19(4), 301–308.CrossRefGoogle Scholar
Gillis, J. and Shuh, K. S. (1962), Stability of a rotating liquid column, Phys. Fluids 5, 1149–1155.CrossRefGoogle Scholar
Ginsberg, J. H. (1973), Large amplitude forced vibrations of simply supported thin cylindrical shells, ASME J. Appl. Mech. 40, 471–477.CrossRefGoogle Scholar
Ginsberg, J. H. (1974), Nonlinear axisymmetric free vibration in simply supported cylindrical shells, ASME J. Appl. Mech. 41, 310–311.CrossRefGoogle Scholar
Ginsberg, J. H. (1975), Multidimensional nonlinear acoustic wave propagation, part II: The nonlinear interaction of an acoustic fluid and plate under harmonic excitation, J. Sound Vib. 40, 359–379.CrossRefGoogle Scholar
Glaser R. F. (1967), Axi-symmetric vibrations of partially liquid filled cylindrical containers, NASA TN-D-4026, July.
Glimm, J. (1965), Solutions in the large for nonlinear-hyperbolic systems of equations, Comm. on Pure and Appl. Math. 18.CrossRefGoogle Scholar
Gluck, D. F. and Gille, J. P. (1965), Fluid mechanics of zero-g propellant transfer in spacecraft propulsion systems, J. Eng. for Industry 87(1), 1–8.CrossRefGoogle Scholar
Gluck, D. F., Gille, J. P., Simkin, D. J., and Zukoski, E. E. (1966), Distortion of the liquid surface during tank discharge under low-g conditions, J. Spacecraft Rock. 3(11), 1691–1692.Google Scholar
Gold H., McArdle J. G., and Petrash D. A. (1967), Slosh dynamics study in near zero gravity, description of vehicle and spacecraft, NASA TN-D-3985.
Goldberg, Z. A. (1972), Parametric amplification of standing waves in fluids, Sov. Phys. Dokl. 16(11), 949–950.Google Scholar
Goldsborough, G. H. (1930), The tidal oscillations in an elliptic basin of variable depth, Proc. Royal Soc. (London) A 130, 157–167.CrossRefGoogle Scholar
Goldstein, S. (1938), Modern Developments in Fluid Dynamics, 2, London, Oxford University Press.Google Scholar
Gollub, J. P. and Meyer, C. W. (1983), Symmetry-breaking instabilities on a fluid surface, Physica 6D, 337–346.Google Scholar
Gollub J. P. and Simonelli F. (1989), Bifurcation and modal interactions in fluid mechanics: surface waves, Proc. XVII Int. Congress of Theor. Appl. Mech, Grenoble, France, 21–27 August 1988, P Germain, M Piau, and D. Caillerie, eds., North Holland, Elsevier Sciences, 73–82.CrossRef
Goltser, I. M. and Kuntisyn, A. L. (1975), On the stability of autonomous systems with intrinsic resonance, J. Appl. Math. Mech. (PMM) 39(6), 974–984.Google Scholar
Golubitsky, M., Stewart, I., and Schaeffer, D. G. (1988), Singularity and Groups in Bifurcation Theory, II (69) in Appl. Math. Sci. Series, New York, Springer-Verlag.Google Scholar
Gonçalves, P. B. and Batista, R. C. (1988), Nonlinear vibration analysis of fluid-filled cylindrical shells, J. Sound Vib. 127, 133–143.CrossRefGoogle Scholar
Gonçalves, P. B. and Ramos, N. R. S. S. (1996), Free vibration analysis of cylindrical tanks partially filled with liquid, J Sound Vib. 195, 429–444.CrossRefGoogle Scholar
Goodrich, C. L., Shi, W. T., Hentschel, H. C. E., and Lathrop, D. P. E (1997), Viscous effects in droplet-ejecting capillary waves, Phys. Rev. 56, 472–475.Google Scholar
Goodrich, C. L., Shi, W. T., and Lathrop, D. P. E. (1996), Threshold dynamics of singular gravity-capillary waves, Phys. Rev. Lett. 76, 1824–1827.CrossRefGoogle Scholar
Gorbunov Yu, A. (1965), Experimental investigation of the vibrations of spherical and cylindrical shells with a liquid in the presence of pressure, Abstracts of Papers read at the 5th All-Union Conf. on the Theory of Plates and Shells, Moscow, Nauka, 57–61.Google Scholar
Görtler H. (1957), On forced oscillations in rotating fluids, Proc. 5th Midwestern Conf. Fluid Mechanics, University of Michigan, 1–10.
Gossard M. L. (1965), Axi-symmetric dynamic response of liquid-filled hemispherical, thin walled, elastic tanks, AIAA Symp. Struct. Dyn. Aeroelasticity, 30 August – 1September.
Gradshteyn, I. S. and Ryzhik, I. M. (1980), Tables of Integrals, Series, and Products, New York, Academic Press.Google Scholar
Graham E. W. (1951), The forces produced by fuel oscillations in a rectangular tank, Douglas Aircraft Co, SM-13748.
Graham, E. W. (1960), Discussion on ‘production of rotation in a confined liquid through translation motion of the boundaries’ by Berlot, ASME J. Appl. Mech. 27(2), 365.CrossRefGoogle Scholar
Graham, E. W. and Rodriguez, A. M. (1952), The characteristics of fuel motion which affect airplane dynamics, ASME J.Appl.Mech. 19(3), 381–388.Google Scholar
Graham-Eagle, J. (1983), A new method for calculating eigenvalues with application to gravity-capillary waves with edge constraints, Math. Proc. Cambridge Phil. Soc. 94, 553–564.CrossRefGoogle Scholar
Graham-Eagle J. (1984), Gravity-capillary waves with edge constraints, Ph.D. thesis, University of Oxford.
Grassia, P. and Homsy, G. M. (1998a), Thermocapillary and buoyant flows with low frequency jitter, I: Jitter confined to the plane, Phys. Fluids 10, 1273–1290.CrossRefGoogle Scholar
Grassia, P., and Homsy, G. M. (1998b), Thermocapillary and buoyant flows with low frequency jitter, II: Span wise jitter, Phys. Fluids 10, 1291.CrossRefGoogle Scholar
Greaves, D. M., Borthwick, A. G. L., Wu, G. X., and Eatock Taylor, R. (1997), A moving boundary finite element method for fully nonlinear wave simulations, J. Ship Res. 41(3), 181–194.Google Scholar
Grebogi, C., Ott, E., and Yorke, J. A. (1982), Chaotic attractors in crisis, Phys. Rev. Lett. 48(22), 1507–1510.CrossRefGoogle Scholar
Grebogi, C., Ott, E., Romeiras, F., and Yorke, J. A. (1987), Critical exponents for crisis-induced intermittency, Phys. Rev. 36, 5365–5380.CrossRefGoogle ScholarPubMed
Green J. W. (1957), Further remarks on conical sloshing, Memo. PA/M-553/2, STL.
Green J. W. (1959), On the approximation to the eigenvalues in a sloshing problem by the eigenvalues of the corresponding discrete problem, Space Tech. Lab., Memo. PA/M-245011, 21 August.
Green J. W. and Landau H. J. (1957), A third note on conical sloshing, Memo. PA/M-553/3, STL.
Greenhill, A. G. (1880), On the general motion of a liquid ellipsoid, Proc. Cambridge. Phil Soc. 4.Google Scholar
Greenhill, A. G. (1887), Wave motion in hydrodynamics, Amer. J. Math. 9, 62–112.CrossRefGoogle Scholar
Greenspan, H. P. (1968), The Theory of Rotating Fluids, Cambridge, Cambridge University Press.Google Scholar
Gribkov V. A. (1982), The Basic Results of Investigations of the Dynamic Characteristics of Shells Filled with a Liquid: Analysis and Systemization of Studies, Deposit in VINITO No 4577–82, Moscow.
Grigoliuk, E. I. (1970), Problems of interaction of shells with a liquid, Proc. 7th All Union Conf. on the Theory of Shells and Plates, Dnepropetrovsk, Moscow, Nauka, 755–778.Google Scholar
Grigoliuk, E. I. (Edi) (1980), Thin-Walled Cylindrical Shells, Moscow, Mashinostroenie (in Russian).Google Scholar
Grigoliuk, E. I., and Gorshkov, A. G. (1976), The Interaction of Elastic Structures with a Liquid, Moscow, Sudostryeniye.Google Scholar
Grigoliuk, E. I., Gorshkov, A. G., and Shkliarchuk, F. N. (1968), On a method of calculating the vibrations of a liquid partially filling an elastic shell of revolution, Izv. Akad. Nauk. SSSR, Mekh. zhid Gaza, No 3, 74–80.Google Scholar
Grigoliuk, E. I. and Shkliarchuk, F. N. (1970), Equations of perturbed motion of a solid with a thin-walled elastic shell partly filled with fluid, J. Appl. Mat. Mech.(PMM) 34(3).Google Scholar
Grigorev, E. T. (1966), The axisymmetric vibrations of a shell with a liquid, Sov. Applied. Mech. (Prikl. Mekh.) 2(4), 39–49.Google Scholar
Grigorev, E. T. (1967), The stability of longitudinal vibrations of a shell containing a fluid, Sov. Appl. Mech. (Prik. Mekh.) 3(6), 23–30.Google Scholar
Grigoryeva, N. B. (1999), The stability of the Jacobi ellipsoids of a rotating liquid, J. Appl. Mat. Mech. 63(6), 1052–1054.Google Scholar
Grigoryeva, N. B. (2000), The stability of the equilibrium ellipsoids of a rotating liquid, J. Appl. Mat. Mech. 64(6), 925–936.CrossRefGoogle Scholar
Grinchenko, V. T. and Komissarova, G. L. (1984), Wave propagation in a hollow elastic cylinder with a liquid, Soviet Appl. Mech. (Prikl. Mekh.) 20(1), 21–26.Google Scholar
Grinchenko, V. T., and Komissarova, G. L. (1988), Properties of normal non-axisymmetric waves in a thick-walled cylinder filled with a liquid, Sov Appl. Mech. (Prikl. Mekh.) 24(10), 15–20.Google Scholar
Grinchenko V. T. and Meleshko V. V. (1981), Harmonic vibrations and waves in elastic bodies, Kiev, Naukova Dumka (in Russian).
Grodzka, P. G. and Bannister, T. C. (1972), Heat flow and convection demonstration experiments aboard Apollo 14, Science 176, 506.CrossRefGoogle ScholarPubMed
Grubb L. S. and Petrash D. A. (1967), Experimental investigation of interfacial behavior following termination of outflow in weightlessness, NASA TN D-3896.
Gu X. M. (1986), Nonlinear surface waves of a fluid in rectangular containers subjected to vertical periodic excitations, Ph.D. dissertation, University of Minnesota.
Gu, X. M. and Sethna, P. R. (1987), Resonance surface waves and chaotic phenomena, J. Fluid Mech. 183, 543–565.CrossRefGoogle Scholar
Gu, X. M., Sethna, P. R., and Narain, A. (1988), On three-dimensional nonlinear subharmonic resonance surface waves in a fluid, part I: theory, J. Appl. Mech. 55, 213–219.CrossRefGoogle Scholar
Guadagnoli D. (1991), The description of a typical spacecraft, monopropellant reaction control system, using spherical propellant tanks with surface tension propellant management devices, GE Astro Space Division Memo.
Guarino, J. C. and Elger, D. F. (1992), Modal analysis of a fluid-filled elastic shell containing an elastic sphere, J. Sound Vib. 156, 461–479.CrossRefGoogle Scholar
Guibert J. P., Huynh H. T., and Marce J. L. (1978), Etude general de l'influence des liquids contenus dans les satellites, ONERA RT 1/3307 SY, September.
Gunter, N. M. (1965), Potential Theory and Its Application to Basic Problems of Mathematical Physics, New York, Frederick Unger Publishing Co.Google Scholar
Gupta, M. R. K. (1995a), Sloshing in shallow cylindrical tanks, J. Sound Vib. 180(3), 397–415.CrossRefGoogle Scholar
Gupta, M. R. K. (1995b), Free vibrations of partially filled cylindrical tanks, Engrg. Struct. 17(3), 221–230.CrossRefGoogle Scholar
Gupta, M. R. K. and Hutchinson, G. L. (1988), Free vibration analysis of liquid storage tanks, J. Sound Vib. 122, 491–506.CrossRefGoogle Scholar
Gupta, M. R. K., and Hutchinson, G. L. (1989), Solid-water interaction in liquid storage tanks, J. Sound Vib. 135(3), 357–374.CrossRefGoogle Scholar
Gupta, M. R. K., and Hutchinson, G. L. (1991), Effects of a wall flexibility on the dynamic response of liquid storage tanks, Engineering Structures 13, 253–267.CrossRefGoogle Scholar
Gustafson D. A. and Gustafson G. R. (1969), Heavy vehicle overturning problems, Chalmers' Institute Tech., Gothenburg, Sweden (in Swedish).
Guthar, G. S. and Wu, T. Y. (1991), Observation of a standing-kink cross wave parametrically excited, Proc. Royal Soc. London A 434, 430–440.Google Scholar
Guyan, R. J., Ujihara, B. H., and Welch, P. W. (1968), Hydroelastic analysis of axi-symmetric systems by a finite element method, Proc. of the 2nd Conf. on Matrix Methods in Structural Mechanics, Ohio, Wright-Patterson AFB, October.Google Scholar
Guyett P. R. (1967), Measurements of the unsteady forces acting on a circular cylindrical tank containing liquid during harmonic motion, ARE TR 67098, April.
Guz, A. N., Kubenko, V. D., and Babaev, A. E. (2002), Dynamics of shell systems interacting with a liquid, Int. Appl. Mech. 38(3), 260–301.CrossRefGoogle Scholar
Haberman, R. (1979), Slowly-varying jump and transition phenomena associated with algebraic bifurcation problems, SIAM J. Appl. Math. 37, 69–105.CrossRefGoogle Scholar
Habip, L. M. (1965), On the mechanics of liquids in sub-gravity, Acta Astronaut. 11(6), 401–409.Google Scholar
Hagiuda, H. (1989), Oscillation control system exploiting fluid force generated by water sloshing, (in Japanese), Mitsui Zosen Technical Review 137, 13–20.Google Scholar
Hale, J. K. (1969), Ordinary Differential Equations, New York, Wiley-Interscience.Google Scholar
Hamann, F. H. and Datton, C. (1971), The forces on a cylinder oscillating sinusoidally in water, J. Eng. for Industry 9(4), 1197–1202.CrossRefGoogle Scholar
Hamdi, M. and Ousset, V. (1978), A displacement method for the analysis of vibrations of coupled fluid–structure systems, Int. J. Num. Methods in Eng. 13, 139–150.CrossRefGoogle Scholar
Hamlin, N. A., Lou, Y. K., Maclean, W. M., Seibold, F., and Chandras, L. M. (1986), Liquid sloshing in slack ship tanks: theory, observations and experiments, SNAME Trans. 94, 159–195.Google Scholar
Hammack, J. L. and Henderson, D. M. (1993), Resonant interactions among surface water waves, Annu. Rev. Fluid Mech. 25, 55–97.CrossRefGoogle Scholar
Hanson R. D. (1973), Behavior of liquid storage tanks: the great Alaska earthquake of 1964, National Academy Sci. Washington D.C., 331–339.
Hara, F. (1990), Experimental study on sloshing characteristics of a flowing liquid in a tank, Trans. JSME Int. J., Series III 33(3), 330–338.Google Scholar
Hara F. (1992), Identification of sloshing suppression force generated by intermittent gas-bubble injection, Proc. 1st MOVIC, 1110–1115.
Hara, F. and Saito, O. (1988), Active control for earthquake-induced sloshing of a liquid contained in a circular tank, Proc. 9th World Conf. Earthquake EngineeringV, 889–894, Tokyo–Kyoto, Japan.Google Scholar
Hara, F. and Shibata, H. (1986), Experimental study on active control of sloshing of a liquid contained in a tank by intermittent gas-bubble injection, Trans. JSME 52(C-481), 2392–2396 (in Japanese).CrossRefGoogle Scholar
Hara, F. and Shibata, H. (1987), Experimental study on active suppression by gas bubble injection for earthquake induced sloshing in tanks, JSME Int. J. 30(260), 318–323.CrossRefGoogle Scholar
Hara, F. and Suzuki, T. (1992), Dynamic instability analysis of self-excited vibration of a flexible weir due to fluid discharge, ASME Symp. Flow-Induced Vibration and Noise, 5: Axial and Annular Flow-Induced Vibration and Instabilities, PVP- 244, 45–58.Google Scholar
Harlow, F. H., Amsden, A. A., and Nix, J. R. (1976), J. Comput. Phys. 20, 119CrossRef
Harlow, F. H. and Welch, J. E. (1965), Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. of Fluids 8, 2152–2196.CrossRefGoogle Scholar
Harlow, F. H., and Welch, J. E. (1966), Numerical study of large-amplitude free surface motions, Phys. of Fluids 9, 842.CrossRefGoogle Scholar
Haroun M. A. (1980), Dynamic analysis of liquid storage tanks, Ph.D. diss., Caltech, Pasadena, CA.
Haroun, M. A. (1983), Vibration studies and tests of liquid storage tanks, Earthquake Eng. Struct. Dyn. 11, 179–206.CrossRefGoogle Scholar
Haroun, M. A. (1991), Implications of observed earthquake-induced damage on seismic codes and standards, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 223, 1–7.Google Scholar
Haroun, M. A. and Elliathy, H. M. (1985a), Seismically induced fluid forces on elevated tanks, ASCE J. Tech. Topics in Civil Eng. 111, 1–15.Google Scholar
Haroun, M. A., and Elliathy, H. M. (1985b), Model for flexible tanks undergoing rocking, ASCE J. Eng. Mech. 111(2), 143–157.CrossRefGoogle Scholar
Haroun, M. A. and Housner, G. W. (1981a), Earthquake response of deformable liquid storage tanks, ASME J. Appl. Mech. 48, 411–418.CrossRefGoogle Scholar
Haroun, M. A. and Housner, G. W. (1981b), Dynamic interaction of liquid storage tanks and foundation soil, Proc. 2nd ASCE/EMD Specialty Conf. Dynamic Response of Structures, Atlanta, Georgia.Google Scholar
Haroun, M. A. and Housner, G. W. (1982), Complications in free vibration analysis of tanks, ASCE J. Eng. Mech. Div. 108(EM5), 801–818.Google Scholar
Haroun, M. A., Lee, L. R., and Elliathy, H. M. (1989), Dynamic behavior of shell towers supporting liquid filled tanks, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 1–8.Google Scholar
Haroun, M. A. and Mourad, S. A. (1990), Buckling behavior of liquid filled shells under lateral seismic shear, inFlow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 11–17.Google Scholar
Haroun, M. A., Mourad, S. A., and Pence, P. W. (1991), Vibration suppression through liquid oscillations, Mechanics Computing in 1990s and Beyond, EMD Special Conf., Columbus, Ohio, 2, 656–660.Google Scholar
Haroun, M. A., Pires, J. A., and Won, A. Y. J. (1994a), Hybrid liquid column dampers for suppression of environmentally-induced vibrations in tall buildings, Proc. 3rd Conf. Tall Buildings in Seismic Regions, Los Angeles, CA.Google Scholar
Haroun, M. A.Pires, J. A., and Won, A. Y. J. (1994b), Active orifice control in hybrid liquid column dampers, 1st World Conf. Structural Control 3, FA1–69–78, Los Angeles, CA.Google Scholar
Haroun, M. A.Pires, J. A., and Won, A. Y. J. (1996), Suppression of environmentally-induced vibration in tall buildings by hybrid liquid column dampers, Struct. Des. Tall Buildings 5, 45–54.3.0.CO;2-F>CrossRefGoogle Scholar
Haroun M. A. and Tayel M. A. (1984), Dynamic behavior of cylindrical liquid storage tanks under vertical earthquake excitation, Proc. 8th World Conf. Earthquake Eng., San Francisco, CA 7, 421–428.
Haroun, M. A. and Tayel, M. A. (1985a), Axi-symmetric vibrations of tanks – numerical, ASCE. J. Eng. Mech. Div. 111, 329–345.CrossRefGoogle Scholar
Haroun, M. A. and Tayel, M. A. (1985b), Axi-symmetric vibrations of tanks – analytical, ASCE J. Eng. Mech. Div. 111, 346–358.CrossRefGoogle Scholar
Haroun, M. A. and Tayel, M. A. (1985c), Response of tanks to vertical seismic excitations, Earthquake Eng. and Struct. Dyn. 13, 583–595.CrossRefGoogle Scholar
Harper J. (1958), Propellant sloshing in conical tank undergoing arbitrary forced translational motion, Convair, Astronautics, Rep. ZU-7–089-TN, 2 January.
Harrison J. V. and Murphy J. (1987), Sub-scale testing of liquid propellant tanks for the RCA USSB spacecraft, Final Rept. 529460–80-F50, RCA.
Hasegawa, E., Umehara, S., and Atsumi, M. (1983), The critical condition for the onset of waves on the free surface of a horizontal liquid layer under a vertical oscillation, Trans. JSME B 49(448), 2901–2907 (in Japanese).CrossRefGoogle Scholar
Hashimoto, H. and Sudo, S. (1980), Surface disintegration and bubble formation in vertically vibrated liquid column, AIAA J. 18(4), 442–449.Google Scholar
Hashimoto H. and Sudo S. (1982), Frequency characteristics of pressure induced by vertical vibration of a cylindrical container containing liquid, Proc. 1982 Joint Conf. on Experimental Mech. (SESA), 353–358.
Hashimoto, H. and Sudo, S. (1984), Basic behavior of liquid free surface in a cylindrical container subject to vertical vibration, Bulletin JSME 27(227) 923–930.CrossRefGoogle Scholar
Hashimoto, H. and Sudo, S. (1985a), Frequency characteristic of a bubble cluster in a vibrated liquid column, J. Spacecraft Rock. 22(6), 649–655.CrossRefGoogle Scholar
Hashimoto, H. and Sudo, S. (1985b), Dynamic behavior of stratified fluids in a rectangular container subjected to vertical excitation, Bull. JSME 28, 1910–1917.CrossRefGoogle Scholar
Hashimoto, H. and Sudo, S. (1987), Drop formation mechanism in a vertically vibrated liquid column, AIAA J. 25(5), 727–732.CrossRefGoogle Scholar
Hashimoto, H. and Sudo, S. (1988), Violent liquid sloshing in vertically excited cylindrical containers, Exp. Therm. Fluid. Sci. 1, 159–169.CrossRefGoogle Scholar
Hastings L. J. and Rutherford R. III (1968), Low gravity liquid–vapor interface shapes in axi-symmetric containers and a computer simulation, NASA TM X-53790.
Hastings L. J. and Toole L. E. (1968), An experimental study of the behavior of a sloshing liquid subjected to a sudden reduction in acceleration, NASA TM-X-5375.
Hatano, T. and Konno, H. (1966), Numerical solution of hydrodynamic pressures during earthquakes on arch dam, Trans. JSCE 131, 19–23 (in Japanese).Google Scholar
Hattori, M., Arami, A., and Yui, T. (1994), Wave impact pressure on vertical walls under breaking waves of various types, Coastal Engrg. 22, 79–114.CrossRefGoogle Scholar
Haxton, R. S. and Barr, A. D. S. (1972), Autoparametric vibration absorber, ASME J. Eng. Indust. 94, 119–125.CrossRefGoogle Scholar
Hayama, S., Aruga, K., and Watanabe, T. (1983), Nonlinear response of sloshing in rectangular tanks (1st report, nonlinear response of surface elevation), Bulletin JSME 26(219), 1641–1648.CrossRefGoogle Scholar
Hayama, S., Inoue, Y., and Watanabe, T. (1989), The suppression of sloshing in a liquid tank by means of a reversed u-tube, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 95–102. (Also JSME Int. J. Series III 33(3) 339–345, 1990.)Google Scholar
Hayama, S. and Iwabuchi, M. (1985), Sloshing suppression using inverse u-tube, Trans. JSME 51(470), 2505–2511 (in Japanese).CrossRefGoogle Scholar
Hayama, S. and Iwabuchi, M. (1986), A study on the suppression of sloshing in a liquid tank: 1st report: suppression of sloshing by means of a reversed u-tube, Bull. JSME 29, 1834–1841.CrossRefGoogle Scholar
Heinrich K. and Kaufman F. M. (1956), Sloshing stability for vehicles with one free surface, Space Technol. Labs. Memo. GM45–3–45, 12 July.
Heinrich R. T. (1986), Experimental investigation of random parametric liquid sloshing, Master thesis, Texas Tech University, Lubbock, TX.
Helmholtz, H. V. (1860), Über reibung tropfbarer flüssigkeiten, Sitzungsberichte der K Akademie der Wissenschaften zu Wien 40.Google Scholar
Henderson, D. M. (1998), Effects of surfactants on Faraday-wave dynamics, J. Fluid Mech. 365, 89–107.CrossRefGoogle Scholar
Henderson, D. M. and Miles, J. W. (1990), Single mode Faraday waves in small cylinders, J. Fluid Mech. 213, 95–109.CrossRefGoogle Scholar
Henderson, D. M. and Miles, J. W. (1994), Surface-wave damping in a circular cylinder with a fixed contact-line, J. Fluid Mech. 275, 285–299.CrossRefGoogle Scholar
Hendricks, P. C. (1986), Stability of a clamped-free rotor partially filled with liquid, ASME J. Appl. Mech. 53, 166–172.CrossRefGoogle Scholar
Hendricks, P. C. and Klauber, R. D. (1984), Optimal control of a rotor partially filled with an inviscid incompressible fluid, ASME J. Appl. Mech. 51, 863–868.CrossRefGoogle Scholar
Hendricks, S. L. and Morton, J. B. (1979), Stability of a rotor partially filled with a viscous incompressible fluid, ASME J. Appl. Mech. 46, 913–918.CrossRefGoogle Scholar
Henrici, P., Troesch, B. A., and Wuytack, L. (1970), Sloshing frequencies for a half-space with circular or stripe-like aperture, Zeit. Ang. Math. Phys. (ZAMP) 21(3), 285–318.CrossRefGoogle Scholar
Henstock, W. and Sani, R. L. (1974), On the stability of the free surface of a cylindrical layer of fluid in vertical periodic motion, Lett. Heat Transfer 1, 95–102.CrossRefGoogle Scholar
Hieatt J. L. and Riley J. D. (1959), Digital program for fluid sloshing in tanks with axial symmetry, Rept. TM-59000000389, Space Tech. Labs. (Now TRW), available from DDC as A. D. 607548.
Higuera, H. and Nicolás, J. A. (1997), Linear non-axisymmetric oscillations of nearly-inviscid liquid bridges, Phys. Fluids 9, 276–285.CrossRefGoogle Scholar
Higuera, H., Nicolás, J. A., and Vega, J. M. (1994), Linear oscillations of weakly dissipative axisymmetric liquid bridges, Phys. Fluids A 6, 438–450.CrossRefGoogle Scholar
Hill, D. E. and Baumgarten, J. R. (1992), Control of spin-stabilized spacecraft with sloshing fluid stores, J. Dyn. Syst., Measurement and Control 114, 728–731.CrossRefGoogle Scholar
Hill, D. E., Baumgarten, J. R., and Miller, J. T. (1988), Dynamic simulation of spin-stabilized spacecraft with sloshing fluid stores, J. Guidance 11(6), 597–599.CrossRefGoogle Scholar
Hiramatsu, T., Komura, Y., and Shintani, M. (1989a), Theoretical analysis for the dynamic behavior of nuclear power reactor internals, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 149–156.Google Scholar
Hiramatsu, T., Komura, Y., Shintani, M., and Shintaku, S. (1989b), Dynamic behavior of nuclear power reactor internals-model by experiments, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 157–163.Google Scholar
Hirata, A., Sakurai, M., Ohishi, N., Koyama, M., Morita, T., and Kawasaki, H. (1997), Transition process from laminar to oscillatory Marangoni convection in a liquid bridge under normal and microgravity, J. Japan Soc. Microgravity Appl. 14(2), 137–143.Google Scholar
Hirt, C. W., Amsed, A. A., and Cook, J. L. (1974), An arbitrary Lagrangian–Eulerian computing method of all speeds, J. Comput. Phys. 14, 227–253.CrossRefGoogle Scholar
Hirt, C. W. and Nichols, B. D. (1981), Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39, 201–225.CrossRefGoogle Scholar
Hirt C. W., Nichols B. D., and Romero N. C. (1975), SOLA – A numerical solution algorithm for transient fluid flows, Report LA-5852, Los Alamos Scientific Laboratory.
Hitchcock, P. A., Kwok, K. C. S., Watkins, R. D., and Samali, B. (1997a), Characteristics of liquid column vibration absorbers (LCVA) – I, Eng. Struct. 19(2), 126–134.CrossRefGoogle Scholar
Hitchcock, P. A., Kwok, K. C. S., Watkins, R. D., and Samali, B. (1997b), Characteristics of liquid column vibration absorbers (LCVA) – II, Eng. Struct. 19(2), 135–144.CrossRefGoogle Scholar
Hoard, C. Q., Robertson, C. R., and Acrivos, A. (1970), Experiments on the cellular structure in Benard convection, Int. J. Heat Mass Transf. 13, 849.CrossRefGoogle Scholar
Hocking, L. M. (1965), On the unsteady motion of a rotating fluid in a cavity, Mathematica 12, 97–106.Google Scholar
Hocking, L. M. (1976), A moving fluid interface on a rough surface, J. Fluid Mech. 76, 801–817.CrossRefGoogle Scholar
Hocking, L. M. (1977), A moving fluid interface, Part 2: The removal of the force singularity by a slip flow, J. Fluid Mech. 79, 209–229.CrossRefGoogle Scholar
Hocking, L. M. (1987a), The damping of capillary gravity waves at a rigid boundary, J. Fluid Mech. 179, 253–266.CrossRefGoogle Scholar
Hocking, L. M. (1987b), Waves produced by a vertically oscillating plate, J. Fluid Mech. 179, 267–281.CrossRefGoogle Scholar
Hocking, L. M. and Mahdmina, D. (1991), Capillary-gravity waves produced by a wave maker, J. Fluid Mech. 224, 217–226.CrossRefGoogle Scholar
Hocking, L. M. and Michael, D. H. (1959), The stability of a column of rotating liquid, Mathematika 6, 25–32.CrossRefGoogle Scholar
Hodges, B. R. and Street, R. L. (1999), On simulation of turbulent nonlinear free surface flows, J. Comput. Phys. 151, 425–457.CrossRefGoogle Scholar
Hollister, M. P. and Satterlee, H. M. (1965), Low gravity liquid reorientation, Proc. of a Symp. on Fluid mechanics and heat transfer under low gravitational conditions, Lockheed Missiles & Space Co.Google Scholar
Holm-Christenson, G. and Träger, K. (1991), A note on rotor instability caused by liquid motions, ASME J. Appl. Mech. 58, 804–811.CrossRefGoogle Scholar
Holmes, P. J. (1986), Chaotic motion in a weakly nonlinear model for surface waves, J. Fluid Mech. 162, 365–388.CrossRefGoogle Scholar
Homicz, G. F. and Gerber, N. (1987), Numerical model for fluid spin-up from rest in a partially filled cylinder, ASME J. Fluids Eng. 109, 194–197.CrossRefGoogle Scholar
Honda, K. and Matsushita, T. (1913), An investigation of the oscillations of tank water, Scientific Reports, Tohoku, Imperial University, First Series 21, 131–148.Google Scholar
Honda, K. and Tajima, K. (1979), Sloshing of two superposed liquid layer in a rectangular tank, Trans. JSME 45B, 1450–1457.CrossRefGoogle Scholar
Hori, G. I. (1966), Theory of the general perturbation with unspecified canonical variables, Astron. Soc. Japan 18(4).Google Scholar
Hori, Y., Kanai, M., and Fujisawa, F. (1994), Two-dimensional coupling vibration analysis of fluid and structure using FEM displacement method (in Japanese), Trans. JSME C 60(572), 1138–1143.CrossRefGoogle Scholar
Hoskins, L. M. and Jacobsen, L. S. (1957), Water pressure in a tank caused by a simulated earthquake, Bull. Seismol. Soc. Amer. 47(1), 1–32.Google Scholar
Hough, (1895), The oscillations of a rotating ellipsoidal shell containing fluid, Phil. Trans. A 186(1).CrossRefGoogle Scholar
Houghton, G. (1968), Particle retardation in vertically oscillating fluids, Canadian J. Chem. Eng. 46, 79–91.CrossRefGoogle Scholar
Housner, G. W. (1957), Dynamic pressures on accelerated fluid containers, Bull. Seis. Soc. Amer. 47(1), 15–35.Google Scholar
Housner, G. W. (1963a), The dynamic behavior of water tanks, Bull. Seis. Soc. Amer. 53(2), 381–387.Google Scholar
Housner G. W. (1963b), Dynamic pressure on fluid containers, TID-7024, Nuclear Reactors and Earthquakes, Chapter 6, (US Atomic Energy Commission), 183–209.
Housner G. W. (1963c), Dynamic analysis of fluids in containers subjected to acceleration, TID-7024, Nuclear Reactors and Earthquakes, Appendix F, (US Atomic Energy Commission), 368–390.
Housner J. (1980), Hydroelastic vibration analysis of partially liquid-filled shells using a series representation of the liquid, NASA, Sci. and Tech. Information Center, Washington, DC.
Howard, L. N. (1963), Fundamentals of the theory of rotating fluids, ASME J. Appl. Mech. 30, 481–485.CrossRefGoogle Scholar
Howell E. and Ebler F. G. (1956), Experimental investigation of the influence of mechanical baffles on fundamental sloshing mode of water in a cylindrical tank, Space Tech. Lab. Rep. GM-TR-69, 6 July.
Howell J. V. (1957), Motion of a conical pendulum, Space Tech. Lab. Memo. GM 42.4–4.
Hsieh, D. Y., Sun, S. M., and Shen, M. C. (1995), Nonlinear theory of forced surface waves in a circular basin, Wave Motion 21(4), 331–341.Google Scholar
Hsieh, K. C., Thompson, R. L., Zandt, D. V., DeWitt, K., and Nash, J. (1994), Oscillatory/chaotic thermocapillary flow induced by radiant heating, NASA 2nd Microgravity Fluid Physics Conf., Cleveland, Ohio, 57–63.Google Scholar
Hsiung H. C. H. and Weingarten V. I. (1973), Dynamic analysis of hydroelastic systems using the finite element method, University of Southern C. A., Dept. Civil Eng., Report USCCE 013, November.
Hu H., Kobayashi T., Saga T., Segawa T., Taniguch N., Nagoshi M., and Okamoto K. (1999), A PIV study on the self-induced sloshing in a tank with circulating flow, 2nd Pacific Symp. on Flow Visualization and Image Processing, PF-152.
Hu, H. C. and Kelly, R. E. (1994), The effect of finite-amplitude nonplanar flow oscillations upon the onset of Rayleigh–Bernard convection, Proc. 10thInt. Heat Transfer Conf. 7, 79.Google Scholar
Hu W. C. L. (1964), A survey of the literature of the vibrations of thin shells, SwRI Tech. Rept. 1.
Hu, W. and Tang, Z. M. (1989), Excitation mechanism of thermocapillary oscillatory convection, Sciences in China 33(8), 934–938.Google Scholar
Hu, W. R., You, H. T., and Cao, Z. H. (1992a), Free surface oscillation of thermocapillary convection in liquid bridge of half-floating zone, Sciences in China 35(9), 1101–1109.Google Scholar
Hu, W. R., Shu, J. Z., and Chen, Q. S. (1992b), Space experiment on free surface oscillation in liquid bridge of half floating zone, Microgravity Quart. 2, 153–158.Google Scholar
Huang, D. T. and Soedel, W. (1993), On the free vibrations of multiple plates welded to a cylindrical shell with special attention to mode pairs, J. Sound Vib. 166, 315–339.CrossRefGoogle Scholar
Huang, Y. Y. (1991), Orthogonality of wet modes in coupled vibrations of cylindrical shells containing liquids, J. Sound Vib. 145, 51–60.CrossRefGoogle Scholar
Huang, Z. J. and Hsiung, C. C. (1996), Nonlinear shallow-water flow on deck, J. Ship Res. 40(4), 303–315.Google Scholar
Huerta, A., Liu, W. K., Gvildys, J. (1989), Large-amplitude sloshing with submerged blocks, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 143–148.Google Scholar
Hughes T. J. R, Liu W. K., and Zimmermann T. K. (1981), Lagrangian–Eulerian finite element formulation for incompressible viscous flows, Proc. Interdisciplinary Finite Element Anal, 179–216, J. F. Abel, T. Kawai, and S. F. Shen, eds., Cornell University.
Huleux, A. (1964), Water oscillations in a container in uniformly accelerated translation, Bull. Acad. Royal Sci. 50(11), 1315–1330 (in French).Google Scholar
Hung, R. J. (1990), Superfluid and normal fluid helium I. I. in a rotating tank under low and microgravity environments, Proc. National Sci. Council A 14, 289–297.Google Scholar
Hung R. J. (1993a), Final report on sloshing dynamics on rotating helium Dewar tank, NASA NTIS, Washington, DC.
Hung R. J. (1993b), Simulation of sloshing dynamics induced forces and torques actuated on Dewar container driven by gravity gradient and g-jitter accelerations in microgravity, NASA NTIS, Washington, DC.
Hung R. J. (1994a), Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung R. J. (1994b), Annual report on numerical studies of the surface tension effect of cryogenic liquid helium, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung R. J. (1995a), Mathematical model of bubble sloshing dynamics for cryogenic liquid helium in orbital spacecraft Dewar container, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung R. J. (1995b), Effect of baffle on slosh reaction forces in rotating liquid helium subjected to a lateral impulse in microgravity, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung R. J. (1996), Sloshing of cryogenic helium driven by lateral impulsive/gravity gradient-dominated/or g-jitter-dominated accelerations and orbital dynamics, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung R. J. (1997), DynAmerl models for sloshing dynamics of helium II under low-g conditions, Final Research Report, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung, R. J. and Lee, C. C. (1994), Effect of baffle on gravity gradient acceleration excited slosh waves in microgravity, J. Spacecraft Rock. 31(6), 1107–1114.CrossRefGoogle Scholar
Hung, R. J., Lee, C. C., and Leslie, F. W. (1990a), Slosh wave excitation in gravity probe-b spacecraft experiment, Develop. Theor. Appl. Mech., 197–205, Georgia Tech., Atlanta.Google Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1990b), Effects of g-jitters on the stability of rotating bubble under microgravity environment, Acta Astron. 21, 309–321.CrossRefGoogle Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1991a), Gravity-jitter response slosh waves excitation on the fluid in a rotating Dewar, Advances in Space Res. 11, 201–208.CrossRefGoogle Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1991b), Gravity-jitter effected slosh waves on the stability of rotating bubble under microgravity environment, Advances in Space Res. 11, 209–216.CrossRefGoogle Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1991c), Slosh wave excitation in a partially filled rotating tank due to gravity jitters in a microgravity environment, Acta Astron. 25, 523–551.CrossRefGoogle Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1992a), Spacecraft dynamical distributions of fluid stresses activated by gravity jitters-induced slosh waves, J. Guidance, Control and Dynamics 15(4), 817–824.CrossRefGoogle Scholar
Hung, R. J., andLee, C. C., and Leslie, F. W. (1992b), Similarity rules in gravity jitter-related spacecraft liquid propellant slosh waves excitation, J. Fluid Struct. 6, 493–522.CrossRefGoogle Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1993a), Effect of the baffle on the asymptotic gravity-jitter excited slosh waves and spacecraft moment and angular momentum fluctuations, J. Aerospace Eng. 207, 105–120.Google Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1993b), Effect of the baffle on the spacecraft fluid propellant viscous stress and moment fluctuations, Trans. Japanese Soc. Aeronaut. Space Sci. 35, 187–207.Google Scholar
Hung, R. J., Lee, C. C., and Shyu, K. L. (1990), Reorientation of rotating fluid in microgravity environment, Develop. Theor. Appl. Mech., 206–212, Georgia Tech., Atlanta.Google Scholar
Hung, R. J.Lee, C. C., and Shyu, K. L. (1991), Reorientation of rotating fluid in microgravity environment with and without gravity jitters, J. Spacecraft Rock. 28(1), 71–78.CrossRefGoogle Scholar
Hung, R. J., Lee, C. C., and Tsao, Y. D. (1990), Fluid behavior in microgravity environment, Proc. National Sci. Council A 14, 21–34.Google Scholar
Hung, R. J., Lee, C. C., and Wu, J. L. (1990), Gravity-jitters and excitation of slosh waves, Develop. Theor. Appl. Mech., 213–220, Georgia Tech, Atlanta.Google Scholar
Hung, R. J. and Leslie, F. W. (1988), Bubble shape in a liquid filled rotating container under low gravity, J. Spacecraft Rock. 26, 70–74.CrossRefGoogle Scholar
Hung, R. J. and Long, T. Y. (1995a), Response and decay of rotating cryogenic liquid reacted to impulsive accelerations in microgravity, Trans. Japanese Soc. Aeron. Space Sci. 37, 291–310.Google Scholar
Hung, R. J. and Long, Y. T. (1995b), Effect of baffle on slosh reaction forces in rotating liquid helium subjected to the lateral impulse in microgravity, Cryogenics 35, 589–597.CrossRefGoogle Scholar
Hung, R. J. and Long, Y. T. (1996), Response of lateral impulse on liquid helium sloshing with baffle effect in microgravity, Int. J. Mech. Sci. 38(8/9), 951–965.CrossRefGoogle Scholar
Hung, R. J., Long, Y. T., and Chi, Y. M. (1996), Slosh dynamics coupled with spacecraft attitude dynamics, Part 1: Formulation and theory, Part 2: Orbital environment application, J. Spacecraft Rock. 33(4), 575–581, 582–593.CrossRefGoogle Scholar
Hung, R. J., Long, Y. T., and Pan, H. L. (1994), Sloshing dynamics induced angular momentum fluctuations driven by jitter accelerations associated with slew motion in microgravity, Trans. Japn Soc. Aeronaut. Space Sci. 37, 217–233.Google Scholar
Hung, R. J., Long, Y. T., and Zu, G. J. (1996), Sloshing of cryogenic helium driven by lateral impulse/gravity gradient-dominated/or g-jitter dominated accelerations or orbital dynamics, Cryogenics 36(10), 829–841.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1993), Differences in gravity gradient and gravity jitter excited slosh waves in microgravity, Trans. Japan Soc. Aeronaut. and Space Sci. 36(1), 153–169.Google Scholar
Hung, R. J. and Pan, H. L. (1994a), Asymmetric slosh wave excitation in liquid–vapor interface under microgravity, Acta Mech. Sinica 9(2), 298–311.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1994b), Gravity gradient or gravity jitter induced viscous stress and moment fluctuations in microgravity, Fluid Dyn. Res. 14, 29–51.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1995a), Fluid force activated spacecraft dynamics driven by gravity gradient and jitter accelerations, J. Guidance, Control and Dyn. 18(5), 1190–1196.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1995b), Sloshing-modulated liquid–vapor interface fluctuations activated by orbital accelerations associated with spinning and /or slew motions, J. Colloid. and Interface Sci. 170, 538–549.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1995c), Mathematical model of bubble sloshing dynamics for cryogenic liquid helium in orbital spacecraft Dewar container, Appl. Math. Modeling 19(8), 483–498.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1996), Modeling of sloshing modulated angular momentum fluctuations actuated by gravity gradient associated with spacecraft slow motion, Appl. Math. Modeling 20(5), 399–409.CrossRefGoogle Scholar
Hung, R. J., Pan, H. L., and Leslie, F. W. (1994a), Gravity gradient and gravity jitter induced viscous stress and moment fluctuations in microgravity, Fluid Dyn. Res. 34(1), 29–44.CrossRefGoogle Scholar
Hung, R. J.Pan, H. L., and Leslie, F. W. (1994b), Fluid system angular momentum and moment fluctuations driven by gravity gradient or gravity g-jitter in microgravity, J. Flight Sci. Space Res. 18, 195–202.Google Scholar
Hung, R. J., Pan, H. L., and Long, Y. T. (1994), Peculiar behavior of helium II disturbance due to sloshing dynamics driven by jitter acceleration associated with slew motion in microgravity, Cryogenics 34(8), 641–648.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1991a), Cryogenic hydrogen reorientation and geyser initiation at various liquid-filled levels in microgravity, Advances in Space Research 11, 217–226.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1991b), Cryogenic liquid hydrogen reorientation activated by high frequency impulsive acceleration of geyser initiation, Microgravity Quart. 1, 81–92.Google Scholar
Hung, R. J. and Shyu, K. L. (1991c), Space-based cryogenic liquid hydrogen reorientation activated by low frequency impulsive reverse thruster of geyser initiation, Acta Astron. 25, 709–719.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1992a), Constant reverse thrust activated reorientation of liquid hydrogen with geyser initiation, J. Spacecraft Rock. 29, 279–285.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1992b), Excitation of slosh waves associated with low frequency impulsive reverse gravity acceleration of geyser initiation, Acta Astron. 26, 425–433.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1992c), Medium frequency impulsive thrust activated liquid hydrogen reorientation with geyser, J. Propulsion Power 8, 987–994.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1995), Slosh wave and geyser excitations due to liquid hydrogen shut-off during draining in microgravity, Acta Astron. 35(8), 509–523.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1996), Liquid resettlement and slosh wave excitation during fluid reorientation in microgravity, Acta Astron. 36.Google Scholar
Hung, R. J., Shyu, K. L., and Lee, C. C. (1991), Slosh wave excitation associated with high frequency impulsive reverse gravity acceleration of geyser initiation, Microgravity Quart. 1, 125–133.Google Scholar
Hung, R. J., Shyu, K. L., and Lee, C. C. (1992a), Liquid hydrogen slosh waves excited by constant reverse gravity acceleration of geyser initiation, J. Spacecraft Rock. 29(4) 523–528.CrossRefGoogle Scholar
Hung, R. J., Shyu, K. L., and Lee, C. C. (1992b), Medium frequency impulsive thrust excited slosh waves during propellant reorientation with geyser, J. Propulsion and Power 8, 778–785.CrossRefGoogle Scholar
Hung R. J., Tsao Y. D., and Hong B. B. (1988a), Effect of surface tension on the dynamical behavior of bubble in rotating fluids under low gravity environment, Proc. 1st National Fluid Dyn. Cong., 1399–1409.
Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W. (1988b), Time dependent dynamical behavior of surface tension on rotating fluids under microgravity environment, Advances in Space Research 8(12), 205–213.CrossRefGoogle Scholar
Hung R. J., Tsao Y. D., Hong B. B., and Leslie F. W. (1988c), Surface tension and bubble shapes in a partially filled rotating cylinder under low gravity, AIAA Paper No 88–0455.
Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W. (1989a), Dynamical behavior of surface tension on rotating fluids in low and microgravity environments, Int. J. for Microgravity Res. Appl. 11, 81–95.Google Scholar
Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W. (1989b), Axisymmetric bubble profiles in slowly rotating helium Dewar under low and microgravity environment, Acta Astron. 19, 411–426.CrossRefGoogle Scholar
Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W. (1989c), Bubble behaviors in a slowly rotating helium Dewar in Gravity Probe-B spacecraft experiment, J. Spacecraft Rock. 26, 167–172.CrossRefGoogle Scholar
Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W. (1990), Dynamics of surface tension in microgravity environment, Progress in Aeronaut. and Astronaut. 127, 124–150.Google Scholar
Hunt, J. B. (1979), Dynamic Vibration Absorbers, Letchworth, The Garden City Limited.Google Scholar
Hunt, J. N. (1952), Viscous damping waves over an inclined bed in a channel of finite width, La Houille Blanche 6, 836–841.CrossRefGoogle Scholar
Hunt, J. N. (1964), The viscous damping of gravity waves in shallow water, La Houille Blanche 18, 685–692.CrossRefGoogle Scholar
Hunt, K. H. and Crossley, F. R. E. (1975), Coefficient of restitution interpreted as damping in vibro-impact, ASME J. Appl. Mech. 97, 440–445.CrossRefGoogle Scholar
Huntly, I. D. (1972), Observations on a spatial-resonance phenomenon, J. Fluid Mech. 53, 209–216.CrossRefGoogle Scholar
Huntly I. D. and Smith R. W. (1973), Hysteresis and nonlinear detuning in a spatial-resonance phenomenon, Report No 42, University of Essex, Fluid Mech. Res. Inst.
Hurwitz M. and Melcher J. R. (1968), Dielectrophoretic control of propellant slosh in low gravity, Final Report, NASA-CR-98168, 31 March.
Huther M., Dubois M., and Planeix J. M. (1973), Model studies on the movement of liquid in tanks, Marine Eng. Rev., January 5–16.
Hutton R. E. (1962), An investigation of resonance, nonlinear and nonplanar free surface oscillations of fluid, Ph.D. diss., UCLA, also as NASA TN-D-1870, (1963).
Hutton, R. E. (1964), Fluid particle motion during rotary sloshing, ASME J. Appl. Mech., 123–130.CrossRefGoogle Scholar
Hutton R. E. and Bhuta P. G. (1965), Propellant slosh loads, TRW Syst., Redondo Beach, CA, EM-15–10 (4388–6001–50000).
Hutton R. E. and Yeh G. C. K. (1964), Dynamic pressure force on a tank of arbitrary shape during liquid sloshing, TRW Syst., Redondo Beach, CA, Memo. 64–9713–6–11.
Hwang, C. (1965), Longitudinal sloshing of a liquid in a flexible hemispherical tank, ASME J. Appl. Mech., 665–670.CrossRefGoogle Scholar
Hwang, J. H., Kim, I. S., Soel, Y. S., Lee, S. C., and Chon, Y. K. (1992), Numerical simulation of liquid sloshing in three-dimensional tanks, Computers and Structures 44(1/2) 339–342.CrossRefGoogle Scholar
Ibrahim R. A. (1969), Unsteady motion of liquid propellants in moving containers, Master thesis, Department of Aeron. Engrg., Cairo University.
Ibrahim R. A. (1974), Autoparametric interaction in a structure containing a liquid, Ph.D. thesis, Dept. of Mech. Engrg., University of Edinburgh, Scotland.
Ibrahim, R. A. (1976), Multiple internal resonance in a structure–liquid system, J. of Eng. Indust. 98(3), 1092–1098.CrossRefGoogle Scholar
Ibrahim, R. A. (1985), Parametric Random Vibration, New York, Wiley.Google Scholar
Ibrahim, R. A. (1992), Nonlinear random vibration: Experimental results, ASME Appl. Mech. Rev. 44(10), 423–446, 1991.CrossRefGoogle Scholar
Ibrahim, R. I. and Barr, A. D. S. (1975a), Autoparametric resonance in a structure containing a liquid, part I: Two mode interaction, J. Sound Vib. 42(2), 159–179.CrossRefGoogle Scholar
Ibrahim, R. I. and Barr, A. D. S. (1975b), Autoparametric resonance in a structure containing a liquid, part II: Three mode interaction, J. Sound Vib. 42(2), 181–200.CrossRefGoogle Scholar
Ibrahim, R. I. and El-Sayad, M. A. (1999), Simultaneous parametric and internal resonances in systems involving strong nonlinearities, J. Sound Vib. 225(5), 857–885.CrossRefGoogle Scholar
Ibrahim, R. I., Gau, J. S., and Soundararajan, A. (1988), Parametric and autoparametric vibrations of an elevated water tower, part I: Parametric response, J. Sound Vib. 121(3), 413–428.CrossRefGoogle Scholar
Ibrahim, R. I. and Heinrich, R. T. (1988), Experimental investigation of liquid sloshing under parametric random excitation, ASME J. Appl. Mech. 55(2), 467–473.CrossRefGoogle Scholar
Ibrahim, R. I. and Latorre, G. (1988), Experimental investigation of dynamic parameters of viscous fluids in unsteady flow, ASME J. Pressure Vessel Tech. 110(1), 29–35.CrossRefGoogle Scholar
Ibrahim, R. I. and Li, W. (1988), Parametric and autoparametric vibrations of an elevated water tower, part II: Autoparametric response, J. Sound Vib. 121(3), 429–444.CrossRefGoogle Scholar
Ibrahim, R. A., Pilipchuk, V. N., and Ikeda, T. (2001), Recent advances in liquid sloshing dynamics, ASME Appl. Mech. Rev. 54(2), 133–199.CrossRefGoogle Scholar
Ibrahim, R. I. and Soundararajan, A. (1983), Nonlinear liquid sloshing under random vertical excitation, J. Sound Vib. 93(1), 119–134.CrossRefGoogle Scholar
Ibrahim, R. I. and Soundararajan, A. (1985), An improved approach for random parametric response of dynamic systems with nonlinear inertia, Int. J. Nonlinear Mech. 20(4), 309–323.CrossRefGoogle Scholar
Ibrahim, R. I., Soundararajan, A., and Heo, H. (1985), Stochastic response of nonlinear dynamic systems based on a non-Gaussian closure, ASME J. Appl. Mech. 52, 965–970.CrossRefGoogle Scholar
Ifrim M. and Bratu C. (1969), The effect of seismic action on the dynamic behavior of elevated water tanks, Proc. 4th World Conf. Earthquake Eng., Santiago, B-4, 127–142.
Iglesias, A. S., Rojas, L. P., and Rodriguez, R. Z. (2004), Simulation of anti-roll tanks and sloshing types problems with smoothed particle hydrodynamics, Ocean Engrg. 31, 1169–1192.CrossRefGoogle Scholar
Iida, M. (2000), Numerical analysis of self-induced free surface flow oscillation by fluid dynamics computer code splash-ale, Nuclear Engrg. Design 200, 127–138.CrossRefGoogle Scholar
Iida, M., Madarame, H., Okamoto, K., and Fukaya, M. (1993), Self-induced oscillation of cylindrical upward jet impinging on the free surface, Proc. Asia-Pacific Vib. Conf. '93, 1, 260–264.Google Scholar
Ikeda T. (1997), Nonlinear vibrations in an elastic structure subjected to vertical excitation and coupled with liquid sloshing in a rectangular tank, ASME Proc. DET '97, Sept 14–17, Sacramento, CA, 1–12.
Ikeda, T. (2003), Nonlinear parametric vibrations of an elastic structure with a rectangular liquid tank, Nonlin. Dyn. 33(1), 43–70.CrossRefGoogle Scholar
Ikeda T. and Ibrahim R. A. (2002), Random excitation of a structure interaction with liquid sloshing dynamics, Proc. ASME FSA, AE & FIV+N Symposium: Sloshing, Paper Number IMECE 2002–32934.
Ikeda T. and Murakami S. (1999), Nonlinear vibrations of an elastic structure subjected to vertical excitation and coupled with liquid sloshing in a cylindrical tank (resonance with an axi-symmetric mode), ASME 1999 Design Eng. Tech. Conf., Sept 12–16, Las Vegas, NV.
Ikeda T. and Murakami S. (2001), Nonlinear parametric vibrations of an elastic structure subjected to vertical excitation and coupled with liquid sloshing in a cylindrical tank (resonance with an anti-symmetric mode), ASME 2001 Design Eng. Tech. Conf., DETC2001/VIB-21650, Sept 9–12, Pittsburgh, PA.
Ikeda, T. and Nakagawa, N. (1995), Nonlinear vibrations of a structure caused by water sloshing in a cylindrical tank, ASME PVP 310, Fluid–Structure Interaction and Struct. Mechanics, 63–76.Google Scholar
Ikeda, T. and Nakagawa, N. (1997), Nonlinear vibrations of a structure caused by water sloshing in a rectangular tank, J. Sound Vib. 201(1), 23–41.CrossRefGoogle Scholar
Ikegawa M. (1974), Finite element analysis of fluid motion in a container, in Finite Element Methods in Flow Problems, Oden, J. T.et al., eds., Huntsville, AL, UAH Press, 737–738.Google Scholar
Ikegawa, M. and Washizu, K. (1973), Finite element method applied to analysis of flow over a spillway crest, Int. J. Num. Meth. Engrg. 6, 179–189.CrossRefGoogle Scholar
Inagaki T., Umeoka T., Fujita K., Nakamura T., Shiraishi T., Kiyokawa T., and Sigiyama Y. (1987), Flow induced vibration of inverted U-shaped piping containing flowing fluid of top entry system for LMFBR, Trans. Intl. Conf. Struct. Mech. in Reactor Technology, Lausanne, F. H. Wittman, ed., 9-E, 295–302, Balkema.
Ilgamov, M. A. (1969), The Vibrations of Elastic Shells Containing a Liquid and Gas, Moscow, Nauka (in Russian).Google Scholar
Ilgamov, M. A. (1975), Boundary conditions on the shell–liquid interface in the Euler–Lagrange form, Proc. 10th All-Union Conf. on Theory of Shells and Plates (in Russian), 2, Tbilisi, Metsniereba, 170–180.Google Scholar
Irons, F. E. (1990), Concerning the nonlinear behavior of the forced spherical pendulum including the dowsing pendulum, Eur. J. Phys. 11, 107–115.CrossRefGoogle Scholar
Isaacson, M. and Subbiach, K. (1991), Earthquake-induced sloshing in a rigid circular tank, Canadian J. Civil Eng. 18, 904–915.CrossRefGoogle Scholar
Isermann H. (1970), Die kippgrenze von sattelkraftfahrzeugen mit fester und flussiger ladung, Deutsche Kraftfahrtforschung und Strassenverkehrstechnik, Heft 200.
Ishibashi, H. and Hayama, S. (1989), Nonlinear response of sloshing based on the shallow water wave theory (2nd report, nonlinear response in rectangular tanks and cylindrical tanks), (in Japanese), Trans. JSME C 55(511), 663–670.CrossRefGoogle Scholar
Ishida K. and Kobayashi N. (1985), An effective method of analyzing rocking motion for unanchored cylindrical tanks including uplift, ASME Pressure Vess. Piping Conf., PVP- 98, 7.
Ishida, K. and Mieda, T. (1989), Calculation method of shear stress in bottom plate of anchored cylindrical tank under seismic loading, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 23–27.Google Scholar
Ishlinskiy, A. Yu., Gorbachuk, M. L., and Temochenko, M. Ye. (1986), On the small rotation stability of axially symmetric bodies supported by strings and having cavities filled with liquid, in Space Apparatus Dynamics and Outer Space Investigation, Moscow, Mashinostroyeniye (in Russian).Google Scholar
Ishlinskiy, A. Yu. and Temochenko, M. Ye. (1960), On small vibrations of the vertical axis of a top with a cavity completely filled with an ideal incompressible fluid, Prikl. Mekh. i Tekh. Fiz. 3.Google Scholar
Ishlinskiy, A. Yu., and Temochenko, M. Ye. (1966), On the stability of rigid body supported by a string and having ellipsoidal cavity completely filled with ideal incompressible liquid, PMM 30(1), 30–41.Google Scholar
Ivanova, A. A., Kozlov, V. G., and Evoux, P. (2001a), Interfacial dynamics of two-liquid system under horizontal vibrations, Izvestiya RAN Mekhanika Zhidkosti I Gasa (Fluid Dynamics) 3, 28–35.Google Scholar
Ivanova A. A., Kozlov V. G., and Legros J. C. (1997), Mean dynamics of two liquid system in a cavity subjected to rotational vibrations, Proc. Joint 10th Europ. and 6th Russian Symp. Phys. Sci. in Microgravity, St Petersburg, Moscow Inst. Probl. Mech. RAS 1, 260–273.
Ivanova, A. A., Kozlov, V. G., Lyubomov, D. V., Lyubimova, T. P., Merady, S., and Roux, B. (1998), Structure of averaged flow driven by a vibrating body with a large-curvature edge, Fluid Dyn. 33(5), 656–665.CrossRefGoogle Scholar
Ivanova, A. A., Kozlov, V. G., and Tasjkinov, S. I. (2001b), Interfacial dynamics of two-liquid system due to rotational vibrations (experiments), Izvestiya RAN Mekhanika Zhidkosti I Gasa (Fluid Dynamics) 6, 114–121.Google Scholar
Jacobsen, L. S. (1949), Impulsive hydrodynamics of fluid inside a cylindrical container, Bull. Seismol. Soc. Amer. 39, 189–202.Google Scholar
Jacobsen, L. S. and Ayre, R. S. (1951), Hydrodynamic experiments with rigid cylindrical tanks subjected to transient motions, Bull. Seismol. Soc. Amer. 41(4), 313–346.Google Scholar
Jacqmin, D. (1990), Stability of an oscillated fluid with a uniform density gradient, J. Fluid Mech. 219, 449.CrossRefGoogle Scholar
Jacqmin, D. and Duval, W. M. B. (1988), Instabilities caused by oscillating acceleration normal to a viscous fluid–fluid interface, J. Fluid Mech. 196, 495.CrossRefGoogle Scholar
Jahsman W. E. (1961), The equilibrium shape of the surface of a fluid in a cylindrical tank, in Developments in Mechanics, 1, Lay, J. E. and Malven, J. E., eds., New York, Plenum Press, 603–612.Google Scholar
Jain, R. K. (1974), Vibration of fluid-filled, orthotropic cylindrical shells, J. Sound Vib. 37, 379–388.CrossRefGoogle Scholar
Jeffries, H. (1924), Free oscillations of water in an elliptical lake, Proc. London Math. Soc. 23.Google Scholar
Jeffries, H. (1951), The surface elevation in cellular convection, Quart. J. Mech. 4, 283.CrossRefGoogle Scholar
Jen, Y. (1968), Laboratory study of inertia forces on a pile, ASCE J. Waterways and Harbors Div. 94(ww1), 59–76.Google Scholar
Jiang, L., Ting, C. L., Perlin, M., and Schultz, W. W. (1996), Moderate and steep Faraday waves: instabilities, modulation and temporal asymmetries, J. Fluid. Mech. 329, 275–307.CrossRefGoogle Scholar
Jiang, L., Ting, C. L., Perlin, M., and Schultz, W. W. (1998), Period tripling and energy dissipation of breaking standing waves, J. Fluid Mech. 369, 273–299.Google Scholar
Jitu, K., Chiba, T., and Mieda, T. (1994), An experimental study of the effect of liquid viscosity on dynamic response of the fluid-filled co-axial cylinder, Sloshing, Fluid-Structure Interaction and Struct. Response Due to Shock and Impact Loads, ASME Pressure Vess. Piping Conf., PVP- 272, 101–110.Google Scholar
Johnson, D. B., Raad, P. E., and Chen, S. (1994), Simulation of impacts of fluid free surfaces with solid boundaries, Int. J. Num. Meth. Fluids 19, 153–176.CrossRefGoogle Scholar
Jones, A. F. and Hulme, A. (1987), The hydrodynamics of water on deck, J. Ship Res. 31(2), 125–135.Google Scholar
Joo, S. W., Schultz, W. W., and Messiter, A. F. (1990), An analysis of the initial wave maker problem, J. Fluid Mech. 214, 161–183.CrossRefGoogle Scholar
Kachigan K. (1955), Forced oscillations of a fluid in a cylindrical tank, Convair, San Diego, CA, Rept. ZU-7–046.
Kagawa, K., Fujita, N., Nonaka, M., Matsuo, M., and Watanabe, E. (1990), Development of tuned liquid damper for ship vibration (2nd report), Trans. West.-Japan Soc. Naval Arch. 81, 181–188.Google Scholar
Kagawa, K., Koukawa, H., Fujita, K., Zensho, Y., and Matsuo, M. (1989), Development of tuned liquid damper for ship vibration, Trans. West.-Japan Soc. Naval Arch. 78, 251–258.Google Scholar
Kaliadasis, S., Kiyashko, A., and Demerkhin, E. A. (2003), Marangoni instability of a thin film heated from below by a local heat source, J. Fluid Mech. 475, 377–408.CrossRefGoogle Scholar
Kalinichenko, V. A., Kravtsov, A. V., Rodriguez-Mijangos, R., Sekerz-Zen'kovich, S. Ya., and Flores-Espinoza, R. (2000), Harmonic instability of a low-viscosity liquid in a vertically oscillating vessel, J. Appl. Mat. Mech. (PMM) 64(2), 275–282.CrossRefGoogle Scholar
Kalinichenko, V. A., Nesterov, S. V., Sekerz-Zen'kovich, S. Ya., and Chaykovskii, A. V. (1995), Experimental study of surface waves with Faraday resonance excitation, Fluid Dyn. 30(1), 101–106.CrossRefGoogle Scholar
Kalinowski A. J. (1975), Fluid/struct interactions, in Shock and Vibration Computer Programs: Reviews and Summaries, Pilky, W and Pilky, B., eds., Washington, DC, The Shock and Vib. Information Center.Google Scholar
Kamke, T. and Umeki, M. (1990), Nonlinear dynamics of two-mode interaction in parametric excitation of surface waves, J. Fluid Mech. 139, 461–471.Google Scholar
Kamotani, Y., Lee, J. H., Ostrach, S., and Pline, A. (1992), An experimental study of oscillatory thermocapillary convection in cylindrical containers, Phys. Fluid 4, 955–962.CrossRefGoogle Scholar
Kamotani, Y. and Ostrach, S. (1987), Design of a thermocapillary flow experiment in reduced gravity, J. Thermophys. Heat Transfer 1(1), 83–89.CrossRefGoogle Scholar
Kamotani, Y., Ostrach, S., and Vargas, M. (1984), Oscillatory thermocapillary convection in a simulated floating zone configuration, J. Crystal Growth 66, 83–90.CrossRefGoogle Scholar
Kamotani, Y. and Platt, J. (1992), Effect of free surface shape on combined thermocapillary and natural convection, J. Thermophys. Heat Transfer 6, 721–726.CrossRefGoogle Scholar
Kamotani, Y., Prasad, A., and Ostrach, S. (1981), Thermal convection in an enclosure due to vibration aboard spacecraft, AIAA J. 19(4), 511–516.CrossRefGoogle Scholar
Kana D. D. (1963a), Longitudinal forced vibration of a partially filled tank, SwRI, Tech. Rept. No 6.
Kana D. D. (1963b), Vertical oscillation of partially full spherical tanks, SwRI NASw-146, April.
Kana D. D. (1964a), Experiments on liquid dynamics in Titan I. I. propellant tanks, SwRI, Final Rept.
Kana D. D. (1964b), A resistive Wheatstone bridge liquid wave height transducer, SwRI, Tech. Rept. No 3.
Kana D. D. (1966), An experimental study of liquid surface oscillations in longitudinally excited compartmented cylindrical and spherical tanks, NASA CR-545.
Kana D. D. (1967), Parametric oscillations of a longitudinally excited cylindrical shell containing liquid, Ph.D. dissentation, University of Texas, Austin. (Also J. Spacecraft Rock. 5(1), 13–21.)
Kana, D. D. (1987), A model for nonlinear rotary slosh in propellant tanks, J. Spacecraft Rock. 24(3,4), 169–177.CrossRefGoogle Scholar
Kana, D. D. (1989), Validated spherical pendulum model for rotary liquid slosh, J. Spacecraft Rock. 26(3), 188–195.CrossRefGoogle Scholar
Kana D. D. and Abramson H. N. (1966), Longitudinal vibration of ring stiffened cylindrical shells containing liquids, SwRI, Tech. Rept. No 7.
Kana, D. D. and Chu, W. H. (1969), Influence of a rigid top mass on the response of a pressurized cylinder containing liquid, J. Spacecraft Rock. 6(2), 103–110.Google Scholar
Kana, D. D. and Chu, W. H. (1970), Dynamic stability of cylindrical propellant tanks, J. Spacecraft Rock. 7(5), 587–597.Google Scholar
Kana, D. D., and Craig, R. R. Jr (1968), Parametric oscillations of a longitudinally excited cylindrical shell containing liquid, J. Spacecraft Rock. 5(1), 13–21.Google Scholar
Kana, D. D. and Dodge, F. T. (1966), Bubble behavior in liquids contained in vertically vibrated tanks, J. Spacecraft Rock. 3(5), 760–763.Google Scholar
Kana, D. D. and Fox, D. J. (1995), Distinguishing the transition to chaos in a spherical pendulum, Chaos 5(1), 298–310.CrossRefGoogle Scholar
Kana, D. D. and Gormley, J. E. (1967), Longitudinal vibration of a model space vehicle propellant, J. Spacecraft Rock. 4(12), 1585–1591.Google Scholar
Kana, D. D., Glaser, R. F., Eulitz, W. R., and Abramson, H. N. (1968), Longitudinal vibration of spring supported cylindrical membrane shells containing liquid, J. Spacecraft Rock. 5(2), 189–196.Google Scholar
Kana, D. D., Ko, W. L., Francis, P. H., and Nagy, A. (1971), Coupling between structure and liquid propellant in a parallel stage shuttle design, J. Spacecraft Rock. 9(11), 789–790.CrossRefGoogle Scholar
Kana, D. D., Lindholm, U. S., and Abramson, H. N. (1966), An experimental study of liquid instability in a vibrating elastic tank, J. Spacecraft Rock. 3(8), 1183–1188.Google Scholar
Kana D. D., Unruh J. F., Fey T. A., and Dodge F. T. (1985), Development of simple models for Centaur g-prime/g model tank propellant slosh, Report 06–8190–001, SwRI, 14 June.
Kaneko, S. (1992), Dampers for structures utilizing the resonance of fluid in a tank, (in Japanese), J. Marine Eng. Soc. Japan 27(4), 323–329.Google Scholar
Kaneko, S. and Ishikawa, M. (1999), Modeling of tuned liquid damper with submerged nets, J. Pressure Vess. Tech. 121(3), 334–343.CrossRefGoogle Scholar
Kaneko, S. and Mizota, Y. (1996), Dynamic modeling of deep-water type cylindrical tuned liquid damper with a submerged net, ASME Pressure Vess. Pipes Conf. Fluid–Struct. Interaction, PVP- 337, 19–30.Google Scholar
Kaneko, S., Nagakura, H., and Nakano, R. (1999), Analytical model for self-excited vibration of an overflow flexible plate weir, J. Pressure Vess. Tech. 121(3), 296–303.CrossRefGoogle Scholar
Kaneko, S. and Yoshida, O. (1999), Modeling of deep water-type rectangular tuned liquid damper with submerged nets, J. Pressure Vess. Tech. 121(4), 413–422.CrossRefGoogle Scholar
Karapetyan, A. V. (1972), The stability of regular precession of a symmetrical rigid body with an ellipsoidal cavity, Vestnik Mosk Gos Univ, Ser 1: Matem Mekh 6, 122–125.Google Scholar
Karapetyan, A. V. (2001), The steady motions of a fluid-filled spheroid on a plane with friction, J. Appl. Mat. Mech. 65(4), 631–637.CrossRefGoogle Scholar
Karapetyan, A. V. and Prokomina, O. V. (2000), The stability of permanent rotations of a top with a cavity filled with liquid on a plane with friction, ASME J. Appl. Math. Mech. 64(1), 81–86.CrossRefGoogle Scholar
Kareem A. (1993), Liquid tuned mass dampers: past, present and future, Proc. 7th U.S. National Conf. Wind Eng., UCLA.
Kareem, A. (1994), The next generation of tuned liquid dampers, 1st World Conf. Structural Control 3, FP5–19–26.Google Scholar
Kareem, A. and Sun, W. J. (1987), Stochastic response of structures with fluid-containing appendages, J. Sound Vib. 119(3), 398–408.CrossRefGoogle Scholar
Kawakami, M., Michimoto, J., and Kobayashi, K. (1977), Prediction of long term whipping vibration stress due to slamming of large full ships in rough seas, Int. Shipbuild. Prog. 24, 83–110.CrossRefGoogle Scholar
Kayuk Ya, F (1995), The dynamics of a shell of revolution with a viscous incompressible liquid, Sov. Appl. Mech. (Prikl. Mekh.) 31(11), 58–64.Google Scholar
Kayuk Ya, F, Ivanov Yu, A, and Shekera, M. K. (1996), Nonstationary dynamic processes in a cylindrical reservoir containing a viscous liquid, Sov. Appl. Mech. (Prikl. Mekh.) 32(8), 72–79.Google Scholar
Kazarinoff, N. D. and Wilkowski, J. S. (1989), A numerical study of Marangoni flows in zone-refined silicone crystals, Phys. Fluids A 1, 625–627.CrossRefGoogle Scholar
Kazarinoff, N. D. and Wilkowski, J. S. (1990), Bifurcations of numerically simulated thermocapillary flows in axially symmetric float zones, Phys. Fluids A 2, 1797–1807.CrossRefGoogle Scholar
Kelland H. (1839), On waves, Trans. Royal Soc. EdinburghX.
Kelly, R. E. (1994), The onset and development of thermal convection in fully developed shear flows, Advanced Appl. Mech. 30, 35–112.CrossRefGoogle Scholar
Kelly, R. E. and Hu, H. C. (1993), The onset of Rayleigh–Benard convection in non-planar oscillatory flows, J. Fluid Mech. 249, 373–390.CrossRefGoogle Scholar
Kelly, R. E. and Or, A. (1994), Stabilization of thermocapillary convection by means of nonplanar flow oscillations, NASA 2nd Microgravity Fluid Physics Conf., Cleveland, Ohio, 15–20.Google Scholar
Kelvin, L. (1877), On the precessional motion of a liquid, Nature 15, 297–329.Google Scholar
Kelvin, L. (1880), On an experimental illustration of minimal energy in vortex motion, Nature 23, 69–70.Google Scholar
Kelvin, L. (1882), Mathematical and Physical Papers, 4, Cambridge, Cambridge University Press.Google Scholar
Keolian R. and Rudnick J. A. (1984), The sole of phase locking in quasi-pesiodic surface waves on liquid helium and water, in Frontiers in Physical Acoustics, D Sette, ed.
Keolian, R., Turkevich, L. A., Putterman, S. J., Rudnick, I., and Rudnick, J. A. (1981), Subharmonic sequences in the Faraday experiment: departures from period doubling, Phys. Rev. Lett. 47, 1133–1136.CrossRefGoogle Scholar
Kestin J. and Persen L. N. (1954), Slow oscillations of an infinite plate and an infinite disk in a viscous fluid, Brown University, Report No AF-891/1, Contract AF18 (600)-891.
Keulegan, G. H. (1959,) Energy dissipation in standing waves in rectangular basins, J. Fluid Mech. 6(1), 33–50.CrossRefGoogle Scholar
Keulegan, G. H. and Carpenter, L. H. (1958), Forces on cylinders and plates in an oscillating fluid, J. Res. Nat. Bur. Stand. 80, 423–440.CrossRefGoogle Scholar
Khabbaz, G. R. (1971), Dynamic behavior of liquids in elastic tanks, AIAA J. 9(10), 1985–1990.CrossRefGoogle Scholar
Khandelwal R. S. (1980), Some problems in the sloshing of liquid in moving containers, Ph.D. thesis, Indian Inst. Tech., Madras, India, Dept. Aeron. Eng.
Khandelwal, R. S. and Nigam, N. C. (1981), Parametric instabilities of a liquid free surface in a flexible container under vertical periodic motion, J. Sound Vib. 74(2), 243–249.CrossRefGoogle Scholar
Khazina, G. G. (1974), Certain stability in the presence of resonances, J. Appl. Math. Mech. (PMM) 38(1), 43–51.CrossRefGoogle Scholar
Khosropour, R., Cole, S. L., and Strayer, T. D. (1995), Resonant free surface waves in a rectangular basin, Wave Motion 22(2), 187–199.CrossRefGoogle Scholar
Kikura, H., Sawada, T., and Tanahashi, T. (1991), Surface behavior of magnetic fluid sloshing and its frequency response, Trans. JSME 57B, 1629–1634.CrossRefGoogle Scholar
Kim, Y. (2001), Numerical simulation of sloshing flows with impact load, Appl. Ocean Res. 23(1), 53–62.CrossRefGoogle Scholar
Kim, Y., Park, Y. J., and Lee, H. R. (1994), A numerical study on the prediction of sloshing impact pressure, Trans. Soc. Naval Arch. Korea 30(4), 61–73.Google Scholar
Kimura, K., Ogura, K., Mieda, T., Yamamoto, K., Eguchi, Y., Moriya, S., Hagiwara, Y., Takakuwa, M., Kodama, T., and Koike, K. (1995), Experimental and analytical studies on the multi-surface sloshing characteristics of a top entry loop type FBR, Nuc. Eng. Des. 157(1/2), 49–63.CrossRefGoogle Scholar
Kimura, N. and Ohashi, H. (1978), Nonlinear sloshing in containers with arbitrary axi-symmetric geometries, 1st report, derivation of governing equations and the behavior of their solutions, Trans. JSME 44, 3024–3033 (in Japanese).CrossRefGoogle Scholar
Kimura, K. and Takahara, H. (1997), Parametric vibration of liquid surface in a rectangular tank subjected to pitching excitation (1st report, asymmetric mode), Trans. JSME C 63(608), 1052–1060 (in Japanese).CrossRefGoogle Scholar
Kimura, K., Takahara, H., Ito, T., and Sakata, M. (1992), Nonlinear liquid oscillation in a circular cylindrical tank subjected to pitching excitation, Trans. JSME C 58(556), 3564–3571 (in Japanese).CrossRefGoogle Scholar
Kimura, K., Takahara, H., and Ogura, H. (1996b), Three-dimensional sloshing analysis in a rectangular tank subjected to pitching excitation, Trans. JSME C 62(596), 1285–1294 (in Japanese).CrossRefGoogle Scholar
Kimura, K., Takahara, H., and Oomori, N., and Sakata, M. (1994a), Free vibration analysis of liquid motion in a rotating circular cylindrical tank (elliptic mode), Trans. JSME C 60(570), 374–379 (in Japanese)CrossRefGoogle Scholar
Kimura, K., Takahara, H., and Sakata, M. (1993), Sloshing in a rigid tank subjected to pitching excitation (condition of excitation for liquid surface remain planar), Trans. JSME C 59(565), 2606–2612 (in Japanese).CrossRefGoogle Scholar
Kimura, K., Takahara, H., and Sakata, M. (1994b), Effects of higher order radial modes upon nonlinear sloshing in a circular cylindrical tank subjected to vertical excitation, Trans. JSME C 60(578), 3259–3267 (in Japanese).CrossRefGoogle Scholar
Kimura, K., Takahara, H., and Sakata, M. (1996a), Sloshing in a circular cylindrical tank subjected to pitching excitation (condition for liquid surface remaining plane), Proc. 73rd JSME Spring Ann. Meeting, 96–1(VI), 87–90.Google Scholar
Kimura, K., Utsumi, M., and Sakata, M (1995), Nonstationary responses of nonlinear liquid motion in a circular cylindrical tank to stochastic earthquake excitation with two-directional components, Proc. Int. Conf. Nonlinear Stoch. Dyn., Hanoi, Vietnam, 159–168.Google Scholar
Kirkham, D. (1958), Graphs and formulas of zeros of cross product Bessel functions, J. Math. Phys. 36, 371–377.CrossRefGoogle Scholar
Kit, E., Shemer, L., and Miloh, T. (1987), Experimental and theoretical investigation of nonlinear sloshing waves in a rectangular channel, J. Fluid Mech. 181, 265–291.CrossRefGoogle Scholar
Kitchens, C. W. (1980), Navier–Stokes equations for spin-up in a filled cylinder, AIAA J. 18, 929–934.CrossRefGoogle Scholar
Kleefsman T. (2000), Numerical simulation of ship motion stabilization by an activated U-tube anti-roll tank, Master thesis, Department of Mathematics, University of Groningen, the Netherlands.
Kobayashi, N. (1980), Impulsive acting on the tank roofs caused by sloshing liquid, Proc. 7th World Conf. Earthquake Eng. 5, 315–322.Google Scholar
Kobayashi, N. (1982), Anti sloshing device for oil storage tank using wire rope, Proc. JSME Kansai 55, 78–80 (in Japanese).Google Scholar
Kobayashi, N. (1986), A Study on the Behavior of Cylindrical Liquid Storage Tanks During Earthquakes, Ph.D. thesis, University of Tokyo, Dept. Mechanical Eng. (in Japanese).Google Scholar
Kobayashi, N. and Chiba, T. (1983), A comparison of the vibrational characteristics of fluid-coupled cylindrical shells and coaxial cylinder, Tech. Rept. Ishikawajima-Harima Heavy Industries 23, 233–237 (in Japanese).Google Scholar
Kobayashi, N., Mieda, N., Shibata, H., and Shinozaki, Y. (1989), A study of the liquid slosh response in horizontal cylindrical tanks, Trans. ASME, PVT, 111(1), 32–38.Google Scholar
Kobayashi, N., Mieda, T., Jitsu, K., and Shibata, H. (1995), Sloshing suppression by bulkhead in cylindrical and co-axial cylindrical liquid vessels, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP- 314, 1–6.Google Scholar
Kobrinsky, A. E. and Kobrinsky, A. A. (1973), Vibro-impact Systems, Moscow, Nauka (in Russian).Google Scholar
Kochin, N. E., Kibel, I. A., and Rose, N. V. (1964), Theoretical Hydrodynamics, New York, Interscience Publishers.Google Scholar
Kochupillai, J., Ganesan, N., and Padmanabhan, C. (2002), A semi-analytical coupled finite element formulation for shells conveying fluids, Comput. Struct. 80, 271–286.CrossRefGoogle Scholar
Koga, T. and Tsushima, M. (1990), Breathing vibrations of a liquid-filled circular cylindrical shell, Int. J. Solids Struct. 26(9/10), 1005–1015.Google Scholar
Koh, C. G., Mahatma, S., and Wang, C. M. (1994), Theoretical and experimental studies on rectangular liquid dampers with arbitrary excitations, Earthquake Eng. Struct. Dyn. 23, 17–31.CrossRefGoogle Scholar
Koh, C. G., Mahatma, S., and Wang, C. M. (1995), Reduction of structural vibrations by multiple-mode liquid dampers, Engrg. Struct. 17(2), 122–128.CrossRefGoogle Scholar
Koide, T. and Goto, Y. (1988), Fundamental study on feedback control system regarding sloshing in storage tank, Proc. 9th World Conf. Earthquake EngineeringV, 883–888, Tokyo Kyoto, Japan.Google Scholar
Koleshov, V. B. and Shveiko, Yu Yu (1971), Asymmetric oscillations of cylindrical shells partially filled with a liquid, Izv. Academii Nauk. SSSR, Mekh. Tverdogo Tela. 3, 126–136.Google Scholar
Kolesinkov, K. S. (1971), Longitudinal Vibrations of a Rocket with a Liquid Propellant Engine, Moscow, Mashinostroyeniye (in Russian).Google Scholar
Kolesnikov, N. N. (1962), On the stability of an unconstrained rigid body with a cavity filled with an incompressible viscous fluid, J. Appl. Math. Mech. (PMM) 26(4), 914–923.CrossRefGoogle Scholar
Kollmann F. G. (1962), Experimentelle und theoretische untersuchungen über die kritischen drehzahlen flussigkeitsgefüllter Hohlkörper, Forsch Ing Wes H.4–5, Bd 28, 115–153.
Komarenko, A. N., Lukovskii, I A (1974), Nonlinear oscillations of a liquid in a cylindrical vessel under low gravity, inDynamics and Stability of Multidimensional Systems, Inst. Metem. Akad. Nauk. Ukraine, Kiev, SSSR, 86–97.Google Scholar
Komatsu, K. (1987), Nonlinear slosh analysis of liquid in tanks with arbitrary geometries, Int. J. Nonlin. Mech. 22(3), 193–207.CrossRefGoogle Scholar
Komissarova, G. L. (1990), Solution of the problem on wave propagation in a cylinder with a liquid, Soviet Appl. Mech. (Prikl. Mekh.) 26(8), 25–29.Google Scholar
Komissarova, G. L. (2002), Propagation of normal waves through a fluid contained in a thin-walled cylinder, Int. Appl. Mech. 38(1), 103–112.CrossRefGoogle Scholar
Kondo, H. (1981a), Axi-symmetric free vibration analysis of a circular cylindrical tank, Bull. JSME 24(187), 215–221.CrossRefGoogle Scholar
Kondo, H. (1981b), Response of a circular cylindrical tank subjected to vertical excitation, Theor. and Appl. Mech. 31, 311–319.Google Scholar
Kondo, H. (1989), Seismic response of a reactor vessel subjected to horizontal excitation, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 55–60.Google Scholar
Kondo, H., Yamamoto, S., and Sasaki, Y. (1989), Fluid–structure interaction analysis program for axisymmetric structures, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 179–185.Google Scholar
Konstantinov, Akh., and Lapshin, A. L. (2001), Stability of the oscillating free liquid surface in a cylindrical cavity under random perturbations, Int. Appl. Mech. 37(10), 1332–1340.CrossRefGoogle Scholar
Konstantinov, Akh., Mikityuk Yu, I, and Pal'ko, L. S. (1978), Study of the dynamic stability of a liquid in a cylindrical cavity, in Dynamics of Elastic Systems with Continuous-Discrete Parameters, Kiev, Naukova Dumka, 69–72 (in Russian).Google Scholar
Korobkin, A. (1997), Liquid–Solid Impact, Siberian Branch of the Russian Academy, Novosibrisk.Google Scholar
Korobkin, A. A. and Pukhachov, V. V. (1988), Initial stage of water impact, Annu. Rev. Fluid Mech. 20, 159–185.CrossRefGoogle Scholar
Kornecki, A. (1983), Dynamics of a mobile tank partially filled with liquid: equations of motion and their linearization, SM Archives 8, 217–241.Google Scholar
Koschmieder, E. L. (1967), On convection under air surface, J. Fluid Mech. 30, 9–15.CrossRefGoogle Scholar
Koval, L. R. (1968), A zero slosh problem, J. Spacecraft Rock. 5(7), 865–868.CrossRefGoogle Scholar
Koval R. and Bhuta P. G. (1968), A direct solution for capillary-gravity waves in a cylindrical tank, Devel. in Mechanics, 3(2): Dynamics and Fluid Mechanics, T. C. Huang and M. N. Johnson Jr, eds., 277–290.
Koval'chuk P. S. (1990), The dynamic instability of thin-walled cylindrical shells carrying a liquid, Abstracts of papers read at the All-Union Conf. on the Nonlinear Vibrations of Mechanical Systems, Gor'kii, 42 (in Russian).
Koval'chuk, P. S. and Boyarshina, L. G. (1998), Spatial self-oscillations of a solid with a cylindrical cavity partially filled with liquid, Int. Appl. Mech. 34(4), 377–384.Google Scholar
Koval'chuk, P. S. and Filin, V. G. (2003a), Circumferential traveling waves in filled cylindrical shells, Int. Appl. Mech. 39(2), 192–196.CrossRefGoogle Scholar
Koval'chuk, P. S., and Filin, V. G. (2003b), On modes of flexural vibrations of initially bent cylindrical shells partially filled with a liquid, Int. Appl. Mech. 39(4), 464–471.CrossRefGoogle Scholar
Koval'chuk P. S. and Kholopova V. V. (1997), Analysis of energy interchange between the natural modes of a liquid in a cylindrical tank, Dokl. Akad. Nauk. Ukrain., Ser. A, No 1, 36–41.
Koval'chuk, P. S. and Kholopova, V. V. (2001), Analysis of the nonstationary slow passage of a cylindrical vessel partially filled with a liquid through resonant zones, Int. Appl. Mech. 37(6), 790–797.CrossRefGoogle Scholar
Koval'chuk, P. S., Krishtalev, V. V., and Podchasov, N. P. (1997), Analysis of the energy interchange between the natural modes of a liquid in a cylindrical vessel attached to elastic supports, Sov. Appl. Mech. (Prikl. Mekh.) 33(4), 54–61.Google Scholar
Koval'chuk, P. S. and Kruk, L. A. (2000), Nonlinear energy interchange between the natural modes of freely vibrating circular cylindrical shells filled with liquid, Int. Appl. Mech. 36(1), 103–110.CrossRefGoogle Scholar
Koval'chuk, P. S. and Kruk, L. A. (2002), Forced nonlinear vibrations of cylindrical shells filled with a liquid, Int. Appl. Mech. 38(11), 1388–1393.CrossRefGoogle Scholar
Koval'chuk P. S. and Kubenko V. D. (1991), Interaction of vibrating cylindrical shells with its liquid content, in Dynamics of Bodies Interacting with a Medium, Guz, A. N., ed., Kiev, Naukova Dumka, 168–214.Google Scholar
Koval'chuk P. S. and Pavlovskii V. S. (1992), The wave modes of the nonlinear deformation of liquid-containing shells under radial dynamic pressure, Dokl. Akad. Nauk. Ukrain., Ser. A, No 11, 24–28.
Koval'chuk, P. S. and Pavlovskii, V. S. (1993), The nonlinear wave deformation of cylindrical modes of liquid-containing shells under impulse radial pressure, Sov. Appl. Mech. (Prikl. Mekh.) 29(12), 43–50.Google Scholar
Koval'chuk, P. S. and Pavlovskii, V. S. (1994), Nonlinear wave processes in cylindrical liquid-containing shells under short-term dynamic loading, in Technical–Physical Problems of New Engineering: Abstract Book, Moscow, Izd MVTU (in Russian).Google Scholar
Koval'chuk, P. S., Pavlovskii, V. S., and Filin, V. G. (1993), The nonlinear dynamics of cylindrical bodies carrying liquid masses and subject to periodic and impulsive radial perturbation, in Fundamental and Applied Problems of Space Exploration, Moscow, Zhitomir, 23 (in Russian).Google Scholar
Koval'chuk, P. S.Pavlovskii, V. S., and Filin, V. G. (1994), Analysis of resonance regimes of the wave deformation of cylindrical shells carrying a liquid, Sov. Appl. Mech. (Prikl. Mekh.) 30(2), 49–54.Google Scholar
Koval'chuk, P. S.Pavlovskii, V. S., and Filin, V. G. (2000), Stability analysis of resonance regimes of the nonlinear vibrations of liquid-containing cylindrical shells under longitudinally transversal periodic excitation, Dokl. NAN Ukrain., No 3, 31–34.Google Scholar
Koval'chuk, P. S. and Podchasov, N. P. (1988), Nonlinear flexural waves in cylindrical shells with periodic excitation, Soviet Appl. Mech. 24(11), 1086–1090.CrossRefGoogle Scholar
Koval'chuk, P. S. and Podchasov, N. P. (1996), Nonstationary wave motions of a liquid in a vibrating cylindrical vessel when passing through a zone of resonance, Int. Appl. Mech. (Prikladnaya Mekhanika) 32(1), 30–34.CrossRefGoogle Scholar
Koval'chuk, P. S. and Podchasov, N. P. (1999), Simulation of the nonlinear multimodal vibrations of thin cylindrical shells with close fundamental frequencies, Int. Conf. Modeling and Investigation of System Stability, Kiev, May, 40.Google Scholar
Koval'chuk, P. S., Podchasov, N. P., and Kholopova, V. V. (2002), Periodic modes in the forced nonlinear vibrations of filled cylindrical shells with an imperfection, Int. Appl. Mech. 38(6), 716–722.CrossRefGoogle Scholar
Koval'chuk, P. S., Puchka, G. N., and Kholopova, V. V. (1987), The nonlinear resonance vibrations of a liquid in a cylindrical vessel under longitudinal and transverse periodic excitation, Soviet Appl. Mech. (Prikl. Mekh.) 23(8), 95–100.Google Scholar
Koval'chuk P. S., Puchka, G. N., and Kholopova V. V. (1989), Nonlinear wave motions in axi-symmetric cavities subjected to vibrations, Izv. Akad. Nauk. SSSR Mekh. Zhidk., Gaza 3, 120–125.
Koval'chuk, P. S.Puchka, G. N., and Kholopova, V. V. (1999), Nonstationary wave motion of a liquid in longitudinally oscillating cylindrical vessel, Dokl. NAN Ukrain., No 11, 26–31.Google Scholar
Krasnopolskaya, T. S. and Lavrov, K. A. (1988), The nonlinear vibrations of a liquid-containing cylindrical shell under limited excitation, Soviet Appl. Mech. (Prikl. Mekh.) 24(11), 50–58.Google Scholar
Krasnopolskaya, T. S. and Podchasov, N. P. (1992a), Waves in a liquid between two coaxial cylindrical shells due to the vibrations of the inner cylinder, Soviet Appl. Mech. (Prikl. Mekh.) 28(3), 61–70.Google Scholar
Krasnopolskaya, T. S. and Podchasov, N. P. (1992b), The forced vibrations of a liquid between two cylinders excited by the vibrations of the inner shell, Soviet Appl. Mech. (Prikl. Mekh.) 28(4), 42–48.Google Scholar
Krasnopolskaya, T. S. and Podchasov, N. P. (1993), Resonances and chaos in nonaxisymmetric dynamic processes in hydroelastic systems, Soviet Appl. Mech. (Prikl. Mekh.) 29(12), 72–77.Google Scholar
Krasnopolskaya, T. S. and Shvets, A. Yu. (1990), Regular and chaotic surface waves in a liquid in a cylindrical tank, Int. Appl. Mech., Priklad. Mekh. 26(8), 787–794.Google Scholar
Krasnopolskaya, T. S. and Shvets, A. Yu. (1992), Properties of chaotic oscillations of a liquid in cylindrical tanks, Int. Appl. Mech., Priklad. Mekh. 28(6), 52–58.Google Scholar
Krasnopolskaya, T. S. and Shvets, A. Yu. (1993), Parametric resonance in the system: liquid in tank + electric motor, Int. Appl. Mech., Priklad. Mekh. 29(9), 722–730.CrossRefGoogle Scholar
Kravtsov, A. V. and Sekerzhi-Zenkovich, S. Y. (1993), Parametric excitation of the oscillations of a viscous two-layer fluid in a closed vessel, Zh. Vychisl. Mat. Fiz. 33(4), 611–619.Google Scholar
Kravtsov, A. V. and Sekerzhi-Zenkovich, S. Y. (1996), Parametric excitation of the oscillations of a viscous continuously stratified fluid in a closed vessel, J. Appl. Math. Mech. (PMM) 60(3), 449–454.CrossRefGoogle Scholar
Krein, S. G. (1964), On the oscillations of a viscous fluid in a vessel, Soviet Math. Doklady. 5(6), 1467–1471.Google Scholar
Krein, S. G. and Kan, N. Z. (1969a), The problem of small motions of a body with a cavity partially filled with a viscous fluid, J. Appl. Math. Mech. (PMM) 30(1), 110–117.CrossRefGoogle Scholar
Krein, S. G., and Kan, N. Z. (1969b), Asymptotic method in the problem of oscillations of a strongly viscous fluid, J. Appl. Math. Mech. (PMM) 33(3), 442–450.CrossRefGoogle Scholar
Krein, S. G. and Laptev, G. I. (1968), On the problem of motion of a viscous fluid in an open vessel, Funkts. Analiz. 2(1), 38–47.CrossRefGoogle Scholar
Krein, S. G. and Moiseev, N. N. (1957), On vibrations of a rigid body containing liquid having free surface, J. Appl. Math. Mech. (PMM) 21, 169–174.Google Scholar
Kreis, A. and Klein, M. (1991), On the analysis of liquid filled free–free tanks, Proc. Int. Conf. Spacecraft Structures and Mechanical Testing, Noordwijk, the Netherlands, 437–442.Google Scholar
Krishnamurti, R. (1968), Finite amplitude convection with changing mean temperature, J. Fluid Mech. 33, 445–457.CrossRefGoogle Scholar
Kruse, H. P., Mahalov, A., and Marsden, J. E. (1999), On the Hamiltonian structure and three-dimensional instabilities of rotating liquid bridges, Fluid Dyn. Res. 24, 37–59.CrossRefGoogle Scholar
Krushinskaya S. I. (1965), Vibrations of a heavy viscous fluid in a moving vessel, Zh. Vychisl. Matem. i Matem. Fiz. 3.
Kubenko, V. D. (1979), The Nonstationary Interaction of Structural Elements with a Medium, (in Russian) Kiev, Naukova Dumka.Google Scholar
Kubenko, V. D. and Koval'chuk, P. S. (1987), The nonlinear vibrations and wave modes of deformation of cylindrical shells filled with a liquid, 11th Int. Conf on Nonlinear Oscillations, Budapest, 17–23 August, 44.Google Scholar
Kubenko, V. D. and Koval'chuk, P. S. (2000), Nonlinear problems of the dynamics of elastic shells partially filled with a liquid, Int. Appl. Mech. 36(4), 421–448.CrossRefGoogle Scholar
Kubenko, V. D., Koval'chuk, P. S., and Boyarshina, L. G. (1992), Nonlinear Dynamics of Axisymmetric Bodies Carrying a Liquid, Kiev, Naukova Dumka (in Russian).Google Scholar
Kubenko, V. D., Koval'chuk, P. S., and Krasnopo'skaya, T. S. (1984), Nonlinear Modal Interaction of Flexible Vibrations of Cylindrical Shells, Kiev, Naukova Dumka.Google Scholar
Kubenko, V. D., Koval'chuk, P. S., and Kruk, L. A. (2003), On multimode nonlinear vibrations of filled cylindrical shells, Int. Appl. Mech. 39(1), 85–92.CrossRefGoogle Scholar
Kubenko, V. D., Koval'chuk, P. S., and Podchsov, N. P. (1989), Nonlinear Vibrations of Cylindrical Shells, (in Russian) Kiev, Vyshcha Shkola.Google Scholar
Kubenko, V. D. and Kruk, L. A. (1994), On the oscillations of an incompressible liquid in an infinite cylindrical shell containing a spherical body oscillating along the shell axis, Soviet Appl. Mech. (Prikl. Mekh.) 30(4), 31–37.Google Scholar
Kubenko, V. D. and Lakiza, V. D. (1996), Dynamic behavior of a gas–liquid media in ellipsoidal shells subjected to vibration, Int. Appl. Mech. 32(2), 89–94.CrossRefGoogle Scholar
Kubenko, V. D. and Lakiza, V. D. (1998), Vibrational resonance modes of motion of gas–liquid media in shell structures under polyharmonic excitation, Int. Appl. Mech. 34(1), 54–59.Google Scholar
Kubenko, V. D. and Lakiza, V. D. (1999), Dynamic behavior of liquids and gases in conical shells in a vibrational force field, Int. Appl. Mech. 35(2), 128–133.CrossRefGoogle Scholar
Kubenko, V. D., Lakiza, V. D., Pavolvskii, V. S., and Pelykh, N. A. (1988), Dynamics of Elastic Gas–Liquid Systems under Vibratory Actions, Kiev, Naukova (in Russian).Google Scholar
Kubenko, V. D. and Savin, V. A. (2000), Construction of the velocity potential of a semi-infinite liquid column excited by a spherical calotte oscillating inside a cylindrical cavity, Int. Appl. Mech. 36(3), 358–366.CrossRefGoogle Scholar
Kubenk, V. D. and Savin, V. A. (2002), Dynamics of a semi-infinite cylindrical shell with a liquid containing a vibrating spherical segment, Int. Appl. Mech. 38(3), 974–982.CrossRefGoogle Scholar
Kuhlmann, H. C. and Rath, H. J. (1993a), Hydrodynamic instabilities in cylindrical thermocapillary liquid bridges, J. Fluid Mech. 247, 247–274.CrossRefGoogle Scholar
Kuhlmann, H. C. and Rath, H. J. (1993b), On the interpretation of phase measurements of oscillatory convection in liquid bridges, Phys. Fluids A 5, 2117–2120.CrossRefGoogle Scholar
Kuipers, M. (1964), On the stability of a flexible mounted rotating cylinder partially filled with liquid, Appl. Sci. Res. A 13(2/3), 121–137.CrossRefGoogle Scholar
Kuipers, M. (1966), Die instabilität eines federnd gelagerten und teilweise mit flussigkeit gefüllten umlaufenden hohlzylinders, Forsch. Ing. Wes. 32(6), 194–195.CrossRefGoogle Scholar
Kukner, A. and Baykal, M. A. (1999), Wave sloshing in corrugated bottom tanks with two-dimensional flow, Ocean Eng. 26(8), 703–712.CrossRefGoogle Scholar
Kumar, K. (1996), Linear theory of Faraday instability in viscous liquids, Proc. Royal Soc. London A 452, 1113–1126.CrossRefGoogle Scholar
Kumar, K. and Bajaj, K. M. S. (1995), Competing patterns in the Faraday experiment, Phys. Revs. E 52, R4606–4609.CrossRefGoogle ScholarPubMed
Kumar, K. and Tuckerman, L. S. (1994), Parametric instability of the interface between two fluids, J. Fluid Mech. 279, 49–68.CrossRefGoogle Scholar
Kumar, R. (1971), Flexural vibrations of fluid-filled circular cylindrical shells, Acoustica 24(3), 137–146.Google Scholar
Kumar, R. (1972), Dispersion of axially symmetric waves in empty and fluid-filled circular cylindrical shells, Acoustica 25(6), 317–329.Google Scholar
Kumok Yu, Z. and Novgorodtseva, L. Z. (1965), Small free oscillations of a rotating cylinder partially filled with a liquid, Prikl. Mekh. 1(12), 87–94.Google Scholar
Kunitsyn, A. L. (1971), On the stability of pure imaginary roots in the critical case in the presence of intrinsic resonance, J. Appl. Math. Mech. (PMM) 35, 164–167.CrossRefGoogle Scholar
Kunitsyn, A. L. and Markeev, A. P. (1979), Stability in resonance cases, in Achievements of Science and Technology, General Mechanics4, Moscow, Viniti.Google Scholar
Kunitsyn, A. L. and Matveyev, M. V. (1991), The stability of a class of reversible systems, J. Appl. Math. Mech. (PMM) 55(6), 780–788.CrossRefGoogle Scholar
Kunitsyn, A. L. and Muratov, A. S. (1993), The stability of a class of quasi-autonomous periodic systems with internal resonance, J. Appl. Math. Mech. (PMM) 57(2), 247–255.CrossRefGoogle Scholar
Kunitsyn, A. L. and Perezhogin, A. A. (1985), The stability of neutral systems in the case of a multiple fourth-order resonance, J. Appl. Math. Mech. (PMM) 49(1), 53–57.CrossRefGoogle Scholar
Kunitsyn, A. L. and Tuyakbayev, A. A. (1992), The stability of Hamiltonian systems in the case of a multiple fourth-order resonance, J. Appl. Math. Mech. (PMM) 56(4), 572–576.CrossRefGoogle Scholar
Kurdolli, A. and Gollub, J. P. (1996a), Patterns and spatio-temporal chaos in parametrically forced surface waves: a systematic survey at large aspect ratio, Physica D 97, 133–154.Google Scholar
Kurdolli, A. and Gollub, J. P. (1996b), Localized spatio-temporal chaos in surface waves, Phys. Revs. E 54, R1052–1055.Google Scholar
Kurdolli, A., Pier, B., and Gollub, J. P. (1998), Superlattice patterns in surface waves, Physica D 123, 99–111.Google Scholar
Kurihara, C., Masuko, Y., and Sakurai, A. (1992), Sloshing impact pressure in roofed liquid tanks, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 232, 19–24.Google Scholar
Kuttler, J. R. and Sigillito, V. G. (1969), Lower bounds for sloshing frequencies, Quart. Appl. Math. 27(3), 405–408.CrossRefGoogle Scholar
Kuttler, J. R., and Sigillito, V. G. (1978), Bounding eigenvalues of elliptic operators, SIAM J. Math. Anal. 9, 768–773.CrossRefGoogle Scholar
Kuttler, J. R. and Sigillito, V. G. (1984), Sloshing of liquids in cylindrical tanks, AIAA J. 22(2), 309–311.Google Scholar
Kuz'ma, V. M. and Kholopova, V. V. (1983), Oscillations of the free surface of a liquid in a cylindrical container with longitudinal vibrations, Prikl. Mekh. 19(3), 249–253.Google Scholar
Kwak, M. K. (1991), Vibration of circular plates in contact with water, ASME J. Appl. Mech. 58, 480–483.CrossRefGoogle Scholar
Kwak, M. K. (1997), Hydroelastic vibration of circular plates, J. Sound Vib. 201, 293–303.CrossRefGoogle Scholar
Kwok, K. C. S. (1984), Damping increase in building with tuned mass damper, ASCE J. Eng. Mech. 110, 1645–1649.CrossRefGoogle Scholar
Kwok, K. C. S., Samali, B., and Xu, Y. L. (1991), Control of wind induced vibration of tall structures by optimized tuned liquid column dampers, Proc. Asia-Pacific Conf. Computational Mechanics, Hong Kong, 569–574.Google Scholar
Labus T. L. (1969), Natural frequency of liquids in annular cylinders under low gravitational conditions, NASA TN D-5412.
Lacovic R. F., Yeh F. C., Szabo S. V., Brun R. J., Stofan A. J., and Berns J. A. (1968), Management of cryogenic propellants in a full-scale orbiting space vehicle, NASA TN D-4571.
Lai, C. L. (1990), Unsteady thermocapillary flows and free surface oscillations in reduced gravity environments, Acta Astron. 21, 171–181.CrossRefGoogle Scholar
Lakis, A. A. and Laveau, A. (1991), Nonlinear dynamic analysis of anisotropic cylindrical shells containing a flowing fluid, Int. J. Solids & Struct. 28, 1079–1094.CrossRefGoogle Scholar
Lakis, A. A. and Sinno, M. (1992), Free vibrations of axisymmetric and beam-like cylindrical shells, partially filled with liquid, Int. J. for Num. Methods in Engrg. 33, 235–268.CrossRefGoogle Scholar
Lakis, A. A. and Païdoussis, M. P. (1971), Free vibrations of cylindrical shells partially filled with liquid, J. Sound Vib. 19(1), 1–15.CrossRefGoogle Scholar
Lakiza, V. D. (1995), Experimental studies of the dynamic behavior of a gas–liquid media in spherical shells under the action of vibration, Int. Appl. Mech. 31(1), 61–65.CrossRefGoogle Scholar
Lamb, H. (1945), Hydrodynamics, Cambridge, Cambridge University Press.Google Scholar
Landau, L. D. and Lifshitz, E. M. (1959), Fluid Mechanics, Reading, MA, Addison.Google Scholar
Langbein, D. (1992), Stability of liquid bridges between parallel plates, Microgravity Sci. Technol. V/1, 2.Google Scholar
Langbein, D., Falk, F., and Grossbach, R. (1995), Oscillations of liquid columns under microgravity, Adv. Space Res. 16, 23–26.CrossRefGoogle Scholar
Langner C. G. (1963), A preliminary analysis for optimum design of ring and vertical wall antislosh baffles, SwRI, TR 7, April.
Lappa, M. and Savino, R. (1999), Parallel solution of the three-dimensional Marangoni flow instabilities in liquid bridges, Int. J. Num. Meth. Fluids 31(5).3.0.CO;2-B>CrossRefGoogle Scholar
Lappa, M., Savino, R., and Monti, R. (2001), Three-dimensional numerical simulation of Marangoni instabilities in liquid bridges: Influence of geometrical aspect ratio, Int. J. Heat Mass Transfer 44(10), 1983–2003.CrossRefGoogle Scholar
Larraza, A. P. and Putterman, S. (1984), Theory of non-propagating surface-wave solitons, J. Fluid Mech. 148, 443–449.CrossRefGoogle Scholar
Lau, D. T. and Zeng, X. (1992), Hydrodynamic forces in uplifting cylindrical tanks, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 232, 39–44.Google Scholar
Lavalley, R., Amberg, G., and Alfredsson, H. (2001), Experimental and numerical investigation of nonlinear thermocapillary oscillations in an annular geometry, Eur. J. Mech. B-Fluids 20, 771–797.CrossRefGoogle Scholar
Laverón-Simavilla, A. and Perales, J. M. (1995), Equilibrium shapes of non-axisymmetric liquid bridges of arbitrary volume in gravitational fields and their potential energy, Phys. Fluids 7, 1204–1213.CrossRefGoogle Scholar
Lawrence, H. R., Wang, C. J., and Reddy, R. B. (1958), Variational solution of fuel sloshing modes, Jet Propul., Publication of Amer. Rocket Soc. 28(11), 728–736.Google Scholar
Lee, B. S. and Vassalos, D. (1996), Investigation into the stabilization effects of anti-roll tanks with flow obstructions, Int. Shipbuilding Progress 43, 70–88.Google Scholar
Lee, C. P., Anilkumar, A. V., and Wang, T. G. (1996), Streaming generated in a liquid bridge due to nonlinear oscillations driven by the vibrations of an endwall, Phys. Fluids 8(12), 3234–3246.CrossRefGoogle Scholar
Lee, D. Y. and Choi, H. S. (1999), Study of sloshing in cargo tanks including hydroelastic effects, J. Marine Sci. Technol. 4(1), 27–34.CrossRefGoogle Scholar
Lee, S. C. and Reddy, D. V. (1982), Frequency tuning of offshore platforms by liquid sloshing, Appl. Ocean Res. 4, 226–231.CrossRefGoogle Scholar
Lee, S. H., et al. (1995), Simulation of 3-D sloshing and structural response in ship's tanks taking account of fluid–structure interaction, SNAME Trans. 103, 321–342.Google Scholar
Lee, T. H., Zhou, Z., and Cao, Y. (2002), Numerical simulations of hydraulic jumps in water sloshing and water impacting, ASME J. Fluids Engrg. 124(1), 215–226.CrossRefGoogle Scholar
Leissa A. W. (1973), Vibration of shells, NASA SP-288.
Leonard H. W. and Walton W. C. Jr (1961), An investigation of the natural frequencies and mode shapes of liquids in oblate spheroidal tanks, NASA TN-D-904.
Leonov, G. A. and Morozov, A. V. (1988), On the global stability of the forced motions of a liquid within an ellipsoid, J. Appl. Math. Mech. (PMM) 52(1), 133–135.CrossRefGoogle Scholar
Lepelletier, T. G. and Raichlen, F. (1988), Nonlinear oscillation in rectangular tanks, ASCE J. Eng Mech 114(1), 1–23.CrossRefGoogle Scholar
Leroy, J. (1963), On breathing vibrations of thin cylinders partially full of liquid, Comptes Rendus 257(18), 2607–2609 (in French).Google Scholar
Leslie, F. W. (1985), Measurements of rotating bubble shapes in a low gravity environment, J. Fluid Mech. 161, 269–279.CrossRefGoogle Scholar
Levenstam, M. and Amberg, G. (1995), Hydrodynamic instability of thermocapillary flow in a half-zone, J. Fluid Mech. 297, 357–372.CrossRefGoogle Scholar
Levich, V. G. and Krylov, V. S. (1969), Surface tension driven phenomena, Ann. Rev. Fluid Mech. 1, 293–316.CrossRefGoogle Scholar
Levin E. (1957), Conical sloshing, Memo. PA/M-553/1, STL.
Levin, E. (1963), Oscillations of a fluid in rectilinear conical containers, AIAA J. 1(6), 1447.CrossRefGoogle Scholar
Levine N. B., Krainman H., and Green J. (1966), Positive expulsion bladders for storable propellants, AFML-TR-65–379.
Levleva, O. B. (1964), Small oscillations of a pendulum having a spherical cavity filled with a viscous fluid, J. Appl. Math. Mech. (PMM) 28(6), 1359–1361.CrossRefGoogle Scholar
Levleva, O. B. (1966), Oscillations of a body filled with a viscous fluid, J. Appl. Mech. Tech. Phys. (English translation) 7(6), 18–22.CrossRefGoogle Scholar
Levy A. M., Chin J. H., Donaldson J. O., Gallagher L. W., Harper E. Y., Hurd S. E., and Satterlee H. M. (1964), Analytical and experimental study of liquid orientation and stratification in standard and reduced gravity fields, Lockheed Missiles & Space Co., Rept. No 205641.
Lewin, L., Burger, M., and Souli, M. (1997), Simulation of dynamic fuel sloshing using an explicit finite element approach, ASME Symp. Adv. Analytical, Experimental and Computational Technologies in Fluids, Structures, Transients and Natural Hazards, PVP- 355, 103–111.Google Scholar
Lewis, D. J. (1950), The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. Royal Soc. (London) A 202, 81–96.CrossRefGoogle Scholar
Lewison, B. A. (1975), Optimum design of passive roll stabilizer tanks, Royal Inst. Naval Archit. 78, 31–45.Google Scholar
Li, L. (1983a), On the stability of the rotational motion of a rigid body having a liquid-filled cavity under finite initial disturbance, Appl. Math. Mech. 4, 667–680.CrossRefGoogle Scholar
Li, L. (1983b), On the global stability of rotational motion and the qualitative analysis of the behavior of distributed motion of a rigid body having a liquid-filled cavity, Appl. Math. Mech. 4, 865–874.CrossRefGoogle Scholar
Li W. (1985), Response of a nonlinear two-degree-of-freedom system to a horizontal harmonic excitation, Master thesis, Texas Tech University, Lubbock, TX.
Lichter, S. and Shemer, L. (1986), Experiments on nonlinear cross-waves, Phys. Fluids 29, 3971–3975.CrossRefGoogle Scholar
Lichtenberg, G. (1982), Vibration of an elastically mounted spinning rotor partially filled with liquid, J. Mech. Des. 104(2) 389–396.CrossRefGoogle Scholar
Lidström M. (1976), Road tankers overturning limit: the steady-state case, (in Swedish) National Road and Traffic Research Institute, Linköping, Sweden, Working Paper 1976–12–17.
Lidström M. (1977), Road tanker overturning: with and without longitudinal baffles, (in Swedish) National Road and Traffic Research Institute, Linköping, Sweden, Report No 115.
Liepmann, H. W. and Lagina, G. A. (1984), Nonlinear interaction in the fluid mechanics of helium II, Annu. Rev. Fluid Mech. 16, 139–177.CrossRefGoogle Scholar
Lifshitz, R. and Petrich, D. M. (1997), Theoretical model for Faraday waves with multiple-frequency forcing, Phys. Rev. Lett. 79, 1261–1264.CrossRefGoogle Scholar
Lighthill, M. J. (1966), Dynamics of rotating fluids: A Survey, J. Fluid Mech. 26, 411–431.CrossRefGoogle Scholar
Limarchenko O. S. (1978a), Variational formulation of the problem on the motion of a tank with fluid, Dopovidi Akademii Nauk. Ukrains'koi RSR, A 10, 903–907 (in Ukranian).
Limarchenko O. S. (1978b), Direct method for solution of nonlinear dynamic problems for a tank with fluid, Dopovidi Akademii Nauk. Ukrains'koi RSR, A 11, 999–1002 (in Ukranian).
Limarchenko, O. S. (1980), Variational method investigation of problems of nonlinear dynamics of a reservoir with a liquid, Soviet Appl. Mech. 16(1), 74–79.CrossRefGoogle Scholar
Limarchenko, O. S. (1981), Effect of capillarity on the dynamics of a container liquid system, Soviet Appl. Mech. 17(6), 601–604.CrossRefGoogle Scholar
Limarchenko, O. S. (1983a), Direct method of solving problems on the combined spatial motions of a body fluid system, Soviet Appl. Mech. 19(8), 715–721.CrossRefGoogle Scholar
Limarchenko, O. S. (1983b), Application of a variational method to the solution of nonlinear problems of the dynamics of combined motions of a tank with fluid, Soviet Appl. Mech. 19(11), 1021–1025.CrossRefGoogle Scholar
Limarchenko, O. S. (1987), Application of direct methods to the study of applied problems of nonlinear dynamics of bodies partially filled by a liquid, Inst. Mathematics, Ukraine, Academy of Sciences, No 87.8, Kiev.Google Scholar
Limarchenko O. S. (1991), Modeling of dynamics of structures hosting a liquid with a free surface in cavities of revolution, Inst. Math., Ukraine, Academy of Sciences, No 91.16, Kiev.
Limarchenko, O. S. (1995), Non-steady rotation of a cylindrical storage tank partially filled with a viscose fluid, Int. Appl. Mech. (Prikl. Mekh.) 31(5), 406–411.CrossRefGoogle Scholar
Limarchenko, O. S., Lukovskii, I. A., and Timokha, A. N. (1992), Nonlinear models in applied dynamics problems of bodies with a free surface liquid, Prikl. Mekh. 28(11), 757–763.Google Scholar
Limarchenko, O. S. and Yasinskii, V. V. (1996), Nonlinear Dynamics of Constructions with a Fluid, Kiev Polytechnic University (in Russian).Google Scholar
Lin, C. C. (1954), On a perturbation theory based on the method of characteristics, J. Math. Phys. 33, 117.CrossRefGoogle Scholar
Lin J. (1994), Measurement of free surface deformation in oscillatory flow, M.Sc., thesis, Case Western Reserve University, Cleveland, OH.
Lin J. D. and Howard L. N. (1960), Nonlinear standing waves in a rectangular tank due to forced oscillations, MIT Hydrodynamics Lab., TR 44.
Lin, J., Kamotani, Y., and Ostrach, S. (1995), An experimental study of free surface deformation in oscillatory flow, Acta Astronaut. 35(8), 525–536.CrossRefGoogle Scholar
Lin, T. C. and Morgan, G. W. (1956), Wave propagation through fluid contained in a cylindrical elastic shell, J. Acoust. Soc. Amer. 28(6), 1165–1176.CrossRefGoogle Scholar
Lin, Y. K. (1967), Probabilistic Theory of Struct Dynamics, New York, McGraw-Hill.Google Scholar
Lindholm, U. S., Chu, W. H., Kana, D. D., and Abramson, H. N. (1963), Bending vibrations of a circular cylindrical shell containing an internal liquid with a free surface, AIAA J. 1(9), 2092–2099.Google Scholar
Lindholm, U. S., Kana, D. D., and Abramson, H. N. (1962a), Breathing vibrations of a circular cylindrical shell with an internal liquid, J. of Aero./Space Sciences 29(9), 1052–1059.CrossRefGoogle Scholar
Lindholm U. S., Kana D. D., Chu W. H., and Abramson H. N. (1962b), Research in liquid dynamics in missile fuel tanks, SwRI, TR 7.
Lindstrom, K., Kjellander, H., and Jonsson, C. (1969), A new instrument for the measurement of liquid level, Rev. Sci. Instruments 4, 1083–1087.Google Scholar
Liu, A. P. C. and Lou, J. Y. K. (1990), Dynamic coupling of a liquid–tank system under transient excitation, Ocean Engrg. 17(3), 263–277.Google Scholar
Liu F. C. (1964), Pressure on baffle rings due to sloshing in a cylindrical tank, NASA MSFC, R-AERO-4–64.
Liu, W. K. and Belytschko, T. B. (1983), Fluid structure interaction with sloshing, Trans. 7th Int. Conf. Struct. Mech. in Reactor Tech. B, 11–18.Google Scholar
Liu, W. K., Chen, Y. J., Tsukimori, K., and Uras, R. A. (1991), Recent advances in dynamic buckling analysis of liquid-filled shells, ASME J. Pressure Vessel Tech. 113, 314–320.CrossRefGoogle Scholar
Liu, W. K. and Lam, D. (1983), Nonlinear analysis of liquid-filled tank, J. Eng. Mech. 109, 1344–1357.CrossRefGoogle Scholar
Liu, W. K. and Ma, D. C. (1982), Coupling effect between liquid sloshing and flexible fluid-filled systems, Nuclear Engrg. Des. 72, 345–357.CrossRefGoogle Scholar
Liu, W. K. and Uras, R. A. (1988), Variational approach to fluid–structure interaction with sloshing, Nuclear Eng. and Design 106, 69–85.CrossRefGoogle Scholar
Liu, W. K., and Uras, R. A. (1989a), Transient buckling analysis of liquid-storage tanks – part I: Theory, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 35–40.Google Scholar
Liu, W. K., and Uras, R. A. (1989b), Transient buckling analysis of liquid-storage tanks – part II: Applications, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP-157, 41–46.Google Scholar
Liu, Y. Z. (1992), The stability of a fluid-filled top rotating on a horizontal plane, Arch. Appl. Mech. 62, 487–494.CrossRefGoogle Scholar
Liu, Z. P. and Huang, Y. (1994), A new method for large amplitude sloshing problems, J. Sound Vib. 175(2), 185–195.CrossRefGoogle Scholar
Lloyed, A. R. J. M. (1989), Seakeeping – Ship Behavior in Rough Weather, Chichester, Ellis Harwood.Google Scholar
Lomen D. O. (1965a), Liquid propellant sloshing in mobile tanks of arbitrary shape, NASA CR-222, April.
Lomen D. O. (1965b), Digital analysis of liquid propellant sloshing in mobile tanks with rotational symmetry, NASA CR-230.
Lomen, D. O. and Fontenot, L. L. (1967), Fluid behavior in parabolic containers undergoing vertical excitation, J. Math. Phys. 46(1), 43–53.CrossRefGoogle Scholar
Longuet-Higgins, M. S. (1985), Bifurcation in gravity waves, J. Fluid Mech. 151, 457–475.CrossRefGoogle Scholar
Longuet-Higgins, M. S. (2000), Theory of water waves derived from a Lagrangian, Part 1: standing waves, J. Fluid Mech. 423, 275–292.CrossRefGoogle Scholar
Lorell J. (1951), Forces produced by fuel oscillations, Jet Prop. Lab. Progress Report 20–149.
Lorell J. (1952), Effect of fuel sloshing on the position of the center of rotation of a missile, Jet Propulsion Labs., Caltech, Rept. 20–65.
Lorenz, E. N. (1963), Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130–141.2.0.CO;2>CrossRefGoogle Scholar
Lou, J. Y. K, Lutes, L. D., and Li, J. (1994), Active tuned liquid damper for structural control, Proc. 1st World Conf. Structural Control, Los Angeles 2, TP1–70–79.Google Scholar
Lou Y. K., Wu M. C., and Lee C. K. (1985), Further studies on liquid sloshing, Maritime Admins. Rept. No MA-RD-760–85009, March.
Lowry, B. J. and Steen, P. H. (1995), Flow-induced stabilization of liquid columns, J. Colloid. Interface Sci. 170, 38–43.CrossRefGoogle Scholar
Lu, D., Kondo, S., and Takizawa, A. (1995), Analysis of overflow-induced sloshing coupled with oscillation of elastic wall, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP- 314, 147–152.Google Scholar
Lu, D., Takizawa, A., and Kondo, S. (1997), Overflow-induced vibration of a weir coupled with sloshing in a downstream tank, J. Fluids Struct. 11, 367–393.CrossRefGoogle Scholar
Lu, D.Takizawa, A. and Kondo, S. (1998), Extension of physical component BFC method for the analysis of free-surface flows coupled with moving boundaries, Comput. Mech. 21(1), 71–80.CrossRefGoogle Scholar
Lübeck G. (1873), Über den einfluss, welchen auf die bewegung eimes pendels mit einem kugelförmigen hohlraume ein in ihm enthaltens reibende flüssigkeit ausübt, Journal f, reine u ang Math 77.
Lubin, B. T. and Springer, G. S. (1967), The formulation of a dip on the surface of a liquid draining from a tank, J. Fluid Mech. 29, 385–390.CrossRefGoogle Scholar
Ludwieg, H. (1951), Die ausgebildete kanalströmung in einem rotierenden system, Ing. Archiv. 19, 296–308.CrossRefGoogle Scholar
Lught, H. J. and Ohring, S. (1992), The oblique ascent of a viscous vortex pair toward a free surface, J. Fluid Mech. 236, 461–480.CrossRefGoogle Scholar
Lugovski V. V. (1961), On an investigation of the hydrodynamic forces in oscillations of finite amplitude, Tsentral Nauchnoissled Inst Morskogo Flota, Trudy, Vyp 351, 40–48.
Lui, A. P. and Lou, J. Y. K. (1990), Dynamic coupling of a liquid tank system under transient excitation, Ocean Eng. 17(3), 263–277.Google Scholar
Luk C. H. (1969), Finite element analysis for liquid sloshing problems, MIT, Aeroelastic and Struct. Res. Lab., Tech. Rept. TR-144–3, AFOSR 69–1504, May.
Luke, J. C. (1967), A variational principle for a fluid with a free surface, J. Fluid Mech. 27, 395–397.CrossRefGoogle Scholar
Lugovski, V. V. (1961), On an investigation of the hydrodynamic forces in oscillations of finite amplitude, Tsentral Nauchnoissled Inst Morskogo Flota, Trudy, Vyp 351, 40–48.Google Scholar
Lukovskii, I. A. (1961a), Small wave motions of homogeneous incompressible fluid in containers which are solids of revolution, Dopovidi Akad Nauk Ukrain RSR, 1013–1017.Google Scholar
Lukovskii, I. A. (1961b), Perturbed motion of a solid body with spherical cavity partly filled with liquid, Dopovidi Akad Nauk Ukrain RSR, 1418–1423.Google Scholar
Lukovskii, I. A. (1967), Variational method in the nonlinear problems of the dynamics of a limited liquid volume with free surface, in Oscillations of Elastic Constructions with Liquid, 260–264, Moscow, Volna (in Russian).Google Scholar
Lukovskii, I. A. (1975), Nonlinear Fluid Oscillations in Vessels of Complex Geometrical Shapes, Kiev, Naukova Dumka (in Russian).Google Scholar
Lukovskii, I. A. (1990), Introduction to the Nonlinear Dynamics of Aircraft with Liquid, Kiev, Nauk Dumka (in Russian).Google Scholar
Lukovskii I. A., Barnyak M. Y., and Komarenko A. N. (1984), Approximate methods of solving the problems of the dynamics of a limited liquid volume, Kiev, Naukova Dumka (in Russian).
Lukovskii, I. A. and Bilyk, A. N. (1985), Forced nonlinear oscillations of a liquid in moving axial-symmetric conical tanks, in Numerical-Analytical Methods of Studying the Dynamics and Stability of Multidimensional Systems, Institute of Math 12–26, Kiev. (in Russian)Google Scholar
Lukovskii, I. A. and Timokha, A. N. (1991a), Acoustic action on a free surface bounded by a liquid volume, Akust Zhurnal 37(1), 144–149.Google Scholar
Lukovskii, I. A. and Timokha, A. N. (1991b), Stabilization of a separation surface of a liquid and a gas during interaction with acoustic fields in a gas, Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaz 3, 80–86.Google Scholar
Lukovskii, I. A. and Timokha, A. N. (1992), Variational formulations of the problem of the interaction of a “liquid–gas” interface with acoustic fields in the gas, in Math. Methods of Investigating Applied Problems of the Dynamics of Bodies Carrying a Liquid, Kiev, Inst. Math. 3–10.Google Scholar
Lukovskii, I. A. and Timokha, A. N. (1995), Variational Methods in Nonlinear Dynamics of a Limited Liquid Volume, Kiev, Inst. Math. (in Russian).Google Scholar
Lukovskii, I. A. and Timokha, A. N. (1999), Nonlinear theory of sloshing in mobile tanks: classical and non-classical problems (survey), in Problems of Analytical Mechanics and its Applications, Kiev, Institute of Mathematics of NASU, 169–200.Google Scholar
Lukovskii, I. A. and Timokha, A. N. (2000a), Steady state nonlinear sloshing in a rectangular tank: passage to shallow water, Dopovidi of National Academy of Sciences of Ukraine 11, 48–51.Google Scholar
Lukovskii, I. A. and Timokha, A. N. (2000b), Modal modeling of nonlinear fluid sloshing in tanks with non-vertical walls: Non-conformal mapping technique, Applied Hydromechanics (Prykl. Hydromechanika) 2(74), No 4.32–47 (in Russian).Google Scholar
Lukovskii, I. A. and Timokha, A. N. (2001), Asymptotic and variational methods in non-linear problems of the interaction of surface waves with acoustic fields, J. Appl. Mat. Mech. 65(3), 463–470.CrossRefGoogle Scholar
Lukovskii, I. A., Trotsenko, V. A., and Usyukin, V. I. (1989), Interaction of Thin-Walled Elastic Elements with a Liquid in Mobile Cavities, Kiev, Naukova Dumka (in Russian).Google Scholar
Luskin, H. and Lapin, E. (1952), An analytical approach to the fuel sloshing and buffeting problems of aircraft, J. Aeronaut. Sci. 19(4), 217–228.CrossRefGoogle Scholar
Lyubimov, D. B. and Cherepanov, A. A. (1986), Development of a steady relief at the interface of fluids in a vibrational field, Fluid Dyn. 21, 849–854.CrossRefGoogle Scholar
Lyubimov, D. B. and Cherepanov, A. A. (1989), The occurrence of a stationary relief on the interface between fluids in a vibration field, Izv. Akad. Nauk. SSSR, MZhG 6, 8–13.Google Scholar
Lyubimov D. B., Cherepanov A. A., and Briskan V. A. (1981), Control of the fluid free surface by fluctuating fields: II, All Union Seminar on Hydromechanics and Heat and Mass Transfer, Abstracts, Perm 112–114.
Lyubimov, D. B., Lyubimova, T. P., Skuridin, R. V., Chen, G., and Roux, B. (2002), Numerical investigation of meniscus deformation and flow in an isothermal liquid bridge subject to high-frequency vibrations under zero gravity conditions, Comput. Fluids 31, 663–682.CrossRefGoogle Scholar
Ma, D. C., Gvildys, J., Chang, Y. W., and Liu, W. K. (1982), Seismic behavior of liquid-filled shells, Nuclear Eng. Design 70, 437–455.CrossRefGoogle Scholar
Macdonald, H. M. (1894), Waves in Canals, Proc. Lond. Math. Soc. XXV, 101–111.Google Scholar
Machida, T., Kaneko, S., and Watanabe, T. (1998), Nonlinear characteristics of sloshing with inlet and outlet flow in a rectangular tank (in Japanese), Trans. JSME C 64(620), 1184–1192.CrossRefGoogle Scholar
Mack L. R. (1960), Finite amplitude gravity waves of an ideal liquid in a right circular cylindrical tank with horizontal bottom, Ph.D. dissertation, University of Michigan, Ann Arbor.
Mack, L. R. (1962), Periodic finite-amplitude, axi-symmetric gravity waves, J. Geophys. Res. 67(2), 829–843.CrossRefGoogle Scholar
Mack, L. R., Jay, B. E., and Sattler, D. E. (1967), Standing gravity waves of finite amplitude, Dev. Theor. Appl. Mech.3, 3, Pergamon Press.Google Scholar
Madarame, H., Okamoto, K., and Hagiwara, T. (1992), Self-induced sloshing in a tank with circulating flow, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 232, 5–11.Google Scholar
Madarame, H., Fukaya, M., Iida, M., and Okamoto, K. (1993a), Self-induced oscillations of upward plane jet impinging on free surface, ASME Pressure Vess. Piping, PVP- 258, 113–119.Google Scholar
Madarame, H., Iida, M., Okamoto, K., and Fukaya, M. (1993b), Jet-flutter: self-induced oscillations of upward plane jet impinging on free surface, Proc. Asia-Pacific Vib. Conf. '93, 1, 265–270.Google Scholar
Madarame, H. and Ida, M. (1998), Mechanism of jet-flutter: self-induced oscillation of an upward plane jet impinging on a free surface, JSME Int. J. B 41, 610–617.CrossRefGoogle Scholar
Madarame, H., Okamoto, K., and Ida, M. (2002), Self-induced sloshing caused by an upward round jet impinging on the free surface, J. Fluid Struct. 16(3), 417–433.CrossRefGoogle Scholar
Madsen, R. A. and Easton, C. R. (1970), Numerical analysis of low-g propellant flow problems, J. Spacecraft Rock. 7(1), 89–91.Google Scholar
Magnus, K. (1971), Kreisel (Gyroscope), Berlin, Springer-Verlag.CrossRefGoogle Scholar
Mahajan, M. P., Tsige, M., Taylor, P. L., and Rosenblatt, C. (1998), Paramagnetic liquid bridge in a gravity-compensating magnetic field, Phys. Fluids 10(9), 2208–2211.CrossRefGoogle Scholar
Mahajan, M. P.Tsige, M.Taylor, P. L., and Rosenblatt, C. (1999a), Stability of magnetically levitated liquid bridges of arbitrary volume subjected to axial and lateral gravity, J. Colloid Interface Sci. 213, 592–595.CrossRefGoogle Scholar
Mahajan, M. P.Tsige, M.Taylor, P. L., and Rosenblatt, C. (1999b), Stability of liquid crystalline bridges, Phys. Fluids 11(2), 491–493.CrossRefGoogle Scholar
Mahajan, M. P., Tsige, M., Zhang, S., Alexander, J. I. D., Taylor, P. L., and Rosenblatt, C. (2000), Collapse dynamics of liquid bridges investigated by time-varying levitation, Phys. Rev. Lett. 84(2), 338–341.CrossRefGoogle ScholarPubMed
Mahajan, M. P.Tsige, M.Zhang, S.Alexander, J. I. D.Taylor, P. L., and Rosenblatt, C. (2002), Resonance behavior of liquid bridges under axial and lateral oscillating total body forces, Experiments in Fluids 33, 503–507.CrossRefGoogle Scholar
Mahony, J. J. and Smith, R. (1972), On a model representation for certain spatial-resonance phenomena, J. Fluid Mech. 53, 193–208.CrossRefGoogle Scholar
Malashenko, S. V. (1960), Some experimental investigations relating to rotation of bodies, PMTPH 3, 205–211 (in Russian).Google Scholar
Malhotra, P. K. (1995), Base uplifting analysis of flexibly supported liquid storage tanks, Earthquake Engg. and Struct. Dyn. 24(12), 1591–1607.CrossRefGoogle Scholar
Manasseh, R. (1993), Visualization of the flows in precessing tanks with internal baffles, AIAA J. 31(2), 312–318.CrossRefGoogle Scholar
Manevich, L. I., Prokopalo, E. F., and Shukurov, A. Kh. (1976), Investigation of parametric oscillations of fluid-filled shells, in Vibrations of Elastic Structures with Fluids, Volna Scientific Information Bureau, Moscow (in Russian).Google Scholar
Manos, G. C. (1989), Study of the behavior of cylindrical liquid storage tanks when subjected to lateral loads, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 75–82.Google Scholar
Manos, G. C. (1990), Testing of cylindrical liquid-storage tank scaled models subjected to lateral loads, Flow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 19–24.Google Scholar
Manos G. C. and Clough R. W. (1982), Further study of the earthquake response of a broad cylindrical liquid-storage tank model, Report UCB/EERC-82/7, University of California, Berkeley.
Manos, G. C., and Clough, R. W. (1985), Tank damage during the May 1983 Coalinga earthquake, Earthquake Eng. Struct. Dyn. 13, 449–466.CrossRefGoogle Scholar
Manos G. C. and Talaslidis D. (1986), Experimental and numerical study of unanchored cylindrical tanks subjected to lateral load, Proc. 3rd Int. Conf. Comp. Methods and Exp. Meas., Greece.
Marangoni, C. G. (1871), Ueber die ausbreitung der tropfen einer flüssigkeit auf der oberfläche einer anderen, Ann. Phys. Chem. (Poggendorf) 143(7), 337–354.CrossRefGoogle Scholar
Markeyev, A. P. (1985a), The stability of the rotation of a top filled with fluid, Izv. Akad. Nauk. SSSR, MTT 3, 19–26.Google Scholar
Markeyev, A. P. (1985b), The oscillations of rigid body with a cavity containing liquid on an absolutely rough plane, in Some Problems and Methods for Investigating the Dynamics of Mechanical Systems, Mosk. Aviats. Inst., Moscow, 19–25.Google Scholar
Markus, S. (1988), Mechanics of Vibrations of Cylindrical Shells, Amsterdam, Elsevier.Google Scholar
Marr-Lyon, M. J., Thiessen, D. B., and Marston, P. L. (1997), Stabilization of a cylindrical capillary bridge far beyond the Rayleigh–Plateau limit using acoustic radiation pressure and active feedback, J. Fluid Mech. 351, 345–357.CrossRefGoogle Scholar
Marston P. L., Marr-Lyon M. J., Morse S. F., and Thiessen D. B. (1996), Stabilization and low frequency oscillation of capillary bridges with modulated acoustic radiation pressure, 3rd Microfluid Physics Conf., Cleveland, Ohio, NASA Conference Publication 3338, 475.
Martel, C., Nicolas, J. A., and Vega, J. M. (1998), Surface-wave damping in a brimful circular cylinder, J. Fluid Mech. 360, 213–228.CrossRefGoogle Scholar
Martin E. R. (1971), Fuel slosh and dynamic stability of Intelsat IV, AIAA Paper 71–954.
Martinez, I. (1976), Floating zone under reduced gravity-axisymmetric equilibrium shapes, 2nd Europ. Symp. Material Sciences in Space, Frascati, Italy, ESA-SP-114, 277–282.Google Scholar
Martinez, I. (1987), Stability of liquid bridges, Results of SL-D1 experiment, Acta Astron. 15, 449–453.CrossRefGoogle Scholar
Martinez I., Haynes J. M., and Langbein D. (1987), Fluid statics and capillary, in Fluid Sciences and Materials Sciences in Space, Walter, H. U., ed., New York, Springer-Verlag.CrossRefGoogle Scholar
Martinez I. and Perales J. M. (2001), Mechanical behavior of liquid bridges in microgravity, in Physics of Fluid in MicrogravityMonti, R., ed., Taylor & Francis, 21–45.Google Scholar
Maschek, A., et al. (1992), Investigation of sloshing fluid motions in pools related to recriticalities in liquid-metal fast breeder reactors, Nuclear Techn. 98(1), 27–35.CrossRefGoogle Scholar
Maschek, A., Flad, M., Arnecke, G., and Pinto, Lo P. (1998), Mitigation of core disruptive accident energetics in burner cores, Prog. Nuclear Energy 32(3/4), 639–646.CrossRefGoogle Scholar
Masica W. J. (1967), Experimental investigation of liquid surface motion in response to lateral acceleration during weightlessness, NASA TN-D-4066, July.
Masica W. J., Derdul J. D., and Petrash D. A. (1964a), Hydrostatic stability of the liquid-vapor interface in a low-acceleration field, NASA TN-D-2444.
Masica W. J., Petrash D. S., and Otto E. W. (1964b), Hydrostatic instability of the liquid-vapor interface in a gravitational field, NASA TN-D-2267.
Masica, W. J. and Salzman, J. A. (1965), An experimental investigation of the dynamic behavior of the liquid-vapor interface under adverse low-gravitational conditions, AFOSR/LMSC Symp. Fluid Mechanics and Heat Transfer under Low Gravitational Conditions, Lockheed Missile & Space Co., (June 24–25), 25–41.Google Scholar
Masica W. J., and Salzman J. A. (1969), Lateral sloshing in cylinders under low gravity conditions, NASA TN D-5058m.
Mason, P., Collins, D., Petrac, D., Yang, L., Edeskuty, F., Schuch, A., and Williamson, K. (1978), The behavior of superfluid helium in zero gravity, Proc. 7th Int. Cryogenic Engineering Conf., Surrey, England, Science and Technology Press.Google Scholar
Mathiessen, J. (1976), Sloshing loads due to random pitch motion, Norwegian Maritime Research 4(3), Det. Norske Veritas.Google Scholar
Mathiessen, L. (1868), Akustische versuche, die klieinsten transversalivellen der flussigkeiten betreffend, Annalen der Physik 134, 107–117.CrossRefGoogle Scholar
Mathiessen, L. (1870), Uber die transversal-schwingungen tonender tropharer und elastisher flus-sigkeiten, Annalen der Physik 141, 375–393.Google Scholar
Mathieu, E. (1868), Memoire sur le movement vibratoire d'une membrane de forme elliptique, J. Math. Pures Appli. (J Liouville) 13, 137–203.Google Scholar
Matsuura F., Matsubara Y., Sawada T., and Tanahashi T. (1995), Surface behaviors of two-layers liquid sloshing under non-uniform magnetic field, Advanced Computational and Design Techniques in Applied Electronic Systems, Han, S. Y., ed., Amsterdam, Elsevier Sciences, 517–520.Google Scholar
Matsuura, Y., Matsumoto, K., Mizuuchi, M., Arima, K., Jouuchi, H., and Hayashi, S. (1986), On a mean to reduce excited-vibration with the sloshing in a tank, J. Soc. Naval. Archit. Japan 160, 424–432.CrossRefGoogle Scholar
Matsuzaki, Y. and Fung, Y. C. (1977), Unsteady fluid dynamic forces on a simply-supported circular cylinder of finite length conveying a flow, with application to stability analysis, J. Sound Vib. 54, 317–330.CrossRefGoogle Scholar
Matsuzaki, Y. and Kobayashi, S. (1969a), An analytical study of the nonlinear flexural vibration of thin circular cylindrical shells, J. Japan Soc. Aeron. Space Sci. 17, 308–315 (in Japanese).Google Scholar
Matsuzaki, Y. and Kobayashi, S. (1969b), A theoretical and experimental study of the nonlinear flexural vibration of thin circular cylindrical shells with clamped ends, Trans. J. Japan Soc. Aeron. Space Sci. 12, 55–62.Google Scholar
Maulard, J. and Jourdin, A. (1966), Experimenting on liquid behavior at the weightlessness laboratory, Rech. Aero-Spatiale 110, 29–37 (in French).Google Scholar
McCarty J. L., Leonard H. W., and Walton W. C. Jr (1960), Experimental investigation of the natural frequencies of liquids in toroidal tanks, NASA TN D-531.
McCarty J. L. and Stephens D. G. (1960), Investigation of the natural frequencies of fluid in spherical and cylindrical tanks, NASA TN D-252.
McCaughan, F. E. and Bedir, H. (1992), Marangoni convection with a deformable free surface, ASME WAM Symp. on Fluid Mechanics Phenomena in Microgravity, ed. D. A. Siginer and M. M. Weislogel, AMD- 154/FED- 142, 77–84.Google Scholar
McEwan, A. D. (1970), Inertial oscillations in a rotating fluid cylinder, J. Fluid Mech. 40, 603–640.CrossRefGoogle Scholar
McGoldrick, L. F. (1970), On Wilton's ripples: a special case of resonance interactions, J. Fluid Mech. 42, 193–200.CrossRefGoogle Scholar
McIver, P. (1989), Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth, J. Fluid Mech. 201, 243–257.CrossRefGoogle Scholar
McIver, P. and McIver, M. (1993), Sloshing frequencies of longitudinal modes for a liquid contained in a trough, J. Fluid Mech. 252, 525–541.CrossRefGoogle Scholar
McLachlan, N. W. (1947), Theory and Application of Mathieu Functions, New York, Oxford University Press.Google Scholar
McMahon, J. (1894), On the roots of the Bessel and certain related function, Ann. Mathematics 9, 23–30.CrossRefGoogle Scholar
McNeil, W. A. and Lamb, J. P. (1970), Fundamental sloshing frequency for an inclined fluid-filled right circular cylinder, J. Spacecraft Rock. 7(8), 1001–1002.Google Scholar
McRobie, F. A., Popov, A. A., and Thomson, J. M. T. (1999), Autoparametric resonance in cylindrical shells using geometric averaging, J. Sound Vib. 227, 65–84.CrossRefGoogle Scholar
Mei, C. C. and Liu, L. F. (1973), The damping of surface gravity waves in a bounded liquid, J. Fluid Mech. 59(2), 239–256.CrossRefGoogle Scholar
Meirovitch, L. (1970), Methods of Analytical Dynamics, New York, McGraw-Hill.Google Scholar
Meron, E. and Procaccia, I. (1986a), Theory of chaos in surface waves: the reduction from hydrodynamics to few-dimensional dynamics, Phys. Rev. Lett. 56, 1323–1326.CrossRefGoogle Scholar
Meron, E. and Procaccia, I. (1986b), Low-dimensional chaos in surface waves: theoretical analysis of an experiment, Phys. Revs. A 34, 3221–3237.CrossRefGoogle Scholar
Merten K. F. and Stephenson B. H. (1952), Some dynamic effects of fuel motion in simplified model tip tanks on suddenly excited bending oscillations, NACA TN-2789.
Meseguer, J. (1983), The breaking of axisymmetric slender liquid bridges, J. Fluid Mech. 130, 123–152.CrossRefGoogle Scholar
Meseguer, J., Slobozhanin, L. A., and Perales, J. M. (1995), A review on the stability of liquid bridges, Adv. Space Res. 16(7), (7)5–(7)14.CrossRefGoogle Scholar
Meserole, J. S. and Fortini, A. (1987), Slosh dynamics in a toroidal tank, J. Spacecraft 24(6), 523–531.CrossRefGoogle Scholar
Mesquita, G. N., Kane, S., and Gollub, J. P. (1992), Transport by capillary waves: fluctuating Stokes drift, Phys. Revs. A 45, 3700–3705.CrossRefGoogle ScholarPubMed
Mettler E. (1968), Combination resonance in mechanical systems under harmonic excitations, Proc. 4th Int. Conf. Nonlinear Oscillations, Prague, Academia, Publishing House of Czechoslovak Academy of Science, 51–70.
Mieda T., Ishida K., Jitu K., and Chiba T. (1993), An experimental study of viscous damping in sloshing mode of cylindrical tanks, Struct. Mech. in Reactor Techn., 122–131.
Mikelis N. E., Miller J. K., and Taylor K. V. (1984), Sloshing in partially filled tanks and its effect on ship motions: numerical simulations and experimental verification, Proc. Royal Inst. Naval Archit., Spring Meeting.
Mikhlin, S. G. (1964), Variational methods in mathematical physics, 2nd edition, New York, Pergamon Press.Google Scholar
Mikishev, G. N. and Dorozhkin, N. (1961), Experimental investigation of free oscillations of a liquid in tanks, Izv. Akad. Nauk. SSSR Otd. Tekhn. Nauk. Mekh. i Mashinostr. 4, 48–53. (Translated into English by D. D. Kana, SwRI, June 30, 1963).Google Scholar
Mikishev, G. N. and Rabinovich, B. I. (1968), Dynamics of a rigid body with cavities partly filled with fluid, Moscow, Mashinostroeie (in Russian).Google Scholar
Mikishev, G. N., and Rabinovich, B. I. (1971), Dynamics of Thin-Walled Constructions with Compartments Containing a Liquid, Moscow, Mashinostroyeniye.Google Scholar
Miles J. W. (1956), On the sloshing of liquid in a cylindrical tank, Ramo-Wooldridge Corp. Guided Missile Research Div., GM-TR-18.
Miles, J. W. (1958a), On the sloshing of liquid in a flexible tank, J. Appl. Mech. 25(2), 277–283.Google Scholar
Miles, J. W. (1958b), Ring damping of free surface oscillations in a circular tank, J. Appl Mech. 25(2), 274–276.Google Scholar
Miles J. W. (1959a), On the free surface oscillations in a rotating liquid, Space Technol. Lab., GM-TR-0165–00458.
Miles J. W. (1959b), Centrifugal slosh, Space Technol. Lab., Memo. GM-59, 8021, 6–1&602, February.
Miles, J. W. (1959c), Free surface oscillations in a rotating liquid, Phys. Fluids 2(3), 297–305.CrossRefGoogle Scholar
Miles, J. W. (1962a), Stability of forced oscillations of a spherical pendulum, Quart. Appl. Math. 20, 21–32.CrossRefGoogle Scholar
Miles, J. W. (1962b), Note on the damping of free surface oscillations due to draining, J. Fluid Mech. 12(3), 438–440.CrossRefGoogle Scholar
Miles, J. W. (1963), The Cauchy–Poisson problem for a rotating liquid, J. Fluid Mech. 17, 75–88.CrossRefGoogle Scholar
Miles, J. W. (1964), Free-surface oscillations in a slowly rotating liquid, J. Fluid Mech. 18(2), 187–194.CrossRefGoogle Scholar
Miles, J. W. (1967), Surface-wave damping in closed basins, Proc. Royal Soc. (London), A, Math. Phys. 297, 459–475.CrossRefGoogle Scholar
Miles, J. W. (1972), On the eigenvalue problem for fluid sloshing in a half-space, Zeit. Ang. Math. Phys. (ZAMP) 23, 861–869.CrossRefGoogle Scholar
Miles, J. W. (1976a), Nonlinear surface waves in closed basins, J. Fluid Mech. 75, 419–448.CrossRefGoogle Scholar
Miles, J. W. (1976b), On internal resonance of two damped oscillators, Stud. Appl. Math. 55(4), 351–359.CrossRefGoogle Scholar
Miles, J. W. (1984a), Nonlinear Faraday resonance, J. Fluid Mech. 146, 285–302.CrossRefGoogle Scholar
Miles, J. W. (1984b), Internally resonance surface waves in a circular cylinder, J. Fluid Mech. 149, 1–14.CrossRefGoogle Scholar
Miles, J. W. (1984c), Resonant motion of a spherical pendulum, Physica 11(D), 309–323.Google Scholar
Miles, J. W. (1984d), Resonantly forced surface waves in a circular cylinder, J. Fluid Mech. 149, 15–31.CrossRefGoogle Scholar
Miles, J. W. (1984e), Parametrically excited solitary waves, J. Fluid Mech. 148, 451–460.CrossRefGoogle Scholar
Miles, J. W. (1984f), Resonant non-planar motion of a stretched string, J. Acoust. Soc. Amer. 75, 1505–1510.CrossRefGoogle Scholar
Miles J. W. (1984g), Strange attractors in fluid dynamics, Adv. Appl Mech. 24, Hutchinson, J. W. and Wu, T. Y., eds., 189–214, New York, Academic Press.Google Scholar
Miles, J. W. (1985a), Note on a parametrically excited trapped cross-wave, J. Fluid Mech. 151, 391–394.CrossRefGoogle Scholar
Miles, J. W. (1985b), Resonantly forced, nonlinear gravity waves in a shallow rectangular tank, Wave Motion 7(1985), 291–297.CrossRefGoogle Scholar
Miles, J. W. (1988a), Resonance and symmetry breaking for the pendulum, Physica D 31, 252–268.CrossRefGoogle Scholar
Miles, J. W. (1988b), Parametrically excited, standing cross-waves, J. Fluid Mech. 186, 119–127.CrossRefGoogle Scholar
Miles J. W. (1989), The pendulum from Huygens' horologium to symmetry breaking and chaos, Proc. XVII Int. Congress of Theo. Appl. Mech., Grenoble, France, P Germain, M Piau, and D. Caillerie, eds., North Holland, Elsevier Science, 193–215.
Miles, J. W. (1990a), Parametrically excited standing edge waves, J. Fluid Mech. 214, 43–57.CrossRefGoogle Scholar
Miles, J. W. (1990b), Capillary-viscous forcing surface waves, J. Fluid Mech. 219, 635–646.CrossRefGoogle Scholar
Miles, J. W. (1991a), The capillary boundary layer for standing waves, J. Fluid Mech. 222, 197–205.CrossRefGoogle Scholar
Miles, J. W. (1991b), Wave motion in a viscous fluid of variable depth: moving contact-line, J. Fluid Mech. 223, 47–55.CrossRefGoogle Scholar
Miles, J. W. (1992) On surface waves with zero contact angle, J. Fluid Mech. 245, 485–492.CrossRefGoogle Scholar
Miles, J. W. (1993), On Faraday waves, J. Fluid Mech. 248, 571–683.CrossRefGoogle Scholar
Miles, J. W. (1994) Faraday waves: rolls versus squares, J. Fluid Mech. 269, 353–371.CrossRefGoogle Scholar
Miles, J. W. (1996), On forced capillary-gravity waves in a circular cylinder, Wave Motion 23(4), 387–391.CrossRefGoogle Scholar
Miles, J. W. and Ball, F. K. (1963), On free-surface oscillations in a rotating paraboloid, J. Fluid Mech. 17(2), 257–266.CrossRefGoogle Scholar
Miles, J. W. and Becker, J. (1988), Parametrically excited, progressive cross-waves, J. Fluid Mech. 186, 129–146.CrossRefGoogle Scholar
Miles, J. W. and Henderson, D. M. (1990), Parametrically forced surface waves, Ann. Rev. Fluid Mech. 22, 143–165.CrossRefGoogle Scholar
Miles, J. W., and Henderson, D. M. (1998), A note on interior vs boundary layer damping of surface waves in a circular cylinder, J. Fluid Mech. 364, 319–323.CrossRefGoogle Scholar
Miles, J. W. and Troesch, B. A. (1961), Surface oscillations of a rotating liquid, ASME J. Appl Mech. 28, 491–496.CrossRefGoogle Scholar
Miles J. W. and Young D. (1958), Generalized missile dynamics analysis in sloshing, Space Tech. Lab., GM-TR-165–00361, 7 April.
Miles, J. W. and Zhou, Q. P. (1993), Parametric excitation of a tuned spherical pendulum, J. Sound Vib. 164, 237–250.CrossRefGoogle Scholar
Milgram, J. H. (1969), The motion of a fluid in a cylindrical container with a free surface following vertical impact, J. Fluid Mech. 37(3), 435–448.CrossRefGoogle Scholar
Milner, S. T. (1991), Square patterns and secondary instabilities in driven capillary waves, J. Fluid Mech. 225, 81–100.CrossRefGoogle Scholar
Minowa C. (1980), The dynamic analysis for rectangular water tanks, recent advances in lifeline earthquake eng. in Japan, ASME Pressure Vess. Piping Conf., PVP- 43, 135–141.
Minowa, C. (1989), Surface-sloshing behaviors of liquid storage tanks, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 165–171.Google Scholar
Minowa, C. (1994), Sloshing impact of rectangular water tank (water tank damage caused by Kobe earthquake), Trans. JSME C 63(612), 2643–2649.CrossRefGoogle Scholar
Minowa C. and Kiyosumi K. (1997), Sloshing impact analysis of roof damaged water tank in Kobe earthquake, ASME Symp. Adv. Anal. Exper. Comp. Tech. Fluids Struct. Trans. Nat. Hazards, PVP- 355, 271–278.
Minowa, C., Ogawa, N., Harada, I., and Ma, D. C. (1994), Sloshing roof impact tests of a rectangular tank, Sloshing, Fluid–Structure Interaction and Struct. Response Due to Shock and Impact Loads, ASME Pressure Vess. Piping Conf., PVP- 272, 13–21.Google Scholar
Minrosky, N. (1935), Problems of anti-rolling stabilization of ships by the activated tank method, American Society of Naval Engineers (ASNE) 47, 87–119.CrossRefGoogle Scholar
Mitchell R. R. (1968), Stochastic stability of the liquid free surface in vertically excited cylinders, NASA-CR-98009, May.
Mixon J. S. and Catherine J. J. (1964a), Experimental lateral vibration characteristics of a 1/5-scale model of Saturn SA-I with an eight-cable suspension system, NASA TN D-2214.
Mixon J. S., and Catherine J. J. (1964b), Comparison of experimental vibration characteristics obtained from a 1/5-scale model and from a full-scale Saturn SA-I, NASA TN D-2215.
Mixon J. S., Catherine J. J., and Arman A. (1963), Investigation of the lateral vibration characteristics of a 1/5-scale model of Saturn SA-I, NASA TN D-1593.
Mixon J. S. and Herr R. W. (1962), An investigation of the vibration characteristics of pressurized thin walled circular cylinders partially filled with liquid, NASA TR R-145.
Miyata, H. (1986), Finite difference simulation of breaking waves, J. Comput. Phys. 65, 179–214.CrossRefGoogle Scholar
Miyata, H., Inui, T., and Kajitani, H. (1980), Free surface shock waves around ships and their effects on ship resistance, J. Soc. Naval Archit. Japan 147, 1–9.CrossRefGoogle Scholar
Miyata, T., Yamada, H., and Saito, Y. (1988), Suppression of tower-like structures vibration by damping effect of sloshing water contained (in Japanese), Trans. JSCE 34A, 617–626.Google Scholar
Miyata, T., Yamada, H., and Saito, Y. (1989), Feasibility study of the sloshing damper system using rectangular containers (in Japanese), Trans. JSCE 35A, 553–560.Google Scholar
Modi, V. J. and Munchi, R. S. (1998), An efficient liquid sloshing damper for vibration control, J. Fluids Struct. 12, 1055–1071.CrossRefGoogle Scholar
Modi, V. J. and Seto, M. L. (1997), Suppression of flow-induced oscillations using sloshing liquid dampers, J. Wind Eng. Indust. Aerodyn. 67/68, 611–625.CrossRefGoogle Scholar
Modi, V. J. and Seto, M. L. (1998), Passive control of flow-induced oscillations using rectangular nutation dampers, J. Vib. Control 4(4), 381–404.CrossRefGoogle Scholar
Modi, V. J. and Welt, F. (1984), Nutation dampers and suppression of wind induced instabilities, ASME Joint Multidivisional Symp. on Flow-Induced Oscillations 1, 173–187.Google Scholar
Modi V. J. and Welt F. (1987), Vibration control using nutation dampers, Proc. Int. Conf. Flow-Induced Vib., England, 369–376.
Modi, V. J. and Welt, F. (1988), Damping of wind induced oscillation through liquid sloshing, J. Wind Eng. Indust. Aerodyn. 30, 85–94.CrossRefGoogle Scholar
Modi, V. J., Welt, F. and Irani, M. B. (1988), On the suppression of vibrations using nutation dampers, J. Wind Eng. 37, 547–556.Google Scholar
Modi, V. J., Welt, F., and Seto, M. L. (1995), Control of wind-induced instabilities through application of nutation dampers: a brief review, Eng. Structures 17(9), 626–638.CrossRefGoogle Scholar
Moiseev, N. N. (1952a), The motion of a rigid body with cavities partially filled with an ideal liquid, Dokl. Akad. Nauk. SSSR 85(4), 719–722.Google Scholar
Moiseev, N. N. (1952b), On oscillations of a heavy ideal and incompressible liquid in a container, Dokl. Akad. Nauk. SSSR 85(5), 963–966.Google Scholar
Moiseev, N. N. (1952c), Dynamics of a ship having a liquid load, Izv. Akad. Nauk. SSSR Otd. Tekhn. Naud. 7, 27–45.Google Scholar
Moiseev, N. N. (1952d), The problem of small oscillations of an open vessel with a fluid under the action of an elastic force, Ukrainian Mat. Zh. 4, 168–173.Google Scholar
Moiseev, N. N. (1953), The problem of the motion of a rigid body filled with a liquid having a free surface, Matemticheskii Sbornik 47(7), issue 1, Acad. Sci. SSSR, 61–96.Google Scholar
Moiseev, N. N. (1954), Some questions on the theory of oscillations of vessel with a fluid, Inzhenernyi Sbornik 19, 167–170.Google Scholar
Moiseev N. N. (1956), Studies of the motion of a solid body containing fluid masses with free surfaces, Vestnik Acad. Sci. SSSR5.
Moiseev, N. N. (1958), On the theory of nonlinear vibration of a liquid of finite volume, Prikl. Math. Mekh. (PMM) 22, 612–621.Google Scholar
Moiseev, N. N. (1959), On the theory of vibration of elastic bodies with liquid cavities, Prkl. Math. Mekh. 23(5), 862–878.Google Scholar
Moiseev, N. N. (1960), On the theory of elastic oscillations of a fluid filled body, Dokl. Akad. Nauk. SSSR 27(1), 53–56. Also Soviet Physics 4(4), February.Google Scholar
Moiseev, N. N. (1961), On boundary-value problem for linearized Navier–Stokes equations for the case of low viscosity, Zh. Vychisl. Matem. i Matem. Fiz. 1(3).Google Scholar
Moiseev N. N. (1964), Introduction to the theory of oscillations of liquid-containing bodies, Adv. Appl. Mech.8, 233–289, Dryden, H. L. and Karman, Th, eds., New York, Academic Press.Google Scholar
Moiseev, N. N. (1968), Introduction to the Dynamics of Bodies Containing Liquids in the Weightless State, Vychislitelnyi Tsentr. AN SSSR, Moscow (in Russian).Google Scholar
Moiseev, N. N. (1970), Some problems in the hydrodynamics of surface waves, in Advances in Mechanics in USSR over 50 years, 2, Moscow, Nauka, 55–72.Google Scholar
Moiseev, N. N. and Chernousko, F. L. (1965), Problems of oscillations of a liquid subject to surface tension forces, Zh. Vychisl. Mat. Mat. Fiz. 5, 1071–1082.Google Scholar
Moiseev, N. N. and Petrov, A. A. (1965), Numerical Methods of Calculating the Natural Frequencies of Vibrations of a Bounded Volume of Fluid, Moscow, Acad. Sci. USSR Press.Google Scholar
Moiseev, N. N. and Petrov, A. A. (1966), The calculation of free oscillations of a liquid in a motionless container, Adv. Appl. Mech.9, 91–154, NY, Academic Press.Google Scholar
Moiseev N. N. and Rumnyantsev V. V. (1968), Dynamic Stability of Bodies Containing Fluid, Applied Physics and Eng./An. Int. Series, 6, H. N. Abramson, ed., Springer-Verlag.
Molin, B. (2001), On the piston and sloshing modes in moonpools, J. Fluid Mech. 430, 27–50.CrossRefGoogle Scholar
Molin, B., Cointe, R., and Fontaine, E. (1996), On energy arguments applied to slamming force, Proc. 11th Int. Workshop on Water Waves and Floating Bodies, Hamburg, Germany.Google Scholar
Mololkov, L. A. and Krauklis, P. V. (1967), Oscillations of a cylindrical shell filled with a fluid and surrounded by an elastic medium, Prikl. Math. Mekh. (PMM) 31(5), 922–925.CrossRefGoogle Scholar
Momoi, T. A. (1965), A motion of water excited by earthquake, part 1: Rectangular basin (one dimensional), Bull. Earthquake Res. Inst., Tokyo University 43(1), 111–127.Google Scholar
Monti, R. (1990a), On the onset of the oscillatory regimes in Marangoni flows, Acta Astronaut. 15, 557–560.CrossRefGoogle Scholar
Monti R. (1990b), Gravity jitters: Effects on typical fluid science experiments, in Low Gravity Fluid Dynamics and Transport Phenomena, J. N. Koster and R. L. Sani, eds., Progress in Astronautics and Aeronautics130, 275–307.
Monti, R. (2001), Physics of Fluids in Microgravity, London, Taylor & Francis.Google Scholar
Monti, R. and Fortezza, R. (1989), Oscillatory Marangoni flow in a floating zone: design of a Telescience experiment for Texus 23, Proc. 7thEuropean Symp. Materials and Fluid Sci. in Microgravity, 285–289.Google Scholar
Monti R., Fortezza R., and Desiderio G. (1992), Onset of oscillatory Marangoni flow: Scientific results of the experiment performed in Telescience on Texus 23, Final Report of Sounding Rocket Experiments, in Fluid Science and Material Science, ESA SP-1132, 2.
Monti, R. and Savino, R. (1994a), A new approach to the g-level tolerability for fluid and material science experiments, Acta Astron. 37, 313–331.CrossRefGoogle Scholar
Monti, R., and Savino, R. (1994b), Transient developments of thermocapillary, natural and vibrational convection in floating zone, Microgravity Quart. 4(4), 247–258.Google Scholar
Monti, R., and Savino, R. (1994c), Effect of unsteady thermal boundary condition on Marangoni flow in liquid bridges, Microgravity Quart. 4, 163–170.Google Scholar
Monti R. and Savino R. (1995), G-jitter effect in fluid-physics microgravity experimentation, Proc. Int. Congress In Space '95, 16–17 October, Tokyo, 112–175.
Monti R., and Savino R. (1996), Influence of g-jitter on fluid physics experimentation on-board the International Space Station, ESA-SP-385, 215–224.
Monti, R., Savino, R., and Alterio, G. (1997a), Modeling and simulation of g-jitter effects on fluid science experimentation: Impact on the utilization of the ISS, Acta Astron. 40(2–8), 369–381.CrossRefGoogle Scholar
Monti, R., Savino, R., and Lappa, M. (1997b), Oscillatory thermocapillary flows in simulated floating-zones with time-dependent temperature boundary conditions, Acta Astron. 41(12), 863–875.CrossRefGoogle Scholar
Monti R., Savino R., and Lappa M. (1998), Influence of geometrical aspect ratio on the oscillatory Marangoni convection in liquid bridges, 49th IAF Congress, Melbourne, Australia.
Monti, R., Savino, R., and Lappa, M. (2000a), Influence of geometrical aspect ratio on the oscillatory Marangoni convection in liquid bridges, Acta Astron. 47, 10, 753–761.CrossRefGoogle Scholar
Monti, R., Savino, R., and Lappa, M. (2001), On the convective disturbances induced by g-jitter on the space station, Acta Astron. 48(5–12), 603–615.CrossRefGoogle Scholar
Monti, R., Savino, R., Lappa, M., Carotenuto, L., Castagnolo, D., and Fortezza, R. (2000b), Flight results on Marangoni flow instability in liquid bridges, Acta Astron. 47(2–9), 325–334.CrossRefGoogle Scholar
Moody, F. J. and Reynolds, W. C. (1972), Liquid surface motion induced by accelerated and external pressure, ASME J. Basic Eng. 94, 606–612.CrossRefGoogle Scholar
Mooney J., Ryan J., and Walls J. (1964b), Slosh handbook, NSL Tech. Memo. 1, 21 February.
Mooney J., Walls J., and Ryan J. (1964a), Liquid natural frequencies of a tank with partially submerged sector walls, NSL Tech. Memo. 14, 7 April.
Moore, R. E. and Perko, L. M. (1965), Inviscid fluid flow in an accelerating cylindrical container, J. Fluid Mech. 22(2), 305–320.CrossRefGoogle Scholar
Morand J. J. P. (1977), Deux theorems de Congruence relatifs aux Vibrations de Liquides Couples a des structures, Proc. Int. Conf. ESA-CNES, Publ. SP-129, Toulouse.
Morand H. J. P. and Ohayon R. (1975), Internal pressure effects on the vibration of partially filled elastic tanks, Proc. World Cong. Finite Element Methods in Struct. Mech., Bournemouth, TP ONERA 66.
Morand H. J. P. and Ohayon R. (1989), Finite element method applied to the prediction of the vibrations of liquid-propelled launch vehicles, Proc. ASME-PVP Conf. 176, Hawaii.
Morand, H. J. P. and Ohayon, R. (1995), Fluid Structure Interaction: Applied Numerical Methods, New York, John Wiley & Sons.Google Scholar
Morgan, G. W. (1951), A Study of motion in a rotating liquid, Proc. Royal Soc. (London) A 206, 108–130.CrossRefGoogle Scholar
Morison, J. P., O'Brien, M. P., Johnson, J. W., and Schaaf, S. A. (1950), The force exerted by surface waves on a pile, Petroleum Trans. 189, 149–154.Google Scholar
Morris B. T. (1938), A laboratory model study of the behavior of liquid filled cylindrical tanks in earthquakes, Thesis, Stanford University, June.
Morse, P. M. and Feshbach, H. (1953), Methods of Theoretical Physics, New York, McGraw-Hill.Google Scholar
Morse, S. F., Thiessen, D. B., and Marston, P. L. (1996), Capillary bridge modes driven with modulated ultrasonic radiation pressure, Phys. Fluids 8, 3–5.CrossRefGoogle Scholar
Muehlner, K. A., Schatz, M., Petrov, V., McCormic, W. D., Swift, J. B., and Swinney, H. L. (1997), Observation of helical traveling-wave convection in a liquid bridge, Phys. Fluids 9, 1850–1852.CrossRefGoogle Scholar
Muenz, K. and Marcello, J. M. (1964), Technique for measuring amplitudes of small surface waves, Rev. Sci. Instrum. 35(8), 953–957.CrossRefGoogle Scholar
Müller, H. W. (1993), Periodic triangular patterns in the Faraday experiment, Phys. Rev. Lett. 71, 3287–3290.CrossRefGoogle ScholarPubMed
Müller H. W., Friedrich R., and Papathanassiou D. (1998), Theoretical and experimental investigations of the Faraday instability, Evolution Spontaneous Structures in Dissipative Continuous Systems, Buses, F and Müller, S. C., eds., Lecture Notes in Physics, 231–265, Berlin, Springer-Verlag.Google Scholar
Müller, H. W., Wittmer, C., Wagner, C., Albers, J., and Knorr, K. (1997), Analytic stability theory for Faraday waves and the observation of the harmonic surface response, Phys. Rev. Lett. 78, 2357–2360.CrossRefGoogle Scholar
Mundrane, M. R. and Zebib, A. (1994), Oscillatory thermocapillary convection, NASA 2nd Microgravity Fluid Physics Conf., Cleveland, Ohio, 27–32.Google Scholar
Mushtari, Kh. M. and Galimov, K. Z. (1957), The Nonlinear Theory of Elastic Shells, Tatknigoizdat, Kazan (in Russian).Google Scholar
Muto, K., Kasai, Y., and Nakahara, M. (1988), Experimental tests for suppression effects of water restraint plates on sloshing of a water pool, ASME J. Pressure Vess. Tech. 110, 240–246.CrossRefGoogle Scholar
Myshkis, A. D., Babskii, V. G., Kopachevskii, N. D., Slobozhanin, L. A., and Tyuptsov, A. D. (1987), Low-Gravity Fluid Mechanics, New York, Springer-Verlag.CrossRefGoogle Scholar
Myshkis A. D., Babskii V. G., Zhukov M. Y., Kopachevskii N. D., Slobozhanin L. D., and Typsov A. D. (1992), Methods of Solving Fluid Mechanics Problems under Conditions of Weightlessness, Myshkis, A. D., ed., Kiev, Naukova Dumka.Google Scholar
Nachtigall, I., Gebbeken, N., and Urrutia-Galicia, J. L. (2003), On the analysis of vertical circular cylindrical tanks under earthquake excitation at its base, Engrg. Struct. 25, 201–213.CrossRefGoogle Scholar
Nagakura, H. and Kaneko, S. (1995), A study on self-excited sloshing due to the fluid discharge over a flexible weir, ASME Fluid–Structure Interaction and Struct. Mechanics 310, 15–22.Google Scholar
Nagakura, H. and Kaneko, S. (1998a), Self-excited sloshing due to the fluid discharge over a flexible weir (1st report, excitation mechanism of instability in the rectangular model), Trans. JSME C 64(623), 2437–2445 (in Japanese).CrossRefGoogle Scholar
Nagakura, H. and Kaneko, S. (1998b), Self-excited sloshing due to the fluid discharge over a flexible weir (2nd report, excitation mechanism of instability in the cylindrical model), Trans. JSME D 64(623), 2446–2454 (in Japanese).CrossRefGoogle Scholar
Nagakura, H. and Kaneko, S. (1998c), Self-excited sloshing due to the fluid discharge over a flexible weir (3rd report, comparison between experimental and analytical results and discussion on the parameters which effect on the stability of the system), Trans. JSME C 64(624), 2882–2885 (in Japanese).CrossRefGoogle Scholar
Nagakura, H. and Kaneko, S. (2000a), Self-excited sloshing due to the fluid discharge over a flexible cylindrical weir, ASME. J. Pressure Vessel Tech. 122, 33–39.CrossRefGoogle Scholar
Nagakura, H. and Kaneko, S. (2000b), Self-excited sloshing due to the fluid discharge over a flexible plate weir, ASME J. Pressure Vessel Tech. 122, 192–197.CrossRefGoogle Scholar
Nagata, M. (1989), Nonlinear Faraday resonance in a box with a square base, J. Fluid Mech. 209, 265–284.CrossRefGoogle Scholar
Nagata, M. (1991), Behavior of parametrically excited surface waves in square geometry, Eur. J. Mech. B/Fluids 10(2). 61–66.Google Scholar
Nagay, K. and Takeuchi, J. (1984), Vibration of a plate with arbitrary shape in contact with a fluid, J. Acoust Soc. Amer. 74(5), 1511–1518.CrossRefGoogle Scholar
Nakagaki, K., Arima, K., Ueda, T., and Kadou, H. (1990), On natural vibration and damping effect of tuned sloshing damper, JSCE J. Struct Eng. 36A, 591–602.Google Scholar
Nakagawa K. (1955), On the vibration of an elevated water-tank – II, Tech. Rept. Osaka University 5(170), 317–336.
Nakagawa K. (1956), On the vibration of an elevated water-tank – III, Tech. Rept. Osaka University 6(193), 53–62.
Nakayama, T. and Washizu, K. (1980), Nonlinear analysis of liquid motion in a container subjected to forced pitching oscillations, Int. J. Numer. Methods Eng. 15, 1207–1220.CrossRefGoogle Scholar
Nakayama, T. and Washizu, K. (1981), The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems, Int. J. Numer. Methods Eng. 17(11), 1631–1646.CrossRefGoogle Scholar
Napolitano, L. G. (1982), Surface tension and buoyancy driven free convection, Acta Astron. 9, 199–215.CrossRefGoogle Scholar
Narimanov, G. S. (1956), Concerning the motion of a rigid body with a cavity partially filled with a liquid, Prikl. Math. Mekh. (PMM) 20(1), 21–38.Google Scholar
Narimanov, G. S. (1957a), Concerning the motion of a symmetrical gyroscope with cavity partially filled with liquid, Prikl. Math. Mekh. (PMM) 21, 696–700.Google Scholar
Narimanov, G. S. (1957b), Concerning the motion of a container partially filled with a liquid taking into account large motion of the latter, Prikl. Math. Mekh. (PMM), 21(4), 696–700 (Space Tech. Lab. Trans. T-RU-18.).Google Scholar
Narimanov G. S. (1957c), Concerning the vibration of fluids in moving cavities, Izv. Acad. Sci. SSSR, OTN 10.
Narimanov, G. S., Dokuchaev, L. V., and Lukovskii, I. A. (1977), Nonlinear Dynamics of Aircraft with Liquid, Moscow, Mashinostroenie (in Russian).Google Scholar
Nash, W. A., Yu, B. Q., and Kirchhoff, R. H. (1989), Struct. behavior of liquid-elastic solid systems, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 89–94.Google Scholar
Natsiavas, S. (1987), Response and failure of fluid-filled tanks under base excitation, Ph. D. dissertation, Caltech, Pasadena, CA.Google Scholar
Natsiavas, S. (1988), An analytical model for unanchored fluid-filled tanks under base excitation, ASME J. Appl. Mech. 110, 648–653.CrossRefGoogle Scholar
Natsiavas S. (1989), Simplified models for the dynamic response of tall unanchored liquid storage tanks, Sloshing and Fluid Structure Vibration, D. C. Ma, J Tani, Chenss, and Liu WK, eds., ASME Pressure Vess. Piping Conf., PVP- 157, 15–22.
Natsiavas, S. and Babcock, C. D. (1988), Behavior of unanchored fluid-filled tanks subjected to ground excitation, ASME J. Appl. Mech. 55, 654–659.CrossRefGoogle Scholar
Natushkin, V. F. and Rakhimov, I. S. (1964), Oscillation of a cylindrical shell partially filled with a fluid, Aviat. Tekh. 17(3), IAAA 64–28276.Google Scholar
Nayfeh, A. H. (1985), Problems in Perturbation, New York, Wiley Interscience.Google Scholar
Nayfeh, A. H. (1987), Surface waves in closed basins under parametric and internal resonances, Phys. Fluids 30, 2976–2983.CrossRefGoogle Scholar
Nayfeh, A. H. (1993), Methods of Normal Forms, New York, John Wiley and Sons.Google Scholar
Nayfeh, A. H. and Mook, D. (1979), Nonlinear Oscillations, New York, Wiley.Google Scholar
Nayfeh, A. H. and Nayfeh, J. F. (1990), Surface waves in closed basins under principal and autoparametric resonances, Phys. Fluids A 2(9), 1635–1648.CrossRefGoogle Scholar
Nayfeh, A. H. and Raouf, R. A. (1987), Nonlinear oscillations of circular cylindrical shells, Int. J. Solids Struct. 23, 1625–1638.CrossRefGoogle Scholar
Neitzel, G. P. (1994), Control of oscillatory thermocapillary convection in microgravity, NASA 2nd Microgravity Fluid Physics Conf., Cleveland, OH, 21–26.Google Scholar
Nelson E. S. (1991), An experimentation of anticipated g-jitter on space station and its effects on materials process, NASA TM 103775.
Nelson, R. H. Jr (1960), The sloshing of a fluid draining from a flexible tank, Ph.D. thesis, MIT, Cambridge, MA.Google Scholar
Nesterov, A. V. (1982), Parametric excitation of internal waves in a continuously stratified fluid, Izv. Akad. Nauk. SSSR, MZhG 5, 167–169.Google Scholar
Netter G. and Eckhardt K. (1981), Fluid dynamic experiment in a surface tension tank: Phase 1/Phase 2A, Final Report, MBB/ERNO, Rept. No BMFT-FB-W-83–002 (in German).
Neu, J. T. and Good, R. J. (1963), Equilibrium behavior of fluids in containers at zero gravity, AIAA J. 1(4), 814–819.Google Scholar
Nevolin, V. G. (1983), Parametric excitation of oscillations of a fluid flowing out of a container, Izv. Akad. Nauk. SSSR, Mekh. Zhidkosti i Gaza 2, 293–295.Google Scholar
Nevolin V. G. (1985), Parametric excitation of surface waves, J. Eng. Phys. 49, 1482–1494. Translation 1984 from Inzh. Fiz. Zh. 47, 1028–1042.
Newmark, N. M. and Rosenbluetch, E. (1971), Fundamentals of Earthquake Engineering, Englewood Cliffs, Prentice Hall.Google Scholar
Ngan, C. G. and Dussan, E. B. (1982), On the nature of the dynamic contact-angle: an experimental study, J. Fluid Mech. 118, 27–40.CrossRefGoogle Scholar
Nichols, B. D. and Hirt, C. W. (1971), Improved free surface conditions for numerical incompressible flow computations, J. Comput Phys. 8, 434–448.CrossRefGoogle Scholar
Nichols, B. D. and Hirt, C. W. (1975), Method for calculating multi-dimensional transient free surface flow past bodies, Proc.1st Int. Conf. Numerical Ship Hydrodynamics, Gaithersburg, MD.Google Scholar
Nichols B. D., Hirt C. W., and Hotchkiss R. S. (1980), SOLA-VOF: A solution algorithm for transient fluid flow with multiple free boundaries, LA 8355, Los Alamos Scientific Laboratory, Los Alamos, NM.
Nicolás, J. A. (1992), Magnetohydrodynamic stability of cylindrical liquid bridges under a uniform axial magnetic field, Phys. Fluids A 4, 2573–2577.CrossRefGoogle Scholar
Nicolás, J. A. and Vega, J. M. (1996), Weakly nonlinear oscillations of axisymmetric liquid bridges, J. Fluid Mech. 328, 95–128.CrossRefGoogle Scholar
Nicolás, J. A., Rivas, D., and Vega, J. M. (1997), The interaction of thermocapillary convection and low-frequency vibration near-inviscid liquid bridges, Z. Angew. Math. Phys. 48, 389–423.CrossRefGoogle Scholar
Nicolás, J. A., Rivas, D., and Vega, J. M. (1998), On the steady streaming flow due to high-frequency vibration in nearly inviscid liquid bridges, J. Fluid Mech. 354, 147–174.CrossRefGoogle Scholar
Nikitin S. K. (1987), The nonstationary interaction of elastic solids of revolution partially filled with a liquid, Ph. D. dissertation, S. P. Timoshenko Institute of Machanics, National Academy of Sciences of Ukraine, Kiev (in Russian)
Nishino, H. and Mochio, T. (1995), Sloshing analysis of cylindrical shell with rubber-covered surface, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP-314, 43–55.Google Scholar
Niwa, A. (1978), Seismic behavior of tall liquid storage tanks, Rept. EERC 78–04, Earthquake Eng. Res. Center, UCA, Berkeley.Google Scholar
Niwa, A. and Clough, R. W. (1982), Buckling of cylindrical liquid-storage tanks under earthquake excitation, Earthquake Eng. and Struct. Dyn. 10, 107–122.CrossRefGoogle Scholar
Noji, T., Yoshida, H., Tatsumi, E., Kosaka, H., and Haguida, H. (1988), Study on vibration control damper utilizing sloshing of water, J. Wind Eng. 37, 557–566.Google Scholar
Noji, T., Yoshida, H., Tatsumi, E., Kosaka, H., and Haguida, H. (1990), Study of water-sloshing vibration control damper, J. Struct. Const. Eng. AIJ 411, 97–105.Google Scholar
Novozhilov, V. V. (1962), The Theory of Thin Shells, Leningrad, Sudpromgiz (in Russian).Google Scholar
Nowinski, J. (1963), Nonlinear transverse vibrations of orthotropic cylindrical shells, AIAA J. 1, 617–620.CrossRefGoogle Scholar
Nussle R. G., Derdul J. D., and Petrash D. A. (1965), Photographic study of propellant weightlessness, NASA TN D-2572.
Obraztsova, E. I. (1976a), Nonlinear parametric vibrations of a cylindrical shell with a liquid under longitudinal excitation, Izv. Vyssh. Uchebn. Zaved. Aviats. Tekh. 3, 87–93.Google Scholar
Obraztsova E. I. (1976b), The forced nonlinear vibrations of a cylindrical shell with a liquid under longitudinal excitation, Proc. 3rd Symp. on Vibration of Elastic Structures with a Liquid, Moscow, 314–319 (in Russian).
Obraztsova, E. I. and Shklyarchuk, F. N. (1979), Nonlinear parametric vibrations of a cylindrical tank containing a liquid, Izv. Akad. Nauk. SSSR Mekh. Tverd. Tela. 4, 115–126.Google Scholar
Obraztsova, E. I. and Shklyarchuk, F. N. (1980), The nonlinear parametric vibrations of an orthotropic cylindrical tank partially filled with liquid, in The Vibrations of Elastic Structures with a Liquid, Tsentr. Byuro Nauch.-Tekhn. Inform., Voln, Moscow, 216–224 (in Russian).Google Scholar
Ochi, M. K. and Motter, L. E. (1971), A method to estimate the slamming characteristics for ship design, Mar. Technol. 8, 219–232.Google Scholar
Ockendon, J. R. and Ockendon, H. (1973), Resonance surface waves, J. Fluid Mech. 59(2), 397–413.CrossRefGoogle Scholar
Ockendon, J. R. and Ockendon, H. (2001), Nonlinearity in fluid resonances, Meccanica 36(3).CrossRefGoogle Scholar
Ockendon, H., Ockendon, J. R., and Johnson, A. D. (1986), Resonant sloshing in shallow water, J. Fluid Mech. 167, 465–479.CrossRefGoogle Scholar
Ockendon, H., Ockendon, J. R., and Waterhouse, D. D. (1996), Multimode resonances in fluids, J. Fluid Mech. 315, 317–344.CrossRefGoogle Scholar
Ogawa, N., Chiba, T., Nakajima, S., and Ma, D. C. (1996), An experimental study of the sloshing behavior of the worm tank, ASME Pressure Vess. Piping Conf. Fluid–Structure Interaction, PVP-337, 141–146.Google Scholar
Ogawa, N., Chiba, T., Nakajima, S., Shibata, H., and Ma, D. C. (1997), An experimental study of the fluid–structure interaction behavior of the worm tank, ASME Symp. Advances in Analytical, Exp. and Comp. Tech. Fluids, Struct., Transients and Natural Hazards, PVP-355, 237–243.Google Scholar
Ohaba, M., Sawada, T., Saito, S., Sudo, S., and Tanahashi, T. (1998), Axisymmetric interfacial oscillations of a magnetic fluid column, JSME Int. J. B 41(2), 511–523.CrossRefGoogle Scholar
Ohaba, M. and Sudo, S. (1995), Liquid surface behavior of a magnetic liquid in a container subjected to magnetic field and vertical vibration, J. Magnetism Magnetic Materials 149, 38–41.CrossRefGoogle Scholar
Ohaba, M., Sugimoto, T., Sawada, T., Sudo, S., and Tanahashi, T. (1998), Magnetic field effects on axi-symmetrically oscillating magnetic liquid columns, J. Japan Soc. Microgravity Appl. 15, 243–248.Google Scholar
Ohaba, M., Sugimoto, T., Sawada, T., Sudo, S., and Tanahashi, T. (1999), Oscillations of magnetic liquid column subjected to random vibration, J. Magnetism and Magnetic Materials 201, 293–296.CrossRefGoogle Scholar
Ohaba M., Tomonori M., Sawada T., Sudo S., and Tanahashi T. (1998), Axisymmetric oscillation of magnetic liquid columns in a magnetic field, Studies in Appl. Electromagn. Mech. 13, Nonlinear Electromagnetic Systems, 863.
Ohayon R. (1989), Alternative formulations for static and modal analysis of structures containing fluids, Proc. ASME- PVP Conf. 176, Hawaii.
Ohayon, R. and Felippa, C. A. (1990), The effect of wall motion on the governing equations of contained fluids, J. Appl. Mech. 57, 783–785.CrossRefGoogle Scholar
Ohayon, R. and Morand, H. (1995), Mechanical and numerical modeling of a fluid–structure vibration instabilities of liquid propelled launch vehicles, Chaos, Solitons, Fractals 5(9), 1705–1724.CrossRefGoogle Scholar
Ohnishi, M. and Azuma, H. (1992), Computer simulation of oscillatory Marangoni flow, Acta Astron. 26(8–10), 685–696.CrossRefGoogle Scholar
Ohyama, T. and Fuji, K. (1989), A boundary element analysis for two-dimensional nonlinear sloshing problem, JSCE J. Struct. Eng. 35A, 575–584 (in Japanese).Google Scholar
Okamoto, K., Fukaya, M., and Madarame, H. (1993), Self-induced sloshing caused by flow in a tank, ASME PV&P 258, 105–111.Google Scholar
Okamoto, K. and Kawahara, M. (1990), Two-dimensional sloshing analysis by Lagrangian finite element method, Int. J. Num. Methods Fluids 11, 453–477.CrossRefGoogle Scholar
Okamoto, K. and Madarame, H. (1998), Fluid dynamics of free surface in liquid metal fast breeder reactors, Prog. Nuclear Energy 32, 195–207.CrossRefGoogle Scholar
Okamoto, K., Madarame, H., and Hagiwara, T. (1991), Self-induced oscillation of free surface in a tank with circulating flow, Proc. IMech EFlow-Induced Vibration 1991–6, 539–545.Google Scholar
Okamoto, K., Madarame, H., and Hagiwara, T. (1992), Self-induced water level oscillation in a tank with flow pattern transformation, ASME Pressure Vess. Piping Conf., PVP-232, 13–17.Google Scholar
Okamoto K., Saeki S., Madarame H., Saga T., and Kobayashi T. (2000), Analysis on the self-induced sloshing using particle image velocimetry, http://www.egr.msu.edu/∼huhui/paper/2000/2000/okamoto.pdf.
Okazaki, K., Nozaki, Y., Tani, J., and Shimizu, N. (1990), Seismic response analysis of a multi-walled coaxial cylindrical tank under horizontal excitation, Flow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 55–61.Google Scholar
Okazaki, K. and Tani, J. (1991), Seismic response analysis of a multi-walled coaxial cylindrical tank under vertical excitation, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP-223, 223, 9–16.Google Scholar
Okazaki, K., Watanabe, K., and Tani, J. (1995), Experimental study on chaos of a liquid-filled tank under vertical excitation, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP- 314, 99–108.Google Scholar
Okazaki K., Zhu Q., Tani J., and Watanabe K. (1993), Experimental study on chaos of a liquid-filled tank under horizontal excitation, ASME Pressure Vess. Piping Conf., Denver, CO.
Okhotsimski, D. E. (1956), On the motion of a body with cavities partly filled with a liquid, NASA TTF-33, (May, 1960), (NASA translation fromPrikl. Math. Mekh. (PMM) 20(1)).Google Scholar
Okubo, M., Ishibashi, Y., Oshima, S., Katakura, H., and Yamane, R. (1990), Interfacial waves of the magnetic fluid in vertical alternating magnetic fields, J. Magn. Mat. 85, 163–166.CrossRefGoogle Scholar
Olson, L. G. and Bathe, K. J. (1983), A study of displacement-based fluid finite elements for frequencies of fluid and fluid–structure system, Nuc. Engrg. Des. 76, 137–151.CrossRefGoogle Scholar
Olson, M. D. (1965), Some experimental observations on the nonlinear vibration of cylindrical shells, AIAA J. 3, 1775–1777.CrossRefGoogle Scholar
Omura, N., Yamashita, K., and Sawada, T. (1999), Dynamic characteristic of a magnetic fluid column formed by magnetic field, J. Magn. Magnet. Mater. 201, 297.CrossRefGoogle Scholar
O'Neill J. P. (1960), Final report on an experimental investigation of sloshing, Space Tech. Lab. STL/TR-59–000–09960 March.
Or, A. C. (1992), Rotor-pendulum model for the Perigee assist module nutation anomaly, J. Guidance Cont. Dyn. 15(2), 297–303.CrossRefGoogle Scholar
Or, A. C., Challoner, A. D., and Yip, P. P. (1994), Stability of a liquid-filled spinning top: A numerical approach, J. Sound Vib. 175(1), 17–37.CrossRefGoogle Scholar
Ortiz, J. L. and Barhorst, A. A. (1997), Closed-form modeling of fluid–structure interaction with nonlinear sloshing potential flow, AIAA J. 35(9), 1510–1517.CrossRefGoogle Scholar
Ostrach, S. (1982), Low gravity fluid flows, Annual Review Fluid Mechanics 14, 313–345.CrossRefGoogle Scholar
Oser, H. (1958), Experimentelle Untersuchung uber harmonische schwingungen in rotierenden flussigkeiten, Z. Angew. Math. Mech. (ZAMM) 38, 386–391.CrossRefGoogle Scholar
Ostrach, S., Kamotani, Y., and Lai, C. L. (1985), Oscillatory thermocapillary flows, Phys. Chem. Hydro. 6(5/6) 585–599.Google Scholar
Padday J. F. (1969), Theory of surface tension, in Surface and Colloid Science, Matijevic, E., ed., 1, 39–251, New York, Wiley.Google Scholar
Padday, J. F. (1971), The profiles of axially symmetric menisci, Phil. Trans. Royal Soc. London A 269, 265–472.CrossRefGoogle Scholar
Padday, J. F. (1976), Capillary forces and stability in zero gravity environments, Proc. 2nd European Symp. Material Sciences in Space, Frascati, Italy, ESA-SP-114, 443–454.Google Scholar
Paidoussis, M. P. (1998), Fluid–Structure Interactions: Slender Structures and Axial Flow, 1, London, Academic Press.Google Scholar
Paidoussis, M. P., Chan, S. P., and Misra, A. K. (1984), Dynamics and stability of coaxial cylindrical shells containing flowing fluid, J. Sound Vib. 97, 201–235.CrossRefGoogle Scholar
Paidoussis, M. P. and Denise, J. P. (1972), Flutter of thin cylindrical shells conveying fluid, J. Sound Vib. 20, 9–26.CrossRefGoogle Scholar
Paidoussis, M. P., Misra, A. K., and Chan, S. P. (1985), Dynamics and stability of coaxial cylindrical shells conveying viscous fluid, ASME J. Appl. Mech. 52, 389–396.CrossRefGoogle Scholar
Pal, N. C., Bhattacharyya, S. K., and Sinha, P. K. (2003), Nonlinear coupled slosh dynamics of liquid-filled laminated composite containers: a two-dimensional finite element approach, J. Sound Vib. 261, 729–749.CrossRefGoogle Scholar
Palmer, J. H. and Asher, G. W. (1965), Calculation of axi-symmetric longitudinal modes for fluid-elastic-ullage gas system and comparison with model test results, Proc. AIAASyst. Struct. Dyn. Aeroelasticity, 189–193.Google Scholar
Palmer, J. H. and Berge, J. C. (1971), Convective instability in liquid pools heated from below, J. Fluid Mech. 47, 779–787.CrossRefGoogle Scholar
Pantazonpoulos, M. S. (1988), Three-dimensional sloshing of water on decks, Marine Technology 25(4), 253–261.Google Scholar
Pantazonpoulos, M. S. and Adee, B. H. (1987), Three-dimensional shallow water waves in an oscillating tank, Proc. ASCE Conf. Coastal Hydrodynamics, University of Delaware, Newark, DE, 399–412.Google Scholar
Papell S. S. (1965), Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. US Patent 3215572.
Park, J. E. and Rezvani, M. A. (1995), In-tank fluid sloshing impact effects during earthquakes: a preliminary computational simulation, inFluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP- 314, 73–78.Google Scholar
Park, J. H., Koh, H. M., and Kim, J. K. (2000), Seismic isolation of pool-type tanks for the storage of nuclear spent fuel assemblies, Nuclear Engrg. Des. 199, 143–154.CrossRefGoogle Scholar
Park Y. J., Choi J. K., Kim Y. S., and Bae Y. S. (1995), A practical prediction method of sloshing loads in cargo ship tanks on board ships, PRADS'95, Souel, September, 1418–1425.
Parker, S. P. (ed.) (1983), McGraw-Hill Encyclopedia of Physics, New York, McGraw-Hill.Google Scholar
Parks, P. C. (1979), Stability of liquid-filled spinning spheroids via Liapunov's second method, J. Appl Mech. 46, 259–262.CrossRefGoogle Scholar
Parkus, H. (1982), Modes and frequencies of vibrating liquid-filled cylindrical tanks, Int. J. Eng. Sci. 20(2), 319–326.CrossRefGoogle Scholar
Passerone A., Liggieri L., and Ravera F. (2001), Interfacial phenomena, in Physics of Fluids in Microgravity, Monti, R, ed., London, Taylor & Francis, 46–77.Google Scholar
Patel, N. M., Dodge, M. R., Alexander, J. I. D., Slobozhanin, L. A., Taylor, P. L., and Rosenblatt, C. (2002), Stability of connected cylindrical liquid bridges, Phys. Rev. E 65(2), Paper No 026306, 4 pages.CrossRefGoogle ScholarPubMed
Patrom, L. S. (1985), Numerical calculation of equivalent moment of inertia for a fluid in a cylindrical container with partitions, J. Numer. Meth. Fluids 5, 25–42.Google Scholar
Patrom, L. S. (1987), Application of the VOF method to the sloshing of a fluid in a partially filled cylindrical container, J. Numer. Meth. Fluids 7, 535–550.Google Scholar
Pavolvskii, V. S. (2000), The nonlinear vibrations and stability of orthotropic cylindrical liquid-carrying shells under periodic actions, Int. Appl. Mech. 36(10), 1369–1379.CrossRefGoogle Scholar
Pavlovskii, V. S. and Filin, V. G. (1979), Stability of vibrations of a cylindrical shell filled with a liquid under conditions of nonlinear resonances, Prikl. Mekh. 15(8), 709–716.Google Scholar
Pavlovskii, V. S. and Filin, V. G. (1981), The nonlinear resonant vibrations of cylindrical shells with a liquid under transversal loads, 5th seminar on the Dynamics of Elastic and Rigid Bodies Interacting with a Liquid, Izd. Tomsk. University, Tomskogo, 158–163 (in Russian).Google Scholar
Pavlovskii, V. S. and Filin, V. G. (1985), Nonlinear parametric vibrations of liquid-filled cylindrical shells with an initial deflection, Prikl. Mekh. 21(3), 249–258.Google Scholar
Pawell, A. (1997), Free surface waves in a wave tank, Int. Series Num. Math. 124, 311–320, Birkhauser.Google Scholar
Paynter H. L. (1964a), Special zero gravity fluid problems, Rocket Propellant and Pressurization Systems, E Ring, ed., Englewood Cliffs, NJ, Prentice-Hall.
Paynter, H. L. (1964b), Time for a totally wetting liquid to deform from a gravity-dominated to a nulled-gravity equilibrium state, AIAA J. 2(9), 1627–1634.CrossRefGoogle Scholar
Pearson, J. R. (1958), On convection cells induced by surface tension, J. Fluid Mech. 4, 489–500.CrossRefGoogle Scholar
Peek, R. (1986), Analysis of unanchored liquid storage tanks under seismic loads, Ph. D. dissentation, Caltech, Pasadena, CA.Google Scholar
Peek, R. (1988), Analysis of unanchored liquid storage tanks under lateral loads, Earthquake Eng. Struct. Dyn. 16, 1087–1100.CrossRefGoogle Scholar
Peek, R. and Jennings, P. C. (1988), Simplified analysis of unanchored tanks, Earthquake Eng. Struct. Dyn. 16, 1073–1085.CrossRefGoogle Scholar
Peltier, L. J. and Biringen, S. (1993), Time-dependent thermocapillary convection in a rectangular cavity: numerical results for a moderate Prandtl number, J. Fluid Mech. 257, 339–357.CrossRefGoogle Scholar
Pengelley, C. D. (1968), Natural frequency of longitudinal modes of liquid propellant space launch vehicles, J. Spacecraft Rock. 5(12), 1425–1431.CrossRefGoogle Scholar
Penney, W. G. and Price, AT (1952), Finite periodic stationary waves in a perfect liquid, part II, Phil. Trans. Royal Soc. (London) 244, 254–284.CrossRefGoogle Scholar
Perales, J. M. and Meseguer, J. (1992), Theoretical and experimental-study of the vibration of axisymmetrical viscous-liquid bridges, Phys. Fluids. A 4, 1110–1130.CrossRefGoogle Scholar
Perko, L. M. (1969), Large-amplitude motions of a liquid-vapor interface in an accelerating container, J. Fluid Mech. 35(1), 77–96.CrossRefGoogle Scholar
Perlin, M. and Schultz, W. W. (1996), On the boundary conditions at an oscillating contact-line: a physical/ numerical experimental program, Proc. NASA 3rd Microgravity Fluid Physics Conf., Cleveland, OH, 615–620.Google Scholar
Perlin, M. and Schultz, W. W. (2000), Capillary effects on surface waves, Annu. Rev. Fluid Mech. 32, 241–274.CrossRefGoogle Scholar
Peterson L. D. (1987), The nonlinear coupled dynamics of fluids and spacecraft in low gravity, Ph. D. dissentation, Dept. Aeronaut. and Astronaut., MIT, Cambridge, MA, SSL Rep 22–87.
Peterson, L. D., Crawley, E. F., and Hansman, R. J. (1989), Nonlinear fluid slosh coupled to the dynamics of a spacecraft, AIAA J. 27(9), 1230–1240.CrossRefGoogle Scholar
Petrash D. A. and Nelson T. M. (1963), Effect of surface energy on the liqui–vapor interface during weightlessness, NASA TN D-1582.
Petrash D. A., Nussel R. C., and Otto E. W. (1963), Effect of the acceleration disturbances encountered in the MA-7 spacecraft on the liquid–vapor interface in a baffled tank during weighlessness, NASA TN D-2075.
Petrash, D. A. and Otto, E. W. (1962), Studies of the liquid–vapor interface configuration in weighlessness, Amer. Rocket Soc. Space Power Systems Conf., 25–28 September.Google Scholar
Petrash, D. A. and Otto, E. W. (1964), Controlling the liquid–vapor interface under weightlessness, AIAA J. 2(3), 56.Google Scholar
Petrash D. A., Zappa R. F., and Otto E. W. (1962), Experimental study of the effects of weightlessness on the configurations of mercury and alcohol in spherical tanks, NASA TN-D-1197.
Petrenko, M. O. (1969), The natural vibrations of a liquid with a free surface and the elastic bottom of a cylindrical cavity, Soviet Appl. Mech. (Prikl. Mekh.) 5(6), 44–50.Google Scholar
Petrenko, M. O. (1970), The concurrent vibrations of a liquid and the elastic bottom of a cylindrical tank, Proc. 7th All-Union Conf. on The Theory of Shells and Plates, Moscow, Nauka, 474–478 (in Russian).Google Scholar
Petrenko M. O. (1978), Resonance vibrations of the free liquid surface in a tank with an elastic bottom, Proc. 3rd Workshop on the Dynamics of Elastic and Rigid Bodies Interacting with a Liquid, Tomsk, 91–97 (in Russian).
Petrov, A. A. (1961), Oscillations of a fluid in an annular cylindrical vessel with horizontal generators, Zh. Vychislit. Matem. Fiz. 1, 741–746.Google Scholar
Petrov A. A. (1962a), Oscillations of fluids in cylindrical basins with horizontal generators – variational methods in problems of oscillations of a fluid and of a body with a fluid, Vych. Tsenter. Akad. Nauk. SSSR, Moscow, 179–202.
Petrov A. A. (1962b), Approximate solution of the problem of oscillations of a fluid in a cylindrical vessel with horizontal generators – variational methods in problems of oscillations of a fluid and of a body with a fluid, Vych. Tsentr. Akad. Nauk. SSSR, Moscow, 213–230.
Petrov A. A. (1962c), Equations of motion of an airplane carrying tanks with liquids – variational methods in problems of oscillations of a fluid and of a body with a fluid, Vych. Tsentr. Akad. Nauk. SSSR, Moscow, 231–236.
Petrov, A. A. (1963), Approximate methods for calculating the natural vibrations of a fluid in vessels of arbitrary shape and of Zhukovskiy's potentials for these vessels, Zh. Vychisl. Matem. Fiz. 5.Google Scholar
Petrov, V., Schatz, M., Muehlner, K. A., Hook, S. J., McCormic, W. D., Swift, J. B., and Swinney, H. L. (1996), Nonlinear control of remote unstable states in a liquid bridge convection experiment, Phys. Rev. Lett. 77, 3779.CrossRefGoogle Scholar
Pfeiffer, F. (1967a), On the fuel sloshing in rotational symmetric rocket tanks with arbitrary internal boundary, Jahrbuch der Wissenschaftlichen Gesellschaft fur Luft Raumfahrt E V, 408–413 (in German).Google Scholar
Pfeiffer, F. (1967b), Linearized free oscillations of fuel in arbitrary containers, (in German), Zeitschrift fur Flugwissenschaften 16(6), 188–194.Google Scholar
Pfeiffer F. (1977), Problems of contained rotating fluids with respect to aerospace applications, CNESS-ESA Conf. on Attitude Control of Space Vehicles, Toulouse, ESA SP-129, 51–62.
Pih, H. and Wu, C. G. (1969), Experimental studies of vibrations of axially excited circular shells containing cylindrical shells containing fluid, ASME J. Eng. Industry 91(4), 1119–1127.CrossRefGoogle Scholar
Pilipchuk, V. N. and Ibrahim, R. A. (1997), The dynamics of a nonlinear system simulating liquid sloshing impact in moving structures, J. Sound Vib. 205(5), 593–615.CrossRefGoogle Scholar
Pilipchuk, V. N. and Ibrahim, R. A. (1999), Application of the Lie group transformations to nonlinear dynamical systems, J. Appl Mech. 66(2), 439–447.CrossRefGoogle Scholar
Pilipchuk, V. N. and Ibrahim, R. I. (2000), Dynamics of a two-pendulum model with impact interaction and an elastic support, Nonlinear Dyn. 21(3), 221–247.CrossRefGoogle Scholar
Pinson L. D. (1963), Propellant-dome impact analysis, NASA Internal Memo., November.
Pinson L. D. (1964), Longitudinal spring constants for liquid propellant tanks with ellipsoidal tanks, NASA TN D-2220, November.
Pinson L. D. and Leonard H. W. (1969), Longitudinal vibration characteristics of 1/10-scale Apollo/Saturn V replica model, NASA TN D-5159, April.
Plank, W. S.Beardsley, G. F., and Burt, W. V. (1972), An exprimental evaluation of a passive anti-roll tank system, Ocean Engrg. 2(3), 131–139.CrossRefGoogle Scholar
Plateau J. A. F (1863), Experimental and theoretical researches on the figures of equilibrium of a liquid mass withdrawn from the action of gravity, Smithsonian Inst. Ann. Rep., 207–285; also (1864), 286–369; (1865), 411–435, (1866), 255–289, Washington, Government Printing Office.
Platt G. K. (1967), Space vehicle low gravity fluid mechanics problems and the feasibility of their experimental investigation, NASA TM X-53589.
Pocha J. J., (ed) (1986), An Experimental Investigation of Spacecraft Sloshing, ESA Proc. Intl. Symp. Spacecraft Flight Dynamics, ESA SP-255, 307–314.
Podesta G. (1956), Acceleration and differential feed-back methods for controlling the instability due to propellant sloshing in missiles, Convair, Report No ZU–7–070–TN, 15 November.
Poincaré, H. (1885), Sur l'équilibra d'une masse fluide animée d'un mouvement de rotation, Acta Math. 7, 259.CrossRefGoogle Scholar
Poincaré, H. (1910), Sur la precession des corps deformable, Bull. Astronomique 27, 321–356.Google Scholar
Poisson, S. D. (1828–9), Sur les petites oscillations de l'eau contenue dans un cylindre, Ann. De Gergonne XIX, 2225.Google Scholar
Pomeau, Y. and Manneville, P. (1980), Intermittent transition to turbulence in dissipative dynamical systems, Com. Math. and Phys. 74, 189–197.CrossRefGoogle Scholar
Ponder C. A., Blount D. H., and Fritz C. G. (1964), Bubble coalescence in a longitudinal vibrated liquid column, part 1, NASA TM X-53180, December.
Popov, A. A. (2003), Parametric resonance in cylindrical shells: A case study in the nonlinear vibration of structural shells, Engrg. Struct. 25, 789–799.CrossRefGoogle Scholar
Popov, A. A., Thomson, J. M. T., and McRobie, F. A. (2001), Chaotic energy exchange through autoparametric resonance in cylindrical shells, J. Sound Vib. 248(3), 395–411.CrossRefGoogle Scholar
Popov, G. V., Sankar, S., and Sankar, T. S. (1992), Liquid sloshing in rectangular road containers, Computers and Fluids 21(4), 551–569.CrossRefGoogle Scholar
Popov, G., Sankar, S., and Sankar, T. S. (1993a), Dynamics of liquid sloshing in baffled and compartmented road containers, J. Fluid Struct. 7, 803–821.CrossRefGoogle Scholar
Popov, G., Vatistas, G. H., Sankar, S., and Sankar, T. S. (1993b), Numerical simulation of viscous liquid sloshing in arbitrary shaped reservoirs, AIAA J. 31(1), 10–11.CrossRefGoogle Scholar
Popplewell N., Lu M. L., and Shah A. H. (2002), Behavior of a nutation damper undergoing a coupled horizontal/rotational motion, Proc. ASME WAM IMECE2002–32861.
Porter, A. W. (1933), The calculation of surface tension from experiment, Phil. Magazine 15, 163–169.Google Scholar
Pozhalostin, A. A. (1967), Free oscillations of a fluid in a rigid circular cylindrical container with an elastic shallow, spherical shell bottom, IZV Vys Uchebnykh Zavedenii, Aviatsion Tekh. 2, 21–27 (in Russian).Google Scholar
Pozharitskiy, G. K. (1962), The problem of a minimum in the problem of stability of a rigid body partially filled with a fluid, Prikl. Math. Mekh. (PMM) 26(4), 895–913.CrossRefGoogle Scholar
Pozharitskiy, G. K. (1964), On the effect of viscosity on the stability of equilibrium and of steady-state rotations of a rigid body with a cavity partially filled with a viscous fluid, Prikl. Math. Mekh. (PMM) 28(1), 67–76.CrossRefGoogle Scholar
Pozharitskiy, G. K. and Rumyantsev, V. V. (1963), The problem of the minimum in the problem of stability of motion of a rigid body with a fluid-filled cavity, Prikl. Math. Mekh. (PMM) 27(1), 18–32.CrossRefGoogle Scholar
Poznyak E. (1994), Paradoxes and analogies in the problems of dynamics for rotating containers partially filled with liquid, unpublished review article.
Preisser, F., Schwabe, D., and Scharmann, A. (1983), Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface, J. Fluid Mech. 126, 545–567.CrossRefGoogle Scholar
Prokopalo, E. F., Gruzhin, V. I., and Shchukurov Akh, . (1980), Study of the parametric vibrations of glass-fiber-reinforced plastic shells filled with a liquid, in The Vibrations of Elastic Structures with a Liquid, Tsentr Byuro Nauch-Tekhn Inform “Volna”, Moscow, 243–247 (in Russian).Google Scholar
Pshenichnov G. I. (1969), Application of asymptotic method of integration to problems of free oscillations of a thin elastic shell of revolution partly filled with fluid, Tr VII A 11 Union Conf. on the Theory of Shells and Plates Dnepropetrovsk.
Pshenichnov, G. I. (1971), Exact solutions of some problems concerned with oscillations of fluid contained in an elastic momentless shell, Prikl. Math. Mekh. (PMM) 35(4), 689–694.CrossRefGoogle Scholar
Pshenichnov, G. I. (1972), Free oscillations of liquid in rigid vessels, Prikl. Math. Mekh. (PMM) 36(2), 229–235.CrossRefGoogle Scholar
Puchka, G. N. and Kholopova, V. V. (1996), Nonlinear surface waves in liquid within a cylindrical vessel, Int. Appl. Mech. 32(4), 307–309.CrossRefGoogle Scholar
Pursi, A. and Malik, S. K. (1995), Parametrically excited nonlinear surface waves and chaos in magnetic fluids, J. Magn. Magnet. Mater. 149, 132–136.Google Scholar
Qinque, W. and Lidu, H. (1992), Eigen-problem of liquid-container coupling, Comput. Struct. 44(1/2), 353–355.CrossRefGoogle Scholar
Qiu, S., and Scherer, R. J. (1994), Active control of liquid sloshing in tank under seismic excitation, 1st World Conf. Structural Control1, WP1–108–113, Los Angeles, CA.Google Scholar
Raake, D. and Siekmann, J. (1991), Axially excited natural frequencies in a rapidly rotating cylindrical container, Z. Flugwiss. Weltraumforsch. 15, 289–296.Google Scholar
Rabinovich, B. I. (1956), Concerning the equations of perturbed motion of a solid body with a cylindrical cavity partially filled with a fluid, PMM 20(1), 39–50.Google Scholar
Rabinovich B. I. (1959), Concerning the equations of elastic vibrations of thin-walled, fluid-filled rods with free fluid surfaces, Izvestiya Acad. Sci. SSSR, OTN, Mekhanika I Mashinostroyniye, No. 3; English transl by Space Technol. Lab., STL-T-RV-19.
Rabinovich B. I. (1964), Concerning the equations of transverse vibrations of fluid-filled shells, Izvestiya Acad. Sci. SSSR, series Mekhanika I Mashinostroyeniye, No. 1, 166–169, English translation NASA TT-F-216.
Rabinovich, B. I. (1980), Oscillation of structures with fluid-filled cavities, Handbook Vibration in Engineering 3, 61–89.Google Scholar
Raco, R. J. (1968), Stability of a liquid in a longitudinal time varying electric field, AIAA J. 6, 979–980.CrossRefGoogle Scholar
Radwan, H. R. and Genin, J. (1975), Nonlinear modal equations for thin elastic shells, Int. J. Nonlin. Mech. 10, 15–29.CrossRefGoogle Scholar
Radwan, H. R., and Genin, J. (1976), Nonlinear vibrations of thin cylinders, ASME J. Appl. Mech. 43, 370–372.CrossRefGoogle Scholar
Rajappa, N. R. (1970a), A new approach to the study of standing surface waves of finite amplitude, Acta Mech. (91/2), 130–136.CrossRefGoogle Scholar
Rajappa, N. R. (1970b), On the instability of fluid surfaces when accelerated perpendicular to their planes, Acta Mech. 10, 193–205.CrossRefGoogle Scholar
Raju, K. K. and Rao, V. G. (1976), Large amplitude asymmetric vibrations of some thin shells of revolution, J. Sound Vib. 44, 327–333.CrossRefGoogle Scholar
Rakesh G. (1997), Tuned liquid column dampers for vibration control of tall structures, M. Eng. thesis, National University of Singapore.
Rakheja, S., Sankar, S., and Ranganathan, R. (1988), Roll plane analysis of articulated tank vehicles during steady turning, Vehicle Sys. Dyn. 17(1–2), 81–104.CrossRefGoogle Scholar
Rammerstofer F. G., Scharf K., and Fischer F. D. (1989), On problems in the use of earthquake response spectrum methods for fluid–structure–soil interaction, Sloshing and Fluid Structure Vibration, D. C. Ma, et al., editors., ASME Pressure Vess. Piping Conf., PVP-157, 61–68.
Rammerstofer, F. G., Scharf, K., and Fischer, F. D. (1990), Storage tanks under earthquake loading, ASME Appl. Mech. Rev. 43(11), 261–283.CrossRefGoogle Scholar
Ramos, J., Incecik, A., and Guedes Soares, C. (2000), Experimental study of slam-induced stresses in a containership, Marine Struct. 13, 25–51.CrossRefGoogle Scholar
Rand, R. and DiMaggio, F. (1967), Vibrations of fluid-filled spherical and spheroidal shells, J. Acoustical Soc. Amer. 42(6), 1278–1286.CrossRefGoogle Scholar
Ranganathan R., Rakheja S., and Sankar S. (1989a), Dynamic analysis of a b-train carrying liquid cargo – part I: Response to steady steer inputs, ASME Proc. WAM Advan. Automot. Technol., DSC-13, 1–18.
Ranganathan, R., Rakheja, S., and Sankar, S. (1989b), Dynamic analysis of a b-train carrying liquid cargo – part II: Response to transient steer inputs, ASME Proc. WAM. Advan. Automot. Technol., DSC-13, 19–30.Google Scholar
Rankine, W. J. M. (1865), Supplement to a paper on streamlines, Phil. Mag. 29(4), 25–28.CrossRefGoogle Scholar
Ransleben, G. E. Jr and Abramson, H. N. (1960), Discussion of the Berlot paper: production of rotation in a confined liquid through translation motion of the boundaries, ASME J. Appl. Mech. 27(2), 265–270.Google Scholar
Rapoport I. M. (1968), Dynamics of Elastic Containers Partially Filled with Liquids, NY, Springer-Verlag, Applied Physics and Eng./an Int. Series 5, H. N. Abramson, ed., translation by Technical S. Inc.
Rashed M. I. I. (1965), Inertia and damping effects due to the flow in a cylindrical vessel filled with fluid and subjected to a simple harmonic oscillatory motion, Tech. Rept., Cairo University, Dept. Aeronaut. Eng., Giza.
Rattayya J. V. (1965), Sloshing of liquids in axi-symmetric ellipsoidal tanks, AIAA Paper 65–114, AIAA 2nd Aerospace Science Meeting, New York.
Rayleigh, J. W. S. (Lord) (1879), On the capillarity phenomena of jets, Proc. Royal Soc. XXIX, 71–97; On instability of jets, Proc. London Math. Soc. X, 4–13.CrossRefGoogle Scholar
Rayleigh, J. W. S. (Lord) (1883a), On the crispations of fluid resting upon a vibrating support, Phil. Mag. 15, 229–235.CrossRefGoogle Scholar
Rayleigh, J. W. S. (Lord) (1883b), On maintained vibrations, Phil. Mag. 15, 229–235 (Scientific Papers, 2, 188–193).CrossRefGoogle Scholar
Rayleigh, J. W. S. (Lord) (1887), On the maintenance of vibrations by forces of double frequency and on the propagation of waves through a medium endowed with a periodic structure, Phil. Mag. 24, 145–159.CrossRefGoogle Scholar
Rayleigh J. W. S. (Lord) (1892), On the instability of cylindrical surfaces, Collected papers, 594, 3, Cambridge, England, Cambridge University Press.
Rayleigh, J. W. S. (Lord) (1916), On the convection currents in a horizontal layer of fluid when the higher temperature is on the under side, Phil. Mag. 32, 529–546.CrossRefGoogle Scholar
Rayleigh, J. W. S. (Lord) (1945), The Theory of Sound, New York, Dover.Google Scholar
Reed, D., Yu, J., Yeh, H., and Gardarsson, S. (1998a), Investigation of tuned liquid dampers under large amplitude of excitation, ASCE J. Eng. Mech. 124, 405–413.CrossRefGoogle Scholar
Reed, D., Yeh, H., Yu, J., and Gardarsson, S. (1998b), Tuned liquid dampers under large amplitude excitation, J. Wind Eng. Indust. Aerodyn. 74–76, 923–930.CrossRefGoogle Scholar
Reed F. E. (1961), Dynamic vibration absorbers and auxiliary mass dampers, Chapter 6, Shock and Vibration Handbook, Harris, CM, and Crede, C. E., eds., 1, New York, McGraw-Hill.Google Scholar
Reese J. R. (1955), Some effects of fluid on pylon-mounted tanks on flutter, NACA RML 55F10.
Reese J. R. and Sewal J. L. (1955), Effective moments of inertia of a fluid in offset and swept wing tanks undergoing pitching oscillations, NACA TN-3353.
Rehbinder, G. and Apazidis, N. (1995), Motion of a torsion pendulum immersed in a linear viscous liquid, J. Sound Vib. 184(5), 745–758.CrossRefGoogle Scholar
Reifel M. D. (1964), Vibrations of pressurized thin elastic circular cylinders filled with liquid subjected to translational excitations, Report ERR AN-653, General Dynamics/Astronautics.
Reismann, H. (1958), Liquid propellant inertia and damping due to airframe roll, Amer. Rocket Soc. J. 28(11), 746–747.Google Scholar
Reissner E. (1955), Nonlinear effects in vibrations of cylindrical shells, Ramo-Wooldridge Co. Rept. AM5–6.
Reissner E. (1956), Notes on forced and free vibrations of pressurized cylindrical shells which contains a heavy liquid with a free surface, Space Technol. Lab., AM 6–15, GM TR87, Los Angeles.
Reissner E. (1957), Complementary energy procedure for vibrations of liquid filled circular cylindrical tanks, Space Technol. Lab., GM TR, EM7–9.
Reynolds, J. M. (1965), Stability of an electrostatically supported fluid column, Phys. Fluids 8(1), 161–170.CrossRefGoogle Scholar
Riecke, H. (1990), Stable wave number kinks in parametrically excited standing waves, Europhys. Lett. 11(3), 213–218.CrossRefGoogle Scholar
Riley, J. D. and Trembath, N. W. (1961), Sloshing of liquid in spherical tanks, J. Aer./Space Sci. 28(3), 245–246.CrossRefGoogle Scholar
Ring, E. (1964), Propellant sloshing, in Rocket Propellant and Pressurization System, Englewood Cliffs, NJ, Prentice Hall.Google Scholar
Roberts, J. B. and Spanos, P. D. (1990), Random Vibration and Statistical Linearization, New York, Wiley.Google Scholar
Roberts J. R., Basurto E. R., and Chen P. Y. (1966), Slosh design handbook, NASA CR-406.
Rocca, M. L., Mele, P., and Armenio, V. (1997), Variational approach to the problem of sloshing in a moving container, J. Theoret. Appl. Fluid Mech. 1(4), 280–310.Google Scholar
Rocca, M. L., Sciortino, G., and Boniforti, M. A. (2000), A fully nonlinear model for sloshing in a rotating container, Fluid Dyn. Res. 27(1), 23–52.CrossRefGoogle Scholar
Rocca, M. L., Sciortino, G., and Boniforti, M. A. (2002), Interfacial gravity waves in a two-fluid system, Fluid Dyn. Res. 30(1), 31–66.CrossRefGoogle Scholar
Rogge T. R. and Weiss H. J. (1965), An approximate nonlinear analysis of the stability of sloshing modes under translational and rotational excitation, NASA CR-220.
Rosenblat, S. (1959), Torsional oscillations of a plane in a viscous fluid, J. Fluid Mech. 6(2), 206–220.CrossRefGoogle Scholar
Rosenhead, L. (1963), Laminar Boundary Layer, Oxford, Clarendon Press.Google Scholar
Rosensweig, R. E. (1987), Magnetic fluids, Annu. Rev. Fluid Mech. 19, 417–463.CrossRefGoogle Scholar
Ross G. O. (1994), Helium II. slosh in low gravity, 2nd Microgravity Fluid Physics Conf., NASA Lewis Research Center, Cleveland, 213–218.
Rudenko, T. V. (2002), The stability of the steady motion of a gyrostat with a liquid in a cavity, J. Appl. Mat. Mekh. 66(2), 171–178.CrossRefGoogle Scholar
Rumold, W. (1998), Modeling and simulation of sloshing liquids, Z. Angew. Math. Mech. (ZAMM) 78, S691–S692.Google Scholar
Rumold, W. (2001), Modeling and simulation of vehicles carrying liquid cargo, Multibody System Dynamics 5, 375–386.CrossRefGoogle Scholar
Rumyantsev, V. V. (1954), Equations of motion of a rigid body having cavities partially filled with a liquid, Prikl. Math. Mekh. (PMM) 18(6), 719–728.Google Scholar
Rumyantsev, V. V. (1955), On equations of motion of a rigid body with a cavity filled with liquid, Prikl. Math. Mekh. (PMM) 19(1), 1–12.Google Scholar
Rumyantsev, V. V. (1959a), The stability of Maclaurin ellipsoids of a rotating liquid, Prikl. Math. Mekh. (PMM) 23, 494–504.Google Scholar
Rumyantsev, V. V. (1959b), On the stability of rotational motion of a rigid body filled with a fluid, Prikl. Math. Mekh. (PMM) 23(6), 1512–1524.CrossRefGoogle Scholar
Rumyantsev, V. V. (1960), On the stability of motion of a top with a cavity filled with a viscous fluid, Prikl. Math. Mekh. (PMM) 24(4), 903–912.CrossRefGoogle Scholar
Rumyantsev, V. V. (1962), On the stability of steady motions of rigid bodies with fluid-filled cavities, Prikl. Math. Mekh. (PMM) 26(6).Google Scholar
Rumyantsev, V. V. (1964a), On the motion of a rigid body containing cavities with a viscous fluid, Prikl. Math. Mekh. (PMM) 28(6), 1353–1358.CrossRefGoogle Scholar
Rumyantsev, V. V. (1964b), Lyapunov method in the study of stability of motion of rigid bodies with fluid-filled cavities, Adv. Appl. Math.8, 183–232, HL Dryden and Th von Karman, eds., New York, Academic Press.Google Scholar
Rumyantsev, V. V. (1964c), On the stability of motion of a solid with a liquid having surface tension, Prikl. Math. Mekh. (PMM) 28, 746–751.Google Scholar
Rumyantsev, V. V. (1966), On the motion of rigid bodies with fluid-filled cavities, Prikl. Math. Mekh. (PMM) 30(1), 57–77.CrossRefGoogle Scholar
Rumyantsev, V. V. (1968), On the motion and stability of a solid with a rotor and liquids having surface tension, in Introduction to the Dynamics of a Body Containing a Liquid under Zero-Gravity Conditions, Vychisl. Tsentr. Akad. Nauk. SSSR, Moscow, 259–268 (in Russian).Google Scholar
Rumyantsev, V. V. (1969a), Collision with obstacle of a body containing a viscous fluid, Prikl. Math. Mekh. (PMM) 33(5), 876–881.CrossRefGoogle Scholar
Rumyantsev, V. V. (1969b), On the motion and stability of an elastic body with a cavity containing a fluid, Prikl. Math. Mekh. (PMM) 33(6), 927–937.CrossRefGoogle Scholar
Rumyantsev, V. V., Rubanovsky, V. N., and Stepanov, S. Y. (1979) Oscillation and stability of rigid bodies with cavities containing a fluid, Handbook Vibration in Engineering, 2, 280–305.Google Scholar
Rundgren L. (1958), Water wave forces, A theoretical and laboratory study, Ph.D. thesis, Royal Inst. Tech., Stockholm.
Rupp, R., Muller, G., and Neumann, G. (1989), Three-dimensional time-dependent modeling of the Marangoni convection in zone melting configuration for GaAs, J. Crystal Growth 97, 34.CrossRefGoogle Scholar
Russell S. (1844), Report on waves, Brit. Ass. Rept.
Ryan R. S. and Buchanan H. (1966), An evaluation of the low-g propellant behavior of a space vehicle during waiting orbit, NASA TM X-53476.
Rybicki, A. and Florian, J. M. (1987), Thermocapillary effects in liquid bridges, I: Thermocapillary convection, Phys. Fluids 30, 1956–1965.CrossRefGoogle Scholar
Saad, M. A. and Oliver, D. A. (1964), Linearized time-dependent free-surface flow in rectangular and circular tanks, Heat Transfer and Fluid Mechanics Institute, California, Stanford University Press.Google Scholar
Saeki, S., Madarame, H., and Okamoto, K. (2001), Self-induced sloshing excited by a horizontally injected plane jet, J. Fluid Mech. 448, 81–114.CrossRefGoogle Scholar
Saga, T., Hu, H., Kobayashi, T., Murata, S., Okamoto, K., and Nishio, S. (2000b), A comparative study of the PIV and LDV measurement on a self-induced sloshing flow, J. Visualization 3(2), 145–156.CrossRefGoogle Scholar
Saga, T., Hu, H., Kobayashi, T., Segawa, S., and Taniguchi, N. (2000a), Research on the self-induced sloshing phenomena in a rectangular tank, 9th Int. Symp. Flow Visualization, Paper number 259, 1–10.Google Scholar
Saito, S. and Someya, T. (1980), Self-excited vibration of a rotating hollow shaft partially filled with liquid, ASME J. Mech. Des. 102, 185–192.CrossRefGoogle Scholar
Sakai, F. (1985), The state-of-the-art and future subjects on seismic design and study, Trans. JSCE 362(I-4), 1–6 (in Japanese).Google Scholar
Sakai, F. and Isoe, A. (1989), Computation and experiment on base-uplift behavior of cylindrical oil storage tanks during earthquakes, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP-157, 9–14.Google Scholar
Sakai, F., Isoe, A., Hirakawa, H., and Mentani, Y. (1989), Large scale static tilt tests of seismic behavior of flat-bottomed cylindrical liquid storage tanks, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 69–74.Google Scholar
Sakai, F., Takaeda, S., and Tamaki, T. (1989), Tuned liquid column damper, new type device for suppression of building vibrations, Proc. Int. Conf. Highrise Buildings, Nanjing, China, 926–931.Google Scholar
Sakai, F., Takaeda, S., and Tamaki, T. (1991a), Tuned liquid column dampers (TLCD) for cable-stayed bridges, Proc. Specialty Conf. Innovation in Cable-Stayed Bridges, Fukuoka, Japan, 197–205.Google Scholar
Sakai, F., Takaeda, S., and Tamaki, T. (1991b), Experimental study on tuned liquid column dampers (TLCD), Proc. Colloq. Structural Control, JSCE, Tokyo, 189–196 (in Japanese).Google Scholar
Sakata, M., Kimura, K., and Utsumi, M. (1983), Non-stationary random responses of nonlinear liquid motion in a circular cylindrical tank, Trans. JSME C 49(442), 963–970 (in Japanese).CrossRefGoogle Scholar
Sakata, M., Kimura, K., and Utsumi, M. (1984a), Non-stationary response of nonlinear liquid motion in a cylindrical tank subjected to random base excitation, J. Sound Vib. 94(3), 351–363.CrossRefGoogle Scholar
Sakata, M., Kimura, K., and Utsumi, M. (1984b), Non-stationary random vibration of an elastic circular cylindrical liquid storage tank to a simulated earthquake excitation, Trans. JSME C 50(458), 2004–2012 (in Japanese).CrossRefGoogle Scholar
Sakata, M., Kimura, K., and Utsumi, M. (1991), Non-stationary random responses of an elastic circular cylindrical liquid storage container to a simulated earthquake excitation, Trans. 11th Int. Conf. Struct. Mech. Reactor Technol. K, K35/6, 571–576.Google Scholar
Sakata, M., Kimura, K., Utsumi, M., and Okada, T. (1986), The coupled oscillations of a liquid and the elastic side walls of a rectangular tank, Trans. JSME C 52(479), 1915–1921 (in Japanese).CrossRefGoogle Scholar
Saleme, E. and Liber, T. (1965), Breathing vibrations of pressurized partially filled tanks, AIAA J. 3(1), 132–136.Google Scholar
Salzman J. A., Coney T. A., and Masica W. J. (1968), Effects of liquid depth on lateral sloshing under weightless conditions, NASA TN D-4458.
Salzman J. A., Labus T. L., and Masica W. J. (1967), An experimental investigation of the frequency and viscous damping of liquids during weightlessness, NASA TN D-4132.
Salzman J. A. and Masica W. J. (1967), Experimental investigation of liquid propellant reorientation, NASA TN D-3789.
Salzman J. A. and Masica W. J. (1969), An experimental investigation of the frequency and damping of liquids during weightlessness, NASA TN D-5058.
Salzman J. A., Masica W. J., and Lacovie R. E. (1973), Low gravity reorientation in a scale-model Centaur liquid hydrogen tank, NASA TN-7168.
Samali B., Kwok K. C. S., and Tapner D. (1992a), Vibration control of structures by tuned liquid column dampers, Proc. IABSE Congress, New Delhi, India, 461–466.
Samali, B., Kwok, K. C. S, Parsanejad, S., and Xu, Y. L. (1992c), Vibration control of buildings by tuned liquid column dampers, Proc. 2nd Int. Conf. Highrise Buildings, Nanjing, China, 425–430.Google Scholar
Samali, B., Kwok, K. C. S., Young, G., and Xu, Y. L. (1992b), Effectiveness of optimized tuned liquid column dampers in controlling vibration of tall buildings subject to strong ground motions, Proc. 2nd Int. Conf. Highrise Buildings, Nanjing, China, 402–407.Google Scholar
Samali, B., Lee, P., and Kwok, K. C. S. (1992d), Wind-induced vibration control of tall buildings with tuned liquid column dampers, 1st Int. Conf. Motion and Vibration Control, Yokohama, Japan, 182–187.Google Scholar
Sames, P. C., Marcouly, D., and Schellin, T. E. (2002), Sloshing in rectanagular and cylindrical tanks, J. Ship Res. 46(3), 186–200.Google Scholar
Samoylov Y. A. and Pavlov B. S. (1964), Vibrations of a fluid-filled semi-spherical shell, IVUZ, Aviatson-naya Tekh. 7(3), 79–86, IAAA64–28277.
Sandorff P. E. (1960), Principles of design of dynamerlly similar models for large propellant tanks, NASA TN D-99.
Sankaran, S. and Saville, D. (1993), Experiments on the stability of a liquid bridge in an axial electric field, Phys. Fluids A 5, 1081–1087.CrossRefGoogle Scholar
Sanz, A. (1985), The influence of outer bath in the dynamics of axisymmetric liquid bridges, J. Fluid Mech. 156, 101–140.CrossRefGoogle Scholar
Sanz, A. and Diez, J. L. (1989), Non-axisymmetric oscillations of liquid bridges, J. Fluid Mech. 205, 503–521.CrossRefGoogle Scholar
Sanz, A. and Martinez, I. (1983), Minimum volume for a liquid bridge between equal disks, J. Colloid Interface Sci. 93, 1–9.CrossRefGoogle Scholar
Saoka Y., Tamaki T., Sakai F., and Takaeda S. (1989), A proposal for suppression of structural vibrations by tuned liquid dampers, Proc. 43rd Ann. Meeting JSCE (in Japanese).
Satterlee, H. M. (1962), Propellant control at zero-g, Space/Aeronaut.72–75.Google Scholar
Satterlee H. M. and Chin J. L. (1965), Meniscus shape under reduced gravity conditions, symp. on fluid mechanics and heat transfer under low gravitational conditions, Lockheed Missiles & Space Co.
Satterlee H. M. and Reynolds W. C. (1964), The dynamics of the free liquid surface in cylindrical containers under strong capillary and weak gravity conditions, Stanford University, Dept. Mech. Eng., Tech. Rept. LG2.
Savino, R. (1997), Order of magnitude analysis of g-jitter induced disturbances in fluid-dynamic microgravity experimentation, Microgravity Quart. 7(4), 141–154.Google Scholar
Savino R. (2000), Influence of residual-g and g-jitter on the measurement of thermophysical properties in microgravity, 33rd COSPAR Scientific Assembly, 16–23 July, Warsaw, Poland.
Savino, R. and Monti, R. (1996), Oscillatory convection in a cylindrical liquid bridge, Phys. Fluids 8, 2906–2920.CrossRefGoogle Scholar
Savino, R. and Monti, R. (1999), Convection induced by residual-g and g-jitters in diffusion experiments, Int. J. Heat Mass Trans. 42, 111–126.CrossRefGoogle Scholar
Savino R., and Monti R. (2001), Fluid-dynamic experiment sensitivity to accelerations prevailing on microgravity platforms, in Physics of Fluids in Microgravity, Monti, R, ed., London, Taylor & Francis, 513–559.Google Scholar
Savino, R., Paterna, D., and Lappa, M. (2003), Marangoni flotation of liquid droplets, J. Fluid Mech. 479, 307–326.CrossRefGoogle Scholar
Sawada T., Fujiwara Y., Omura N., Ohaba M., and Tanahashi T. (1998), Lateral vibration of magnetic fluid column, Studies in Appl. Electromagn. Mech. 13, Nonlinear Electromagnetic Systems, 871.
Sawada, T., Hashimoto, H., and Katagiri, K. (1987), Interfacial instability of magnetic fluid in a rectangular container, JSME Int J. 30, 1086–1092.Google Scholar
Sawada, T., Hikura, H., Shibata, S., and Tanahashi, T. (1993), Lateral sloshing of a magnetic fluid in a container, J. Magn. Magnetic Mater. 122, 424–427.CrossRefGoogle Scholar
Sawada, T., Hikura, H., Shibata, S., and Tanahashi, T. (1999), Kinematic characteristics of magnetic fluid sloshing in a rectangular container subjected to nonuniform magnetic fields, Exp. Fluids 26(3), 215–221.CrossRefGoogle Scholar
Sawada, T., Ohira, Y., and Houda, H. (2002a), Sloshing motion of a magnetic fluid in a cylindrical container due to horizontal oscillation, Energy Conv. Manag. 43(3), 299–308.CrossRefGoogle Scholar
Sawada, T., Ohira, Y., and Houda, H. (2002b), Sloshing behavior of a magnetic fluid in a cylindrical container, Exp. Fluids 32(2), 197–203.CrossRefGoogle Scholar
Sayad M. A. El- (1999), Parametric excitation of nonlinear coupled oscillators simulating liquid sloshing impact loading, Ph.D. thesis, Alexandria University, Egypt.
Sayad, M. A., El-Hanna, S. N., and Ibrahim, R. A. (1999), Parametric excitation of nonlinear elastic systems involving hydrodynamic sloshing impact, Nonlinear Dyn. 18(1), 25–50.CrossRefGoogle Scholar
Sayar, B. A. (1971), Fluid slosh dampers, Ph.D. dissertation, Georgia Tech., Atlanta.Google Scholar
Sayar, B. A. and Baumgarten, J. R. (1981), Pendulum analogy for nonlinear fluid oscillations in spherical containers, J. Appl Mech. 48, 769–772.CrossRefGoogle Scholar
Sayar, B. A. and Baumgarten, J. R. (1982), Linear and nonlinear analysis of fluid slosh dampers, AIAA J. 20(11), 1534–1538.CrossRefGoogle Scholar
Scarsi, G. (1971), Natural frequencies of viscous liquids in rectangular tanks, Meccanica 6(4), 223–234.CrossRefGoogle Scholar
Scarsi, G. and Brizzolara, E. (1970), On the behavior of liquids in a rectangular tank motion, Int. Shipbuilding Progress 17(194), 316–329.CrossRefGoogle Scholar
Schilling, U. and Siekmann, J. (1980), Calculation of the free oscillations of a heavy incompressible fluid in an axially symmetrical vessel by means of panel methods, Israel J. Tech. 18, 13–20.Google Scholar
Schilling, U. and Siekmann, J. (1981), Numerical calculation of the natural frequencies of a sloshing liquid in axial symmetrical tanks under strong capillary and weak gravity conditions, Israel J. Techn. 19, 44–50.Google Scholar
Schilling, U. and Siekmann, J. (1982), Numerical calculation of the translational forced oscillations of a sloshing liquid in axially symmetric tanks, Israel J. Techn. 20, 201–205.Google Scholar
Scharf K. (1990), Beitraege zur erfassung des Verhaltens von erdbebebenerregten, oberirdischen tankbauwerken, Ph.D. thesis, Fortschritt-Berichte VDI, Reihe 4 (97), Duesseldorf, FRG.
Schlichting, H. (1960), Boundary Layer Theory, New York, McGraw-Hill.Google Scholar
Schluter, A., Lortz, D., and Busse, F. H. (1965), On the stability of steady finite amplitude convection, J. Fluid Mech. 23, 129–144.CrossRefGoogle Scholar
Schmidt, G. (1975), Parametric OscillationVEB Deutscher Verlarg der Wissenschaften, Berlin (in German).Google Scholar
Schmidt, G. and Weidenhammer, F. (1961), Instability of damped rheolinear vibrations, Mathematische Nachtichten 23, 301–318 (in German).CrossRefGoogle Scholar
Schmitt A. F. (1956), Forced oscillations of a fluid in a cylindrical tank undergoing both translation and rotation, Rept. No ZU-7–079, Convair San Diego, CA.
Schmitt A. F. (1957), Forced oscillations of a fluid in cylindrical tank oscillating in a carried acceleration field: a correction, Rept. No ZU-7–074 Convair San Diego, CA, 4 February.
Schneider, C. C. and Likins, P. W. (1973), Nutation damper versus precession dampers for axisymmetric spinning spacecraft, J. Spacecraft Rock. 10, 218–222.CrossRefGoogle Scholar
Schneider, J., Schwabe, D., and Scharmann, A. (1996), Experiments on the surface waves in dynamic thermocapillary liquid layers, Microgravity Sci. Technol. IX(2), 86–97.Google Scholar
Schoenhals R. J. and Overcamp T. J. (1965), Pressure distribution and bubble formation induced by longitudinal vibration of flexible liquid-filled cylinder, NASA TM-X-53353, MSFC.
Schoenhals R. J., Winter E. R. F, and Griggs E. I. (1967), Effects of longitudinal vibration on discharge of liquids from propellant tanks, Proc. 1967 Heat Transfer and Fluid Mech. Inst., San Diego, 277–297, Stanford University Press.
Scholl H. F., Pinson L. D., and Stephens D. G. (1971), Investigation of slosh anomaly in Apollo lunar module propellant gage, NASA-TM-X-2362, L-7757.
Scholl H. F., Stephens D. G., and Davis P. K. (1972), Ring-baffle pressure distribution and slosh damping in large cylindrical tanks, NASA Tech. Note TND-6870.
Schotte J. S. (2001), Effect of gravity on the linear vibrations of an elastic structure containing an incompressible liquid, Ph.D. thesis, CNAM Paris (in French).
Schotte J. S. and Ohayon R. (1999), Vibration analysis of elastic tanks partially filled with incompressible liquids in presence of a gravity field, Proc. Launch Vehicle Vibrations, 1st European Conf. Launcher Technology, CNES Toulouse, France.
Schotte J. S. and Ohayon R. (2001), Interactions between sloshing modes and incompressible hydroelastic modes for internal fluid–structure systems, Proc. 1st MIT Conf. Comput. Fluid and Solid Mech., Elsevier Science.
Schotte J. S. and Ohayon R. (2002), Effect of gravity on a free–free fluid–structure system, Proc. ASME WAM IMECE2002–32868.
Schulkes, R. M. and Cuvelier, C. (1991), On the computation of normal modes of a rotating, viscous incompressible fluid with a capillary free boundary, Comp. Methods Appl. Mech. Eng. 92(1), 97–120.CrossRefGoogle Scholar
Schultz, W. W., Vanden-Broeck, J., Jiang, L., and Perlin, M. (1998), Highly nonlinear standing water waves with small capillary effects, J. Fluid Mech. 369, 253–272.Google Scholar
Schwabe, D. and Metzeger, J. (1989), Coupling and separation of the buoyant thermocapillary convection, J. Crystal Growth 97, 23–33.CrossRefGoogle Scholar
Schwabe, D., Möller, U., Schneider, J., and Scharmann, A. (1992), Instabilities of shallow dynamic thermocapillary liquid layers, Phys. Fluids A 4, 2368–2381.CrossRefGoogle Scholar
Schwabe, D. and Scharmann, A. (1979), Some evidence for the existence and magnitude of a critical Marangoni number for the onset of oscillatory flow in crystal growth melts, J. Crystal Growth 46, 125–131.CrossRefGoogle Scholar
Schwabe D., Scharmann A., and Preisser F. (1979), Steady and oscillatory Marangoni convection in floating zones under microgravity, Proc. 3rd European Symp. Material Sciences in Space, Grenoble.
Schwabe, D., Scharmann, A., Preisser, F., and Oeder, R. (1978), Experiments on surface tension driven flow in floating zone melting, J. Crystal Growth 43, 305–312.CrossRefGoogle Scholar
Schwabe, D., Scharmann, A., and Xiadong, D. (1991), Prandtl number dependence on the onset of thermocapillary flow in floating zones, Adv. Space Res. XI, 233–240.CrossRefGoogle Scholar
Schwabe, D., Velten, R., and Scharmann, A. (1990), The instability of surface tension driven floating zones under normal and reduced gravity, J. Crystal Growth 99, 1258–1266.CrossRefGoogle Scholar
Schwartz, E. (1961), Study of liquid behavior under zero and reduced gravity, in Weightlessness – Physical Phenomena and Biological Effects, New York, Plenum, 138–149.Google Scholar
Schwind R. G., Scotti R. S., and Skogh J. (1964), The effect of baffles on tank sloshing, Lockheed Missiles Space Co., LMSCA642961.
Schwind, R. G., Scotti, R. S., and Skogh, J. (1967), Analysis of flexible baffles for damping tank sloshing, J. Spacecraft Rock. 4(1), 47–53.CrossRefGoogle Scholar
Schy A. A. (1952), A theoretical analysis of the effects of fuel motion on airplane dynamics, NACA Rept. 1080.
Scolan, Y. M. and Korobkin, A. A. (2001), Three-dimensional theory of water impact, Part q: Inverse Wagner problem, J. Fluid Mech. 440, 293–326.CrossRefGoogle Scholar
Scolan, Y. M. and Korobkin, A. A. (2003), Energy distribution from vertical impact of a three-dimensional solid body unto the flat free surface of an ideal fluid, J Fluids Struct 17, 275–286.CrossRefGoogle Scholar
Scott, W. E. (1973), The dynamical effect of inertial waves on the gyroscopic motion of a body containing several eccentrically located liquid-filled cylinders, J. Fluid Mech. 57(1), 161–165.CrossRefGoogle Scholar
Scott, W. E. (1975), The large amplitude motion of liquid-filled gyroscope and the non-interaction of inertial and Rossby waves, J. Fluid Mech. 72(4), 649–660.CrossRefGoogle Scholar
Scriven, L. E. and Sternling, L. V. (1960), Marangoni effects, Nature 187, 186–188.CrossRefGoogle Scholar
Scriven, L. E. and Sterling, L. V. (1964), On cellular convection driven by surfactant gradients: effect of mean surface tension and viscosity, J. Fluid Mech. 19, 321–340.CrossRefGoogle Scholar
Scurlock, R. G. (1991), History and Origins of Cryogenics, Oxford, Oxford University Press.Google Scholar
Seebold, G., Hollister, M. P., and Satterlee, H. M. (1967), Capillary hydrostatics in annular tanks, J. Spacecraft 4(1), 101–105.Google Scholar
Sekerzhi-Zenkovich, S. Y. (1983), Parametric resonance in a stratified fluid when there are vertical oscillations of the vessel, Dokl. Akad. Nauk. SSSR 270(5), 1089–1091.Google Scholar
Sen, B. M. (1927), Waves in canals and basins, Proc. London Math. Soc. Series 2(26), 363–376.CrossRefGoogle Scholar
Selmane, A. and Lakis, A. A. (1997a), Nonlinear dynamic analysis of orthotropic open cylindrical shells subjected to a flowing fluid, J. Sound Vib. 202, 67–93.CrossRefGoogle Scholar
Selmane, A. and Lakis, A. A. (1997b), Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid, J. Fluids Struct. 11, 111–134.CrossRefGoogle Scholar
Semenov, V. O. (1975), On the flow of a liquid from an oscillating cylindrical tank with a curvilinear bottom, inDifferential Equations and Their Applications 3 Dneprropetrvsk, 106–1114.Google Scholar
Senda K. and Nakagawa K. (1954), On the vibration of an elevated water-tank – I, Tech. Rept. Osaka University 4(117), 247–264.
Seto M. L. (1996), An investigation on the suppression of flow-induced vibrations of baffled bodies, Ph.D. thesis, University of British Columbia, Vancouver, Canada.
Seto M. L. and Modi V. J. (1997), A numerical approach to liquid sloshing dynamics and control of fluid–structure interaction instabilities, ASME Fluids Eng. Div. Summer Meeting, Paper No FEDSM 97–3302.
Sewal J. L. (1957), An experimental and theoretical study of the effects of fuel on pitching-translation flutter, NACA TN-4166.
Shaaban S. H. and Nash W. A. (1975), Finite element analysis of seismically excited cylindrical storage tank, ground supported and partially filled with liquid, University of Massachusetts, Amherst, MA.
Shang, S. P. and Lei, G. P. (1988), The free vibration of orthotropic moderately thick shells conveying fluid, Applications of Mechanics in Engineering, Hangshou, 231–241.Google Scholar
Shankar, K. and Balendra, T. (2002), Application of the energy flow method to vibration control of buildings with multiple liquid dampers, J. Wind Engrg & Indust. Aerodyn. 90, 1893–1906.CrossRefGoogle Scholar
Shankar, P. N. and Kidambi, R. (2002), A modal method for finite amplitude nonlinear sloshing, Pramana-J. Physics 59(4), 631–651.CrossRefGoogle Scholar
Sharma, C. B., Darvizeh, M., and Darvizeh, A. (1996), Free vibration response of multilayered orthotropic fluid-filled circular cylindrical shells, Compos. Struct. 34, 349–355.CrossRefGoogle Scholar
Sharma, C. B., Darvizeh, M., and Darvizeh, A. (1998), Natural frequency response of vertical cantilever composite shells containing fluid, Engrg Struct. 20, 732–737.CrossRefGoogle Scholar
Sharma, R., Semercill, S. E., and Turan, O. F. (1992), Floating and immersed plates to control sloshing in a cylindrical container at the fundamental mode, J. Sound and Vib. 115(2), 365–370.CrossRefGoogle Scholar
Shemer, L. (1990), On the directly generated resonant standing waves in a rectangular tank, J. Fluid Mech. 217, 143–165.CrossRefGoogle Scholar
Shemer, L. and Chamesse, M. (1990), On the hysteresis phenomenon in the directly excited nonlinear resonance sloshing waves in a tank, Acta Mech. 81(1/2), 47–58.CrossRefGoogle Scholar
Shemer, L., Chamesse, M., and Kit, E. (1989), Measurements of the dissipation coefficient at the wave maker in the process of generation of the resonant standing waves in a tank, Exp. Fluids 7, 506–512.CrossRefGoogle Scholar
Shemer, L. and Kit, E. (1988), Study of the role of dissipation in evolution of nonlinear sloshing waves in a rectangular channel, Fluid Dyn. Res. 4(2), 89–105.CrossRefGoogle Scholar
Shemer, L., Kit, E., and Miloh, T. (1987), Measurements of two- and three-dimensional waves in a channel including the vicinity of cut-off frequencies, Exper. Fluids 5, 66–72.CrossRefGoogle Scholar
Shen, M. C., Sun, S. M., and Hsieh, D. Y. (1993), Forced capillary–gravity waves in a circular basin, Wave Motion 18, 401–402.CrossRefGoogle Scholar
Shen, Y., Neitzel, G. P., Jankowki, D. F., and Mittelmann, H. D. (1990), Energy stability of thermocapillary convection in a model of float-zone crystal-growth process, J. Fluid Mech. 217, 639–669.CrossRefGoogle Scholar
Shepherd R. (1969), Earthquake resistant design of petroleum storage tanks, Proc. 2nd Austral. Conf. Mech. Struct. and Mat., Adelaide, 8.1–8.11.
Shepherd, R. (1972), The two mass representation of a water tower structure, J. Sound Vib. 23(3), 391–396.CrossRefGoogle Scholar
Shevtsova, V. M., Ermakov, M. K., Ryabitskii, E., and Legros, J. C. (1997), Oscillations of a liquid bridge free surface due to the thermal convection, Acta Astron. 41(4–10), 471–479.CrossRefGoogle Scholar
Shevtsova V. M., Kuhlmann H. C., and Rath H. J. (1995), Thermocapillary convection in liquid bridges with a deformed surface, 46th Cong. Int. Astronaut. Federation, Oslo, Norway, 2–6 Oct.
Shevtsova V. M. and Legros J. C. (1997), Influence of the free surface shape on stability of liquid bridges, Proc. 10th European and 6th Russian Symp. Physical Sciences in Microgravity, St. Petersburg, 15–21 June.
Shevtsova, V. M. and Legros, J. C. (1998a), Convection motion and stability of strongly deformed liquid bridges, Phys. Fluids 7.Google Scholar
Shevtsova, V. M. and Legros, J. C. (1998b), Oscillatory convective in deformed liquid bridges, Phys. Fluids 10, 1621–1634.CrossRefGoogle Scholar
Shevtsova, V. M., Mojahed, M., Legros, J. C. (1999), The loss of stability in ground based experiments in liquid bridges, Acta Astron. 44(7–12), 625–634.CrossRefGoogle Scholar
Shevtsova V. M., Wanschura M., Kuhlmann H. C., Shu J. Z., and Legros J. C. (1996), Thermocapillary motion and stability of liquid bridges, 2nd European Symp. Fluids in Space, Naples.
Shi J. J. (1987), Fluid sloshing analysis for toroidal tank, Proc. AIAA/ASME/ASCE/AFS 28th Struct. Struct. Dyn. Mat. Conf., Part 2A, 40–44.
Shibata H., Sato H., and Shigeta T. (1965), A seismic design of machine structure, Proc. 3 WCEE II, 552–562.
Shibata, H., Shinozaki, Y., Kobayashi, N., and Mieda, T. (1986), A study of the liquid slosh response in horizontal cylindrical tanks, ASMEProc. Pressure Vess. Piping Conf., PVP-108, 137–142.Google Scholar
Shih C. C. (1966), On subgravity hydroelastic sloshing of a liquid with a curved free surface in a cylindrical tank having a flexible bottom, Thesis, University of Florida.
Shih, C. C. and Buchanan, H. J. (1971), The drag oscillating flat plate in liquids at low Reynolds numbers, J. Fluid Mech. 48(2, 229–239.CrossRefGoogle Scholar
Shih C. F. (1981), Failure of liquid storage tanks due to earthquake excitation, Ph.D. dissertation, Caltech, Pasadena, CA.
Shimizu, N. (1983), Advancements and trends of seismic design of liquid storage tanks (in Japanese), Trans. JSME 49(438, C), 145–159.CrossRefGoogle Scholar
Shimizu, N. (1990), Advances and trends in design of cylindrical liquid storage tanks, Flow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 1–9. (Also JSME Int. J. Series III, 33(2), 111–124.).Google Scholar
Shimizu, T. and Hayama, S. (1987), Nonlinear response of sloshing based on the shallow water wave theory, JSME Int. J. 30(263), 806–813.CrossRefGoogle Scholar
Shinkai, A., Mano, M., and Tamai, S. (1994), Numerical analysis of sloshing problems for the middle sized double hull tanker, J. Soc. Naval Arch. Japan 176, 387–396.CrossRefGoogle Scholar
Shinkai, A., Tamia, S., and Mano, M. (1995), Sloshing impact pressure induced on cargo oil tank walls on the middle-sized double hull tanker, Trans. Soc. Naval Arch. West. Japan 90, 91–98.Google Scholar
Shiojiri, H. and Hagiwara, Y. (1990), Development of a computational method for nonlinear sloshing by BEM, in Flow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP-191, 149–154.Google Scholar
Shkenev Yu. S. (1964) The dynamics of an elastic and elastoplastic shell filled with an ideal liquid, Proc. 4th All-Union Conf. on The Theory of Shells and Plates, Izd. Akad. Nauk. SSSR, Moscow, 997–1007 (in Russian).
Shkenev Yu, S. (1970), On the stability of an elastic shell filled with an ideal liquid, Prikl. Mekh. 6(8), 128–132.Google Scholar
Shklyarchuk, F. N. (1965a), The axisymmetric vibrations of a liquid inside an elastic cylindrical shell with an elastic bottom, Izv. Vuzov., Aviats. 4, 75–83.Google Scholar
Shklyarchuk, F. N. (1965b), Approximate method of calculating symmetric oscillations of fluid-filled shells of revolution, Izv. AN SSSR Mekhanika 6, 123–129.Google Scholar
Shklyarchuk F. N. (1966), Variational methods of calculating axi-symmetric oscillations of shells of revolution, partially filed with fluid, Tr V. I. Vses Konferentsii Po Teorii Obolocheki Plastemok, Moscow, Nauka, 835–840 (in Russian).
Shklyarchuk, F. N. (1970a), The dynamic stability of a cylindrical shell partially filled with a liquid and subject to longitudinal vibrations, Proc. 7th All-Union Conf. on The Theory of Shells and Plates, Moscow, Nauka, 619–624 (in Russian).Google Scholar
Shklyarchuk, F. N. (1970b), Parametric vibrations of a cylindrical shell partially filled with a liquid and subject to longitudinal excitation, Proc. 7th All-Union Conf. on the Theory of Shells and Plates, Moscow, Nauka, 314–329 (in Russian).Google Scholar
Shklyarchuk, F. N. (1973), The effect of the compressibility of a liquid on the longitudinal vibrations of a cylindrical tank, in Vibrations of Elastic Structures with a Liquid, Novosib, Elektrotekh Inst, Novosibirk, 291–313.Google Scholar
Shklyarchuk, F. N. (1983), The Dynamics of Structures of Aircrafts, Izd. Moskovskogo Aviats. Inst., Moscow (in Russian).Google Scholar
Shmakov, V. P. (1964), Concerning the equations of axi-symmetrical vibrations of a fluid cylindrical shell, Izvestiya Acad. Sci. SSSR, Series Mekh. i Mash. 1, 170–173, Translated as NASA TT-F-219.Google Scholar
Shrimali, M. K. and Jangid, R. S. (2002), Nonlinear seismic response of base-isolated liquid storage tanks to bi-directional excitation, Nuclear Engrg Des. 217, 1–20.CrossRefGoogle Scholar
Shved, G. L. (1959), Small oscillations of the free surface of an ideal fluid in a plane moving vessel with smooth vertical walls, Trudy Odessk, Teknol. Inst. Pislch., ikholodil'n Promysh 8, 150–160.Google Scholar
Shuleikin, V. V. (1962), Some remarks on the behavior of a liquid approaching zero-g conditions, Dokl. Akad. Nauk. SSSR 147, 1075–1083.Google Scholar
Shul'ga, N. A., and Shul'ga, O. M. (2003), Wave propagation in an orthotropic cylinder with a liquid, Int. Appl. Mech. 39(6), 736–740.CrossRefGoogle Scholar
Shveiko Yu. Yu. and Kuleshov V. B. (1973), Investigation of natural oscillations of cylindrical shells with fluid, in Oscillations of Elastic Structures with Fluid, Izd-vo Novosib Elektrotekhn in-ta, Novosibirska (in Russian).
Shyu, K. L. and Kuo, H. C. (1996) Dynamic behavior of a U-type tuned liquid damper, Int. Shipbuilding Prog. 43(436), 331–345.Google Scholar
Siegel, R. (1961), Transient capillary rise in reduced and zero gravity fields, ASME J. Appl. Mech. 28(2), 165–186.CrossRefGoogle Scholar
Siegert C. E., Petrash D. A., and Otto E. W. (1964), Time response of liquid–vapor interface after entering weightlessness, NASA TN D-2458.
Siegert C. E. Petrash D. A., and Otto E. W. (1965), Behavior of liquid–vapor interface of cryogenic liquids during weightlessness, NASA TN D-2658.
Siekmann, J. and Chang, S. C. (1966), On liquid sloshing in a cylindrical tank with a flexible bottom, Proc. Southeastern Symp. Missile and Aerospace Vehicles Sciences, Am. Astronaut. Soc. 2(1–8), 98–105.Google Scholar
Siekmann, J. and Chang, S. C. (1967), On liquid sloshing in a cylindrical tank with a flexible bottom under strong capillary and weak gravity conditions, J. Astronaut. Sci. XIV(4), 167–172.Google Scholar
Siekmann, J. and Chang, S. C. (1968), On the dynamics of liquids in a cylindrical tank with a flexible bottom, Ing. Arch. 37, 99–109.CrossRefGoogle Scholar
Siekmann, J. and Chang, S. C. (1971a), Dynamic interaction of liquid with elastic structure of a circular cylindrical container, Ing. Arch. 4, 266–280.Google Scholar
Siekmann, J. and Chang, S. C. (1971b), On the change of natural frequencies of a sloshing liquid by movable devices, Acta Mech. 11(1/2), 73–86.CrossRefGoogle Scholar
Siekmann, J., Scheideler, W., and Tietze, R. (1981), Static meniscus configurations in propellant tanks under reduced gravity, Comput. Methods Appl. Mech. Engrg. 28, 103–108.CrossRefGoogle Scholar
Siekmann, J. and Schilling, U. (1974a), Calculation of the free oscillations of a liquid in axi-symmetric motionless containers of arbitrary shape, Zeit. Flugwiss. 22, 168–173.Google Scholar
Siekmann, J. and Schilling, U. (1974b), Calculation of the free oscillations of a liquid in motionless axisymmetric containers of arbitrary shape, Zeit. Flugwiss. 22, 168–173.Google Scholar
Silber, M. and Knobloch, E. (1989), Parametrically excited surface waves in square geometry, Phys. Lett. 137, 349–354.CrossRefGoogle Scholar
Silber, M. and Proctor, M. R. E. (1998), Nonlinear competition between small and large hexagonal patterns, Phys. Rev. Lett. 81, 2450–2453.CrossRefGoogle Scholar
Silber, M. and Skeldon, A. C. (1999), Parametrically excited surface waves: two-frequency forcing, normal form symmetries, and pattern selection, Phys. Revs. E 59, 5446–5456.CrossRefGoogle ScholarPubMed
Silber, M., Topaz, C. M., and Skeldon, A. C. (2000), Two-frequency forced Faraday waves: weakly damped modes and pattern selection, Physica D 143(1–4), 205–225.CrossRefGoogle Scholar
Silveira M. A., Stephens D. C., and Leonard H. W. (1961), An experimental investigation of damping of liquid oscillations in cylindrical tanks with various baffles, NASA TN D-715.
Simonelli, F. and Gollub, J. P. (1989), Surface wave mode interactions: effects of symmetry and degeneracy, J. Fluid Mech. 199, 471–494.CrossRefGoogle Scholar
Sivak, V. F. (1998), Experimental study of the resonance and dissipative properties of a liquid-filled glass fiber composite reinforced plastic cylindrical shell, Int. Appl. Mech. 34(2), 136–139.Google Scholar
Sivak, V. F. (2001), Experimental investigation of the natural vibrations of shells of revolution with a liquid and added masses, Int. Appl. Mech. 37(1), 122–125.CrossRefGoogle Scholar
Sivak, V. F. and Telalov, A. I. (1991), Experimental investigation of the vibrations of a cylindrical shell contacting with a liquid, Soviet Appl. Mech. (Prikl. Mekh.) 27(10), 121–123.Google Scholar
Sivak, V. F. and Telalov, A. I. (1992), Experimental investigation of the vibration damping of a longitudinally reinforced cylindrical shell contacting with a liquid, Soviet Appl. Mech. (Prikl. Mekh.) 28(4), 77–80.Google Scholar
Sivak, V. F. and Telalov, A. I. (1998), Experimental investigation of the resonance and dissipative properties of a glass-fiber-reinforced plastic cylindrical shell filled with a liquid, Sov. Appl. Mech. (Prikl. Mekh.) 34(2), 39–42.Google Scholar
Skalak, M. A. and Conly, J. F. (1964), Surface waves on a rotating fluid, AIAA J. 2(2), 306–312.Google Scholar
Skalak, R. and Yarymovich, M. I. (1962), Forced large amplitude surface waves, Proc. 4thUS Nat. Congress Appl. Mech., 1411–1418.Google Scholar
Slabinski V. J. (1977), Intelsat I. V. in-orbit liquid slosh tests and problems in the theoretical analysis of the data, ESA SP-129, 87–102.
Slafer, L. I. and Challoner, A. D. (1988), Propellant interaction with the payload control system of dual-spin spacecraft, J. Guidance 11(4), 343–351.CrossRefGoogle Scholar
Slibar A. and Troger H. (1975), Dynamic steady state behavior of a tractor-semitrailer-system carrying liquid load, Proc. IUTAM Symp. 1975081822, The Dynamics of Vehicles on Roads & Railway Tracks, Hans B. Pacejka, ed., the Netherlands, Swts & Zeitlinger BV.
Slibar A. and Troger H. (1976), Die kritischen fahrzustande des tank-aufliegerzuges bei verschiedenen baladungsgraden und beruhrbedingungen im stationaren fahrbetrieb. Bundes-miniserium fur Bauten und Technik Wien, Strassenforschung, Heft 55.
Slibar, A. and Troger, H. (1977), The steady state behavior of tank trailer system carrying rigid or liquid cargo, VSD-IUTAM Symp. Dynamics of Vehicles on Roads & Trucks, Vienna, 256–264.Google Scholar
Sloane M. N. (1960), The dynamics of the sloshing phenomenon: a literature survey, Rept. GM- 60–5111–5, Space Tech. Lab., Inc.
Slobozhanin L. A. (1966), Hydrostatics in weak force fields: equilibrium shapes of rotating liquid surface at zero-g, Fluid Dynamics 1(5), 113–116. (Translation of Izvestiya Acad. Nauk. SSSR Mekh. Zhid. Gaza1(5), 157–160, 1966, by New York, Faraday Press.
Slobozhanin, L. A. and Alexander, J. I. D. (2000), Stability of disconnected free surfaces in a cylindrical container under zero gravity: Simple cases, Phys. Fluids 12(11), 2800–2808.CrossRefGoogle Scholar
Slobozhanin L. A., Alexander J. I. D, and Fedoseyev A. I. (1999a), Doubly connected axisymmetric free surface in a cylindrical container: Shape, stability and application, AIAA Paper AIAA-99–1029, 37th AIAA Aerospace Sciences Meeting, Reno, NV.
Slobozhanin, L. A., Alexander, J. I. D, and Fedoseyev, A. I. (1999b), Shape and stability of doubly connected axisymmetric free surface in a cylindrical container, Phys. Fluids 11, 3668–3677.CrossRefGoogle Scholar
Slutskii F. (1895), De la rotation de la terre supposeé fluide a son intérieur, Bull. de la Soc. des Naturalistes de Moscow9.
Smith C. (1948), The effect of fuel sloshing on the lateral stability of a free-flying airplane model, NACA RM L8C.
Smith, K. A. (1966), On convective instability induced by surface tension gradients, J. Fluid Mech. 24, 401–414.CrossRefGoogle Scholar
Smith K. W. (1947), Fuel sloshing relation between surface movement and moving masses displacement for a circular tank, RAE, Great Britain, G W File Ref GW/55 027/KWS.
Smith K. W. (1956), Presented work on the effects of fuel sloshing in the control of ballistic missile, RAE, Great Britain, Note GW/5/507/LKWS.
Sneddon, I. H. (1972), The Use of Integral Transforms, New York, McGraw-Hill.Google Scholar
Snowdon, J. C. (1968), Vibration and Shock in Damped Mechanical Systems, New York, John Wiley.Google Scholar
Snyder, H. A. (1999), Sloshing in microgravity, Cryogenics 39(12), 1047–1055.CrossRefGoogle Scholar
Snyder, H. A. (2001), Effect of sloshing on the mechanics of Dewar systems in low-gravity, Cryogenics 41(11/12), 825–832.CrossRefGoogle Scholar
Sobolev, S. L. (1960), On the motion of a symmetrical top with a fluid-filled cavity, Prikl. Mekh. i Tekh. Fiz. 3, 20–55.Google Scholar
Soedel, S. M. and Soedel, W. (1994), On the free and forced vibration of a plate supporting a freely sloshing surface liquid, J. Sound Vib. 171(2), 159–171.CrossRefGoogle Scholar
Sogabe K. and Shibata H. (1974a), Response analysis on sloshing of liquid in a cylindrical storage i: basic equation and response to sinusoidal input, J. Inst. Indust. Scie., University of Tokyo 26(3), 119–122 (in Japanese).
Sogabe K. and Shibata H. (1974b), Response analysis on sloshing of liquid in a cylindrical storage ii: transient response to sinusoidal input, J. Inst. Indust. Scie., University of Tokyo26(4), 152–155 (in Japanese).
Sokolov, VI (1954), The influence of rotor contained fluid mass on the critical velocity of centrifugal machine shafts, Proc. Moscow Inst. Meat and Milk Indust. 11, 71–72.
Solaas F. (1995), Analytical and numerical studies of sloshing in tanks, Ph.D. thesis, The Norwegian Institute of Technology, Trondheim.
Solaas, F. and Faltinsen, O. M. (1997), Combined numerical and analytical solution for sloshing in two-dimensional tanks of general shape, J. Ship Research 41, 118–129.Google Scholar
Someya, S., Okamoto, K., and Madarame, H. (1995), Self-induced sloshing caused by upward jet impinging on upper-inner-structure, inFluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP-314, 115–120.Google Scholar
Someya, S., Okamoto, K. and Madarame, H. (2000), The self-induced free-surface “swell flapping” caused by the interaction among a jet, a free surface and a structure, J. Fluids Struct. 14(4), 511–528.CrossRefGoogle Scholar
Sonobe, Y. and Nishikawa, T. (1969), Study of the earthquake proof design of elevated water tanks, Proc. 4th World Conf. Earthquake Eng., SantiagoB-4, 11–24.Google Scholar
Soong, T. T. and Constantinou, M. C. (1994), Passive and Active Structural Vibration Control in Civil Engineering, New York, Springer.CrossRefGoogle Scholar
Sorokin, V. I. (1957), The effect of fountain formation at the surface of a vertically oscillating liquid, Soviet Physics-Dokl. 3(3), 281–291.Google Scholar
Souli, M. and Zolesio, J. P. (2001), Arbitrary Lagrangian–Eulerian and free surface methods in fluid mechanics, Comput. Meth. Appl. Mech. Engrg. 191, 451–466.CrossRefGoogle Scholar
Soundararajan A. (1983), Stationary response of liquid free surface under wide-band random parametric excitation, Master thesis, Texas Tech. University, Lubbock, TX.
Soundararajan, A. and Ibrahim, R. A. (1988), Parametric and autoparametric vibrations of an elevated water tower, part iii: random response, J. Sound Vib. 121(3), 445–462.CrossRefGoogle Scholar
Souto, A. and Gonzalez, V. (2001), Passive stabilizer simulation using SPH models, Proc. Fluid–Structure Interaction 2001, Halkidiki, Greece1, 35–44.Google Scholar
Souto, A., Laioz, I., Abril, S., and Abad, R. (2001), Passive stabilizer tanks dimensioning using SPH simulations, Proc. 4th Int. Conf. Marine Technology, Sczcecin, Poland1, 171–181.Google Scholar
Spradley L. W., Bourgeois S. L., and Lin F. N. (1975), Space processing convection evaluation, g-jitter convection of confined fluids in low gravity, AIAA Paper 75–695.
Squire H. B. (1958), Aero. Res. Counc., London16, 021.
Sretanskii, L. N. (1956), Propagation of waves of finite amplitudes in a circular channel, Trudy. Mor. Gidrofiz. in-ta Akad. Nauk. SSSR 6, 3–6.Google Scholar
Sretanskii, L. N. (1957), The oscillations of liquid in a moving container, Izv. Akad. Nauk. SSSR Otd. Tekh. Nauk. 10, 1494.Google Scholar
Standberg L. (1978), Lateral Stability of Road Tankers, National Road & Traffic Res. Inst. Rept. 138A, Sweden.
Steel Structure & Civil Eng Division, 1991, Oscillation control of pylon and cables in cable stayed Sakitama, Bridge (up-route side), Mitui Zosen Tech. Rev. 143, 17–25.
Steklov M. W. (1902), Sur les problemes fondamentaux de la physique mathematique, Ann. Sci. Ecole Norm. Sup. 19, 455–490.
Stephens D. G. (1965), Experimental investigation of liquid impact in a model propellant tank, NASA TN D-2913.
Stephens, D. G. (1966), Flexible baffles for slosh damping, J. Spacecraft Rock. 3(5), 765–766.CrossRefGoogle Scholar
Stephens D. G. and Leonard H. W. (1963), The coupled dynamic response of a tank partially filled with a liquid undergoing free and forced planner oscillations, NASA TN D-1945.
Stephens D. G., Leonard H. W., and Perry T. W. (1962), Investigation of the damping of liquids in right circular tanks including the effects of a time-variant liquid depth, NASA TN D-1367.
Stephens D. G., Leonard H. W., and Silveira M. A. (1963), An experimental investigation of the damping of liquid oscillations in an oblate spheroidal tank with and without baffles, NASA TN D-808.
Stephens D. G. and Scholl H. F. (1967), Effectiveness of flexible and rigid ring baffles for damping liquid oscillations in large-scale cylindrical tanks, NASA TN D-3878.
Sternling, C. V. and Scriven, L. E. (1959), Interfacial tension hydrodynamic instability and the Marangoni effect, AICHE J. 5, 514.CrossRefGoogle Scholar
Steven, G. P. (1976), Consistent mass matrix in fluid sloshing problems, AIAA J. 14(2), 245–247.CrossRefGoogle Scholar
Stewartson, K. (1959), On the stability of a spinning top containing liquid, J. Fluid Mech. 5(4), 577–592.CrossRefGoogle Scholar
Stigter, C. (1966), The performance of U-tanks as a passive anti-rolling device, Royal Inst. Naval Archit. 13, 249–275.Google Scholar
Stillman, W. E. (1973), Free vibration of cylinders containing liquid, J. Sound Vib. 30, 509–524.CrossRefGoogle Scholar
Stofan A. J. and Armstead A. L. (1962), Analytical and experimental investigation of forces and frequencies resulting from liquid sloshing in a spherical tank, NASA TN D-1281.
Stofan A. J. and Irvine E. S. (1963), Experimental investigation of the slosh-damping effectiveness of positive-expulsion bags and diaphragms in spherical tanks, NASA TN D-1712.
Stofan A. J. and Pauli A. J. (1962), Experimental damping of liquid oscillations in a spherical tank by positive expulsion bags and diaphragms, NASA TN D-1311.
Stofan A. J. and Sumner I. E. (1963), Experimental investigation of the slosh-damping effectiveness of positive-expulsion bags and diaphragms in spherical tanks, NASA TN D-1712.
Stoker, J. J. (1957), Water Waves, London, Interscience Publishers Inc.Google Scholar
Stokes Sir, G. G. (1851), On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cambridge Phil. Soc. 9(11), 8–106.Google Scholar
Stokes Sir, G. G. (1880), Considerations relative to the greatest height of oscillatory waves which can propagated without change of form, Math. Phys. Pap. 1, 225–228.Google Scholar
Stokes, G. G. Sir (1905), Mathematical and Physical Paper (1813–1903), London, Cambridge University Press, 1, 1880–1905.Google Scholar
Stokes Sir G. G. (1947), On the theory of oscillatory waves, Trans. Camb. Phil. Soc. 8, 441–455, Reprinted in Math. Phys., Papers 1, 197–219.
Stokes Sir G. G. (1949a), On some cases of fluid motion, Trans. Camb. Phil. Soc. 8.
Stokes Sir G. G. (1949b), On the critical values of sums of periodic series, Trans. Camb. Phil. Soc. 8.
Struble, R. A. (1962), Nonlinear Differential Equations, New York, McGraw-Hill.Google Scholar
Sturtevant, B. (1966), Optical depth gauge for laboratory studies of water waves, Review of Scientific Instruments 37(11), 1460–1463.CrossRefGoogle Scholar
Su, T. C. (1981), The effect of viscosity on free oscillations of fluid-filled spherical shells, J. Sound. Vib. 74(2), 205–220.CrossRefGoogle Scholar
Su, T. C. (1983), The effect of viscosity on the forced vibrations of a fluid-filled elastic shell, ASME J. Appl. Mech. 50, 517–524.CrossRefGoogle Scholar
Su, T. C. (1987), Sloshing due to acceleration in the rectangular tanks, Proc. ASME Symp. Fluid–Structure Vibration and Liquid Sloshing, PVP-128, 69–79.Google Scholar
Su, T. C. (1992), Nonlinear sloshing and the coupled dynamics of liquid propellants and spacecraft, Tech. Rept. Florida Atlantic University, NTIS ADA250023.
Su, T. C. and Kang, S. Y. (1984a), Analysis of liquid impact of moving containers, Dev. Appl. Mech., 12.Google Scholar
Su T. C. and Kang S. Y. (1984b), Numerical simulation of liquid sloshing, Eng. Mech. Civil Eng., Boresi, A. P. and Chong, K. P., eds., ASCE2, 1069–1072.Google Scholar
Su T. C. and Kang S. Y. (1986), Analysis and testing of the large amplitude liquid sloshing in rectangular containers, Seismic Eng. Piping Systems, Tanks and Power Plant Equip., PVP- 108, ASME, 149–154.
Su, T. C. and Lian, Q. X. (1992), Some preliminary observations of vortex formation during draining, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 232, 1–4.Google Scholar
Su T. C., Lou Y. K., Flipse J. E., and Bridges T. (1982a), A numerical analysis of large amplitude liquid sloshing in baffled containers, Rept. MA-RD-940–82046, US DoT, Maritime Admin, 290 pages.
Su T. C., Lou Y. K. Flipse J. E., and Bridges T. (1982b), A nonlinear analysis of liquid sloshing in rigid containers, Rept. DOT/RSPA/DMA-50/82/1, Office of University Research, US DoT.
Su, T. C. and Wang, Y. (1989), Numerical simulation of three-dimensional large amplitude liquid sloshing in rectangular containers subjected in vertical excitation, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 115–126.Google Scholar
Su, T. C. and Wang, Y. (1990), Numerical simulation of three-dimensional large amplitude liquid sloshing in cylindrical tanks subjected to arbitrary excitations, Flow-Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 127–148.Google Scholar
Su, T. C. and Wang, H. (1991), The control of large amplitude liquid sloshing in rectangular containers by active baffles, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 223, 81–89.Google Scholar
Sudo, S. and Hashimoto, H. (1986), Dynamic behavior of a liquid in a cylindrical container subject to horizontal vibration (on nonlinear response of liquid surface), Trans. JSME B 52(483), 3655–3659 (in Japanese).CrossRefGoogle Scholar
Sudo, S. and Hashimoto, H. (1987), Unsteady pressure response of a liquid in a cylindrical container subject to vertical vibration, Trans. JSME B 53(491), 2047–2053 (in Japanese).CrossRefGoogle Scholar
Sudo, S., Hashimoto, H., Ikeda, A., and Katagiri, K. (1987c), Some studies of magnetic liquid sloshing, J. Magn. Magn. Mat. 65(2/3), 219–222.CrossRefGoogle Scholar
Sudo, S., Hashimoto, H., and Katagiri, K. (1987a), Interfacial instability of magnetic fluids in a rectangular container, JSME Int. J. 30, 1086–1092.CrossRefGoogle Scholar
Sudo, S., Hashimoto, H., Katagiri, K., and Ikeda, A. (1987b), Experimental study of surface behavior in magnetic liquid sloshing, Trans. JSME B 53(495), 3242–3246 (in Japanese).CrossRefGoogle Scholar
Sudo, S., Hashimoto, H., Katagiri, K., and Shibuya, T. (1988), Nonlinear response of a liquid surface in lateral sloshing, Trans. JSME B 54(507), 3242–3246 (in Japanese).CrossRefGoogle Scholar
Sudo, S., Hashimoto, H., Tani, J., and Chiba, M. (1985), Dynamic behavior of a liquid in a cylindrical container subject to horizontal vibration (liquid surface response in an elastic container subject to vibration with higher frequencies), Trans. JSME B 51(472), 4155–4161 (in Japanese).CrossRefGoogle Scholar
Sudo S. and Ohaba M. (1998), Interfacial phenomena of liquids in moving container, Res. Bull. Iwaki Meisei University 11, 45–59 (in Japanese).
Sudo, S., Ohaba, M., Katagiri, K., and Hashimoto, H. (1993), Dynamic behavior of magnetic liquid drop on a solid base subject to magnetic field and vertical vibration, J. Magn. Magn. Mat. 122, 248–258.CrossRefGoogle Scholar
Sudo, S., Ohaba, M., Katagiri, K., and Hashimoto, H. (1997), Magnetic fluid sloshing in moving container, Magnetohydrodynamics 33(4), 480–485.Google Scholar
Sumner I. E. (1963), Preliminary experimental investigation of frequencies and forces resulting from liquid sloshing in toroidal tanks, NASA TN D-1709.
Sumner I. E. (1964), Experimental investigation of slosh suppression effectiveness of annular ring baffles in spherical tanks, NASA TN D-2519.
Sumner I. E. (1965), Experimentally determined pendulum analogy of liquid sloshing in spherical and oblate-spheroidal tanks, NASA TN D-2737.
Sumner I. E. (1966), Experimental investigation of stability boundaries for planar and nonplanar sloshing in spherical tanks, NASA TN D-3210.
Sumner I. E., Lacovic R. F., and Stofan A. J. (1966), Experimental investigation of liquid sloshing in a scale-model Centaur liquid hydrogen tank, NASA TN X-1313.
Sumner I. E. and Stofan A. J. (1963), An experimental investigation of the viscous damping of liquid sloshing in spherical tanks, NASA TN D-1991.
Sumner I. E., Stofan A. J., and Shramo D. J. (1964), Experimental sloshing characteristics and a mechanical analogy of liquid sloshing in a scale-model centaur liquid oxygen tank, NASA TM X-999.
Sun, K. (1994), Earthquake responses of buildings with liquid column dampers, Proc. 5th U.S. National Conf. Earthquake Eng.II, 411–420, Chicago.Google Scholar
Sun, L. M. and Fujino, Y. (1994), A semi-analytical model for tuned liquid damper (TLD) with wave breaking, J. Fluid Struct. 8(5), 471–488.CrossRefGoogle Scholar
Sun, L. M., Fujino, Y., Chaiseri, P., and Pacheco, B. M. (1995), The properties of tuned liquid dampers using a TMD analogy, Earthquake Eng. Struct. Dyn. 24, 967–976.CrossRefGoogle Scholar
Sun, L. M., Fujino, Y., Pacheco, B. M., and Isobe, M. (1989), Nonlinear waves and dynamic pressures in rectangular tuned liquid damper (LTD) – simulation and experimental verification, JSCE Struct. Eng./Earthquake Eng. 6(2) 251s–262s.Google Scholar
Sun, S. M., Shen, M. C., and Hsieh, D. Y. (1995), Nonlinear theory of forced waves in a circular basin, Wave Motion 21(4), 331–341.CrossRefGoogle Scholar
Sun Tsao (1960), On fluid surface waves influenced by centrifugal force pressure, PMTPH 3, 90–96.
Swalley, F. E., Platt, G. K., and Hastings, L. J. (1965), Sturn V low-gravity fluid mechanics problems and their investigation by full-scale experiment, AFOSR/LMSC Symp. Fluid Mechanics and Heat Transfer under Low-g, Palo Alto, 1–24.Google Scholar
Symans, M. D. and Constantinou, M. C. (1999), Semi-active control systems for seismic protection of structures: a state-of-the art review, Eng. Struct. 21, 469–487.CrossRefGoogle Scholar
Szymczyk, J. A. and Siekmann, J. (1989), Experimental investigation of the thermocapillary flow along cylindrical interfaces under rotation, Proc. 7th Europ. Symp. Materials and Fluid Sciences in Microgravity, Oxford, ESA-SP-295, 315–320.Google Scholar
Tadjbakhsh, I. and Keller, J. B. (1960), Standing waves of finite amplitude, J. Fluid Mech. 8(3), 442–451.CrossRefGoogle Scholar
Takahara, H. and Kimura, K. (1997), Parametric vibration of liquid surface in rectangular tank subjected to pitching excitation (2nd report, symmetric mode), Trans. JSME C 63(610), 1861–1868 (in Japanese).CrossRefGoogle Scholar
Takahara, H., Kimura, K., Ito, T., and Sakata, M. (1993a), Nonlinear liquid oscillation in an elastic circular tank subjected to pitching excitation, Trans. JSME C 59(561), 1378–1385 (in Japanese).CrossRefGoogle Scholar
Takahara, H., Kimura, K., and Sakata, M. (1993b), Nonlinear liquid oscillation in a circular cylindrical tank subjected to pitching excitation, Proc. of Asia-Pacific Vibration Conf. '93 1, 294–299.Google Scholar
Takahara, H., Kimura, K., and Sakata, M. (1994b), Effects of higher order radial modes upon nonlinear sloshing in a circular cylindrical tank subjected to pitching excitation, Trans. JSME C 60(574), 1924–1932 (in Japanese).CrossRefGoogle Scholar
Takahara, H., Kimura, K., and Sakata, M. (1994c), Parametric vibration of liquid surface in a circular cylindrical tank subjected to pitching excitation, Trans. JSME C 60(579), 3727–3732 (in Japanese).CrossRefGoogle Scholar
Takahara, H., Kimura, K., and Sakata, M. (1995), Frequency response of sloshing in a circular cylindrical tank subjected to pitching excitation, Proc. Asia-Pacific Vibration Conf. '95 II, 703–708.Google Scholar
Takahara, H., Kimura, K., Tsutsui, M., and Sakata, M. (1994a), Frequency response of sloshing in a circular cylindrical tank subjected to pitching excitation, Trans. JSME C 60(572), 1210–1216 (in Japanese).CrossRefGoogle Scholar
Takahashi, S. and Hirano, Y. (1970), Vibration of a combination of circular plates and cylindrical shells: first report, a cylindrical shell with circular plates at ends, Bull. JSME 13, 240–247.CrossRefGoogle Scholar
Takayangi, M. (1990), Parametric resonance of liquid storage axi-symmetric shell under horizontal excitation, Flow–Structure Vibration Sloshing, ASME Pressure Vess. Piping Conf., PVP-191, 63–68.Google Scholar
Takemoto, H., Oka, S., et al. (1994), Experimental study on sloshing impact loads of middle sized tankers with double hull, J. Soc. Naval Arch. Japan 176, 399–410.CrossRefGoogle Scholar
Takizawa, A. and Kondo, S. (1993), Flow-induced sloshing of in-vessel free-surface flow: Computer discovery using PCBFC method, Proc. 5th Int. Symp. Computational Fluid Dynamics 3, 193–198.Google Scholar
Takizawa, A. and Kondo, S. (1995), Computer discovery of the mechanism of flow-induced sloshing, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP-314, 153–158.Google Scholar
Takizawa, A., Koshisuka, S., and Kondo, S. (1992), Generalization of physical component boundary filled coordinate (PCBFC) method for the analysis of free surface flow, Int. J. Numer. Meth. Fluids 15, 1213–1237.CrossRefGoogle Scholar
Tam B. T. (1998), A displacement-based formulation of nearly-incompressible fluid element for analysis of large amplitude liquid sloshing for tuned liquid damper applications, Ph.D. dissertation, Asian Inst. Tech., Bangkok, Thailand.
Tamura, Y. (1990), Suppression of wind-induced vibrations of buildings, J. Wind Engrg. 44, 71–84.Google Scholar
Tamura, Y., Fujii, K., Sato, T., Wakahara, T., and Kosugi, M. (1988), Wind-induced vibration of tall towers and practical applications of tuned sloshing damper, Proc. Workshop Serviceability of Buildings, Ottawa, 228–241.Google Scholar
Tamura, Y., Kohsaka, R., and Modi, V. J. (1992), Practical application of nutation damper for suppressing wind induced vibrations of airport towers, J. Wind Eng. Indust. Aerodyn. 41–44, 1919–1930.CrossRefGoogle Scholar
Tamura, Y., Kohsaka, R., Nakamura, O., Miyashita, K. I., and Modi, V. J. (1996), Wind-induced response of an airport tower – efficiency of tuned liquid damper, J. Wind. Eng. Indust. Aerodyn. 65, 121–131.CrossRefGoogle Scholar
Tan DGH (1994), Dynamics of a spinning spacecraft containing liquid propellant, in Aerospace Vehicle Dynamics and Control, Cook, M. V. and Rycroft, M. J., eds., Clarendon, 417–438.Google Scholar
Tanaka, S., Kaneko, S., and Watanabe, T. (1999), Self-excited oscillations of dual cylindrical flexible weir shells due to over flow fluid, Trans. JSME C 65(634), 2226–2234 (in Japanese).CrossRefGoogle Scholar
Tanaka, S., Kaneko, S., and Watanabe, T. (2000), Self-excited oscillations of dual cylindrical flexible weir shells due to over flow fluid, J. Vib. Control 6(3), 351–373.CrossRefGoogle Scholar
Tanaka, H. and Nakayama, T. (1991), A boundary element method for the analysis of nonlinear sloshing in three-dimensional containers, Trans. JSME B 57(538), 1934–1940 (in Japanese).CrossRefGoogle Scholar
Tanaka N. and Fukuhara K. (1996), Numerical prediction of self-excited free surface sloshing, in Flow Modeling Turbulence Measurements V. I., Proc. 6th Int. Symp., Tallahassee, FL (Chen, , Shih, , and King, , eds.,) 671–678, Balkema.Google Scholar
Tang, Y. (1992), Hydrodynamic pressure in a tank containing two liquids, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 232, 25–30.Google Scholar
Tang Y. (1993), Sloshing displacements in a tank containing two liquids, Proc. ASME Pressure Vessel Piping Conf., PVP- 258, 143–149.
Tang, Y. (1994), SSI effects for a tank containing two liquids, Sloshing, Fluid–Structure Interaction and Struct. Response Due to Shock and Impact Loads, ASME Pressure Vess. Piping Conf., PVP- 272, 6771.Google Scholar
Tang Y. and Chang Y. W. (1993a), The exact solutions to the dynamic response of tanks containing two liquids, Tech. Rept. ANL/RE-93/2, ANL, Argonne, IL.
Tang Y. and Chang Y. W. (1993b), Rocking response of tanks containing two liquids, Technical Report ANL/RE-93/5, ANL, Argonne, IL.
Tang, Y., Ma, D. C., and Chang, Y. W. (1991), Sloshing response in a tank containing two liquids, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 223, 97–104.Google Scholar
Tang Y., Uras R. A., and Chang Y. W. (1993), Effect of viscosity on dynamic response of a liquid storage tank, Proc. ASME. Pressure Vess. Piping Conf., PVP- 258, 135–142.
Tani, J., Chonan, S., Zhang, H., and Kondo, K. (1989a), Free vibrations of partially liquid-filled rotating cylindrical shells, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 173–178.Google Scholar
Tani J. and Haiji H. (1986), The free vibration of free-clamped fluid-coupled coaxial cylindrical shells (in Japanese), Trans. JSME C 52, 3137–3144.CrossRef
Tani, J., Kodama, S., Sakai, T., and Chiba, M. (1989b), Dynamic stability of fluid-coupled coaxial cylindrical shells under vertical excitation, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 41–46.Google Scholar
Tani, J., Ohtomo, K., Sakai, T., and Chiba, M. (1989c), Hydroelastic vibration of partially liquid-filled coaxial shells, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 29–34.Google Scholar
Tao, M. and Zhang, W. (2002a), Dynamic stability of a flexible spinning cylinder partially filled with a liquid, ASME J. Appl. Mech. 69, 708–710.CrossRefGoogle Scholar
Tao, M. and Zhang, W. (2002b), Dynamic stability of a rotor partially filled with a viscous liquid, ASME J. Appl. Mech. 69, 705–707.CrossRefGoogle Scholar
Tao Y. and Kou S. (1996), Thermocapillary convection in a low Pr material under simulated reduced gravity condition, 3rd Microgravity Fluid Phys. Conf., NASA cp 3338, 301.
Taylor G. I. (1950), The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. Royal Soc. (London) A201, 192–196.CrossRef
Taylor G. I. (1954), An experimental study of standing waves, Proc. Royal Soc. (London) A218, 44–59.
Temochenko Mye (1969), On the investigation of stability criteria of rigid body supported by a string and the top both having ellipsoidal cavity filled with liquid, Proc. Acad. Sci. USSR, MTT 1, 26–31 (in Russian).
Terashima, K. and Yano, K. (2001), Sloshing analysis and suppression control of tilting-type automatic pouring machine, Control Eng. Practice 9(6), 607–620.CrossRefGoogle Scholar
Thevenard, D. and Ben Hadid, H. (1991), Low Prandtl number convection in a rectangular cavity with longitudinal thermal gradient and transverse g-jitters, Int. J. Heat Mass Transfer 34(8), 2167–2173.CrossRefGoogle Scholar
Thomson J. R., Casademunt J., and Viňals J. (1995), Cavity flow induced by a fluctuating acceleration field, Phys. Rev. Lett. 74, 690.
Thomson J. R., Drolet F., and Viňals J. (1996), Fluid physics in a fluctuating acceleration environment, Proc. 3rd Microgravity Fluid Physics Conf., NASA Conf. Publications 3338, 429–434.
Thomson, M. M. (1965), Theoretical Hydrodynamics, New York, MacMillan.Google Scholar
Thoroddsen, S. T. and Mahadevan, L. (1997), Experimental study of coating flows in a partially-filled horizontally rotating cylinder, Experiments in Fluids 23(1), 1–13.CrossRefGoogle Scholar
Timokha A. N. (1992), Behavior of the free surface of a fluid in a vibrating bounded vessel, Akad. Nauk. Ukraine Inst. Mat. 22, 46 pages.
Timokha, A. N. (1997), The effect of transverse vibrations of the container on the free surface of a liquid, Tekh. Mekh. 5, 33–41.Google Scholar
Ting, C. L. and Perlin, M. (1995), Boundary conditions of the contact-line at a vertically oscillating plate: an experimental investigation, J. Fluid. Mech. 295, 263–300.CrossRefGoogle Scholar
Tokuda, N. and Sakurai, N. (1994), Sloshing analysis method using exciting FEM structure analysis codes, Trans. JSME C 60(572), 1217–1222 (in Japanese).CrossRefGoogle Scholar
Tome, M. F., Castelo, A., Murakami, J., Cuminato, J. A.Minghim, R., Oliveira, M. C. F., Mangiavacchi, N., and Mckee, S. (2000), Numerical simulation of axisymmetric free surface flows, J. Comput. Phys. 157, 441–472.CrossRefGoogle Scholar
Tondl, A. (1965), Some Problems of Rotor Dynamics, London, Chapman and Hall.Google Scholar
Tong P. (1966), Liquid motion in an elastic container, Ph.D. dissertation, Caltech.
Tong, P. (1967), Liquid motion in a circular cylindrical container with a flexible bottom, AIAA J. 5(10), 1842–1848.CrossRefGoogle Scholar
Tong P. and Fung Y. C. (1965), The effect of wall elasticity and surface tension on the forced oscillations of a liquid in a cylindrical container, Paper 11 in Fluid Mechanics and Heat Transfer Under Low Gravity, Cohan, H and Rogers, H., eds., Lockheed Missiles and Space Company A. D. 633580.Google Scholar
Toole, L. E. and Hastings, L. J. (1968), Behavior of a sloshing liquid subjected to a sudden reduction in axial acceleration, AIAA/Aerospace Corp. Symp. Low Gravity Propellant Orientation and Expulsion, Los Angeles, 1–17.Google Scholar
Toorani, M. H. and Lakis, A. A. (2001), Dynamic analysis of anisotropic cylindrical shells containing flowing fluid, ASME J. Presure Vess. Tech. 123, 454–460.CrossRefGoogle Scholar
Toorani, M. H., and Lakis, A. A. (2003), Dynamic behavior of axisymmetric and beam-like anisotropic cylindrical shells conveying fluid, J. Sound Vib. 259(2), 265–298.CrossRefGoogle Scholar
Topliss M. E. (1994), Water wave impact on structures, Ph.D. thesis, School of Mathematics, University of Bristol.
Townsond, A. A. (1976), The Structure of Turbulent Shear Flow, Cambridge, Cambridge University Press.Google Scholar
Trembath N. W. (1957), Fluid sloshing in tanks of arbitrary shape, R-GM-45, 3–378, STL 28 August.
Triol, J. (1965), Study of the breathing modes of a cylindrical container for cryogenic fluid (in French), J. Mec. 4(2), 133–150.Google Scholar
Tritton, D. (1986a), Chaos in the swing of a pendulum, New Scientist 24, 37–40.Google Scholar
Tritton, D. J. (1986b), Ordered and chaotic motion of a forced spherical pendulum, Eur. J. Phys. 7, 162–169.CrossRefGoogle Scholar
Troesch B. A. (1957), Pendulum analogy, Space Tech. Lab. Memo. GM 42.4–4.
Troesch B. A. (1960), Free oscillations of a fluid in a container, in Boundary Problems in Differential Equations, (RE Langner, , ed.), Madison, University of Wisconsin Press, 279–299.Google Scholar
Troesch, B. A. (1967), Fluid motion in a shallow trapezoidal container, SIAM J. Appl. Math. 15(3), 627–637.CrossRefGoogle Scholar
Troesch, B. A. (1970), An isoperimetric problem for sloshing in a shallow convex, Zeit. Ang. Math. Phys. (ZAMP) 21(4), 501–513.CrossRefGoogle Scholar
Troesch, B. A. and Troesch, H. R. (1972), A remark on the sloshing frequencies for a half-space, Z. Angew. Math. Phys. 23, 703–711.CrossRefGoogle Scholar
Trotsenko, V. A. (1967), Free oscillations of a liquid in a cylinder with annular ribs, Prikl. Mekh. 3(12), 73–77.Google Scholar
Troung, T. D., Semercigil, S. E., and Turan Ö, F. (2003), Experiments for control of structural oscillations using free and restricted sloshing waves, J. Sound Vib. 264, 235–244.CrossRefGoogle Scholar
Tsai, W. T. and Yue, D. K. P. (1996), Computation of nonlinear free surface flows, Annu. Rev. Fluid Mech. 28, 249–265.CrossRefGoogle Scholar
Tsai, W. T., Yue, D. K. P., and Yip, K. M. K. (1990), Resonantly excited regular and chaotic motions in a rectangular wave tank, J. Fluid Mech. 216, 343–380.CrossRefGoogle Scholar
Tsui, T. Y. and Small, N. C. (1968), Hydroelastic oscillations of a liquid surface in an annular circular cylindrical tank with flexible bottom, J. Spacecraft Rock. 5(2), 202–206.Google Scholar
Tsukimori, K., Liu, W. K., and Uras, R. A. (1991), Dynamic buckling analysis of liquid-filled shells with imperfections, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 223, 71–80.Google Scholar
Tufillaro, N. B., Ramshankar, R., and Gollub, J. P. (1989), Order-disorder transition in capillary ripples, Phys. Rev. Lett. 62, 422.CrossRefGoogle ScholarPubMed
Ueda, T., Nakagaki, R., and Koshida, K. (1992), Suppression of wind-induced vibration by dynamic dampers in tower-like structure, J. Wind Eng. Ind. Aerodyn. 41/44, 1907–1918.CrossRefGoogle Scholar
Ulitin, G. M. (1986), The dynamic stability of a cylindrical shell filled with a liquid to different levels, Teor. Prikl. Mekh. 17, 93–98.Google Scholar
Umeki, M. (1991), Faraday resonance in rectangular geometry, J. Fluid Mech. 227, 161–192.CrossRefGoogle Scholar
Umeki, M. and Kambe, T. (1989), Nonlinear dynamics and chaos in parametrically excited surface waves, J. Phys. Soc. Japan 58, 140–154.CrossRefGoogle Scholar
Unruh, J. F., Kana, D. D., Dodge, F. T., and Fey, T. A. (1986), Digital data analysis techniques for extraction of slosh model parameters, J. Spacecraft Rock. 23(3,4), 171–177.CrossRefGoogle Scholar
Uras R. A. (1989), Dynamic stability of fluid-filled shells, Proc. AIAA/ASME/ASCE/ AHS/ASC 30th Struct. Struct. Dyn. Materials Conf., Mobile, Alabama, Paper 89–1207–CP, 447–453.
Uras, R. A. (1995), Sloshing analysis of viscous liquid storage tanks, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP- 314, 63–72.Google Scholar
Uras, R. A. and Liu, W. K. (1990), Dynamic buckling of liquid-filled shells under horizontal excitation, J. Sound Vib. 141(3), 389–408.CrossRefGoogle Scholar
Uras, R. A., Liu, W. K., and Chen, Y. J. (1990), Study of the influence of imperfections on the dynamic stability of tanks, Flow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 47–54.Google Scholar
Ursell, F. (1952), Edge waves on a sloping beach, Proc. Royal Soc. London A 214, 79–97.CrossRefGoogle Scholar
Ushima, S. (1998), Three-dimensional arbitrary Lagrangian–Eulerian numerical prediction method for nonlinear free surface oscillations, Int. J. Numer. Methods Fluids 26, 605–623.3.0.CO;2-W>CrossRefGoogle Scholar
Utsumi, M. (1988), Liquid sloshing in an axi-symmetric container in low-gravity environments, Trans. JSME C 54(505), 2041–2050 (in Japanese).CrossRefGoogle Scholar
Utsumi M. (1989), The meniscus and sloshing of a liquid in an axi-symmetric container at low-gravity, in Sloshing and Fluid Structure Vibration (Ma, D. C., Tani, J., Chen, S. S., and Liu, W. K., eds.), PVP- 157, 103–113, New York, ASME. (Also JSME Intl. J. III 33(3), 346–356, 1990).Google Scholar
Utsumi, M. (1995), Liquid sloshing in an axisymmetric container in low-gravity environments (2nd Report, Forced vibration analysis), Trans. JSME C 61(585), 1784–1791.CrossRefGoogle Scholar
Utsumi, M. (1997), Position of propellant in teardrop tank systems, J. Spacecraft Rock. 34(6), 799–804.CrossRefGoogle Scholar
Utsumi, M. (1998), Low-gravity propellant slosh analysis using spherical coordinates, J. Fluid Struct. 12(1), 57–83.CrossRefGoogle Scholar
Utsumi, M., Kimura, K., and Sakata, M. (1983), Nonstationary responses of an elastic rectangular container with an internal liquid to a random base excitation, Trans. JSME C 49(446), 1670–1680 (in Japanese).CrossRefGoogle Scholar
Utsumi, M., Kimura, K., and Sakata, M. (1984), Stochastic response analysis of an elastic rectangular container with an internal liquid to simulated seismic excitation, J. Sound Vib. 96(1), 83–99.CrossRefGoogle Scholar
Utsumi, M., Kimura, K., and Sakata, M. (1986), Non-stationary vibration of an elastic circular cylindrical liquid storage tank to a simulated earthquake excitation with two-directional horizontal components, Trans. JSME C 52(473), 279–287 (in Japanese).CrossRefGoogle Scholar
Utsumi, M., Kimura, K., and Sakata, M. (1987), The nonstationary random vibration of an elastic circular cylindrical liquid storage tank in simulated earthquake excitation (straightforward analysis of tank wall deformation), JSME Int. J. III 30(261), 467–475.CrossRefGoogle Scholar
Utsumi, M. and Kondo, H. (1987), Liquid sloshing in a spherical container at low-gravity environments (1st Report, Static configuration of liquid surface), Trans. JSME C 53(492), 1683–1690.CrossRefGoogle Scholar
Van Daalen E. F. G, Kleefsman K. M. T, Gerrits J., Luth H. R., and Veldman A. E. P (2000), Anit-roll tank simulations with a volume of fluid (VoF) based Navier–Stokes solver, Symp. Naval Hydrodynamics, Val de Rueil, September.
Van Daalen E. F. G, Van Doeveren A. G., Driessen P. C. M, and Visser C. (1999), Two-dimensional free surface anti-roll simulations with a volume of fluid based NavierStokes solver, Report No. 15306–1–OE, Maritime Research Inst., the Netherlands, October.
Bosch, J. J. and Vugts, J. H. (1964), Some notes on the performance of free surface tanks as passive anti-rolling devices, The Report of the Shipbuilding Laboratory No 119, Technological University of Delft, Delft, 3–52.Google Scholar
Bosch, J. J. and Vugts, J. H. (1966), On roll damping by free-surface tanks, Transactions of the Inst. Naval Architecture 69, 345–361.Google Scholar
Vanden-Broeck, J. M. (1984), Nonlinear gravity-capillary standing waves in water of arbitrary uniform depth, J. Fluid Mech. 139, 97–104.CrossRefGoogle Scholar
Dorn, W. G. (1966), Boundary dissipation of oscillating waves, J. Fluid Mech. 24, 769–779.CrossRefGoogle Scholar
Erp, F. C. (1969), Oscillation problems with a water tower, Ingenieur 81(42), 148–152 (in Dutch).Google Scholar
Van Schoor M. C. and Crawley E. F. (1992), The nonlinear forced response characteristics of contained fluids in microgravity, ASME WAM Symp. Fluid Mechanics Phenomena in Microgravity, AMD- 154/FED- 142, 145–160. Also in J. Spacecraft Rock. 32(3), 521–532, 1995.
Van Schoor M. C., Peterson L. D., and Crawley E. F. (1990), The coupled nonlinear dynamic characteristics of contained fluids in zero gravity, Proc. 31st AIAA/ASME/ASCE/AHS Struct. Struct. Dyn. Materials Conf., Longbeach, CA.
Sciver, S. W. (1986), Helium Cryogenics, New York, Plenum Press.CrossRefGoogle Scholar
Varadan T. K., Prathap G., and Ramani H. V. (1989), Nonlinear free flexural vibration of thin circular cylindrical shells, AIAA J. 27, 1303–1304.
Vasta, J., Giddings, A. J., Taplin, A., and Stillwell, J. J. (1961), Roll stabilization by means of passive tanks, Trans. SNAME 69, 411–460.Google Scholar
Velarde M. and Nepomnyashchy A. A. (2001), Interfacial patterns and waves, in Physics of Fluids in Microgravity, Monti, R, ed., London, Taylor & Francis, 126–148.Google Scholar
Veldman, A. E. P. and Vogels, M. E. S. (1984), Axi-symmetric liquid sloshing under low gravity conditions, Acta Astron. 11, 641–649.CrossRefGoogle Scholar
Veletsos, A. S. (1974), Seismic effects in flexible liquid storage tanks, Proc. 5th World Conf. Earthquake Eng.1, Rome, Italy, 630–639.Google Scholar
Veletsos, A. S. and Kumar, A. (1984), Dynamic response of vertically excited liquid storage tanks, Proc. 8th World Conf. Earthquake Eng., San Francisco, VII, 453–459.Google Scholar
Veletsos, A. S. and Shivakumar, P. (1993), Sloshing response of layered liquids in rigid tanks, Earthquake Eng. Struct. Dyn. 22, 801–821.CrossRefGoogle Scholar
Veletsos, A. S. and Tang, Y. (1986), Dynamics of vertically excited liquid storage tanks, ASCE J. Struct. Eng. 112(6), 1228–1246.CrossRefGoogle Scholar
Veletsos, A. S., and Tang, Y. (1990), Soil–structure interaction effects for laterally excited liquid storage tanks, Earthquake Engg. and Struct. Dyn. 19, 473–496.CrossRefGoogle Scholar
Veletsos A. S. and Turner J. W. (1979), Dynamics of out-of-round liquid storage tanks, Proc. 3rd EMD Special Conf., Austin, 471–474.
Veletsos A. S. and Yang J. Y. (1977), Earthquake response of liquid storage tanks, advances in civil eng. through eng. mech., Proc. Ann. ASCE EMD Specialty Conf., Raleigh, NC, 1–24.
Velten, R., Schwabe, D., and Scharmann, A. (1991), The periodic instability of thermocapillary convection in cylindrical liquid, Physics of FluidsA 3(2), 267–279.CrossRefGoogle Scholar
Venediktov, B. L. and Shibanov, R. A. (1986), Self-excitation of low-frequency vibrations in a liquid due to the high-frequency vibrations of a vessel, in The Dynamics of Spacecraft and Extraterrestrial Investigations, Moscow, Mashinostroyniya, 215–227.Google Scholar
Verhagen, J. H. G. and WijnGaarden, L. V. (1965), Nonlinear oscillations of fluid in a container, J. Fluid Mech. 22(4), 737–751.CrossRefGoogle Scholar
Verma, G. R. and Keller, J. B. (1962), Three-dimensional standing surface waves of finite amplitude, Phys. Fluids 5(1), 52–56.CrossRefGoogle Scholar
Victorov, E. D. (1965), Computation of the damping factor for free oscillations of a viscous liquid in a cylindrical vessel, J. Appl. Mech. Tech. Phys. (PMTF) 2, 138–146.Google Scholar
Viecelli, J. A. (1969), A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique, J. Comput. Phys. 4, 543–551.CrossRefGoogle Scholar
Viring, J. C., Berman, A. S., and Sethna, P. R. (1988), On three-dimensional nonlinear subharmonic resonance surface waves in a fluid, part ii: experiment, J. Appl. Mech. 55, 220–224.CrossRef
Viviani, A., Golia, C., and Cioffi, M. (1997), Magnetic effects on nonlinear Marangoni flow in plane liquid bridge, Acta Astron. 41(2), 113–120.CrossRefGoogle Scholar
Vladimirov, V. A. (1981), Parametric resonance in a stratified liquid, Zh. Prikl. Mekh. Tekh. Fiz. 6, 168–174.Google Scholar
Vladimirov, V. A. and Ilin, K. I. (1999), On the stability of the dynamerl system: rigid body + inviscid fluid, J. Fluid Mech. 386, 43–75.CrossRefGoogle Scholar
Vlasov, V. Z. (1949), The General Theory of Shells and Its Application in Engineering, Moscow, Gostekhizdat (in Russian).Google Scholar
Volfson, D. and Viňals, J. (2001), Flow induced by a randomly vibrating boundary, J. Fluid Mech. 432, 387–408.Google Scholar
Vogel, T. I. (1982), Asymmetric unbounded liquid bridges, Ann. Scuola Norm. Super. Pisa. Cl. Sci. 9, 433–442.Google Scholar
Vollman, J., Breu, R., and Dual, J. (1997), High-resolution analysis of the complex spectrum in a cylindrical shell containing a viscoelastic medium, part II: Experimental results versus theory, J. Acoust. Soc. Amer. 102(2), 909–920.CrossRefGoogle Scholar
Vollman, J. and Dual, J. (1997), High-resolution analysis of the complex spectrum in a cylindrical shell containing a viscoelastic medium, part I: Theory and numerical results, J. Acoust. Soc. Amer. 102(2), 896–908.CrossRefGoogle Scholar
Vol'mir, A. S. (1972), Nonlinear Dynamics of Plates and Shells, Moscow, Nauka (in Russian).Google Scholar
Vol'mir, A. S. (1979), Shells in Fluid Flow: Hydroelastic Problems, Moscow, Nauka (in Russian).Google Scholar
Von Karman T. (1921), Z. Angew. Math. Mech. (ZAMM)1, 233.
Vrane, D. R. and Smith, M. K. (1994), The behavior of unsteady thermocapillary flows, NASA 2nd Microgravity Fluid Physics Conf., Cleveland, Ohio, 51–56.Google Scholar
Vreeburg, J. P. B. (1986), Observations on behavior of liquid in weightlessness, Proc. Symp. Fluid Dynamics and Space, Rhode-St-Genese, Belgium, ESA SP-265, 129–136.Google Scholar
Vreeburg J. P. B. (1992), Free motion of an unsupported tank that is partially filled with liquid, in Microgravity Fluid Dynamics, Rath, H. R., ed., Springer, 519–528.Google Scholar
Vreeburg J. P. B. (1999), Simulation of liquid dynamics onboard slosh sat FLEVO, Proc. STAIF-99, Albuqurque N. M., Am. Inst. Phys. CP 458, 836–841.
Vreeburg J. P. B. and Veldman A. E. P (2001), Transient and sloshing in an unsupported container, in Physics of Fluids in Microgravity, Monti, R., ed., London, Taylor & Frances, 293–321.Google Scholar
Vreeburg, J. P. B. and Vogels, M. E. S. (1986), Liquid motion in partially filled containers: preliminary results of the D-1 mission, Adv. Space Res. 6(5), 85–92.CrossRefGoogle Scholar
Vugts, J. H. (1969), A comparative study on four different passive roll damping tanks – Part I. I., Int. Shipbldg Prog. 16, 212–223.CrossRefGoogle Scholar
Wagner, C., Müller, H. W., and Knorr, K. (1999), Faraday waves on a viscoelastic liquid, Phys. Rev. Lett. 83, 308–311.CrossRefGoogle Scholar
Wagner, H. (1932), Über stoss – und gleitvorgänge an der oberfläche von flüssigkeiten, Z. Angew. Math. Mech. (ZAMM) 12, 193–215.CrossRefGoogle Scholar
Wakahara, T. (1993), Wind-induced response of TLD-structure coupled system considering nonlinearity of liquid motion, Shimizu Tech. Res. Bull. 12, 41–52.Google Scholar
Wakahara, T., Ohyama, T., and Fujii, K. (1991), Wind response analysis of LTD structure system considering nonlinearity of liquid motion, J. Struct. Construct. Eng. AIJ 426, 79–88.Google Scholar
Wakahara, T., Ohyama, T., and Fujii, K. (1992), Suppression of wind-induced vibration of a tall building using tuned liquid damper, J. Wind Eng. Ind. Aerodyn. 41/44, 1895–1906.CrossRefGoogle Scholar
Walter, H. U., (Ed) (1987), Fluid Sciences and Materials Sciences in Space, New York, Springer-Verlag.CrossRefGoogle Scholar
Wang, M. and Hung, T. (1986), A nonlinear hydrodynamic analysis on Pine Flat dam, ASCEAdvan. Aerodynamics, Fluid Mech. and Hydraulics, 629–636.Google Scholar
Wang, W., Wang, X., Wang, J., and Wei, R. (1996), Dynamical behavior of parametrically excited solitary waves in Faraday's water trough experiment, Phys. Lett. A 219, 74–78.CrossRefGoogle Scholar
Wanschura, M., Shevtsova, V. M., Kuhlmann, H. C., and Rath, H. J. (1995), Convective instability mechanism in thermocapillary liquid bridges, Phys. Fluids 5, 912–925.CrossRefGoogle Scholar
Ward, C. A., Yee, D., Sasges, M. R., Pataki, L., and Stangam, D. (1992), Configurationally stability of fluid systems in near-weightlessness, ASME WAM Symp. Fluid Mechanics Phenomena in Microgravity, D. A. Siginer and M. M. Weislogel, AMD- 154/FED- 142, 111–123.Google Scholar
Warnitchai, P. and Pinkaew, T. (1998), Modeling of liquid sloshing in rectangular tanks with flow-damping devices, Engrg Structures 20, 593–600.CrossRefGoogle Scholar
Washizu K., Nakayama T., Ikegawa M., and Tanaka Y. (1977), Application of the finite element method to some free surface fluid problems, in Finite Elements in Water Resources, Gray, W. G., et al., eds., London, Pentech Press, 4.247–4.266.Google Scholar
Washizu K., Nakayama T., Ikegawa M., Tanaka Y., and Adachi T. (1984), Some finite element techniques for the analysis of nonlinear sloshing problems, Chapter 17, 357–376, in Finite Elements in Fluids, 5, Gallagher, R. H., Oden, J. T., Zienkiewicz, O. C., and Kawahara, M., eds., New York, John Wiley.Google Scholar
Watanabe, S. (1969), Methods of vibration reductions, Proc. Japan Naval Arch. Soc. Symp., 156–179.Google Scholar
Waterhouse, D. D. (1994), Resonant sloshing near a critical depth, J. Fluid Mech. 281, 313–318.CrossRefGoogle Scholar
Watkins R. D. (1991), Tests on various arrangements of liquid column vibration absorbers, Research Rept. R639, School of Civil and Mining Eng., University of Sidney.
Watkins, R. D. and Hitchcock, P. A. (1992), Tests on various liquid column vibration absorbers, Proc. Int. Conf. Motion and Vibration Control, Yokohama, Japan, 1130–1134.Google Scholar
Watts, P. (1883), On a method of reducing the rolling of ship at sea, Transactions of the Inst. Naval Architecture 1, 165.Google Scholar
Watts, P. (1885), The use of water chambers for reducing the rolling of ships at sea, Transactions of the Inst. Naval Architecture 2, 30.Google Scholar
Webster, W. C. (1967), Analysis of the control of activated anti-roll tanks, Soc. Naval Archit. Marine Engrg (SNAME) Transactions 75, 296–331.Google Scholar
Webster, W. C., Dalzell, J. F., and Barr, R. A. (1988), Prediction and measurement of the performance of free flooding ship anti-rolling tanks, Soc. Naval Archit. Marine Engrg (SNAME) Transactions 96, 333–364.Google Scholar
Wedemeyer, E. H. (1964), The unsteady flow within a spinning cylinder, J. Fluid Mech. 20(3), 383–399.CrossRefGoogle Scholar
Wedemeyer E. H. and Reese J. R. (1953), Moment of inertia and damping of fluid in tanks undergoing pitching oscillations, NACA RM L 53E, June.
Wehausen J. V. and Laitone E. V. (1960), Surface waves, Article in Encyclopedia of Physics, Flügge, S, ed., IX, p. 446, Berlin, Springer-Verlag.Google Scholar
Weihs, D. and Dodge, F. T. (1991), Liquid motions in nonaxisymmetric, partially filled containers rotating at zero gravity, J. Spacecraft Rock. 28(4), 425–432.CrossRefGoogle Scholar
Weiqiu, C., Ding, H. J., Guo, Y. M., and Yang, Q. D. (1997), Free vibrations of fluid-filled orthotropic cylindrical shells, ASCE. J. Eng. Mech. 123, 1130–1133.CrossRefGoogle Scholar
Weisend, J. G. II (1998), Handbook of Cryogenic Engineering, Philadelphia, PA, Taylor & Frances.Google Scholar
Weislogel, M. (1991), Stability of capillary surfaces, ASME Forum on Microgravity Flows, 1st ASME/JSME Fluids Eng. Conf. FED- 111, 11–13.Google Scholar
Weiss H. J. and Rogge T. R. (1965), A nonlinear analysis for sloshing forces and moments on a cylindrical tank, NASA CR-221.
Welch J. E., Harlow F. H., Shannon J. P., and Daly B. J. (1965), The MAC method: a computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces, Los Alamos Sci. Lab. Rept. LA-3425.
Welt, F. and Modi, V. J. (1989a), Vibration damping through liquid sloshing, part I: A non-linear analysis, Proc. ASME Design Technical Conf. Fluid Structure Interaction H0508E.Google Scholar
Welt, F., and Modi, V. J. (1989b), Vibration damping through liquid sloshing, part II: experimental results, Proc. ASME Design Technical Conf. Fluid Structure Interaction H0508E.Google Scholar
Welt, F., and Modi, V. J. (1992a), Vibration damping through sloshing, part I: A nonlinear analysis, ASME J. Vib. and Acoust. 114(1), 10–16.CrossRefGoogle Scholar
Welt, F., and Modi, V. J. (1992b), Vibration damping through sloshing, part II: Experimental results, ASME J. Vib. and Acoust. 114(1), 17–23.CrossRefGoogle Scholar
Weng, C. (1992), Roll motion stabilization for small fishing vessels, Ph.D. thesis, Memorial University of Newfoundland, Canada.Google Scholar
Werner P. W. and Coldwell J. T. (1961), Experimental evaluation of analytical models for the inertias and natural frequencies of fuel sloshing in a circular cylindrical tanks, NASA TN D-865.
Werner, P. W. and Sundquist, K. J. (1949), On hydrodynamic earthquake effects, Trans. Amer. Geophys. Union 30(5), 636–657.CrossRefGoogle Scholar
Westera, M. T., Binks, D. J., and DeWater, W. V. (2003), Patterns of Faraday waves, J. Fluid Mech. 496, 1–32.CrossRefGoogle Scholar
Westergaard, H. M. (1933), Water pressures on dams during earthquakes, Trans. ASCE 98, 418–472.Google Scholar
White W. F. (1964), LOX tank four-ring slosh baffle test, DSV-IVB, Rept. SM-46762, Douglas Aircraft Co., Inc.
Whitham, G. B. (1967), Variational methods and applications to water waves, Proc. Royal Soc. A 299(1456), 6–25.CrossRefGoogle Scholar
Whittakar, E. T. and Watson, G. N. (1962), A Course of Modern Analysis, 4th edn. Cambridge, Cambridge University Press.Google Scholar
Whittenburry, C. G., Huber, E. A., and Newell, G. S. (1959), Instrument for measuring water waves, Rev. Sci. Instrum. 30(8), 674–676.CrossRefGoogle Scholar
Wichterle, K. and Wichterle, O. (1970), Surface shapes of fluids in rotating vessels, Appl. Sci. Res. 22(2), 150–158.CrossRefGoogle Scholar
Wilde P. and Vanyo J. (1993), Spin-up and spin-over transients of liquid fuels: Flow visualization and energy dissipation, AIAA Paper 93–1184.
Williams, A. N. and Wang, X. (1992), Nonlinear transient wave motions in base-excited rectangular tanks, J. Fluid Struct. 6(4), 471–491.CrossRefGoogle Scholar
Williams, R. E. and Hussey, R. G. (1972), Oscillating cylinders and Stokes' paradox, Phys. of Fluids 15(2), 2083–2088.CrossRefGoogle Scholar
Wilner, L. B., Morrison, W. L., and Brown, A. E. (1960), An instrument for measuring liquid and slosh in the tanks of a liquid propellant rocket, J. Proc. IRE 48(4), 786–788.CrossRefGoogle Scholar
Wilson, E. L. and Khalvati, M. (1983), Finite elements for the dynamic analysis of fluid–solid systems, Int. J. Num. Methods Eng. 19, 1657–1668.CrossRefGoogle Scholar
Winch D. M. (1962), An investigation of the liquid level at the wall of a spinning tank, NASA TN D-1536.
Wohlen R. L., Park A. C., and Warner D. M. (1975), Finite element solution of low bond number sloshing, Martin-Marietta, Denver, Co., Contractor Rep. MCR–75–139, Contract NAS8–29946.
Wohlsbruck, R. (1985), Stability of a rotor whose cavity has an arbitrary meridian and is partially filled with fluid, ASME J. Vib. Acoust. Stress and Reliab. in Des. 4, 440–445.CrossRefGoogle Scholar
Wolf, I. A. (1968), Whirl dynamics of a rotor partially filled with liquid, ASME J. Appl. Mech. 35, 676–682.CrossRefGoogle Scholar
Won, A. Y. J., Pires, J. A., and Haroun, M. A. (1996), Stochastic seismic performance evaluation of tuned liquid column dampers, ASCE J. Eng. Mech. 118(1), 20–39.Google Scholar
Won, A. Y. J., Pires, J. A., and Haroun, M. A. (1997), Performance assessment of tuned liquid column dampers under random seismic loading, Int. J. Nonlin. Mech. 32(4), 745–758.CrossRefGoogle Scholar
Wood, D. J., Beregrine, D. H., and Bruce, T. (2000), Study of wave impact against a wall with pressure-impulse theory: Part 1, Trapped air, J. Waterway, Port, Coastal Ocean Engrg 126, 182–190.CrossRefGoogle Scholar
Woodward J. H. (1966), Fluid Motion in a Circular Tank of Sector-Annular Cross-Section when Subjected to Longitudinal Excitation, Ph.D. dissertation, Georgia Tech.
Woodward, J. H. and Bauer, H. F. 1970, Fluid behavior in a longitudinally excited cylindrical tank of arbitrary sector-annular cross section, AIAA J. 8(4), 713–719.Google Scholar
Wright J. H. (1999), Numerical simulations of two-dimensional Faraday oscillations, Doctoral dissertation, Department of Mathematics, UCA, Berkeley.
Wright, J. H., Yon, S., and Pozrikidis, C. (2000), Numerical studies of two-dimensional Faraday oscillations of inviscid fluids, J. Fluid Mech. 402, 1–32.CrossRefGoogle Scholar
Wu, G. X., Ma, Q. W., and Taylor, R. E. (1998), Numerical simulation of sloshing waves in a 3-D tank based on a finite element method, Appl Ocean Res. 20(6), 337–355.CrossRefGoogle Scholar
Wu, J., Keolian, R., and Rudnick, I. (1984), Observation of a non-propagating hydrodynamic soliton, Phys. Rev. Lett. 52, 1421–1424.CrossRefGoogle Scholar
Wu, J. S. and Hsieh, M. (2002), Study on the dynamic characteristic of a U-type tuned liquid damper, Ocean Eng. 29, 689–709.CrossRefGoogle Scholar
Wu, W. F. and Lin, Y. K. (1984), Cumulant neglect closure for nonlinear oscillators under random parametric excitation, Int. J. Nonlin. Mech. 19, 349–362.CrossRefGoogle Scholar
Wuest, W. (1976), Fluid dynamics of a floating zone, Proc. 2nd European Symp. Material Sciences in Space, Frascati, Italy ESA-SP-114, 455–465.Google Scholar
Wunderlich, W. and Seiler, C. (2000), Nonlinear treatment of liquid-filled storage tanks under earthquake excitation by a quasistatic approach, Comput. Struct. 78, 385–395.CrossRefGoogle Scholar
Xu, J. J. and Davis, S. H. (1983), Liquid bridges with thermocapillary, Phys. Fluids 26, 2880–2886.CrossRefGoogle Scholar
Xu, Y. L., Kwok, K. C. S., and Samali, B. (1992b), The effect of tuned mass dampers and liquid dampers on cross-wind response of tall/slender structures, J. Wind Eng. Indust. Aerodyn. 10, 33–54.CrossRefGoogle Scholar
Xu, Y. L., Samali, B., and Kwok, K. C. S. (1992a), Control of along wind response of structures by mass and liquid dampers, ASCE J. Eng. Mech. 118, 20–39.CrossRefGoogle Scholar
Xue S. D. (1999), Torsional vibration control of suspension bridge decks using tuned liquid column dampers, Ph.D. thesis, The Hong Kong Polytechnic University, Hong Kong.
Xue, S. D., Ko, J. M., and Xu, Y. L. (2000), Tuned liquid column damper for suppressing pitching motion of structures, Engrg. Struct. 23, 1538–1551.CrossRefGoogle Scholar
Yakubovich, V. A. and Starzhinskii, V. M. (1975), Linear Differential Equations with Periodic Coefficients, (two volumes), New York, John Wiley & Sons, Israel Program for Scientific Translations.Google Scholar
Yalla, S. and Kareem, A. (1999), Modeling tuned liquid dampers as sloshing-slamming dampers, in Wind Engineering into the 21st Century, Rotterdam, Netherlands, Balkema Press.Google Scholar
Yalla, S. and Kareem, A. (2000), Optimal absorber parameters for tuned liquid column dampers, ASCE J. Struct. Eng. 126, 906–915.CrossRefGoogle Scholar
Yalla, S. and Kareem, A. (2001a), Semi-active tuned liquid column dampers for vibration control of structures, Eng. Struct. 23, 1469–1479.CrossRefGoogle Scholar
Yalla, S. and Kareem, A. (2001b), Beat phenomenon in combined structure–liquid damper systems, Eng. Struct. 23, 622–630.CrossRefGoogle Scholar
Yalla, S., Kareem, A., and Kantor, J. C. (1998), Semi-active control strategies for tuned liquid column dampers to reduce wind and seismic response of structures, Proc. 2nd World Conf. Structural Control, Kyoto, Japan, John Wiley, 559–568.Google Scholar
Yam, Y., Mingori, D. L., and Halsmer, D. M. (1997), Stability of a spinning axisymmetric rocket with dissipative internal mass motion, J. Guid. Contr. Dyn. 20(2), 306–313.CrossRefGoogle Scholar
Yamada, Y., Iemura, H., Noda, S. and Shimada, S. (1987), Long-period response spectra from nonlinear sloshing analysis under horizontal and vertical excitations, Natural Disaster Sci. 9(2), 39–54.Google Scholar
Yamaguchi, A. (1996), SPLASH program for three-dimensional fluid dynamics with free surface boundaries, Comput. Mech. 18(1), 12–23.CrossRefGoogle Scholar
Yamaguchi, S. and Shinkai, A. (1995), An advanced adaptive control system for activated anti-rolling tank, Int. J. Offshore Polar Engrg 5(1), 17–22.Google Scholar
Yamaki, N., Tani, J., and Yamaji, T. (1984), Free vibration of a clamped–clamped circular cylindrical shell partially filled with liquid, J. Sound Vib. 94, 531–550.Google Scholar
Yamamoto, K. and Kawahara, M. (1999), Structural oscillation control using tuned liquid damper, Comput. Struct. 71, 435–446.CrossRefGoogle Scholar
Yamamoto, S., Kataoka, F., Shioda, S., Ashitani, Y. (1995), Study on impact pressure due to sloshing in midsized LNG, Int. J. Offshore Polar Engrg., 5(1), 10–23.Google Scholar
Yamamoto, Y. (1981), A variational principle for a solid–water interaction system, Int. J. Eng. Sci. 19(12), 1757–1763.CrossRefGoogle Scholar
Yamamoto, T. and Basoglu, B. (1995), Optimal geometry for fuel solution sloshing based on the boundary perturbation theory, Annals Nuc. Energy 22(10), 649–658.CrossRefGoogle Scholar
Yang, J. Y. (1976), Dynamic Behavior of Fluid–Tank Systems, Ph.D. disentation, Rice University, Texas.Google Scholar
Yangyi O. and Jingliang M. (1985), Dynamic interaction of elastic container with fluid, Proc. ASME 10th Biennial Conf. Mech. Vib. Noise, Cincinnati, OH, Symp. Fluid–Structure Interaction and Aerodynamic Damping, 225–230.
Yarymovich M. I. (1959), Forced large amplitude surface waves, D.Sc. thesis, Columbia University.
Yasiro, T., Kawashima, H., and Sakurai, A. (1987), A study on nonlinear sloshing of pool type LMFBR coolant, Proc. 9th Int. Conf. Struct. Mech. in Reactor Tech., North-Holland, K, 459–464.Google Scholar
Ye, Z. and Birk, A. M. (1994), Fluid pressure in partially liquid-filled horizontal cylindrical vessels undergoing impact acceleration, J. Pressure Vessel Tech. 116, 449–459.CrossRefGoogle Scholar
Yeh G. C. K. (1965), Liquid sloshing in a moving tank with time dependent discontinuous boundary, Developments in Mechanics, 3 (2), (Dynamics and Fluids), T. C. Huang and M. N. Johnson, Jr, eds., 265–276.
Yeh, G. C. K. (1966), Sloshing of a liquid in connected cylindrical tanks owing to u-tube free oscillations, J. Acoust. Soc. Amer. 40(4), 807–812.CrossRefGoogle Scholar
Yeh, G. C. K. (1967), Free and forced oscillations of a liquid in an axi-symmetric tank at low gravity environments, J. Appl. Mech. 34(1), 23–28.CrossRef
Yeh G. C. K. and Graham D. J. (1969), Draining of a liquid from a transversely moving cylindrical tank, AIAA Paper 679.
Yeh, H. H. (1986), Experimental study of standing edge waves, J. Fluid Mech. 168, 291–304.CrossRefGoogle Scholar
Yepishev L. V. (1959), On dynamic instability of spinning rotor incompletely filled with liquid, Scientific Reports of High School, Service Mechanical Engineering and Instrument-Making Industry 2, 66–79.
Yi W. and Natsiavas S. (1990), Seismic response of anchored fluid-filled tanks using finite elements, in Flow-Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 25–30.
Yih, C. S. (1968a), Instability of unsteady flows or configurations, part I: Instability of a horizontal liquid layer on an oscillatory plane, J. Fluid Mech. 31(4), 737–751.CrossRefGoogle Scholar
Yih, C. S. (1968b), Stability of a horizontal fluid interface in a periodic vertical electric field, Phys. Fluid 11(7), 1447–1449.CrossRefGoogle Scholar
Yilmaz, O., Incecik, A., and Han, J. C. (2003), Simulation of green water flow on deck using nonlinear dam breaking theory, Ocean Engrg. 30, 601–610.CrossRefGoogle Scholar
Yin, L., Wang, B., Ma, X., and Zou, J. (1999), The nonlinear sloshing of liquid in tank with pitching, ASME J. Appl. Mech. 66, 1032–1034.CrossRefGoogle Scholar
Yaussef, K. S., Mook, D. T., Nayfeh, A. H., and Ragab, S. A. (2003), Roll stabilization by passive anti-roll tanks using an improved model of tank–liquid motion, J. Vibration and Control 9, 839–862.Google Scholar
Youssef, K. S., Ragab, S. A., Nayfeh, A. H., and Mook, D. T. (2002), Design of passive anti-roll tanks for roll stabilization in the nonlinear range, Ocean Engrg. 29, 177–192.CrossRefGoogle Scholar
Yoneda, M. (1989), A practical study of tuned liquid damper with application to Sakitama bridge, JAWE J. Wind Eng. 41, 105–106.Google Scholar
Yoneda, M., Chaiseri, P., Maeda, K., and Fujino, Y. (1991), A practical study on tuned liquid damper with application to cable-stayed bridge tower, JSCE J. Struct. Eng. 37A, 1019–1028.Google Scholar
Yoshida, S. and Miyoshi, T. (1987), Seismic response analysis of a multi-walled coaxial cylindrical tank, Trans. JSME 53, 1670–1675 (in Japanese).CrossRefGoogle Scholar
Yoshida, S. and Miyoshi, T. (1989), Seismic response analysis of a multi-walled coaxial cylindrical tank under vertical excitation, Trans. JSME 55, 1638–1643 (in Japanese).CrossRefGoogle Scholar
Yoshimatsu, K. and Funakoshi, M. (1998), Primary patterns in Faraday surface waves at high aspect ratio, J. Phys. Soc. Japan 67, 451–461.CrossRefGoogle Scholar
Young, G. W. and Davis, S. H. (1987), A plate oscillating across a liquid interface: effect of contact-angle hysteresis, J. Fluid Mech. 174, 327–356.CrossRefGoogle Scholar
Young, P. G. (2002), A parametric study on the axisymmetric modes of vibration of multi-layered spherical shells with liquid cores of relevance to head impact modeling, J. Sound Vib. 256(4), 665–680.CrossRefGoogle Scholar
Young-Sun, C. and Chung-Bang, Y. (1996), Sloshing characteristics in rectangular tanks with a submerged block, Comp. Struct. 61(3), 401–413.Google Scholar
Young, T. (1805), An essay on the cohesion of fluids, Trans. Royal Soc. London 95, 65–87.CrossRefGoogle Scholar
Yu, B., Nash, W. A., and Kirchhoff, R. H. (1987), A nonlinear analysis of sloshing in circular cylindrical tanks by perturbation method, Proc. ASME Symp. Fluid–Structure Vibration and Liquid Sloshing, PVP- 128, 63–68.Google Scholar
Yu J. (1997), Nonlinear characteristics of tuned liquid dampers, Ph.D. dissertation, University of Washington.
Yu, Y. Y. (1955), Free vibration of thin cylindrical shells, ASME J. Appl. Mech. 22, 547–552.Google Scholar
Yuan, J. and Dickinson, S. M. (1992), On the use of artificial springs in the study of the free vibrations of systems comprised of straight and curved beams, J. Sound Vib. 153, 203–216.CrossRefGoogle Scholar
Yuan, J. and Dickinson, S. M. (1994), The free vibration of circularly cylindrical shell and plate systems, J. Sound Vib. 175, 241–263.CrossRefGoogle Scholar
Zakharov, V. E. (1968), Stability of periodic waves on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 2, 190–194.Google Scholar
Zang, Y., Street, R. L., and Koseff, J. R. (1994), A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates, J. Comput. Phys. 114, 18–39.CrossRefGoogle Scholar
Zebib, A., Homsy, G. M., and Meiburg, E. (1985), High Marangoni number convection in a square cavity, Phys. Fluids 28(12), 3467–3476.CrossRefGoogle Scholar
Zelazo, R. E. and Melcher, J. R. (1969), Dynamics and stability of ferrofluids surface interaction, J. Fluid Mech. 39, 1–24.CrossRefGoogle Scholar
Zenkevich, V. B. (1965), Behavior of a fluid in conditions of weightlessness (in Russian), Teplofiz Vysokikh Temperatur 2(2), 230–237, Ref Zh Mekh 2, Rev. 2B364.Google Scholar
Zhang, S., Yue, D. K. P., and Tanizawa, K. (1996), Simulation of plunging wave impact on a vertical wall, J. Fluid Mech. 327, 221–254.CrossRefGoogle Scholar
Zhang, W., Casademunt, J., and Vincaronals, J. (1993), Study of the parametric oscillator driven by narrow-band noise to model the response of a fluid surface to time-dependent accelerations, Phys. Fluids A 5(12) 3147–3161.CrossRefGoogle Scholar
Zhang, W., Tang, J., and Tao, M. D. (1996), Dynamic stability of a rotor filled or partially filled with liquid, ASME J. Appl. Mech. 63, 101–105.CrossRefGoogle Scholar
Zhang, W. and Viňals, J. (1997a), Pattern formation in weakly damped parametric surface waves, J. Fluid Mech. 336, 301–330.CrossRefGoogle Scholar
Zhang, W. and Viňals, J. (1997b), Pattern formation in weakly damped parametric surface waves driven by two frequency components, J. Fluid Mech. 341, 225–244.CrossRefGoogle Scholar
Zhang, Y. L., Reese, J. M., and Gorman, D. G. (2001), A comparative study of axisymmetric finite elements for the vibration of cylindrical shells conveying fluids, Int. J. Num. Methods Engrg. 54, 89–110.CrossRefGoogle Scholar
Zhang, Y. L., Reese, J. M., and Gorman, D. G. (2002), Initially tensioned orthotropic cylindrical shells conveying fluid: a vibration analysis, J. Fluid Struct. 16(1), 53–70.CrossRefGoogle Scholar
Zhao, Z. and Fujino, Y. (1993), Numerical simulation and experimental study of deeper-water TLD in the presence of screens, J. Struct Eng., Tokyo 39, 699–711.Google Scholar
Zhong, Z., Falzarano, J., and Fithen, R. (1998), Numberical study of U-tube passive anti-rolling tanks, Proc. 8th Int. Offshore and Polar Engrg. Conf., Montreal, 3, 504–512.Google Scholar
Zhou, D. and Cheung, Y. K. (2000), Vibration of vertical rectangular plate in contact with water on one side, Earthquake Eng. Struct. Dyn. 29, 693–710.3.0.CO;2-V>CrossRefGoogle Scholar
Zhou, Q. and Graebel, W. P. (1990), Axisymmetric draining of a cylindrical tank with a free surface, J. FluidMech. 221, 511–532.CrossRefGoogle Scholar
Zhou Z., deKat J. O., and Buchner B. (1999), A nonlinear 3-D approach to simulate green water dynamics on deck, Proc. 7th Int. Symp. Numerical Ship Hydrodynamics, Rept. No 82000-NSH 7, May, France.
Zhu, F. (1991), Orthogonality of wet modes in coupled vibration, J. Sound Vib. 146, 439–448.Google Scholar
Zhu, Q., Liu, Y., and Yue, D. K. P. (2003), Three-dimensional instability of standing waves, J. Fluid Mech. 496, 213–242.CrossRefGoogle Scholar
Zhu, R. Z. (1984), Stability theory of steady rotation of a gyroscope with liquid-filled cavity, Scientia Sinica A 27, 624–633.Google Scholar
Zhu, R. Z. (1988), Spectrum analysis and potential theory of operators in state space for stability of spinning solid body with liquid-filled cavity on plane, Scientia Sinica A 31, 687–693.Google Scholar
Zhu, R. Z. (1992), Distribution, stability, bifurcations and catastrophe of steady rotation of a symmetric heavy gyroscope with viscous-liquid-filled cavity, Int. J. Nonlinear Mech. 27, 477–488.Google Scholar
Zhu W. Q. and Huang T. C. (1984), Dynamic instability of liquid free surface in a container with elastic bottom under combined harmonic and stochastic longitudinal excitation, in Random Vibrations, ASME WAM Proc AMD- 65, 195–220.
Zhukovskii, N. Y. (1936), On the motion of a rigid body having cavities filled with a homogeneous liquid, Collected Works3, Moscow, Nauka.Google Scholar
Zhukovskii, N. Y. (1948), Concerning the motion of a solid body containing cavities filled with a homogeneous liquid, Collected Works, 1, Moscow, Gostekhizdat.Google Scholar
Zhukovskii, N. Y. (1949), The motion of a rigid body having cavities filled with a homogeneous liquid, in Collected Papers, 2, Moscow, Gostekhizdat, 152–309.Google Scholar
Zhuravlev, V. F. (1977), Investigation of certain vibro-impact systems by the method of non-smooth transformation, Prikl. Mat. Mekh. (PMM) 49, 572–578.Google Scholar
Zhuravlev, V. F. (1986), The application of monomial lie groups to the problem of asymmetrically integrating equations of mechanics, Prikl. Mat. Meks. (PMM) 50, 346–352.Google Scholar
Zhuravlev, V. F. (1992), Oscillations shape control in resonant systems, J. Appl. Math. Mech. (PMM) 56(5), 725–735.CrossRefGoogle Scholar
Zhuravlev, V. F. and Klimov, D. M. (1988), Applied Methods in Vibration Theory, Moscow, Nauka.Google Scholar
Zienkiewicz, O. C. and Bettes, P. (1978), Fluid–structure dynamic interaction and wave forces: an introduction to numerical treatment, Int. J. Numer. Methods Engrg. 13, 1–16.CrossRefGoogle Scholar
Zinchenko, A. Z., Rother, M. A., and Davis, R. H. (1999), Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm, J. Fluid Mech. 391, 249–292.CrossRefGoogle Scholar
Zui, H. and Shinke, T. (1985), Seismic deformation analysis of unanchored cylindrical tanks accompanied with the uplift of the bottom plate, Proc. Struct. Eng. Symp. 31A.Google Scholar
Aa E. V. and Sanders J. A. (1979), The 1:2:1-resonance, its periodic orbits and integrals, in Asymptotic Analysis from Theory to Application, Lecture Notes in Mathematics 711: Editor Verhulst, F., 187–208, Springer-Verlag, Berlin.Google Scholar
Abdalla K. L., Flage R. A., and Jackson R. G. (1964), Zero gravity performance of ullage control surface with liquid hydrogen while subjected to unsymmetrical radiant heating, NASA TM X-1001.
Gawad, Abdel A. F., Ragab, S. A., Nayfeh, A. H., and Mook, D. T. (2001), Roll stabilization by anti-roll passive tanks, Ocean Engrg. 28, 457–469.CrossRefGoogle Scholar
Abramowitz, G. L. and Segun, I. A. (1968), Handbook of Mathematical Functions, New York, Dover Publications.Google Scholar
Abramson, H. N. (1961a), Amazing motions of liquid propellant, Astronaut 6, 35–37.Google Scholar
Abramson H. N. (1961b), Liquid dynamic behavior in rocket propellant tanks, Proc. ONR/AIAA Symp Struct. Dynamics of High Speed Flight, Los Angeles, April 1961, 287–318.
Abramson H. N. (1961c), Total force response resulting from liquid propellant sloshing in a rigid cylindrical tank with vertical center wall baffle, Tech. Rept. 9, SwRI, May.
Abramson H. N. (1961d), Theoretical and experimental studies of liquid sloshing in rigid cylindrical tanks, Tech. Rept. (Final Report), SwRI, May.
Abramson H. N. (1963a), Studies of liquid dynamics in rocket propellant tanks, SwRI, May.
Abramson, H. N. (1963b), Dynamic behavior of liquid in moving containers, ASME Appl. Mech. Rev. 16(7), 501–506.Google Scholar
Abramson, H. N. (1964), Some measurements of the effects of ring baffles in cylindrical tanks, J. Spacecraft Rock. 1(9/10), 560–562.CrossRefGoogle Scholar
Abramson H. N. (1965), Further studies of liquid sloshing in rocket propellant tanks, Final Report, Contract NAS8–1555, SwRI, Dec 1965.
Abramson, H. N. (Ed), (1966a), The Dynamic Behavior of Liquids in Moving Containers, NASA SP 106.Google Scholar
Abramson H. N. (1966b), Some current aspects of the dynamic behavior of liquids in rocket propellant tanks, in Applied Mechanical Surveys, Abramson, H. N., Liebowitz, H, Crowley, J. M., and Juhasz, S., eds. Washington, DC, Sparton Books, 941–949.Google Scholar
Abramson, H. N. (1968), Liquid propellant dynamics, AGARD Manual of Aeroelasticity (1), Chapter 8, Revised Edition, NATO, Paris.Google Scholar
Abramson, H. N. (1969), Slosh Suppression, NASA SP-8031.Google Scholar
Abramson, N. H. (2003), Dynamics of contained liquids: A personal odyssey, ASME Appl. Mech. Rev. 56(1), R1–R7.CrossRefGoogle Scholar
Abramson H. N., Bass R. L., Faltinsen O., and Olsen H. A. (1974), Liquid slosh in LNG carriers, 10th Symp. Naval Hydrodynamics, MIT, Cambridge, MA.
Abramson H. N., Chu W. H., and Garza L. R. (1962a), Liquid sloshing in 45 degree sector compartmented cylindrical tanks, Tech. Rept. 3, SwRI, Nov 1962.
Abramson H. N., Chu W. H., Garza L. R., and Ransleben G. E. Jr (1962b), Some studies of liquid rotation and vortexing in rocket propellant tanks, NASA TN D-1212, June 1962.
Abramson, H. N., Chu, W. H., and Garza, L. R. (1963), Liquid sloshing in spherical tanks, AIAA J. 1(2), 384–389.CrossRefGoogle Scholar
Abramson, H. N., Chu, W. H., and Kana, D. D. (1966), Some studies of nonlinear lateral sloshing in rigid containers, J. Appl. Mech. 33(4), also NASA CR-375, January.CrossRefGoogle Scholar
Abramson H. N., Chu W. H., Kana D. D., and Lindholm U. S. (1962c), Bending vibrations of a circular cylindrical shell containing an internal liquid with a free surface, Tech. Rept. 4, SwRI, March.
Abramson, H. N. and Garza, L. R. (1964), Some measurements of the effects of ring baffles in cylindrical tanks, J. Spacecraft Rock. 1(5), 560–562.CrossRefGoogle Scholar
Abramson, H. N. and Garza, L. R. (1965), Some measurements of liquid frequencies and damping in compartmented cylindrical tanks, J. Spacecraft Rock. 2(5/6), 453–455.CrossRefGoogle Scholar
Abramson, H. N., Garza, L. R., and Kana, D. D. (1962d), Some notes on liquid sloshing in compartmented cylindrical tanks, Amer. Rocket Soc. J. 32(6), 978–980.Google Scholar
Abramson H. N., Garza L. R., and Squire W. (1961), An exploratory study of the effect of sloshing on heat transfer in similitude cryogenic liquid, Tech. Rept. 2, SwRI, February.
Abramson, H. N. and Kana, D. D. (1967), Some recent research on the vibrations of elastic shells containing liquids, Proc. Symp. Shell Theory, University of Houston, Texas.Google Scholar
Abramson H. N. and Kana D. D. (1970), Some experimental studies of the dynamic stability of thin shells containing liquid, 60th Anniversary volume in honor of V. Novozhilov, the USSR National Committee on Theor. and Appl. Mech., Academy of Science USSR, Moscow, May 18.
Abramson H. N., Martin R. J., and Ransleben G. E. Jr (1958), Application of similitude theory to the problem of fuel sloshing in rigid tanks, Tech. Rept. 1, SwRI, May.
Abramson H. N. and Nevill G. E. Jr (1963), Some modern developments in the application of scale models in dynamic testing, ASME Colloquium on Use of Models and Scaling in Shock and Vibration, November.
Abramson H. N. and Ransleben G. E. Jr (1959a), Simulation of fuel characteristics in missile tanks by use of small models, Tech. Rept. 3 SwRI, March.
Abramson H. N. and Ransleben G. E. Jr (1959b), A note on the effectiveness of two type slosh suppression devices, Tech. Rept. 6, SwRI, June.
Abramson, H. N. and Ransleben, G. E. Jr (1960), Simulation of fuel sloshing characteristics in missile tanks by use of small models, Amer. Rocket Soc. J. 30(7), 603–612.Google Scholar
Abramson, H. N. and Ransleben, G. E. Jr (1961a), Some comparisons of sloshing behavior in cylindrical tanks having flat and conical bottoms, Amer. Rocket Soc. J. 31, 542–544.Google Scholar
Abramson, H. N. and Ransleben, G. E. Jr (1961b), A note on wall pressure distribution during sloshing in rigid tanks, Amer. Rocket Soc. J. 31, 545–547.Google Scholar
Abramson, H. N. and Ransleben, G. E. Jr (1961c), Representation of fuel sloshing in cylindrical tanks by an equivalent mechanical model, Amer. Rocket Soc. J. 31(12), 1697–1705.Google Scholar
Abramson H. N. and Ransleben G. E. Jr (1961d), Some studies of a floating lid type device for suppression of liquid sloshing in rigid cylindrical tanks, Tech. Rept. 10, SwRI, May.
Abramson H. N. and Ransleben G. E. (1961e), Liquid sloshing in rigid cylindrical tanks undergoing pitching motion, Tech. Rept. 11, SwRI, May.
Abzug, M. J. (1996), Fuel slosh in skewed tanks, J. Guid. Contr. Dyn. 19(5), 1172–1177.CrossRefGoogle Scholar
Ackerberg, R. C. (1965), The viscous incompressible flow inside a cone, J. of Fluid Mech. 21(1), 47–81.CrossRefGoogle Scholar
Addington, J. W. (1960), Dynamics of fuel in tanks, Note 99, College of Aeronautics, Cranfield, England.Google Scholar
Addriaans, M. J., Moeu, W. A., Boyd, S. T. P., Strayer, D. M., and Duncan, R. V. (1996), Cryogenic design of the liquid helium experiment: Critical dynamics in microgravity, Cryogenics 36, 787–794.CrossRefGoogle Scholar
Adler, W. F. (1979), The mechanics of liquid impact, in Treatise on Material Science and Technology, CM Proc., ed., 16, Erosion, Academic Press 127–183.Google Scholar
Advani, S. H. and Lee, Y. C. (1970), Free vibrations of fluid-filled spherical shells, J. Sound and Vib. 12(4), 453–462.Google Scholar
Aganovic, I. (1981), On a spectral problem of hydroelasticity, J. de Mec. 20(3) 409–414.Google Scholar
Agnon, Y. and Golzman, M. (1996), Periodic solutions for a complex Hamiltonian system: New standing water waves, Wave Motion 24, 139–150.CrossRefGoogle Scholar
Agrawal, B. N. (1987), Interaction between liquid propellant slosh modes and attitude control in a dual-spin spacecraft, Proc. AIAA/ASME/ASCE/AFS 28thStruct. Dyn. Mat. Conf., Part 2B, 774–780.Google Scholar
Agrawal, B. N. (1993), Dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft, J. Guidance, Control, and Dynamics 16(4), 636–640.CrossRefGoogle Scholar
Aita, S. and Girbert, R. J. (1986), Fluid-elastic instability of a flexible weir: a theoretical model, ASME Proc. Flow-Induced Vib., 104, 51–58.Google Scholar
Aita, S., Tigeot, Y., Bertaut, C., and Serpantie, J. P. (1986), Fluid-elastic instability of a flexible weir: experimental observations, ASME Proc. Flow-Induced Vib., 104, 41–50.Google Scholar
Aitta, A. (1991), Nonlinear phenomena at an air–fluid interface in a horizontal rotating cylinder, Eur. J. Mech. B/ Fluids 10 (suppl 2), 175–180.Google Scholar
Akita, Y. (1967), Dynamic pressure of cargo oil due to pitching and effectiveness of swash bulkhead in long tanks, Japan Shipbuilding & Marine Eng. 2(5), 42–55.Google Scholar
Albanese, C., Carotenuto, L., Castagnolo, D., Ceglia, E., and Monti, R. (1995), An investigation on the “onset” of oscillatory Marangoni flow, Adv. Space Res. 16(7), 87–94.CrossRefGoogle Scholar
Albright N. (1977), Mathematical and computational studies of the stability of axisymmetric annular capillary free surfaces, NASA, NTIS, Washington, DC.
Alexander, J. I. D. (1990), Low-gravity experiment sensitivity to residual acceleration: a review, Microgravity Sci. Techno. 3, 52–68.Google Scholar
Alexander J. I. D. (1997), Drops, jets and bubbles, in Free Surface Flows, Kuhlamann, H. C., and Rath, H. J., eds., New York, Springer-Verlag.Google Scholar
Alexander, J. I. D., Garandet, J. P., Favier, J. J., and Lizee, A. (1997), G-jitter effects on segregation during directional solidification of tin-bismuth in the Mephisto furnace facility, J. Crystal Growth 178, 657–661.Google Scholar
Alexander, J. I. D., Ouzzani, J., and Rosenberger, F. (1991), Analysis of the low gravity tolerance of Bridgman–Stockbarger crystal growth, J. Crystal Growth 112, 21–38.CrossRefGoogle Scholar
Alexander J. I. D, Slobozhanin L. A., Resnick A. H., Ramus J. F., and Delafontaine S. (2000), Stability limits and dynamics of nonaxisymmetric liquid bridges, Proc. Center for Microgravity Res., Cleveland, OH, 564–569.
Alfriend, K. (1974), Partially filled viscous ring nutation damper, J. Spacecraft 11, 456–462.CrossRefGoogle Scholar
Alfriend K. T. and Spencer T. (1981), Comparison of filled and partly filled nutation dampers, AAS/AIAA Astrodyn Spec. Conf., Lake Tahoe, NV, Paper 81–141.
Aliabadi, S., Johnson, A., and Abedi, J. (2003), Comparison of finite element and pendulum models for simulation of sloshing, Comput. & Fluids 32, 535–545.CrossRefGoogle Scholar
Allingham W. D. (1968), Zero gravity expulsion of cryogens with metal bellows, AIAA/Aerospace Corp. Symp. Low Gravity Orientation and Expulsion, Los Angeles, 199–208.
Amabili, M. (1996a), Free vibration of partially filled, horizontal cylindrical shells, J. Sound Vib. 191, 757–780.CrossRefGoogle Scholar
Amabili, M. (1996b), Effect of finite fluid depth on the hydroelastic vibrations of circular and annular plates, J. Sound Vib. 193, 909–925.CrossRefGoogle Scholar
Amabili, M. (1997a), Bulging modes of circular bottom plates in rigid cylindrical containers filled with liquid, Shock and Vibration 4, 51–68.CrossRefGoogle Scholar
Amabili, M. (1997b), Shell-plate interaction in the free vibrations of circular cylindrical tanks partially filled with a liquid: the artificial spring method, J. Sound Vib. 199, 431–452.CrossRefGoogle Scholar
Amabili, M. (1997c), Ritz method and sub-structuring in the study of vibration with strong fluid–structure interaction, J. Fluids Struct. 11, 507–523.CrossRefGoogle Scholar
Amabili, M. (2000a), Eigenvalue problems for vibrating structures coupled with quiescent fluids with free surface, J. Sound Vib. 231, 79–97.CrossRefGoogle Scholar
Amabili, M. (2000b), Vibrations of fluid-filled hermetic cans, J. Fluid Struct. 14, 235–255.CrossRefGoogle Scholar
Amabili, M. (2003), Theory and experiments for large-amplitude vibrations of empty and fluid-filled circular cylindrical shells with imperfections, J. Sound Vib. 262, 921–975.CrossRefGoogle Scholar
Amabili, M. and Dalpiaz, G. (1995), Breathing vibrations of a horizontal circular cylindrical tank shell, partially filled with liquid, ASME J. Vib. Acoust. 117, 187–191.CrossRefGoogle Scholar
Amabili, M., and Dalpiaz, G. (1998), Vibrations of base plates in annular cylindrical containers: theory and experiments, J. Sound Vib. 210, 329–350.CrossRefGoogle Scholar
Amabili, M. and Garziera, R. (2000), Vibrations of circular cylindrical shells with non-uniform constraints, elastic bed and added mass, part I: Empty and fluid-filled shells, J. Fluid Struct. 14(1), 669–690.CrossRefGoogle Scholar
Amabili, M., and Garziera, R. (2002), Vibrations of circular cylindrical shells with non-uniform constraints, elastic bed and added mass, part II: Shells containing or immersed in axial flow, J. Fluid Struct. 16(1), 31–51.CrossRefGoogle Scholar
Amabili, M., Garziera, R., and Negri, A. (2002), Experimental study on large-amplitude vibrations of water-filled circular cylindrical shells, J. Fluid Struct. 16(2), 213–227.CrossRefGoogle Scholar
Amabili, M. and Kwak, M. K. (1996), Free vibration of circular plates coupled with liquid: revising the Lamb problem, J. Fluids Struct. 10, 743–761.CrossRefGoogle Scholar
Amabili, M. and Kwak, M. K. (1999), Vibration of circular plates on a free fluid surface: effect of surface waves, J. Sound Vib. 226, 407–424.CrossRefGoogle Scholar
Amabili, M. and Paidoussis, M. P. (2003), Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid–structure interaction, ASME Appl. Mech. Rev. 56(4), 349–381.CrossRefGoogle Scholar
Amabili, M., Paidoussis, M. P., and Lakis, A. A. (1998a), Vibrations of partially filled cylindrical tanks with ring-stiffeners and flexible bottom, J. Sound Vib. 213, 259–299.CrossRefGoogle Scholar
Amabili, M., Pellicano, F., and Paidoussis, M. P. (1998b), Nonlinear vibrations of simply supported, circular cylindrical shells, coupled with quiescent fluid, J. Fluids Struct. 12, 883–918.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Paidoussis, M. P. (1999a), Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid, part I: Stability, J Sound Vib. 225(4), 655–699.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Paidoussis, M. P. (1999b), Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid, part II: large-amplitude vibrations without flow, J. Sound Vib. 228(5), 1103–1124.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Paidoussis, M. P. (1999c), Further comments on nonlinear vibrations of shells, J. Fluids Struct. 13, 159–160.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Paidoussis, M. P. (2000a), Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid, part III: truncation effect without flow and experiments, J. Sound Vib. 237(4), 617–640.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Paidoussis, M. P. (2000b), Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid, part IV: large-amplitude vibrations with flow, J. Sound Vib. 237(4), 641–666.CrossRefGoogle Scholar
Amabili, M., Pellicano, F., and Vakakis, A. F. (2000c), Nonlinear vibrations and multiple resonances of fluid-filled, circular shells, part I: equations of motion and numerical results, ASME J. Vib. Acoust. 122, 346–354.CrossRefGoogle Scholar
Amabili, M.Pellicano, F., and Vakakis, A. F. (2000d), Nonlinear vibrations and multiple resonances of fluid-filled, circular shells, part II: perturbation analysis, ASME J. Vib. Acoust. 122, 355–364.CrossRefGoogle Scholar
Amakhin, V. M., Kalayzin, E. I., and Voronokov, A. V. (1975), Method of numerical calculation of emptying and filling a tank in a weak force field, Tr. Moscow Aviats. Inst. 323, 110 (in Russian).Google Scholar
Amano, K., and Iwano, R. (1991), Experimental and analysis of jet-induced sloshing in a tank, Tran. JSME (in Japanese) B57, 1947–1954.CrossRefGoogle Scholar
Amano, K., Koizumi, M., and Yamakawa, M. (1989), Three dimensional analysis method for potential flow with a moving liquid surface using a boundary element method, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP 157, 127–132.Google Scholar
Ambrazyavichus, A. P. (1981a), Solvability of problem on conical capillary, Probl. Mat. Analiza. (Leningrad) 8, 3–9 (in Russian).Google Scholar
Ambrazyavichus, A. P. (1981b), Construction of barrier functions for solving capillary problems in conical regions, Lit. Mat. Sb. 24, 3–15 (in Russian).Google Scholar
Amick, C. J. and Tolland, J. F. (1987), The semi-analytic theory of standing waves, Proc. Royal Soc. London A 411, 123–137.CrossRefGoogle Scholar
Amieux, J. C. and Dureigne, M. (1972), Analytical design of optimal nutation damper, J. Spacecraft Rock. 9(12), 934–935.CrossRefGoogle Scholar
Amiro, I. Y. and Prokopenko, N. Y. (1997), Nonlinear oscillations of cylindrical shells, Int Appl. Mech. 33(11), 903–908.CrossRefGoogle Scholar
Amsden A. A. and Harlow F. H. (1971), The SMAC method: a numerical technique for calculating incompressible fluid flows, Los Alamos Scientific Laboratory Rept. LA-4370.
Ananthakrishnan, P. and Yeung, R. W. (1994), Nonlinear interaction of a vortex pair with clean and surfactant-covered free surface, Wave Motion 19, 343–360.CrossRefGoogle Scholar
Anderson, J. G., Semercigil, S. E., and Turan, O. F. (2000a), A standing-wave-type sloshing absorber to control transient oscillations, J. Sound Vib. 232(5), 839–856.CrossRefGoogle Scholar
Anderson, J. G., Semercigil, S. E., and Turan, O. F. (2000b), An improved standing-wave-type sloshing absorber, J. Sound Vib. 235(4), 702–710.CrossRefGoogle Scholar
Anderson, J. G., Turan, O. F., and Semercigil, S. E. (2001), Experiments to control sloshing in cylindrical containers, J. Sound Vib. 240(2), 394–404.CrossRefGoogle Scholar
Andracchio C. R. and Abdalla K. L. (1968), An experimental study of liquid flow into a baffled spherical tank during weightlessness, NASA TM X-1526.
Paramasivam, Ang T. Balendra P. K. K., and Lee, S. L. (1982), Free vibration analysis of cylindrical liquid storage tanks, Int. J. Mech. Sci. 24, 47–59.Google Scholar
Anilkumar, A. V., Grugel, R. N., Shen, X. F., and Wang, T. G. (1993), Control of thermocapillary convection in a liquid bridge by vibrations, J. Appl. Phys. 73(9), 4165–4170.CrossRefGoogle Scholar
Anisimov, A. M. (1963), Axi-symmetrical vibrations of a spherical shell filled by a fluid, IVUZ Aviatsionnaya Teknika (Proc. of Institutions of Higher Education, Aviation Technology) 2, 51–58.Google Scholar
Anisimov, A. M. (1968), Application of finite-difference methods to the calculations of axially symmetric vibrations of shells of revolution with liquid, IVUZ Aviatsionnaya Teknika (Proc. of Institutions of Higher Education, Aviation Technology) 3, 23–30.Google Scholar
Anosov Yu, N. (1966), The nonlinear vibrations of a liquid in a cylindrical cavity, Soviet Appl. Mech. (Prikl. Mekh.) 2(10), 22–28.Google Scholar
Anzai T., Ikeuchi M., Igarashi K., and Okanuma T. (1981), Active nutation damping system of engine test satellite-IV, 22nd Congress Int. Astronaut. Fed., IAF 81–350.
Arai, M. (1986), Experimental and numerical studies of sloshing in liquid cargo tanks with internal structures, Ishikawajima-harima Heavy Indust. Eng. Rev. 19(2), 51–56.Google Scholar
Arai, M., Cheng, L. Y., and Inoue, Y. (1993), Numerical simulation of sloshing and swirling in cubic and cylindrical tank, J. Kansai Soc. Naval Arch, Japan N219, 97–101.Google Scholar
Arai, M.Cheng, L. Y., and Inoue, Y. (1994), 3-D numerical simulation of impact load due to liquid cargo sloshing, J. Soc. Naval Arch. Japan 171, 177–184.Google Scholar
Arbell, H. and Fineberg, J. (1998), Spatial and temporal dynamics of two interacting modes in parametrically driven surface waves, Phys. Rev. Lett. 81, 4384–4387.CrossRefGoogle Scholar
Arbell, H., and Fineberg, J (2000a), Two-mode rhomboidal states in driven surface waves, Phys. Rev. Lett. 84, 654–657.CrossRefGoogle Scholar
Arbell H., and Fineberg J. (2000b), Temporally harmonic oscillations in Newtonian fluids, Europhys. Lett. Reprint.
Armenio, V. and Rocca, M. L. (1996), On the analysis of sloshing of water in rectangular containers: numerical study and experimental validation, Ocean Eng. 23(8), 705–739.CrossRefGoogle Scholar
Armstrong G. L. and Kachigan K. (1961), Propellant sloshing, in Handbook of Astronautical Eng, H. H. Koelle, ed., Chapter 14, sections 14–27.
Arnold, R. N., and Warburton, G. B. (1949), Flexural vibrations of the walls of thin cylindrical shells having freely supported ends, Proc. Royal Soc. (London) A197, 238.CrossRefGoogle Scholar
Asaki, T. J. and Marston, P. L. (1995), Free decay of shape oscillations of bubbles acoustically trapped in water and seawater, J. Fluid Mech. 300, 149–167.CrossRefGoogle Scholar
Ashmore, J., Hosoi, A. E., and Stone, H. A. (2003), The effect of surface tension on rimming flows in a partially filled rotating cylinder, J. Fluid Mech. 479, 65–98.CrossRefGoogle Scholar
Aslam, M., Godden, W. G., and Scanline, D. T. (1979), Earthquake sloshing in annular and cylindrical tanks, ASCE J. Eng. Mech. Div. 105, 371–389.Google Scholar
Atluri, S. (1972), A perturbation analysis of nonlinear free flexural vibrations of a circular cylindrical shell, Int. J. Solids & Struct. 8, 549–569.CrossRefGoogle Scholar
Auli W., Fischer F. D., and Rammerstofer F. G. (1985), Uplifting of earthquake-loaded liquid-filled tanks, ASME PVP-987.
Au-Yang, M. K. (1976), Free vibration of fluid-coupled coaxial cylindrical shells of different lengths, J. Appl Mech. 34, 480–484.CrossRefGoogle Scholar
Aydelott J. C. (1995), Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility Program, AIAA Paper AIAA-95–1229.
Azuma, H. and Yoshinara, S. (1999), Three-dimensional large-amplitude drop oscillations: experiments and theoretical analysis, J. Fluid Mech. 393, 309–332.CrossRefGoogle Scholar
Babenko, K. I. and Yurev, S. P. (1980), On the shape of the surface of a capillary liquid in a vertical cylinder of arbitrary cross section, Dokl. Akad. Nauk. SSSR 251, 1326–1334.Google Scholar
Babitsky, V. I. (1966), Vibro-impact motions of pendulum with inertial suspension in vibrating container, Analysis and Synthesis of Automatic Machines, Moscow, Nauka, 20–30.Google Scholar
Babitsky, V. I. (1998), Theory of Vibro-Impact Systems and Applications, Berlin, Springer-Verlag.CrossRefGoogle Scholar
Babskii, V. G., Kopachevskii, N. D., Myshkis, A. D., Slobozhanin, L. A., and Tyuptsov, A. D. (1976a), The Hydrodynamics of Weightlessness, Moscow, Nauka.Google Scholar
Babskii V. G., Kopachevskii N. D., Myshkis A. D., Slobozhanin L. A., and Tyuptsov A. D. (1976b), Approximate methods in zero-gravity fluid mechanics, in Problems of Mathematical Physics and Functional Analysis, Kiev, Naukova Dumka, 83–94 (in Russian).
Babskii, V. G.Kopachevskii, N. D.Myshkis, A. D.Slobozhanin, L. A., and Tyuptsov, A. D. (1980), On some unresolved problems of zero gravity hydromechanics, Nonlin. Anal. Theo. Meth. Appl. 4(3), 607–621.CrossRefGoogle Scholar
Babu, S. S. and Bhattacharayya, S. K. (1996), Finite element analysis of fluid-structure interaction effect on liquid retaining structure due to sloshing, Comp. Struct. 59(6), 1165–1171.CrossRefGoogle Scholar
Bagdasaryan, G. E., and Gnuni, V. T. (1966), The parametric vibrations of a cylindrical shell filled with a liquid to different depths, Soviet Appl. Mech. (Prikl. Mekh.) 2(3), 21–26.Google Scholar
Bagno, A. M. and Guz, A. N. (1997), Elastic waves in prestressed bodies interacting with a liquid (review), Soviet Appl. Mech. (Prikl. Mekh.) 33(6), 3–39.Google Scholar
Baines, P. G. (1967), Forced oscillations of an enclosed rotating fluid, J. Fluid Mech. 30(3), 533–546.CrossRefGoogle Scholar
Baird, M. H. I. (1963), Resonance bubbles in a vertical liquid column, Can. J. Chem. Eng. 41, 52–56.Google Scholar
Balabukh L. I. (1966), Interaction of shells with a liquid and gas, Proc. All-Union Conf. on Theory of Shells and Plates, Baku, Moscow, Nauka, 935–944.
Balabukh, L. I. and Molchanov, A. G. (1967), Axi-symmetric oscillations of a spherical shell partially filled with fluid, Inzh. Zh. Mekh. Tverd. Tela 5, 56–61.Google Scholar
Balakirev, Y. G. (1967), Axi-symmetric oscillations of a shallow spherical shell containing a fluid, Inzh. Zh. Mekh. Tverd. Tela 5, 116–123.Google Scholar
Balendra, T., Ang, K. K., Paramasivam, P., and Lee, S. (1982a), Free vibration analysis of cylindrical liquid storage tanks, Int. J. Mech. Sci. 24(1), 47–59.CrossRefGoogle Scholar
Balendra, T., Ang, K. K., Paramasivan, P., and Lee, S. L. (1982b), Seismic design of flexible cylindrical liquid storage tanks, Earthquake Eng. Struct. Dyn. 10, 477–496.CrossRefGoogle Scholar
Balendra T. and Nash W. A. (1978), Earthquake analysis of a cylindrical liquid storage tank with a dome by finite element method, University of Massachusetts, Amherst, MA.
Balendra T. and Nash W. A. (1980), Seismic analysis of a cylindrical liquid storage tank with a dome by the finite element method, Century 2, ASME Pressure Vess. Piping Conf., San Francisco, 1.
Balendra, T., Wang, C. M., and Cheong, H. F. (1994), Effectiveness of tuned liquid column dampers for vibration control towers, J. Eng. Struct. 17(9), 668–675.CrossRefGoogle Scholar
Balendra, T., Wang, C. M., and Rakesh, G. (1998), Vibration control of tapered building using TLCD, J. Wind Eng. Indust. Aerodyn. 77/78, 245–257.CrossRefGoogle Scholar
Balendra, T., Wang, C. M., and Rakesh, G. (1999), Vibration control of various types of buildings using TLCD, J. Wind. Eng. Indust. Aerodyn. 83, 197–208.CrossRefGoogle Scholar
Balendra, T., Wang, C. M., and Yan, N. (2001), Control of wind-excited towers by active tuned liquid column damper, Eng. Struct. 23, 1054–1067.CrossRefGoogle Scholar
Bandyopadhyay K. K. (1991), Overview of seismic panel activities, Proc. 3rd DOE Natural Phenomena Hazards Mitigation Conf., St. Louis, MO, 423–429.
Banner, M. L. and Peregrine, D. H. (1993), Wave breaking in deep water, Annu. Rev. Fluid. Mech. 25, 373–397.CrossRefGoogle Scholar
Banner, M. L., and Tian, X. (1996), Energy and momentum growth rates in breaking water waves, Phys. Rev. Lett. 77, 2953–2956.CrossRefGoogle ScholarPubMed
Banning, D. A., Hengeveld, L. D., and Modi, V. J. (1966), Apparatus for demonstrating dynamics of sloshing liquids, Bull. Mech. Eng. Edu. 5, 65–70.Google Scholar
Bao, G. W., and Pascal, M. (1997), Stability of a spinning liquid-filled spacecraft, Archive Appl. Mech. 67(6), 407–421.CrossRefGoogle Scholar
Barber N. F. and Ghey G. (1969), Water Waves, The Wykeham Sci. Series, London.
Barnyak, O. M. (1997), Normal oscillations of a viscous liquid partially filling a circular horizontal channel, Int. Appl. Mech. 33(4), 335–343.CrossRefGoogle Scholar
Barnyak, M. Y. (1971a), Determination of natural frequencies and small oscillation forms of an ideal liquid in a vessel in weak gravitational field, Mat. Fiz. 9, 3–11 (in Russian).Google Scholar
Barnyak M. Y. (1971b), Approximate methods of solving problems on the statics and dynamics of a liquid in a vessel under near zero-gravity conditions, Ph.D. thesis, Inst. Mat. Akad. Nauk. Ukraine, Kiev, SSSR (in Russian).
Barnyak, M. Y. and Barnyak, O. M. (1996), Normal oscillations of viscous liquid in a horizontal channel, Int. Appl. Mech. 32(7), 560–566.CrossRefGoogle Scholar
Baron M. L. and Bleich H. H. (1959), The dynamic analysis of empty and partially full cylindrical tanks and transient response by mode analysis, Final Report, DASA No 1123A, 22 May 1959, Paul Weidlinger, ASTIA No 220236.
Baron, M. L. and Skalak, R. (1962), Free vibrations of fluid filled cylindrical shells, ASCE J. Eng. Mech. 88(1), 17–43.Google Scholar
Barr, R. A. and Ankudinov, V. (1977), Ship rolling: Its prediction and reduction using roll stabilization, Marine Tech. 14(1), 19–41.Google Scholar
Barron, R. and Chang, S. W. R. (1989), Dynamic analysis and measurement of sloshing of fluid in containers, Trans. ASME D.S. 111, 83–90.Google Scholar
Barton, D. C. and Parker, J. V. (1987), Finite element analysis of the seismic response of anchored and unanchored liquid storage tanks, Earthquake Eng. Struct. Dyn. 15, 299–322.CrossRefGoogle Scholar
Bass, D. W. (1998), Roll stabilization for small fishing vessels using paravenes and anti-roll tanks, Marine Technol. 35(2), 74–84.Google Scholar
Bass R. L. (1975), Dynamic slosh induced loads on liquid cargo tank bulkheads, Soc. Naval Archit. and Marine Eng., Rept. No R-19.
Basset, A. B. (1914), On the steady motion and stability of liquid in an ellipsoid vessel, Quart. J. Math. 45.Google Scholar
Bateman, H. (1944), Partial Differential Equations of Mathematical Physics, New York, Dover Publications.Google Scholar
Bauer H. F. (1957), Approximate effect of ring stiffener on the pressure distribution in an oscillating cylindrical tank partially filled with a liquid, ABMA, DA, Memo. No 264, DA-M-114, 12 September.
Bauer H. F. (1958a), Determination of approximate first natural frequencies of fluid in a spherical tank, ABMA, DA-TN-75–58.
Bauer H. F. (1958b), The influence of fluid in the tanks on the moment of inertia of Jupiter AM8, ABMA, DA-Memo No 333, DA-M-1–58, 31 March.
Bauer H. F. (1958c), Fluid oscillations in a circular cylindrical tank, Rept. No DA-TR-1–58, April.
Bauer H. F. (1958d), Fluid oscillations of a circular cylindrical tank performing lissajous-oscillations, ABMA, DA-TR-2–58, April.
Bauer H. F. (1958e), Fluid oscillations in a circular cylindrical tank due to bending of tank walls, ABMA, DA-TR-3–58, April.
Bauer H. F. (1958f), Fluid oscillations in a cylindrical tank with damping, ABMA, DA-TR-4–58, April.
Bauer H. F. (1958g), The moment of inertia of a liquid in a circular cylindrical tank, ABMA, Rept. No DA-TR-5–58, April.
Bauer H. F. (1958h), Damped fluid oscillations in circular cylindrical tank due to bending tank wall, ABMA, DA-TR-9–58, 16 May.
Bauer H. F. (1958i), Propellant sloshing, ABMA, DA-TR-18–58, 5 November.
Bauer H. F. (1959a), Force and moment of a liquid on a rigid fixed lid on the free fluid surface due to translational and rotational oscillation of a tank, ABMA, DA-TN-25–59, 20 March.
Bauer H. F. (1959b), Damped oscillations in a connected fluid system, ABMA, DA-TN-57–59, 1 May.
Bauer H. F. (1959c), The effective moment of inertia in roll of propellant and roll damping, ABMA, DA-TR-67–59, May.
Bauer H. F. (1960a), Mechanical model for the description of the liquid motion in a rectangular container, Lockheed Company, RN ER-8559, June.
Bauer H. F. (1960b), Theory of fluid oscillations in a circular cylindrical ring tank partially filled with liquid, NASA TN-D-557.
Bauer H. F. (1961a), The effects of interaction of structure, control, and propellant sloshing upon the stability of large space vehicles, MSFC, NASA, MTP-AERO-61–83.
Bauer, H. F. (1961b), Parametric study of the influence of propellant sloshing on the stability of spacecraft, Aero. /Space Sci. J. 28(10), 819–820.CrossRefGoogle Scholar
Bauer H. F. (1961c), Mechanical analogy of fluid oscillations in cylindrical tanks with circular and annular cross-section, MSFC, NASA, MTP-AERO61–4.
Bauer H. F. (1961d), Dynamics of liquid propellant vehicles, Proc. ONR/AIAA Symp. on Struct. Dynamics of High Speed Flight, 319–355 (Office of Naval Res., Los Angeles, CA).
Bauer H. F. (1962a), Theory of fluid oscillations in partially filled cylindrical containers, MSFC, NASA, MTP-AERO-62–1, January.
Bauer H. F. (1962b), Mechanical model of fluid oscillations in cylindrical containers and introduction of damping, MTP-AERO-62–16.
Bauer H. F. (1962c), The damping factor provided by flat annular ring baffles for free surface oscillations, MTP-AERO-62–81, November.
Bauer, H. F. (1963a), Tables and graphs of zero of cross product Bessel functions, MTP-AERO-63–50. Also J. Math. Computation 18, 128–135, 1964.Google Scholar
Bauer, H. F. (1963b), Stability boundaries of liquid propellant space-vehicles with sloshing, AIAA J. 1(7), 1583–1589.CrossRefGoogle Scholar
Bauer, H. F. (1963c), Theory of liquid sloshing in compartmented cylindrical tanks due to bending excitation, AIAA J. 1(7), 1590–1596.CrossRefGoogle Scholar
Bauer H. F. (1963d), The effect of propellant sloshing on the stability of an accelerometer controlled rigid vehicle, NASA TN-D-1831.
Bauer, H. F. (1963e), Liquid sloshing in a cylindrical quarter tank, AIAA J. 1(11), 2601–2606.CrossRefGoogle Scholar
Bauer H. F. (1964a), Fluid oscillations in the containers of a space vehicle and their influence on stability, NASA TR-R-187.
Bauer, H. F. (1964b), Fuel vibration in rocket containers and their influence on the overall stability, Zeit fur Flugweissenschaften 12(3/6), 85–101 and 222–229 (in German).Google Scholar
Bauer, H. F. (1964c), Discussion of ‘breathing vibrations of a partially filled cylindrical tank-linear theory’, J. Appl. Mech. 31(3), 569–570.CrossRefGoogle Scholar
Bauer, H. F. (1964d), Liquid sloshing in a 45 degree sector compartmented cylindrical tank, AIAA J. 2(4), 768–770.CrossRefGoogle Scholar
Bauer H. F. (1964e), Propellant oscillations in the containers of a roll oscillating space vehicle and moment of inertia of liquid, Proc. 5th Annual Struct. and Materials Conf., 184–190.
Bauer H. F. (1965a), The response of propellant in an arbitrary cylindrical tank due to single pulse excitation, in Developments in Theoretical and Appl. Mech.2, Shaw, W. A., ed., 351–383.Google Scholar
Bauer H. F. (1965b), Nonlinear propellant sloshing in a rectangular container of infinite length, North Amer. Avia. Inc., S&ID Report, SID 64–1593.
Bauer H. F. (1966a), Liquid behavior in the reservoir of the sound-suppressor system, NASA TN-D-3165.
Bauer, H. F. (1966b), Stability boundaries of liquid propelled elastic space-vehicles with sloshing, J. Spacecraft Rock. 3(2), 240–246.CrossRefGoogle Scholar
Bauer H. F. (1966c), Theory of liquid sloshing in a rectangular container, Rept. No ER-8390, Lockheed-Georgia Company, June.
Bauer, H. F. (1966d), Comment on moment of inertia and damping of liquids in baffled cylindrical tanks, J. Spacecraft Rock. 3(6), 957–959.Google Scholar
Bauer, H. F. (1966e), Nonlinear mechanical model for the description of propellant sloshing, AIAA J. 4(9), 1662–1668.CrossRefGoogle Scholar
Bauer, H. F. (1966f), Response of liquid in a rectangular container, ASCE J. Eng. Mech. Div. 92, 1–23.Google Scholar
Bauer H. F. (1967), Nonlinear propellant sloshing in a rectangular container of infinite length, in Developments in Theoretical and Appl Mech, 3, Shaw, W. A., ed., New York, Pergamon Press, 725–759.Google Scholar
Bauer H. F. (1968a), Response of the fuel in a rectangular container to a roll maneuver with numerical examples for C-5A-wing, Rept. No SMN-217, Lockheed-Georgia Company.
Bauer H. F. (1968b), Dynamics of the airplane with fuel sloshing, Rept. No SMN-246, Lockheed-Georgia Company.
Bauer H. F. (1969a), Fuel sloshing in accelerating rectangular container, Rept. No SMN-282, Lockheed-Georgia Company.
Bauer, H. F. (1969b), Note on linear hydroelastic sloshing, Zeit. Ang. Math. Meck. (ZAMM) 49(10), 577–589.CrossRefGoogle Scholar
Bauer, H. F. (1970), Hydroelastic oscillations in an upright circular cylindrical container, (in German), Zeitsch. fur Flug. 18(4), 117–134.Google Scholar
Bauer, H. F. (1971a), Hydroelastic vibrations of a uniformly rotating infinitely long circular cylindrical container, Acta Mech. 12(3/4), 307–326.CrossRefGoogle Scholar
Bauer, H. F. (1971b), Migration of a large gas-bubble under the lack of gravity in a rotating liquid, AIAA J. 9, 1426–1427.CrossRefGoogle Scholar
Bauer, H. F. (1972), On the destabilizing effect of liquids in various vehicles, part I, Vehicle Syst. Dyn., Int. J. Vehicle Mech. and Mobility 1, 227–260.CrossRefGoogle Scholar
Bauer, H. F. (1973), On the destabilizing effect of liquids in various vehicles, part II, Vehicle Syst. Dyn., Int. J. Vehicle Mech. and Mobility 2, 33–48.CrossRefGoogle Scholar
Bauer, H. F. (1981a), Dynamic behavior of an elastic separating wall in vehicle containers: part I, Int. J. Vehicle Des. 2(1), 44–77.Google Scholar
Bauer, H. F. (1981b), Hydroelastic vibrations in a rectangular container, Int. J. Solids Struct. 17, 639–652.CrossRefGoogle Scholar
Bauer, H. F. (1981c), Flüssigkeitsschwingungen mit freir oberfläche in keilförmigen behälten, Acta Mech. 38, 31–34.CrossRefGoogle Scholar
Bauer, H. F. (1982a), Coupled oscillations of a solidly rotating liquid bridge, Acta Astron. 9, 547–563.CrossRefGoogle Scholar
Bauer, H. F. (1982b), Dynamic behavior of an elastic separating wall in vehicle container, Part I. I., Int. J. Vehicle Des. 3, 307–332.Google Scholar
Bauer, H. F. (1982c), Oscillations of immiscible liquids in free space or in spherical containers in zero gravity environment, Ing. Arch. 51, 363–381.CrossRefGoogle Scholar
Bauer, H. F. (1982d), Rotating finite liquid systems under zero gravity, Forschung im Ingenieurwesen 48, 159–179.CrossRefGoogle Scholar
Bauer, H. F. (1982e), Velocity distribution due to Marangoni-effect for angular temperature field along infinite liquid bridge, Forschung im Ingenieurwesen 48, 50–55.CrossRefGoogle Scholar
Bauer, H. F. (1982f), Marangoni-convection in a freely floating liquid sphere due to axial temperature field, Ing. Arch. 52, 263–273.CrossRefGoogle Scholar
Bauer, H. F. (1982g), Velocity distribution due to thermal Marangoni-effect in a liquid column under zero gravity environment, Zeit. Angew. Math. Mech. (ZAMM) 62, 471–482.CrossRefGoogle Scholar
Bauer, H. F. (1982h), Velocity distribution in a liquid bridge due to thermal Marangoni-effect, Zeit. fur Flugwissenschaften und Weltraumforschung 6, 252–260.Google Scholar
Bauer, H. F. (1982i), Sloshing in conical tanks, Acta Mech. 43(3/4), 185–200 (in German).CrossRefGoogle Scholar
Bauer, H. F. (1983a), Natural damped frequencies of an infinitely long column of immiscible viscous liquids, Forsch. Ing. Wes. 49, 117–126.CrossRefGoogle Scholar
Bauer, H. F. (1983b), Surface and interface oscillations of freely floating spheres of immiscible viscous liquids, Ing. Arch. 53, 371–383.CrossRefGoogle Scholar
Bauer, H. F. (1983c), Marangoni-effect velocity distribution due to time-oscillatory temperature gradients in zero gravity environment, Acta Mech. 46, 167–187.CrossRefGoogle Scholar
Bauer, H. F. (1983d), Liquid surface oscillations in a viscous liquid column induced by temperature fluctuations, Forschung im Ingenieurwesen 49, 58–65.CrossRefGoogle Scholar
Bauer, H. F. (1983e), Surface oscillations due to the Marangoni-effect in the freely floating sphere, Ing. Arch. 53, 275–287.CrossRefGoogle Scholar
Bauer, H. F. (1983f), Transient thermal Marangoni-convection in a liquid bridge, Zeit. fur Flugwissenschaften und Weltraumforschung 7, 120–133.Google Scholar
Bauer, H. F. (1983g), Liquid surface oscillations induced by temperature fluctuations, Zeit. fur Flugwissenschaften und Weltraumforschung 7, 274–278.Google Scholar
Bauer, H. F. (1983h), Transient convection due to the sudden change of the temperature gradient, Forschung im Ingenieurwesen 49, 181–188.CrossRefGoogle Scholar
Bauer, H. F. (1984a), Oscillations of immiscible liquids in a rectangular container: a new damper for excited structures, J. Sound Vib. 93(1), 117–133.CrossRefGoogle Scholar
Bauer, H. F. (1984b), Natural damped frequencies of an infinitely long column of immiscible viscous liquids, Zeit. Angew. Math. Mech. (ZAMM) 64, 475–490.CrossRefGoogle Scholar
Bauer, H. F. (1984c), Free liquid surface response induced by fluctuations of thermal Marangoni convection, AIAA J. 22(3), 421–428.CrossRefGoogle Scholar
Bauer, H. F. (1984d), Forced liquid oscillations in paraboloid-containers, Zeit. fur Flugwissenschaften und Weltraumforschung 8, 49–55.Google Scholar
Bauer, H. F. (1984e), Surface and interface oscillations of a rotating viscous liquid column of immiscible liquids, Forsch. Ing. Wes. 50, 21–31.CrossRefGoogle Scholar
Bauer, H. F. (1984f), Combined Marangoni and natural convection in a variable micro-gravity field, Mech. Res. Comm. 11, 11–20.CrossRefGoogle Scholar
Bauer, H. F. (1984g), A theoretical study of Marangoni convection in a liquid column in zero gravity, Acta Astron. 11, 301–311.CrossRefGoogle Scholar
Bauer, H. F. (1984h), Combined thermo-capillary and natural convection and g-jitter in a constant micro-gravity field, Forsch. Ing. Wes. 50, 169–200.CrossRefGoogle Scholar
Bauer, H. F. (1985a), Surface and interface oscillations in an immiscible spherical visco-elastic system, Acta Mech. 55, 127–149.CrossRefGoogle Scholar
Bauer, H. F. (1985b), Induced free liquid surface oscillations in a visco-elastic liquid column due to angular temperature fluctuations, Forsch. Ing. Wes. 51, 133–140.CrossRefGoogle Scholar
Bauer, H. F. (1985c), Combined residual natural and Marangoni convection in a liquid sphere subjected to a constant and variable micro-gravity field, Zeito Angew. Math. Mech. (ZAMM) 65, 461–470.CrossRefGoogle Scholar
Bauer, H. F. (1986a), Free surface- and interface oscillations of an infinitely long visco-elastic liquid column, Acta Astron. 13(1), 9–22.CrossRefGoogle Scholar
Bauer, H. F. (1986b), Coupled frequencies of a hydroelastic viscous liquid system, Int. J. Solids and Structures 22, 1471–1484.CrossRefGoogle Scholar
Bauer, H. F. (1986c), Induced free surface oscillations in a freely floating visco-elastic liquid sphere imposed to an oscillatory temperature gradient, Forsch. Ing. Wes. 52, 81–88.CrossRefGoogle Scholar
Bauer, H. F. (1986d), Thermo-capillary-induced axisymmetric free liquid surface oscillations in a visco-elastic column, Zeit. Angew. Math. Mech. (ZAMM) 66, 283–295.CrossRefGoogle Scholar
Bauer, H. F. (1987a), Coupled frequencies of a hydroelastic system consisting of an elastic shell and frictionless liquid, J. Sound Vib. 113, 217–232.CrossRefGoogle Scholar
Bauer, H. F. (1987b), Hydroelastic oscillations of a viscous infinitely long liquid column, J. Sound Vib. 119(2), 249–265.CrossRefGoogle Scholar
Bauer, H. F. (1987c), Natural frequencies and stability of immiscible cylindrical z-independent liquid systems, Applied Micro Gravity Techn. 1, 11–26.Google Scholar
Bauer, H. F. (1987d), Thermo-capillary and residual natural convection in an orbiting spherical liquid system, Forsch. Ing. Wes. 53, 83–93.CrossRefGoogle Scholar
Bauer, H. F. (1988a), Nonlinear oscillations of axially independent liquid column under zero gravity environment, Forsch. Ing. Wes. 54, 82–93.CrossRefGoogle Scholar
Bauer, H. F. (1988b), Coupled frequencies of a rotating hydroelastic shell–liquid system under zero gravity, J. Fluids Struct. 2, 407–423.CrossRefGoogle Scholar
Bauer, H. F. (1988c), Natural frequencies and stability of immiscible spherical liquid systems, Applied Micro Gravity Techn. 1, 90–102.Google Scholar
Bauer, H. F. (1988d), Marangoni convection in finite cylindrical liquid bridges, Zeit. fur Flugwissenschaften und Weltraumforschung 12, 332–340.Google Scholar
Bauer, H. F. (1989a), Response of a spinning liquid column to axial excitation, Acta Mech. 77(1–4), 153–170.CrossRefGoogle Scholar
Bauer, H. F. (1989b), Natural frequencies and stability of circular cylindrical immiscible liquid systems, Appl. Microgravity Tech. II., 27–44.Google Scholar
Bauer, H. F. (1989c), Response of an annular cylindrical liquid column in zero gravity, Forschung im Ingenieurwesen 55, 79–88.CrossRefGoogle Scholar
Bauer, H. F. (1989d), Damped response of an axially excited rotating liquid bridge under zero gravity, Acta Mech. 79, 295–301.CrossRefGoogle Scholar
Bauer, H. F. (1989e), Response of a finite rotating annular liquid layer to axial excitation, Forschung im Ingenieurwesen 55, 120–127.CrossRefGoogle Scholar
Bauer, H. F. (1989f) Vibrational behavior of a viscous column with a free liquid surface, Zeit. fur Flugwissenschaften und Weltraumforschung 13, 248–253.Google Scholar
Bauer, H. F. (1989g), Marangoni convection in rotating liquid systems, Applied Micro Gravity Techn. 2, 142–157.Google Scholar
Bauer, H. F. (1990a) Response of a liquid column to one-sided axial excitation in zero gravity, Forschung im Ingenieurwesen 56, 14–21.CrossRefGoogle Scholar
Bauer, H. F. (1990b), Axial response and transient behavior of a cylindrical liquid column in zero gravity, Zeit. fur Flugwissenschaften und Weltraumforschung 14, 174–182.Google Scholar
Bauer, H. F. (1990c), Response of a liquid column to unequal axial excitations under zero gravity, Applied Micro Gravity Techn. 3, 34–40.Google Scholar
Bauer, H. F. (1990d), Oscillatory response of a liquid column to counter rotational excitation, J. Sound Vib. 142, 125–133.CrossRefGoogle Scholar
Bauer, H. F. (1990e), Response of a liquid column with respect to oscillatory rotational top and bottom excitation, J. Sound Vib. 142, 379–390.CrossRefGoogle Scholar
Bauer, H. F. (1990f), Response of a viscous liquid to various pitch excitations, Acta Astron. 21, 553–569.CrossRefGoogle Scholar
Bauer, H. F. (1990g), Response of a liquid column to counter-directional excitation under zero gravity, J. Spacecraft Rock. 27, 675–680.Google Scholar
Bauer, H. F. (1990h), Response of an annular cylindrical liquid column to various axial excitations in zero gravity, Forschung im Ingenieurwesen 56, 183–188.CrossRefGoogle Scholar
Bauer, H. F. (1990i), Response of a viscous liquid column to axial excitation in zero gravity, Zeit. Angew. Math. Mech. (ZAMM) 70, 359–369.CrossRefGoogle Scholar
Bauer, H. F. (1990j), Response of differently axial-excited spinning liquid columns, Acta Mech. 84, 155–173.CrossRefGoogle Scholar
Bauer, H. F. (1990k), Response of a spinning liquid column to pitch excitation, Acta Mech. 84, 1–12.CrossRefGoogle Scholar
Bauer, H. F. (1991a), Axi-symmetric natural frequencies and response of a spinning liquid column under strong surface tension, Acta Mech. 90, 21–35.CrossRefGoogle Scholar
Bauer H. F. (1991b), Liquid oscillations under strong surface tension in a circular cylindrical container, Tech. Rept. LRT-WE-9-FB-26–1991, Universitat der Bundeswehr Muenchen, Neubiberg.
Bauer, H. F. (1991c), Liquid sloshing response in a spinning container due to pitching excitation, Zeit. fur Flugwissenschaften und Weltraumforschung 15, 386–392.Google Scholar
Bauer, H. F. (1991d), Response of a viscous liquid column to pitching and roll excitations, Zeit. Angew. Math. Mech. (ZAMM) 71, 479–491.CrossRefGoogle Scholar
Bauer, H. F. (1991e), Response of a viscous liquid layer around a center-core to axial excitation in zero gravity, Forschung im Ingenieurwesen 57, 14–21.CrossRefGoogle Scholar
Bauer, H. F. (1991f), Response of a rotating finite annular liquid layer to various axial excitations in zero gravity, J. Sound Vib. 149, 219–234.CrossRefGoogle Scholar
Bauer, H. F. (1991g), Response of a viscous liquid layer to pitching- and roll excitations in zero gravity environment, Forschung im Ingenieurwesen 57, 18–131.Google Scholar
Bauer, H. F. (1991h), Natural axisymmetric frequencies of cylindrical liquid column with anchored free surface, JSME Int. J. Ser. III 34, 475–480.Google Scholar
Bauer, H. F. (1991i), Response of a non-viscous liquid column and layer with anchored liquid surface to axial excitation, JSME Int. J. Ser. II 34, 474–481.Google Scholar
Bauer, H. F. (1991j), Liquid sloshing response in a spin-stabilized missile or satellite due to axial excitation, Zeit. fur Flugwissenschaften und Weltraumforschung 15, 252–256.Google Scholar
Bauer, H. F. (1992a), Response of a viscous liquid column with anchored edges to axial excitation, Zeit. fur Flugwissenschaften und Weltraumforschung 16, 42–48.Google Scholar
Bauer, H. F. (1992b), Asymmetric natural damped frequencies of a rotating infinitely long viscous liquid column, Zeit. for Flugwissenshaften and Weltraumforschung 16, 317–324.Google Scholar
Bauer, H. F. (1992c), Natural damped frequencies and axial response of a rotating finite viscous liquid column, Acta Mech. 93, 29–52.CrossRefGoogle Scholar
Bauer, H. F. (1992d), Liquid oscillations in a circular container with “sliding” contact line, Forsch. Ingenieurwes. – Engineering Research 58, 240–251.CrossRefGoogle Scholar
Bauer, H. F. (1992e), Hydroelstic oscillations of rotating liquid–structure systems in zero gravity, J. Fluid Struct. 6, 603–632.CrossRefGoogle Scholar
Bauer, H. F. (1992f), Liquid oscillations of spherical and conical systems with anchored edges under zero gravity, Archive Appl. Mech. 62, 517–529.Google Scholar
Bauer, H. F. (1992g), Response of a liquid bridge with rotationally excited bottom, ASME J. Appl Mech. 59, 191–195.CrossRefGoogle Scholar
Bauer, H. F. (1992h), Response of a viscous annular liquid layer in zero gravity to different excitations of the rigid boundary plates, Appl Sci. Res. 49, 283–309.CrossRefGoogle Scholar
Bauer, H. F. (1992i), Response of a viscous spherical and conical liquid system to axial excitation, Micro Gravity Sci. Techn. 5, 35–42.Google Scholar
Bauer, H. F. (1992j), The effect of rotation on the vibrational and thermocapillary behavior of liquid columns, Micro Gravity Sci. Techn. 3, 124–133.Google Scholar
Bauer, H. F. (1992k), Asymmetric natural damped frequencies of a rotating infinitely long viscous liquid column, Zeit. fur Flugwissenschaften und Weltraumforschung 6, 317–324.Google Scholar
Bauer, H. F. (1992l), Response of axially excited spherical and conical liquid systems with anchored edges, Forsch. Ingenieurwes. 58, 96–103.CrossRefGoogle Scholar
Bauer, H. F. (1993a), Frequencies of a hydroelastic rectangular system, Forsch. Ingenieurwes. – Engineering Research 59, 18–28.CrossRefGoogle Scholar
Bauer, H. F. (1993b), Natural frequencies and response of spinning liquid column with apparently sliding contact line, Acta Mech. 97, 115–122.CrossRefGoogle Scholar
Bauer, H. F. (1993c), Natural damped frequencies of a rotating viscous cylindrical liquid layer, Forsch. Ingenieurwes. – Engineering Research 59, 217–227.CrossRefGoogle Scholar
Bauer, H. F. (1993d), Theoretical micro-gravity fluid dynamics, Proc. Symp. Aerospace and Fluid Science, Inst. Fluid Sci., Tokyo University, 30–49.Google Scholar
Bauer, H. F. (1993e), Axial response of differently excited anchored viscous liquid bridges in zero gravity, Ing. Archiv. – Arch. Appl. Mech. 63, 322–336.CrossRefGoogle Scholar
Bauer, H. F. (1993f), Marangoni-convection in a rotating liquid container, Wärme-und Stoffübertragung 28, 131–138.CrossRefGoogle Scholar
Bauer, H. F. (1994a), Axisymmetric natural frequencies of a rotating infinitely long viscous liquid column, Zeit. Angew. Math. Mech. (ZAMM) 74, 201–210.CrossRefGoogle Scholar
Bauer, H. F. (1994b), Response of an anchored viscous liquid layer to axial excitation in zero gravity, Zeit. Angew. Math. Mech. (ZAMM) 74, 369–383.CrossRefGoogle Scholar
Bauer, H. F. (1994c), Transient response of a viscous liquid bridge of finite length and anchored edges, Micro Gravity Sci. Techn. VII(3), 258–265.Google Scholar
Bauer, H. F. (1994d), Response of a rotating anchored finite liquid layer to axial excitation, Acta Astron. 32, 191–197.CrossRefGoogle Scholar
Bauer, H. F. (1994e), Natural damped frequencies and axial response of a sloshing rotating finite viscous liquid layer in a cylindrical container, Forsch. Ingenieurwes. – Engineering Research 60, 193–205.CrossRefGoogle Scholar
Bauer, H. F. (1994f), Transient response of a viscous and anchored liquid bridge to an axial pulse, Zeit. fur Flugwissenschaften und Weltraumforschung 18, 113–119.Google Scholar
Bauer, H. F. (1995a), Coupled frequencies of a liquid in a circular cylindrical container with elastic liquid surface cover, J. Sound Vib. 180, 689–704.CrossRefGoogle Scholar
Bauer, H. F. (1995b), Liquid oscillations in a spherical system with sliding edges bounded by two conical solid surfaces in zero gravity, Zeit. Angew. Math. Mech. (ZAMM) 75, 141–151.CrossRefGoogle Scholar
Bauer H. F. (1995c), Free fall liquid column dynamics in a fall tower, Festschrift zum 70. Geburtstag von Herrn Professor J. Siekmann, Universitat Gesamthochschule Essen, 229–242.
Bauer, H. F. (1995d), Oscillations of a frictionless liquid with anchored edges in a circular cylindrical ring in zero gravity, Micrograv. Quart. 5, 75–90.Google Scholar
Bauer H. F. (1999), Oscillations of non-viscous liquid in various container geometries, Forschungbericht LRT-WE-9-FB-1.
Bauer, H. F. and Buchholz, A. (1998), Marangoni convection in a rectangular container, Forsch. Ingenieurwes. – Engineering Research 63, 339–348.CrossRefGoogle Scholar
Bauer, H. F., Chang, S. S., and Wang, J. T. S. (1971), Nonlinear-liquid motion in a longitudinally excited container with elastic bottom, AIAA J. 9(12), 2333–2339.Google Scholar
Bauer, H. F. and Chiba, M. (1998), Free hydroelastic vibrations of a liquid attached to a cylindrical sector shell in a zero gravity condition, ASME J. Vib. Acoust. 120, 54–62.Google Scholar
Bauer, H. F. and Chiba, M. (2000a), Hydroelastic viscous oscillations in a circular cylindrical container with an elastic cover, J. Fluids Struct. 14, 917–936.CrossRefGoogle Scholar
Bauer, H. F. and Chiba, M. (2000b), Interaction of elastic container bottom with free surface of a viscous liquid in a cylindrical container, ISTS–Japan Soc Aeron. Space Sciences C-5, 1–6.Google Scholar
Bauer, H. F. and Chiba, M. (2001), Viscous hydroelastic vibrations in a cylindrical container with an elastic bottom, J. Sound Vib. 247, 33–57.CrossRefGoogle Scholar
Bauer, H. F., Chiba, M., and Sasaki, H. (1998), Influence of attached liquid layers on free hydroelastic vibrations of a cylindrical sector in a zero gravity condition, J. Sound Vib. 214(2), 245–260.Google Scholar
Bauer, H. F., Chiba, M., and Watanabe, H. (2002), Hydroelastic coupled vibrations in a cylindrical container with a membrane bottom containing liquid with surface tension, J. Sound Vib. 251, 717–740.Google Scholar
Bauer H. F., Clark C. D., and Woodward J. H. (1965), Analytical mechanical model for the description of the rotary propellant sloshing motion, Final Report, Contract NAS8–11159, Eng. Experiment Station, Georgia Tech., Atlanta.
Bauer, H. F. and Eidel, W. (1986), Nonlinear liquid oscillations in spherical systems under zero gravity, Acta Mech. 65, 107–126.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1987a), Vibration of a visco-elastic spherical immiscible liquid system, Zeit. Ang. Math. Mech. (ZAMM) 67, 525–535.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1987b), Marangoni-convection in a spherical liquid system, Acta Astron. 15, 275–290.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1987c), Induced surface oscillations due to time oscillatory temperature distribution in a viscoelastic spherical system, Ing. Arch. 57, 209–222.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1988a), Non-linear hydroelastic vibrations in rectangular containers, J. Sound Vib. 125(1), 93–114.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1988b), Non-linear liquid motion in conical containers, Acta Mech. 73, 11–31.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1988c), Non-linear liquid oscillations in paraboloidal containers, Zeit. fur Flugwissenschaften und Weltaumforschung 12, 246–252.Google Scholar
Bauer, H. F. and Eidel, W. (1988d), Nonlinear oscillations of an inviscid liquid column under zero gravity, Ing. Archiv. 58, 276–284.Google Scholar
Bauer, H. F. and Eidel, W. (1989a), Nonlinear oscillations of a non-viscous cylindrical liquid system in weightlessness condition, Zeit. Ang. Math. Phys. (ZAMP) 40(4), 510–525.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1989b), Liquid oscillations in a prolate spheroidal container, Ing. Archiv. 59(5–6), 371–381.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1989c), Small amplitude liquid oscillations in a rectangular container under zero gravity, Aeron. J., 379–386, also L'Aeronautique et L'Astronautique 139, 35–42.Google Scholar
Bauer, H. F. and Eidel, W. (1990), Linear liquid oscillations in a cylindrical container under zero gravity, Appl. Microgravity Tech. II 4, 212–220.Google Scholar
Bauer, H. F. and Eidel, W. (1991a), Vibrations of a cylindrical liquid column under the influence of a steady axial micro gravity field, Micro Gravity Sci. Techn. 4, 238–245.Google Scholar
Bauer, H. F. and Eidel, W. (1991b), Axial response of an amphora-type liquid column, Acta Astron. 25, 699–707.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1991c), Vibrational behavior of amphora liquid column in micro-gravity fields, Micro Gravity Sci. Techn. 4, 72–74.Google Scholar
Bauer, H. F. and Eidel, W. (1991d), Stationary geometry of liquid column and liquid drop under the influence of a temperature gradient in zero gravity, Zeit. fur Flugwissenschaften und Weltaumforschung 15, 297–299.Google Scholar
Bauer, H. F. and Eidel, W. (1992), Nonlinear axial vibrations of a cylindrical liquid column in zero gravity, Zeit. Ang.Math. Phys. (ZAMP) 43, 726–741.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1993a), Hydroelastic vibrations in a circular cylindrical container with flexible bottom in zero gravity, J. Fluid. Struct. 7, 783–802.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1993b), Hydroelastic vibrations in a rectangular container under zero gravity, Micrograv. Quart. 3, 7–16.Google Scholar
Bauer, H. F. and Eidel, W. (1993c), Natural frequencies of a spinning amphora-type liquid column, J. Sound Vib. 167, 331–346.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1994), Response of a solidly rotating amphora-type liquid column to axial excitation, Acta Astron. 32, 113–119.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1995), Anchored-edge pitching response of a spinning frictionless liquid column due to bottom and/or top excitation, Forschung im Ingenieurwesen – Engineering Research 61, 258–270.Google Scholar
Bauer, H. F. and Eidel, W. (1996a), Response of an anchored frictionless rotating liquid column to various excitations, Zeit. fur Flugwissenschaften und Weltaumforschung 20, 39–48.Google Scholar
Bauer, H. F. and Eidel, W. (1996b), Pitching response of an anchored liquid bridge to bottom and/or top disc excitation, Zeit. Angew. Math. Mech. (ZAMM) 76, 127–143.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1996c), Axisymmetric damped frequencies of a rotating finite visco-elastic liquid column, Acta Astron. 38, 689–698.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1996d), Viscous response of an anchored spinning liquid column to various axial excitations, Acta Mech. 116, 153–170.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1996e), Natural damped frequencies of a rotating visco-elastic infinite column, Forschung im Ingenieurwesen – Engineering Research 62(7/8), 214–227.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1997a), Axisymmetric viscous liquid oscillations in a cylindrical container, Forschung im Ingenieurwesen – Engineering Research 63, 189–201.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1997b), Axisymmetric oscillations in a slowly rotating cylindrical container filled with viscous liquid, Forschung im Ingenieurwesen – Engineering Research 63, 215–223.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1997c), Oscillations of a viscous liquid in a cylindrical container, Aerospace Sci. Tech. 8, 519–532.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1997d), Oscillations and response of a viscous liquid with anchored edges in a cylindrical ring in zero gravity, Micrograv. Quart. 7, 59–88.Google Scholar
Bauer, H. F. and Eidel, W. (1998a), Axisymmetric thermocapillary convection in a slowly rotating annular cylindrical container, Heat Mass Trans. 34(1), 79–90.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1998b), Transient motion of a viscous liquid with free surface in a cylindrical container, Zeit. Angew. Math. Mech. (ZAMM) 79, 97–106.3.0.CO;2-B>CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1998c), Marangoni convection in an annular cylindrical tank, Heat Mass Transf. 33, 457–464.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1998d), Oscillatory thermo-capillary convection in a spinning cylindrical liquid bridge under micro-gravity condition, Forsch. Ingenieurwes. – Engineering Research 64, 197–214.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1999a), Axisymmetric natural damped frequencies of a viscous liquid in a circular cylindrical container: an alternative semi-analytical solution, Forschung im Ingenieurwesen – Engineering Research 65, 191–199.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1999b), Free oscillations and response of a viscous liquid in a cylindrical container, Aerospace Sci. Tech. 3, 495–512.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (1999c), Frictionless liquid sloshing in circular cylindrical container configurations, Aerospace Sci. Tech. 3(5), 301–311.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (2000), Free and forced oscillations of a frictionless liquid in a long rectangular tank with structural obstructions at the free liquid surface, Arch. Appl. Mech. 70(8/9) 550–560.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (2002a), Linear response of a viscous liquid to translational oscillations, Forsch. Ing. Wes. 67, 72–83.CrossRefGoogle Scholar
Bauer, H. F. and Eidel, W. (2002b), Axisymmetric damped natural frequencies in a slowly spinning cylindrical container filled with viscous liquid, Forsch. Ing. Wes. 67, 93–99.CrossRefGoogle Scholar
Bauer H. F., Hsu T. M., and Wang J. T.S. (1967), Liquid sloshing in elastic containers, NASA CR-882, September.
Bauer, H. F., Hsu, T. M., and Wang, J. T. S. (1968), Interaction of a sloshing liquid with elastic containers, J. Basic Eng., Series D 68, 373–377.CrossRefGoogle Scholar
Bauer, H. F. and Kammerer, L. (1992), Natural frequencies and axial response of a liquid layer under the influence of an axial steady micro-gravity field, Forschung im Ingenieurwesen 58, 26–34.CrossRefGoogle Scholar
Bauer, H. F. and Kammerer, L. (1993), Natural frequencies and axial response of a spinning liquid layer in micro-gravity field, Zeit. Ang. Math. Phys. (ZAMP) 44, 348–369.CrossRefGoogle Scholar
Bauer H. F. and Knölker E. (1981), Theoretische und experimentelle bestimmung der eigenfrequenzen in einem teilweise gefüllten elliptischen zylinder. Diploma thesis, Hochschule der Bundeswehr München, Intitute für Raumfahrttechnik.
Bauer, H. F. and Komatsu, K. (1994a), Coupled frequencies of a hydroelastic system of an elastic two-dimensional sector-shell and frictionless liquid in zero gravity, J. Fluids Struct. 8, 817–831.CrossRefGoogle Scholar
Bauer, H. F. and Komatsu, K. (1994b), Response of an anchored frictionless liquid bridge to pitching bottom and/or top excitation, Forschung im Ingenieurwesen – Engineering Research 60, 237–243.CrossRefGoogle Scholar
Bauer, H. F. and Komatsu, K. (1998), Vibration of a hydroelastic system consisting of a sector shell and viscous liquid in zero gravity, J. Fluids Struct. 12, 367–385.CrossRefGoogle Scholar
Bauer, H. F. and Komatsu, K. (2000), Coupled frequencies of a frictionless liquid in a circular cylindrical tank with an elastic partial surface cover, J. Sound Vib. 230(5), 1147–1163.CrossRefGoogle Scholar
Bauer H. F. Langbein D., Falk F., Grossbach R., Heide W., Meseguer J., Perales J. M., and Sanz A. (1994), LICOR-Liquid columns' resonance, Proc. Norderney Symp. Scientific Results of German Spacelab Mission D-2, P. R. Sahm, M. H. Keller, and B. Schiene, eds., 209–219.
Bauer, H. F. and Offenbach, D. (1986), Thermo-capillary convection in a semi-spherical drop, Zeit. fur Flugwissenschaften und Weltaumforschung 10, 92–96.Google Scholar
Bauer H. F. and Reinfurth, MH (1959), Oscillations in a connected fluid system, ABMA DA-TN-52–59, 9 April.
Bauer, H. F. and Siekmann, J. (1969), Note on linear hydroelastic sloshing, Zeit. Angew. Math. Mech. (ZAMM) 49, 577–589.CrossRefGoogle Scholar
Bauer, H. F. and Siekmann, J. (1971a), Dynamic interaction of liquid with elastic structure of a circular cylindrical container, Ing. Archiv. 40, 266–280.CrossRefGoogle Scholar
Bauer, H. F. and Siekmann, J. (1971b), On the shape of a rotating fluid system consisting of a gas bubble enclosed in a liquid globe, Zeit. Ang. Math. Phys. (ZAMP) 22, 532–542.CrossRefGoogle Scholar
Bauer, H. F. and Siekmann, J., and Wang, J. T. S. (1968), Axi-symmetric hydroelastic sloshing in an annular cylindrical container, J. Spacecraft Rock. 5(8), 981–983.CrossRefGoogle Scholar
Bauer, H. F. and Strasser, U. (1993), Marangoni-convection in a rotating liquid column, Micro Gravity Sci. Techn. VI(3), 164–175.Google Scholar
Bauer H. F. and Villenueva J. (1966), Theory of liquid sloshing in a rectangular container with numerical examples for C-45A wing, Lockheed-Georgia Co., Rept. No ER 8390.
Bauer H. F. and Villenueva J. (1967a), Theory of liquid sloshing in a rectangular container with numerical examples for C-45A wing, Lockheed-Georgia Co., Marietta, G Rept. No ER-8790.
Bauer H. F. and Villenueva J. (1967b), Mechanical model for the description of the liquid motion in a rectangular container with numerical examples for C-45A wing, Lockheed-Georgia Co., Marietta, G Rept No. ER-8559.
Bauer, H. F., Wang, J. T. S., and Chen, P. Y. (1972), Axisymmetric hydroelastic sloshing in a circular cylindrical container, The Aeronautical J. of the Aeron. Soc. 76, 704–712.Google Scholar
Beal T. R., Coale C. W., and Nagano M. (1965), Influence of shell inertia and bending stiffness on the axi-symmetric modes of a partially filled cylindrical tank, AIAA Paper No 65–412, AIAA Annual Meeting.
Beam R. M. and Guist L. R. (1967), The axially symmetric response of an elastic shell partially filled with liquid, NASA TN-D-3877, February.
Bechhoefer, J. (1996), A simple model of Faraday waves, Am. J. Phys. 64(12), 1482–1487.CrossRefGoogle Scholar
Bechhoefer, J., Ego, V., Manneville, S., and Johnson, B. (1995), An experimental study of the onset of parametrically pumped surface waves in viscous fluid, J. Fluid Mech. 288, 325–350.CrossRefGoogle Scholar
Beig H. G. (1984), Study of slosh dynamics of fluid filled containers on 3-axis spin stabilized spacecraft, 1, Fluid Slosh Studies 5328/83/NL/Bi(Sc), ESA.
Belik, O., Bishop, R. E. D., and Price, W. G. (1988), Influence of bottom and flare slamming on structural responses, Trans. RINA 130, 325–337.Google Scholar
Belik, O. and Price, W. G. (1982), Comparison of slamming theories in the time simulation of ship responses, Trans. RINA 130, 325–337.Google Scholar
Belinfante, J. G., Kolman, B., and Smith, H. (1966), An introduction to Lie groups algebras with applications, SIAM Review 8(1), 11–46.CrossRefGoogle Scholar
Bell, J. and Walker, W. P. (1966), Activated and passive controlled fluid tank system for ship stabilization, Soc. Naval Archit. Marine Engrg. (SNAME) Transactions 74, 150–193.Google Scholar
Bellman, R. and Pennington, R. H. (1954), Effects of surface tension and viscosity on Taylor instability, Quart. J. Mech. Appl. Math. 12(2), 151–160.Google Scholar
Benard, H. (1901), Les tourbillons cellulars dans une nappe liquide propageant de la chaleu par convection, Paris, Gouthier-Villers, 88.Google Scholar
Benedict, E. T. (1959), Scale of separation phenomena in liquids under conditions of nearly free fall, J. Amer. Rocket. Soc. 29, 150–155.Google Scholar
Benedict E. T. (1960), General behavior of a liquid in a zero or near-zero gravity environment, in Benedict, E. T., ed., Weightlessness – Physical Phenomena and Biological Effect, New York, Plenum Press, Proc. Symp. Physical and Biological Phenomena under Zero G Conditions.Google Scholar
Benjamin, T. B. and Feir, J. E. (1967), The disintegration of wave trains on deep water, J. Fluid Mech. 27, 417–430.CrossRefGoogle Scholar
Benjamin, T. B. and Scott, J. C. (1979), Gravity-capillary waves with edge constraints, J. Fluid Mech. 92, 241–267.CrossRefGoogle Scholar
Benjamin, T. B. and Ursell, F. (1954), The stability of a plane free surface of a liquid in vertical periodic motion, Proc. Royal Soc. (London) A 225, 505–515.CrossRefGoogle Scholar
Berger, H., Boujot, J., and Ohayon, R. (1975), On a spectral problem in vibration mechanics computation of elastic tanks partially filled with liquids, J. Math. Anal. Appl. 51, 272–298.CrossRefGoogle Scholar
Berlamont J. and Vanderstappen N. (1979), The effect of baffles in a water tower tank, Proc. 5th Int. Conf. Wind Engineering, Fort Collins, CO.
Berlot, R. R. (1959), Production of rotation in a confined liquid through translational motion of the boundaries, ASME J. Appl. Mech., 513–516.Google Scholar
Berlot R. R., Birkhoff G., and Miles J. (1957), Slosh damping in a rigid cylindrical tank, RWC, Electronics Lab., Rept. No GM-TR-263, October.
Berlot, R. R. and Freed L. F. (1956), Comparison of experimental sloshing results with spherical pendulum theorem, Space Technol. Labs, Memo. GM42–6–54, January.
Bermann, A. S., Lundgren, T. S., and Cheng, A. (1985), Asynchronous whirl in a rotating cylinder partially filled with liquid, J. Fluid Mech. 15, 311–427.CrossRefGoogle Scholar
Bermudez, A. and Rodriguez, R. (1994), Finite element computation of the vibration modes of a fluid-solid system, Comp. Methods in Mech. Eng. 119, 355–370.CrossRefGoogle Scholar
Bernard, B. J. S., Mahony, J. J., and Pritchard, W. G. (1977), The excitation of surface waves near cut-off frequency, Phil. Trans. R. Soc. Lon. A 286, 87–123.CrossRefGoogle Scholar
Bernard, B. J. S. and Pritchard, W. G. (1972), Cross-waves, part 2: experiment, J. Fluid Mech. 55, 245–255.CrossRefGoogle Scholar
Berry, J. G. and Reissner, E. (1958), The effect of an internal compressible fluid column on the breathing vibrations of a thin pressurized cylindrical shell, J. of Aero./Space Sci. 25(5), 288–294.CrossRefGoogle Scholar
Berry R. I., Demchak L. J., and Tegart J. R. (1981), Analytical tool for simulating large amplitude propellant slosh, AIAA Paper 81–0500-CP.
Bessem, T., Edwards, W. S., and Tuckerman, L. (1996), Two-frequency parametric excitation of surface waves, Phys. Rev.E 54, 507–513.Google Scholar
Betchov, R. (1958), Nonlinear oscillations of a column of gas, Phys. Fluids 1, 3.CrossRefGoogle Scholar
Beyer, J. and Friedrich, R. (1995), Faraday instability: linear analysis for viscous fluids, Phys. Rev.E 51, 1162–1168.Google ScholarPubMed
Bezdenezhnikh N. K., Briskman B. A., Lapin A. Yu, Lyubimov D. V., Lyubimov T. P., Cherepanov A. A., and Zakharov I. V. (1991), The influence of high frequency tangential vibrations on stability of the fluid in microgravity, Proc. IUTAM Symp. Microgravity Fluid Mechanics, Bremen, Berlin, Springer, 1992, 137–144.
Bezdenezhnikh N. K., Briskman B. A., Lyubimov D. V., Cherepanov A. A., and Sharov M. T. (1984), Control of stability of two-fluid interface by means of vibrations, electric and magnetic fields, All-Union Seminar on Hydromechanics and Heat and Mass Transfer: Abstracts, Chernogolovka, 18–20.
Bhattacharyya, R., (1978), Dynamics of Marine Vehicles, New York, John Wiley & Sons.Google Scholar
Bhuta P. G., Hutton R. E., Abramson H. N., and Stephens D. G. (1968), Propellant slosh loads, NASA-SP-8009, August.
Bhuta, P. G. and Koval, I. R. (1964a), Coupled oscillations of a liquid in a tank having a flexible bottom, Zeit. Ang. Math. Phys. (ZAMP) 15(4), 466–488.CrossRefGoogle Scholar
Bhuta, P. G. and Koval, L. R. (1964b), Hydroelastic solution of the sloshing of a cylindrical tank, J. Acoust. Soc. Amer. 36(11), 2071–2079.CrossRefGoogle Scholar
Bhuta, P. G. and Koval, L. R. (1965), Sloshing of a liquid in a draining or filling tank under variable “g” conditions, Symp. Fluid Mech. and Heat Transfer under Low Gravitational Conditions, Lockheed Missiles & Space Co, June 24–25.Google Scholar
Bhuta, P. G., Pravin, G., and Koval, L. R. (1964), Coupled oscillations of a liquid with a free surface in a tank, Zeit. Ang. Math. Phys. (ZAMP) 15, 466–480.CrossRefGoogle Scholar
Bhuta, P. G. and Yeh, G. C. K. (1965), Liquid sloshing due to a time dependent discontinuous boundary, Int. J. Mech. Sci., 475–488.CrossRefGoogle Scholar
Biesel, F. (1949), Calculation of wave damping in a viscous liquid of unknown depth, La Houille Blanche 4, 630–634.CrossRefGoogle Scholar
Binks, D. and Water, W. (1997), Nonlinear pattern formation of Faraday waves, Phys. Rev. Lett. 78, 4043–4046.CrossRefGoogle Scholar
Binks, D., Westra, M. T., and Water, W. (1997), Effect of depth on the pattern formation of Faraday waves, Phys. Rev. Lett. 79, 5010–5013.CrossRefGoogle Scholar
Binnie, A. M. (1941), Waves in an open oscillating tank, Eng. 151, 224–226.Google Scholar
Binnie, A. M. (1955), Self-excited oscillations in an open circular water tank, Phil. Mag. 46, 327–337.CrossRefGoogle Scholar
Birkhoff G. (1956), Liquid oscillations in static containers, Space Technol. Labs, Memo. GM-TN 12, 18 April, Los Angeles, CA.
Biswal K. C., Bhattacharayya S. K. and Sinha P. K. (2002), Coupled dynamic response of liquid filled composite cylindrical tanks with baffles, Proc. ASME WAM IMECE2002–32953.
Biswal, K. C., Bhattacharayya, S. K., and Sinha, P. K. (2003), Free vibration analysis of liquid filled tank with baffles, J. Sound Vib. 259(2), 177–192.CrossRefGoogle Scholar
Blackhear W. T. and Eide D. G. (1964), The equilibrium free surface of a contained liquid under low gravity and centrifugal forces, NASA TN-D-2471, October.
Blacklock, J. H. (1965), Effects of propellant sloshing, in Automatic Control of Aircraft and Missiles, NY, John Wiley, 254–259.Google Scholar
Blak, A. M. (1996), Lagrangian for water waves, Phys. Fluids 8, 416–420.CrossRefGoogle Scholar
Bleich, H. H. (1956a), Longitudinal forced vibrations of cylindrical fuel tanks, Jet. Prop. ARS, 109–111.CrossRefGoogle Scholar
Bleich, H. H. (1956b), Effect of vibrations on the motion of small gas bubble in a liquid, Amer. Rocket Soc. J. 26(10), 958–964.Google Scholar
Block, M. J. (1956), Surface tension as the cause of Benard cells and surface deformation in a liquid film, Nature (London) 178, 650–651.CrossRefGoogle Scholar
Bogoryad, I. B. (1962), On the solution by a variational method of a problem on oscillations of a fluid partially filled cavity, Prikl. Math. Mekh. (PMM) 26, 1122–1127.Google Scholar
Bogoryad, I. B. (1980), The Dynamics of a Viscous Liquid with a Free Surface, Izd. Tomskogo University, Tomskogo, (in Russian).Google Scholar
Bogoryad, I. B. (1990), Damping factors for damping due to the presence of fluid with a free surface in a moving vessel, Prikl. Mekhaniks 26(4), 397–402.Google Scholar
Bogoryad, I. B., Druzhinin, I. A., Druzhinina, G. Z., and Libin, E. E. (1977), Introduction to the Dynamics of Vessels Filled with a Liquid, Izd. Tomskogo University, Tomskogo, (in Russian).Google Scholar
Bolotin, V. V. (1956), On the motion of a fluid on an oscillating vessel, Prikl. Math. Mekh. (PMM) 20(2), 293–294.Google Scholar
Bolotin, V. V. (1964), The Dynamic Stability of Elastic Systems, San Francisco, Holden-Day, Inc.Google Scholar
Bonneau, E. (1964), Sloshing of liquids in missiles, Bull. Assoc. Tech. Marit. Aeronaut. 64, 163–177 (in French).Google Scholar
Bontozoglou, V. and Hanratty, T. J. (1990), Capillary-gravity Kelvin–Helmholtz waves close to resonance, J. Fluid Mech. 217, 71–78.CrossRefGoogle Scholar
Borisova E. P. (1962), Free oscillations of a fluid in an inclined cylinder, in Variational Methods in Problems of Oscillations of a Fluid and of a Body with a Fluid, Vychislit. Tsentr. Akad. Nauk. SSSR, 203–210.
Bosch, E., Lambermont, H., and Water, W. (1994), Average pattern in Faraday waves, Phys. Rev. E 4, R3580–R3583.CrossRefGoogle Scholar
Bosch, E. and Water, W. (1993), Spatio-temporal intermittency in the Faraday experiment, Phys. Rev. Lett. 2, 3420–3423.CrossRefGoogle Scholar
Boudet M. (1968), The frequency spectra of sloshing liquids, Laboratoire de Recherches Balistiques et Aerodynamiques, Vernon, (France), NT-4/68/EN, 2 May (in French).
Boujot, J. (1973), Sur le probleme spectral associe aux vibrations d'un reservoir deformable, C. R. Acad. Sci. Paris, T 277, Serie A.Google Scholar
Boussinesq, J. (1878), J. Math. Pures. Appl. 4, 335.
Bowman T. E. (1966a), Response of the free surface of a cylindrically contained liquid to off-axis accelerations, Proc. 1966 Heat Transfer and Fluid Mech. Inst., University of Santa Clara, CA, Saad, M. A. and Miller, J. A., eds., Stanford University Press, 295–314.Google Scholar
Bowman T. E. (1966b), Cryogenic liquid experiment in orbit, I – Liquid Settling and Interface Dynamics, NASA CR-651.
Box, G. E. P. and Muller, M. E. (1958) A note on the generation of random normal deviatas, Ann. Math. Stat. 28, 610–611.CrossRefGoogle Scholar
Boyarshina, L. G. (1984), Resonance effects in the nonlinear vibrations of cylindrical shells containing a liquid, Soviet Appl. Mech. 20(8), 765–770.CrossRefGoogle Scholar
Boyarshina, L. G. (1988), Nonlinear wave modes of an elastic cylindrical shell partially filled with a liquid under conditions of resonance, Soviet Appl. Mech. 24(5), 528–534.CrossRefGoogle Scholar
Boyarshina, L. G. (1994), Nonlinear-wave motions of a liquid in a cylindrical vessel with elastic bottom, Int. Appl. Mech. 30(5), 385–391.CrossRefGoogle Scholar
Boyarshina, L. G. and Ganiev, R. F. (1976), On nonlinear oscillations of deformable bodies with fluid performing motion in space, Soviet Appl. Mech. 12(7), 62–69.CrossRefGoogle Scholar
Boyarshina, L. G. and Kholopova, V. V. (1994), On resonance in the nonlinear oscillations of a liquid bilayer, Int. Appl. Mech. 30(10), 810–814.CrossRefGoogle Scholar
Boyarshina, L. G. and Koval'chuk, P. S. (1986), The wave modes of the free surface of a liquid contained in a cylindrical vessel, Soviet Appl. Mech. (Prikl Mekh) 22(3), 113–116.Google Scholar
Boyarshina, L. G. and Koval'chuk, P. S. (1990), Analysis of nonlinear wave motions of a fluid in a cylindrical vessel performing given angular oscillations, Soviet Appl. Mech. 26(6), 601–607.CrossRefGoogle Scholar
Boyarshina, L. G., Koval'chuk, P. S., Puchka, G. N., and Kholopova, V. V. (1987), Dynamic instability of the free surface of a fluid in a cylindrical container subjected to a longitudinal excitation, Prikl. Mekh. 23(7), 82–87.Google Scholar
Boyarshina L. G., Koval'chuk P. S., Puchka G. N., and Kholopova V. V. (1998), Constructing periodic solutions of one class of nonautonomous systems of nonlinear second-order equations in a resonance case, Proc. M Kravchuk 7th Int. Sci. Conf. Kiev, May 14–16, 66–70 (in Russian).
Boyarshina, L. G. and Puchka, G. N. (1985), On nonlinear oscillations of a stratified liquid in a cylindrical container, Appl. Mech. (Prikl. Mekh.) 21(11), 118–123.Google Scholar
Brand, R. P. and Nyborg, W. L. (1965), Parametrically excited surface waves, J. Acoust. Soc. Amer. 37(3), 509–515.CrossRefGoogle Scholar
Bratu, C. (1971), Oscillations of liquid masses in reservoirs, (in French), Bulletin de l' Assoc. Tech. Maritime et Aeronaut. 71, 221–241.Google Scholar
Brathu M. C., Huther M., and Planeix J. M. (1972), Computer calculations of liquid motions in tanks, Shipping World and Shipbuilder, December.
Bredmose, H., Brocchini, M., Peregrine, D. H., and Thais, L. (2003), Experimental investigation and numerical modeling of steep forced water waves, J. Fluid Mech. 490, 217–249.CrossRefGoogle Scholar
Bridges, T. J. (1982), A numerical simulation of large amplitude sloshing, Proc. 3rd Int. Numerical Ship Hydrodynamics, 269–281.Google Scholar
Bridges, T. J. (1987), Secondary bifurcation and change of type of three-dimensional standing waves in a finite depth, J. Fluid Mech. 179, 137–153.CrossRefGoogle Scholar
Briskman, V. A., Ivanova, A. A., and Shaidurov, G. F. (1976), Parametric oscillations of fluid in communicating vessels, Izvestiya Akademii Nauk. SSSR, Mekhanik Zhidkosti i Gaza, 2, 36–42.Google Scholar
Briskman, V. A. and Shaidurov, G. F. (1968), Parametric instability of a fluid surface in an alternating electric field, Sov. Phys.-Doklady. 13(6), 540–542.Google Scholar
Brocchini M., Beregrine D. H., and Thais L. (1997), Violent free-surface motion: Some wave-tank experiments, Tech. Rept. AM-97–01, School of Mathematics, University of Bristol.
Brodkey, R. S. (1967), The Phenomena of Fluid Motions, Massachusetts, Addison-Wesley.Google Scholar
Brooks J. E. (1959), Dynamics of fluids in moving containers, Space Tech. Lab. Rept. No GM-TR-4–26, 9 February.
Brosset, L. (1995), Numerical simulation of liquid sloshing in moving tanks, J. Marine Merchande, Nouveautes Techniques Maritimes 9.Google Scholar
Brown K. M. (1954), Laboratory test of fuel sloshing, Douglas Aircraft, CA, Rep. Dev 782, 18 March.
Brown S. J. (1980), Theoretical-experimental seismic tests of fluid coupled co-axial cylinders, ASME, Century 2, Pressure Vess. Piping Conf., San Francisco, PVPD, 80-C/PVP-45, 12–24.
Brown S. J. (1982a), Hydrodynamic response of fluid coupled cylinders: simplified damping and inertia coefficients, Welding Research Council Bulletin, No 281.
Brown, S. J. (1982b), A survey of studies into the hydrodynamic response of fluid coupled cylinders, ASME J. Pressure Vessel Tech. 104(1) 2–20.CrossRefGoogle Scholar
Brown S. J. (1982c), The effect of fluid axial forces on flexible finite length co-axial cylinders, in Dynamic and Seismic Analysis of Systems and Components, Yan, M. J., ed., PVP69.Google Scholar
Brown, S. J. and Chu, M. (1983), A case study of the seismic response of fluid-coupled-flexible cylinders, Exp. Mech., 270–281.Google Scholar
Brown S. J. and Hsu K. H. (1978), On the use of the finite element displacement method to solve solid–fluid interaction vibration problems, ASME Symp. on Fluid Transients and Acoust. in the Power Industry.
Bryant, P. J. (1989), Nonlinear progressive waves in a circular basin, J. Fluid Mech. 205, 453–467.CrossRefGoogle Scholar
Bryant, P. J. (1993), Breakdown to chaotic motion of a forced, damped, spherical pendulum, Physica D 64, 324–339.CrossRefGoogle Scholar
Bryant, P. J. and Stiassnie, M. (1994), Different forms for nonlinear standing waves in deep water, J. Fluid Mech. 272, 135–156.CrossRefGoogle Scholar
Bublik, B. N. and Merkulov, V. N. (1960), On the dynamic stability of thin elastic shells filled with fluid, Prikl. Math. Mekh. (PMM) 24, 941–946.Google Scholar
Buchanan H. J. (1966), Effect of Reynolds number on slosh damping by flat ring baffles, NASA TM X-53559.
Buchanan H. J. (1968), Drag on flat plates oscillating in incompressible fluid at low Reynolds numbers, M.S. thesis, University of Alabama, Also NASA TM-X-53759, 22 July.
Buchanan H. J. and Bugg F. M. (1966), Orbital investigation of propellant dynamics in a large rocket booster, NASA TM X-53442.
Buchanan, R. H., Jameson, G., and Oedjoe, D. (1962), Cyclic migration of bubbles in vertically vibrating liquid columns, Indust. Eng. Chem. Fund. 1(2), 82–86.CrossRefGoogle Scholar
Buchner B. (1995), On the impact of green water loading on ship and offshore unit design, The 6th Int. Sym. Practical Design of Ships and Mobile Units (PRADS), September.
Buckle, U. and Peric, M. (1992), Numerical simulation of buoyant and thermocapillary convection in a square cavity, Numer. Heat Trans., A 21, 121–141.CrossRefGoogle Scholar
Budiansky, B. (1960), Sloshing of liquids in circular canals and spherical tanks, J. Aero./Space Sciences 27(3), 161–172.CrossRefGoogle Scholar
Bustamante, J. I. and Flores, A. (1966), Water pressure on dams subjected to earthquakes, ASCE J. Eng. Mech. Div. 92, 115–127.Google Scholar
Burris L., et al. (1987), The application of electro-refining for recovery and purification of fuel discharged from the integral fast reactor, AICHE Symp. Series 83(254), 1986, 36 pages, available from NTIS, PC A03/MF A01;1: Conference AICHE Winter Ann. Meeting, Miami, 2 Nov 1986; 87(6):37472 Energy.
Buzhinskii, V. A. (1990), The energy of vortex formation for oscillations in a fluid of a body with sharp edges, Dkl. Akad. Nauk. SSSR 313(2), 1072–1074.Google Scholar
Buzhinskii, V. A. (1998a), Vortex drag of a plate in the case of oscillations in a low viscous fluid, J. Appl. Mat. Mech. (PMM) 54(2), 233–238.Google Scholar
Buzhinskii, V. A. (1998b), Vortex damping of sloshing in tanks with baffles, J. Appl. Math. Mech. (PMM) 62, 217–224.CrossRefGoogle Scholar
Buzhinskii, V. A. and Stolbetsov, V. I. (1987), Determination of hydrodynamic characteristics of a cavity, partially filled with a fluid, with a pendulum inside, Izv. Akad. Nauk. SSSR, MZhG 6, 91–100.Google Scholar
Campbell, I. J. (1953), Wave motion in an annular tank, Phil. Mag. Series 7(44), 845–854.CrossRefGoogle Scholar
Canard A. (1956), Hydrodynamic forces induced in fluid containers by earthquakes, Thesis, Caltech, Pasadena.
Candless C. E. and Walls J. C. (1969), Slosh test analysis for the 200 inch multicell tank, NASA-CR-61268.
Capodano, P. (2001), The stability of configuration of a liquid layer in an axially symmetric container uniformly rotating under conditions of weightlessness, J. Appl. Mat. Mech. 65(4), 605–615.CrossRefGoogle Scholar
Cariou, A. and Casella, G. (1999), Liquid sloshing in ship tanks: a comparative study of numerical simulation, Marine Struct. 12(3), 183–198.CrossRefGoogle Scholar
Carotenuto, L., Castagnolo, D., Albanese, C., and Monti, R. (1998), Instability of thermocapillary convection in liquid bridges, Phys. Fluids 10, 1–11.CrossRefGoogle Scholar
Carpenter, B. M. and Homsy, G. M. (1990), High Marangoni number convection in a square cavity, part 2, Phys. Fluids A 2(12), 137–148.CrossRefGoogle Scholar
Carrier, G. F. and Di Pima, R. C. (1956), On the torsional oscillations of a solid sphere in a viscous fluid, ASME J. Appl Mech. 23, 601–605.Google Scholar
Carruthers J. R., Gibson E. G., Klett M. G., and Facemire B. R. (1975), Studies of rotating liquid floating zones on Skylab IV, AIAA 10th Thermophysics Conf., Denver CO, AIAA-Paper 75–692.
Carruthers, J. R. and Grasso, M. (1972), Studies of floating liquid zones in simulated zero gravity, J. Appl. Phys. 43(2), 436–445.CrossRefGoogle Scholar
Casademunt, J., Zhang, W., Viňals, J., and Sekerka, R. F. (1993), Stability of a fluid in a microgravity environment, AIAA Journal 31, 2027.Google Scholar
Case K. and Parkinson W. (1956a), On the motion of a vessel containing fluid with a free surface, Memo. Space Tech. Lab., Feb.
Case K. and Parkinson W. (1956b), The damping of liquid in a right circular cylindrical tank, Memo. GM45–75, Space Tech. Lab., 17 September.
Case, K. and Parkinson, W. (1957), Damping of surface waves in an incompressible liquid, J. Fluid Mech. 2(2), 172–184.CrossRefGoogle Scholar
Casella G. and Dogliani M. (1996), Evaluation of sloshing-induced fatigue damage on a FSO tanker, 6th ISOPE Conf., Los Angeles, May, 304–314.
Casella G., Sebastiani L., and Valdenazzi F. (1996), Fluid–structure interaction in numerical simulation of liquid sloshing, Catena International Seminar on Hydroelasticity for Ship Structural Design, Genoa, Italy, February Rept. No 5882.
Castagnolo, D. and Carotenuto, L. (1999), A numerical simulation of three-dimensional thermocapillary flows in liquid bridges, Num. Heat Transfer: Part A Applications 36(8), 859–877.Google Scholar
Castagnolo D. and Monti R. (2001), Thermal Marangoni flows, in Physics of Fluids in Microgravity, Monti, R, ed., London, Taylor & Francis, 78–125.Google Scholar
Celebi, M. S. and Akyildiz, H. (2002), Nonlinear modeling of liquid sloshing in a moving rectangular tank, Ocean Eng. 29(12), 1527–1553.CrossRefGoogle Scholar
Celebi, M. E., Kim, M. H., and Beck, R. F. (1998), Fully nonlinear 3-D numerical wave tank simulation, J. Ship Res. 42(1), 33–45.Google Scholar
Cerda, E. A. and Tirapegul, E. L. (1997), Faraday's instability for viscous fluids, Phys. Rev. Lett. 78, 859–862.CrossRefGoogle Scholar
Cerda, E. A. and Tirapegul, E. L. (1998), Faraday's instability in viscous fluid, J. Fluid Mech. 368, 195–228.CrossRefGoogle Scholar
Cesari, L. (1963), Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, NY, Academic Press.CrossRefGoogle Scholar
Chadwick, J. H. and Klotter, K. (1954), On the dynamics of anti-roll tanks, Schiffstechnik 2, 23–45.Google Scholar
Chaiseri, P., Fujino, Y., Pacheco, B. M., and Sun, L. M. (1989), Interaction of tuned liquid damper (TLD) and structure – theory, experimental verification and application, JSCE Struct. Eng./Earthquake Eng. 6(2), 103–112.Google Scholar
Chalhoub, M. S. and Kelly, J. M. (1990), Shake table test of cylindrical water tanks in base-isolated structure, J. Engrg. Mech. 116, 1451–1472.CrossRefGoogle Scholar
Chan, E. S. (1994), Mechanics of deep-water plunging-wave impacts on vertical structures, Coast. Engrg. 22, 115–133.CrossRefGoogle Scholar
Chan K. C. and Street R. L. (1970), SUMMAC – A numerical method for water waves, Report 135, Stanford University.
Chandrasekhar, S. (1961), Hydrodynamic and Hydromagnetic Stability, New York, Dover.Google Scholar
Chang, C. C. and Gu, M. (1999), Suppression of vortex-excited vibration of tall buildings using tuned liquid dampers, J. Wind Eng. Indust. Aerodyn. 83, 225–237.CrossRefGoogle Scholar
Chang, C. C. and Hsu, C. T. (1998), Control performance of liquid column vibration absorbers, Eng. Struct. 20(7), 580–586.CrossRefGoogle Scholar
Chang, C. C. and Shen, M. C. (2000), Chaotic motion and internal resonance of forced surface waves in a water-filled circular basin, Wave Motion 31(4), 317–331.CrossRefGoogle Scholar
Chang, C. E. and Wilcox, W. R. (1975), Inhomogeneities due to thermocapillary flow in floating zone melting, J. Crystal Growth 28, 8–12.CrossRefGoogle Scholar
Chang, C. E. and Wilcox, W. R. (1976), Analysis of surface tension driven flow in floating zone melting, Int. J. Heat Mass Transfer 19, 355–366.CrossRefGoogle Scholar
Chang, P. M., Lou, J. Y. K., and Lutes, L. D. (1998), Model identification and control of tuned liquid damper, Eng Struct. 20(3), 155–163.CrossRefGoogle Scholar
Chang S. C. (1966), On sub-gravity hydroelastic sloshing of a liquid with a curved free surface in a cylindrical tank having flexible bottom, Thesis, University of Florida.
Chang S. S. (1969), Longitudinally excited nonlinear liquid motion in a circular cylindrical tank with elastic bottom, Ph.D. Dissertation., Georgia Institute of Tech., Atlanta, Georgia.
Chang Y. W., Ma D. C., and Gvildys J. (1987), EPRI/CRIEPI/joint program on seismic sloshing of LMR reactors. part II-Numerical solutions, Trans. Struct. Mech. in Reactor Techn.-9 Conf., Lausanne, Switzerland, E, 253–258.
Chao, L., Kamotani, Y., and Ostrach, S. (1992), G-jitter effects on the capillary surface motion in an open container under weightless condition, ASME WAMSymp. Fluid Mech. Phen. Microgravity, AMD-154/FED-142, 133–143.Google Scholar
Chato D. J., Dalton P. J., Dodge F. T., and Green S. T. (1998) Liquid motion experiment flight-test results, AIAA Paper 98–3197, 34th AIAA/ASME/SAE/ASE Joint Propulsion Conf. and Exhibit., Cleveland, OH.
Chautard, J. P. (1963), Effect on stability of the axial rotation of a missile containing a liquid mass, Rech. Aeronaut. 93, 3–9 (in French).Google Scholar
Chen, B. F. (1994), Nonlinear hydrodynamic pressures by earthquakes on dam faces with arbitrary reservoir shapes, J. Hyd. Res. 32(3), 401–413.CrossRefGoogle Scholar
Chen, B. F. (1997), 3-D nonlinear hydrodynamic analysis of vertical cylinder during earthquakes, I: Rigid motion, J. Eng. Mech. 123(5), 458–465.CrossRefGoogle Scholar
Chen, B. F. and Chiang, H. W. (2000), Complete two-dimensional analysis of sea-wave-induced fully nonlinear sloshing fluid in a rigid floating tank, Ocean Eng. 27(9), 953–977.CrossRefGoogle Scholar
Chen, B. and Saffman, P. G. (1979), Steady gravity-capillary waves on deep water I: Weakly nonlinear waves, Stud. Appl. Maths. 60, 183–210.CrossRefGoogle Scholar
Chen, C. C. (1961), On the hydrodynamic pressure on a dam caused by its aperiodic or impulsive vibrations and vertical vibrations on the earth surface, Prikl. Math. Mekh. (PMM) 25, 1060–1076.CrossRefGoogle Scholar
Chen, H. H., Kelecy, F. J. and Pletcher, R. J. (1994), Numerical and experimental study of three-dimensional liquid sloshing-flows, J. Thermophys. Heat Trans. 8(3), 507–513.CrossRefGoogle Scholar
Chen, H. H. and Pletcher, R. H. (1993), Simulation of three-dimensional liquid sloshing flows using a strongly implicit calculation procedure, AIAA J. 31(5), 901–910.CrossRefGoogle Scholar
Chen, J. C. and Babcock, C. D. (1975), Nonlinear vibration of cylindrical shells, AIAA J. 13, 868–876.CrossRefGoogle Scholar
Chen, J. C. and Chin, G. H. (1995), Linear stability analysis of thermocapillary convection in the floating zone, J. Cryst. Growth 154, 98–107.CrossRefGoogle Scholar
Chen, J. C. and Hwu, F. S. (1993), Oscillatory thermocapillary flow in a rectangular cavity, Int. J. of Heat and Mass Transfer 36(15), 3743–3749.CrossRefGoogle Scholar
Chen, P. and Viňals, J. (1999), Amplitude equations and pattern selection in Faraday waves, Phys. Rev.E 60, 559–570.Google ScholarPubMed
Chen P. Y. (1977), Nonlinear characteristics of liquid sloshing in rigid tanks, Proc. Int. Conf. Pressure Vessel Technology 3, P 1: Anal. Des. Insp., Tokyo, 357–387.
Chen, Q. S. and Hu, W. R. (1998), Influence of liquid bridge volume on instability of floating half zone convection, Int. J. Heat Mass Transfer 41(6–7), 825.CrossRefGoogle Scholar
Chen, S. S. (1981), Fluid damping for circular cylindrical structures, Nuclear Eng. and Design 63, 81–100.CrossRefGoogle Scholar
Chen, S. S. (1987), Flow-Induced Vibration of Circular Cylindrical Tubes, New York, Hemisphere Publications.Google Scholar
Chen, S. S. and Rosenberg, G. S. (1975), Dynamics of coupled shell-filled system, Nuclear Eng. Des. 32, 302–310.CrossRefGoogle Scholar
Chen S. S., Johnson D. B., and Raad P. B. (1994), Velocity boundary conditions for the simulation of free surface fluid flow, Individual Papers in Fluid Eng., ASME FED-202, 55–66.
Chen, W. Q. and Ding, H. J. (1999), Natural frequencies of fluid-filled transversely isotropic cylindrical shells, Int. J. Mech. Sci. 41, 677–684.CrossRefGoogle Scholar
Chen, W. Q., Ding, H. J., Guo, Y. H., and Yang, Q. D. (1997), Free vibrations of fluid-filled transversely orthotropic cylindrical shells, ASCE J. Engrg. Mech. 123, 1130–1133.Google Scholar
Chen, W. W. (1991), Seismic analysis of a sodium-filled tank, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP-223, 35–43.Google Scholar
Chen, W., Haroun, M. A., and Liu, F. (1996), Large amplitude liquid sloshing in seismically excited tanks, Earthquake Eng. Struct. Dyn. 25, 653–669.3.0.CO;2-H>CrossRefGoogle Scholar
Chen, Y. H., Hwang, W. S., Chiu, L. T., and Sheu, S. M. (1995), Flexibility of LTD to high-rise building by simple experiment and comparison, Comput. Struct. 57(5), 855–861.CrossRefGoogle Scholar
Chermykh, S. V. (1966), On the stability of rigid body filled with liquid, Inzh. Zh. Mekh. Tv. Tela. 3, 33–39 (in Russian).Google Scholar
Chernous'ko, F. L. (1965), Motion of a rigid body with cavities filled with a viscous fluid for low Reynolds numbers, Zh. Vychisl. Matem. i Matem. Fiz. 5(6), 1049–1070.Google Scholar
Chernous'ko, F. L. (1966), The motion of a body with a cavity partly filled with a viscous liquid, Prikl. Math. Mekh. (PMM) 30(6), 1167–1184.CrossRefGoogle Scholar
Chernousko, F. L. (1967a), Motion of a body with a cavity filled with a viscous fluid at large Reynolds numbers, Prikl. Math. Mekh. (PMM) 30(3), 568–589.CrossRefGoogle Scholar
Chernousko, F. L. (1967b), Oscillations of a rigid body with a cavity filled with a viscous fluid, Inzh. Zh. MTT, 1.Google Scholar
Chernousko, F. L. (1967c), On free oscillations of a viscous fluid in a vessel, Prikl. Math. Mekh. (PMM) 30(5), 990–1003.CrossRefGoogle Scholar
Chernousko F. L. (1969), The Motion of a Rigid Body with Cavities Containing a Viscous Liquid, Vychisl. Tsentr. Akad. Nauk. SSSR, Moscow.
Chester, W. (1964), Resonant oscillations in closed tubes, J. Fluid Mech. 18, 44–64.CrossRefGoogle Scholar
Chester, W. (1968), Resonance oscillations of water waves, I: Theory, Proc. of the Royal Soc. A306, 5–22.CrossRefGoogle Scholar
Chester, W. and Bones, J. A (1968), Resonance oscillations of water waves, I: Experiment, Proc. Royal Soc. A306, 23–39.CrossRefGoogle Scholar
Chetayev, N. G. (1957), On the stability of rotational motions of a rigid body with a cavity with an ideal fluid, Prikl. Math. Mekh. (PMM) 21(2) 419–421.Google Scholar
Cheung, Y. K. and Zhou, D. (2000), Coupled vibratory characteristics of a rectangular container bottom plate, J. Fluid Struct. 14, 339–357.CrossRefGoogle Scholar
Cheung, Y. K., and Zhou, D. (2002), Hydroelastic vibration of a circular container bottom plate using the Galerkin method, J. Fluids Struct. 16(4), 561–580.CrossRefGoogle Scholar
Chiba, M. (1986), Dynamic stability of liquid-filled cylindrical shells under horizontal excitation, part I: Experiment, J. Sound Vib. 104(2), 301–319.CrossRefGoogle Scholar
Chiba M. (1989), Nonlinear axisymmetric free vibration of a cylindrical tank with an elastic bottom, Forschungsberichte, Universitat der Bundeswehr, Munich, LRT-WE-9-FB-17.
Chiba, M. (1992), Nonlinear hydroelastic vibration of a cylindrical tank with an elastic bottom, containing liquid, part I: Experiment, J. Fluids Struct. 6(2), 181–206.CrossRefGoogle Scholar
Chiba, M. (1993a), Nonlinear hydroelastic vibration of a cylindrical tank with an elastic bottom, containing liquid, part II: Linear axi-symmetric vibration analysis, J. Fluid Struct. 7(1), 57–73.CrossRefGoogle Scholar
Chiba, M. (1993b), Non-linear hydroelastic vibration of a cantilever cylindrical tank – I: Experiment (empty case), Int. J. Non-Linear Mech. 28(5), 591–599.CrossRefGoogle Scholar
Chiba, M. (1993c), Non-linear hydroelastic vibration of a cantilever cylindrical tank – II: Experiment (liquid-filled case), Int. J. Non-Linear Mech. 28(5), 601–612.CrossRefGoogle Scholar
Chiba, M. (1993d), Nonlinear hydroelastic vibration of a cylindrical tank with an elastic bottom, containing liquid, part I: Experiment, J. Fluid Struct. 6, 181–206.CrossRefGoogle Scholar
Chiba, M. (1993e), Experimental studies on a nonlinear hydroelastic vibration of a clamped cylindrical tank partially filled with liquid, J. Pressure Vessel Tech. 115(4), 381–388.CrossRefGoogle Scholar
Chiba, M. (1994), Axi-symmetric free hydroelastic vibration of a flexural bottom plate in a cylindrical tank supported on an elastic foundation, J. Sound Vib. 169(3), 387–394.CrossRefGoogle Scholar
Chiba, M. (1995), Free vibration of a clamped-free circular cylindrical shell partially submerged in a liquid, J. Acoust. Soc. Amer. 97(4), 2238–2248.CrossRefGoogle Scholar
Chiba, M. (1996a), Free vibration of a partially liquid-filled and partially submerged, clamped-free circular cylindrical shell, J. Acoust. Soc. Amer. 100(4), 2170–2180.CrossRefGoogle Scholar
Chiba, M. (1996b), Non-linear hydroelastic vibration of a cylindrical tank with an elastic bottom containing liquid – III: Nonlinear analysis with Ritz averaging method, Int. J. Non-Linear Mech. 31(2), 155–165.CrossRefGoogle Scholar
Chiba, M. (1997), The influence of elastic bottom plate motion on the resonant response of a liquid free surface in a cylindrical container: A linear analysis, J. Sound Vib. 202(3), 417–426.CrossRefGoogle Scholar
Chiba, M. and Abe, K. (1999), Nonlinear hydroelastic vibration of a cylindrical tank with an elastic bottom containing liquid – analysis using harmonic balance method, Thin-Walled Struct. 34(3), 233–260.CrossRefGoogle Scholar
Chiba, M. and Bauer, H. F. (1998), Free hydroelastic vibrations of a liquid attached to a cylindrical sector shell in a zero gravity condition, J. Vib. Acoust. 120(1), 54–62.CrossRefGoogle Scholar
Chiba, M., Bauer, H. F., and Sasaki, H. (1998), Influence of attached liquid layers on free hydroelastic vibrations of a cylindrical sector shell in a zero gravity condition, J. Sound Vib. 214(2), 245–260.CrossRefGoogle Scholar
Chiba, M., Kiuchi, H., and Tani, J. (1997), Unstable sloshing vibration in a thin cylindrical weir, J. Press. Vessel Tech. 119(1), 68–73.CrossRefGoogle Scholar
Chiba, M. and Tani, J. (1987), Dynamic Stability of liquid-filled cylindrical shells under vertical excitation, part I: Experimental results, J. Earthquake Eng. Struct. Dyn. 15(1), 23–26.CrossRefGoogle Scholar
Chiba, M., Tani, J., Hashimoto, H., and Sudo, S. (1986), Dynamic stability of liquid-filled cylindrical shells under horizontal excitation, part I: Experiment, J. Sound Vib. 104, 301–319.CrossRefGoogle Scholar
Chiba, M., Tani, J., and Yamaki, N. (1987), Dynamic stability of liquid-filled cylindrical shells under vertical excitation, part II: Theoretical results, J. of Earthquake Eng. Struct. Dyn. 15(1), 37–51.CrossRefGoogle Scholar
Chiba, M., Watanabe, H., and Bauer, H. F. (2002), Hydroelastic coupled vibrations in a cylindrical container with a membrane bottom containing liquid with surface tension, J. Sound Vib. 251(4), 717–740.CrossRefGoogle Scholar
Chiba, M., Yamaki, N., and Tani, J. (1984a), Free vibration of a clamped-free circular cylindrical shell partially filled with liquid, part I: Theoretical analysis, Thin Walled Struct. 2, 265–284.CrossRefGoogle Scholar
Chiba, M., Yamaki, N., and Tani, J. (1984b), Free vibration of a clamped-free circular cylindrical shell partially filled with liquid, part II: Numerical results, Thin Walled Struct. 2, 307–324.CrossRefGoogle Scholar
Chiba, M., Yamaki, N., and Tani, J. (1985), Free vibration of a clamped-free circular cylindrical shell partially filled with liquid, part III: Experimental results, Thin Walled Struct. 3, 1–14.CrossRefGoogle Scholar
Chiba, M., Yamashita, T., Sugiyama, H., and Tani, J. (1989), Dynamic stability of liquid-filled cylindrical shells under periodic shearing forces, J. Pressure Vessel Tech. 111(4), 420–427.CrossRefGoogle Scholar
Chiba, T., Nakajima, S., Mieda, T., Ogawa, N., and Shibata, H. (1995), The sloshing behavior of high viscous liquid in cylindrical tanks, in Fluid-Sloshing and Fluid-Structure Interaction, ASME Press Vess Piping Conf, PVP-314, 57–82.Google Scholar
Chin, J. H. and Gallagher, L. W. (1964), Effect of fluid motion on free surface shape under reduced gravity, AIAA J. 2(12), 2215–2217.CrossRefGoogle Scholar
Cho, J. R., Lee, H. W., and Kim, K. W. (2002), Free vibration analysis of baffled liquid-storage tanks by the structural-acoustic finite element formulation, J. Sound Vib. 258(5), 847–866.CrossRefGoogle Scholar
Cho, J. R., Song, J. M., and Lee, J. K. (2001), Finite element techniques for the free-vibration and seismic analysis of liquid-storage tanks, Finite Elements in Analysis and Design 37, 467–483.CrossRefGoogle Scholar
Chobotov V. and Fowler J. (1957), Experimental investigation of the moment of inertia in a cylindrical tank, Space Technol. Labs, Memo. GM61–2–3, 18 February.
Chopra, A. K. (1967), Hydrodynamic pressures on dams during earthquakes, J. of Eng. Mech. Div. 93(EM6), 205–223.Google Scholar
Chorin, A. J. (1967), A numerical method for solving incompressible viscous flow problems, J. Compt. Phys. 2, 12–26.CrossRefGoogle Scholar
Chorin, A. J. (1976), Random choice solution of hyperbolic systems, J. Comput. Phys. 22(4), 517–533.CrossRefGoogle Scholar
Chorin, A. J. (1977), Random choice methods with application to reacting gas flow, J. Comput Phys. 25(3), 253–272.CrossRefGoogle Scholar
Crandall, S. H. and Mroszczyk, J. (1986), Whirling of flexible cylinder filled with fluid, Proc. Int. Conf. Rotordynamics, Tokyo, JSME.Google Scholar
Christiansen, B., Alstrom, P., and Levinson, M. T. (1992), Ordered capillary-wave states: quasi-crystals, hexagons, and radial waves, Phys. Rev. Lett. 68, 2157–2160.CrossRefGoogle Scholar
Chu, B. T. and Ying, S. J. (1963), Thermally driven nonlinear oscillations in a pipe with traveling shock waves, Phys. Fluids 6, 11.CrossRefGoogle Scholar
Chu, H. N. (1961), Influence of large amplitudes on flexural vibrations of a thin circular cylindrical shell, J. Aerospace Sci. 28, 602–609.Google Scholar
Chu, M. L. and Brown, S. J. (1981), Experiments on the dynamic behavior of fluid-coupled concentric cylinders, Exper. Mech. 21, 129–137.CrossRefGoogle Scholar
Chu M. L., Brown S. J., Lieb E., and Lestingi J. P. (1979), An experimental study of gap and thickness influence on the vibration response and damping of flexible fluid-coupled coaxial cylinders, ASME Pressure Vess. Piping Conf., PVP-39, 1–19.
Chu, W. H. (1960a), Sloshing of liquids in cylindrical tanks of elliptic cross-section, Amer. Rocket Soc. J. 30, 360–363.Google Scholar
Chu, W. H. (1960b), Free surface conditions for sloshing resulting from pitching and some corrections, Amer. Rocket Soc. J. 30(11), 1093–1094.Google Scholar
Chu, W. H. (1963), Breathing vibrations of a partially filled cylindrical tank – linear theory, ASME J. Appl. Mech. 30, 532–536.CrossRefGoogle Scholar
Chu, W. H. (1964a), Fuel sloshing in a spherical tank filled to an arbitrary depth, AIAA J. 2, 1972–1979.CrossRefGoogle Scholar
Chu, W. H. (1964b), Liquid sloshing in a spherical tank filled to an arbitrary depth, AIAA J. 2(11), 1972–1979.CrossRefGoogle Scholar
Chu W. H. (1964c), An analysis of the quasi-steady liquid-gas interface in an axi-symmetric tank during low gravity transfer, SwRI, Final Rept. (Contract NAS8–5468).
Chu, W. H. (1968), Subharmonic oscillations in arbitrary axi-symmetric tank resulting from axial excitation, J. Appl Mech. 35(1), 148–154.CrossRefGoogle Scholar
Chu, W. H. (1970), Low-gravity fuel sloshing in an arbitrary axi-symmetric rigid tank, J. Appl Mech. 37(3), 828–837.CrossRefGoogle Scholar
Chu, W. H. (1971), Sloshing of an arbitrary two-dimensional tank with flat mean free surface, CASI Transactions 4(7), (Technical Forum), 48–60.Google Scholar
Chu, W. H. and Gonzales, R. (1964), Supplement to breathing vibrations of a partially filled cylindrical tank – linear theory, ASME J. Appl Mech 31(4), 722–723.CrossRefGoogle Scholar
Chu, W. H. and Kana, D. D. (1967), A theory for nonlinear transverse vibrations of a partially filled elastic tank, AIAA J. 5(10), 1828–1835.CrossRefGoogle Scholar
Chun, C. H. (1980a), Experiments on steady and oscillatory temperature distribution in a floating zone due to the Marangoni convection, Acta Astron. 7, 479–488.CrossRefGoogle Scholar
Chun, C. H. (1980b), Marangoni convection in a floating zone under reduced gravity, J. Crystal Growth 48, 600–610.CrossRefGoogle Scholar
Chun, C. H. (1984), Numerical study on the thermal Marangoni convection and comparison with experimental results from the TEXUS-rocket program, Acta Astron. 11(3–4).CrossRefGoogle Scholar
Chun, C. H., Ehmann, M., Siekmann, J., Wozniak, G. (1987), Vibrations of rotating menisci, Proc. 6th Europ. Symp. Material Sciences under Microgravity Conditions, Borde France ESA-SP-256, 226–234.Google Scholar
Chun, C. H. and Siekmann, J. (1994), Higher modes and their instabilities of the oscillatory Marangoni convection in a large cylindrical liquid column, Proc. Norderney Symp. Scientific Results of the German Spacelab Mission D-2, 235–241.Google Scholar
Chun, C. H. and Wuest, W. (1979), Experiments on the transition from steady to the oscillatory Marangoni-convection of a floating zone under reduced gravity effects, Acta Astron. 6, 1073–1082.CrossRefGoogle Scholar
Chun, C. H. and Wuest, W. (1982), Suppression of temperature oscillations of thermal Marangoni convection in a floating zone by superimposing of rotating flow, Acta Astron. 9, 225–230.CrossRefGoogle Scholar
Ciliberto, S. and Gollub, J. P. (1984), Pattern competition leads to chaos, Phys. Rev. Lett. 52(11), 922–925.CrossRefGoogle Scholar
Ciliberto, S. and Gollub, J. P. (1985a), Phenomenological model of chaotic mode competition in surface waves, IL Nouvo Cimento 6(4), 309–316.CrossRefGoogle Scholar
Ciliberto, S. and Gollub, J. P. (1985b), Chaotic mode competition in parametrically forced surface waves, J. Fluid Mech. 158, 381–398.CrossRefGoogle Scholar
Clark C. D. (1959), Effect of propellant oscillations on SATURN roll moment of inertia, Army Ballistic Missile Agency, Rept. No DA-TN-87–59.
Clark L. V. and Stephens D. G. (1967), Simulation and scaling of low-gravity slosh frequencies and damping, Second ASTM, IES and AIAA Space Simulation Conf., ASTM, 43–49.
Clary R. R. and Turner L. J. Jr (1970), Measured and predicted longitudinal vibrations of a liquid propellant two stage launch vehicle, NASA TN-D-5943, August.
Clough D. P. (1977), Experimental evaluation of seismic design methods for broad cylindrical tanks, Rept. No UCB/EERC-77/10, University of California, Berkeley.
Clough D. P. (1979), Experimental evaluations of seismic design method for broad cylindrical tanks, UCA, Berkeley/EERC-79/06.
Clough D. P. and Niwa A. (1979), Static tilt tests of a tall cylindrical liquid storage tank, Rept. No UCB/EERC-79/06, UCA, Berkeley.
Clough, R. W., Niwa, A., and Clough, D. P. (1979), Experimental seismic study of cylindrical tanks, ASCE J. Struct. Division 105(ST12).Google Scholar
Coale, C. W. and Nagano, M. (1969), Axi-symmetric vibrations of a cylindrical hemispherical tank partially filled with a liquid, AIAA J. 7(2), 235–243.Google Scholar
Cocciaro, B., Faetti, S., and Nobili, M. (1991), Capillary effects on surface gravity waves in a cylindrical container: wetting boundary conditions, J. Fluid Mech. 231, 325–343.CrossRefGoogle Scholar
Cocciaro, B., Faetti, S., and Festa, C. (1993), Experimental investigation of capillary effects on surface gravity waves: non-wetting boundary conditions, J. Fluid Mech. 246, 43–66.CrossRefGoogle Scholar
Cochran, W. G (1934), The flow due to a rotating disc, Proc. Camb. Phil. Soc. 30, 365–375.CrossRefGoogle Scholar
Cointe, R. (1989), Two-dimensional fluid–solid impact, ASME J. Offshore Mech. & Arctic Engrg. 111(2), 109–114.CrossRefGoogle Scholar
Cointe, R. and Armand, J. L. (1987), Hydrodynamic impact analysis of a cylinder, ASME J. Offshore Mech. & Arctic Engrg. 109(3), 237–243.CrossRefGoogle Scholar
Cokonis T. J., Tomassoni J. E., and Seiferth R. W. (1963), Dome impact analysis – an approximate solution, Martin Co. Rept., TN LV 211, May.
Cole H. A. Jr (1966a), On a fundamental damping law for fuel sloshing, NASA TN-D-3240, March.
Cole H. A. Jr (1966b), Baffle thickness effects in fuel sloshing experiments, NASA TN-D-3716.
Cole H. A. Jr and Gambucci B. J. (1961a), Measured two dimensional damping effectiveness of fuel sloshing baffles applied to ring baffles in cylindrical tanks, NASA TN-D-694.
Cole H. A. Jr and Gambucci B. J. (1961b), Tests of an asymmetrical baffle for fuel sloshing suppression, NASA TN-D-1036.
Concus P. (1963), Capillary stability in an inverted rectangular tank, Proc. Symp. Physical and Biological Phenomena in a Weightless State, Bendikt, E. T. and Halliburton, R. W., eds., AAS, 14, 21–37.Google Scholar
Concus, P. (1964), Capillary stability in an inverted rectangular channel for free surfaces with curvature of changing sign, AIAA J. 2(12), 2228.CrossRefGoogle Scholar
Concus, P. (1968), Static menisci in a vertical right circular cylinder, J. Fluid Mech. 34, 481.CrossRefGoogle Scholar
Concus, P., Crane, G. E., and Perko, L. M. (1965), Inviscid fluid flow in an accelerating axi-symmetric container, Symp. Fluid Mechanics and Heat Transfer under Low Gravitational Conditions, Lockheed Missiles & Space Co.Google Scholar
Concus P., Crane G. E., and Satterlee H. M. (1967), Small-amplitude lateral sloshing in a cylindrical tank with a hemispherical bottom under low gravitational conditions, NASA – CR 54700.
Concus P. Crane G. E., and Satterlee H. M. (1968), Low gravity lateral sloshing in a hemispherically bottomed cylindrical tank, Proc. 1968 Heat Transfer and Fluid Mechanics Institute held at Seattle, A. F. Emery and C. A. Depew, eds., Stanford University Press, (June17–18), 80–97.
Concus P. Crane G. E., and Satterlee H. M. (1969), Small-amplitude lateral sloshing in spheroidal containers under low gravitational conditions, Final Report, NASA – CR 72500.
Concus, P. and Finn, R. (1974a), On capillary free surfaces in the absence of gravity, Acta Math. 132, 177–198.CrossRefGoogle Scholar
Concus, P., and Finn, R. (1974b), On capillary free surfaces in gravitational field, Acta Math. 132, 207–218.CrossRefGoogle Scholar
Concus, P., and Finn, R. (1976), On the height of a capillary surface, Math. Z. 147, 93–108.CrossRefGoogle Scholar
Concus P., and Finn R. (1987), Continuous and discontinuous disappearance of capillary surfaces, in Variational Methods for Free Surface Interface, Concus, P and Finn, R., eds., New York, Springer-Verlag, 197–204.CrossRefGoogle Scholar
Concus P. and Finn R., (1990a), Capillary surfaces in microgravity, in Low-Gravity Fluid Dynamics and Transport Phenomena, JN Koster and R. L. Sani, eds., 130, Progress in Astronaut. and Aeronaut., AIAA, Washington, DC, 183–205.
Concus, P., and Finn, R. (1990b), Dichotomous behavior of capillary surfaces in zero gravity, Microgravity Science and Technology III, 87–92, Errata, III, (1991), 230.Google Scholar
Concus, P., and Finn, R. (1991a), Exotic containers for capillary surfaces, J. Fluid Mech. 224, 383–394.CrossRefGoogle Scholar
Concus P. and Finn R. (1991b), On accurate determination of contact angle, Microgravity Science and Technology, IV, 69–70.
Concus, P., and Finn, R. (1992), On canonical cylinder sections for accurate determination of contact angle in microgravity, ASME WAM Symp. Fluid Mech. Phenomena in Microgravity, D. A. Siginer and M. M. Weislogel, AMD-154/FED-142, 125–131.Google Scholar
Concus, P., and Finn, R. (1998), Discontinuous behavior of liquids between parallel tilted plates, Phys. Fluids 10, 39–43.CrossRefGoogle Scholar
Concus, P., Finn, R., and Weislogel, M. (1999), Capillary surfaces in an exotic container: results from space experiments, J. Fluid Mech. 394, 119–135.CrossRefGoogle Scholar
Concus P., Crane G. E., and Satterlee H. M. (1968), Low gravity lateral sloshing in a hemispherically bottomed cylindrical tank, Proc. Heat Transf. Fluid Mech. Inst., Seattle, WA, (University Press, Stanford, CA) 80–90.
Coney T. A. and Masica W. J. (1969), Effect of flow rate on the dynamic contact angle for wetting liquids, NASA TN-D-5115.
Coney T. A. and Salzman J. A. (1971), Lateral sloshing in oblate spheroidal tanks under reduced-and normal-gravity conditions, NASA TN-D-6250.
Conly J. F. (1963), Surface waves on a rotating fluid, Ph.D. dissertation, Columbia University, New York.
Cooker, M. J. (1994), Water waves in a suspended container, Wave Motion 20, 385–395.CrossRefGoogle Scholar
Cooker, M. J. and Peregrine, D. H. (1992), Wave impact pressure and its effect upon bodies lying on the bed, Coastal Engrg. 18, 205–229.CrossRefGoogle Scholar
Cooker, M. J. and Peregrine, D. H. (1995), Pressure-impulse theory for liquid impact problems, J. Fluid Mech. 297, 193–214.CrossRefGoogle Scholar
Cooper, R. M. (1960), Dynamics of liquids in moving containers, Amer. Rocket Soc. J. 30(8), 725–729.Google Scholar
Courant, R. and Friedrichs, K. O. (1948), Supersonic Flow and Shock Waves, New York, Wiley Interscience.Google Scholar
Cox P. A., Bowles E. B., and Bass R. L. (1980), Evaluation of liquid dynamic loads in slack LNG cargo tanks, Tech. Rept. SSC-297, SwRI.
Craik, A. D. D. (1986), Wave Interactions and Fluid Flows, Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Craik, A. D. D. (1995), The stability of some three-dimensional and time-dependent flows, IUTAM Symp. Nonlinear Instability of Nonparallel Flows, Lin, S. P., Pillips, W. R. C., and Valentine, D. T., eds., Springer, 382–396.Google Scholar
Craik, A. D. D. and Armitage, J (1995), Faraday excitation, hysteresis and wave instability in a narrow rectangular wave tank, Fluid Dyn. Research 15, 129–143.CrossRefGoogle Scholar
Crandall, S. H. and Mroszczyk, J. (1986), Whirling of a flexible cylinder filled with liquid, Proc. Int. Conf. Rotordynamics, Tokyo, 449–452.Google Scholar
Crawford, J. D. (1991a), Normal forms for driven surface waves: Boundary conditions, symmetry, and genericity, Physica D 52, 429–457.CrossRefGoogle Scholar
Crawford, J. D. (1991b), Surface waves in nonsquare containers with square symmetry, Phys. Rev. Lett. 67, 441–444.CrossRefGoogle Scholar
Crawford, J. D., Gollub, J. P., and Lane, D. (1993), Hidden symmetries of parametrically forced waves, Nonlinearity 6, 119–164.CrossRefGoogle Scholar
Crawford, J. D. and Knobloch, E. (1991), Symmetry and symmetry-breaking in fluid dynamics, Ann. Rev. Fluid Mech. 23, 341–387.CrossRefGoogle Scholar
Crawford, J. D., Knobloch, E., and Riecke, H. (1990), Period-doubling mode interactions with circular symmetry, Physica D 44, 340–396.CrossRefGoogle Scholar
Crews, A. A. and Earth, R. L. (1963), Instrument to measure water wave height, J. Acoust. Soc. Amer. 35(5), 737–738.CrossRefGoogle Scholar
Curvelier, C. (1985), A capillary free boundary problem governed by the Navier–Stokes equations, Comp. Methods Appl. Mech. Eng. 48, 45–80.CrossRefGoogle Scholar
Curvelier, C. and Schulkes, R. M. S. M. (1990), Some numerical methods for the computation of capillary free boundaries governed by the Navier–Stokes equations, SIAM Rev. 32, 355–423.CrossRefGoogle Scholar
Cutshall W. K., Dodge F. T., Gree S. T., and Unruh J. F. (1996), Modeling low-g liquid motions in spinning spacecraft tanks, Final Report, SwRI Project 04–9769.
Daich, I. M. (1971), Nonconservative problems on oscillations of a rigid partially filled with ideal liquid, Appl. Mech. (Prikl. Mech.) 11(7), 44–48.Google Scholar
Daich, I. M. and Bar, I. L. (1973), Oscillations of rotating rigid body having cavity filled with viscous fluid, Appl. Mech. (Prikl. Mech.) 13(5), 64–69.Google Scholar
Daich, I. M., Bar, I. L., and Korzovskaya, I. D. (1976), Nonlinear oscillations of rotating rigid body partially filled with ideal liquid, Appl. Mech. (Prikl. Mech.) 12(6), 111–115.Google Scholar
Daly, B. J. (1969a), Numerical study of the effect of surface tension on interface instability, Phys. Fluids 12, 1340.CrossRefGoogle Scholar
Daly, B. J. (1969b), A technique for including surface tension effects in hydrodynamic calculations, J. Comput. Phys. 4, 97.CrossRefGoogle Scholar
Dalzell J. F. (1967a), Exploratory studies of liquid behavior in randomly excited tanks: longitudinal excitation, SwRI, Tech. Rept. 1.
Dalzell J. F. (1967b), Exploratory studies of liquid behavior in randomly excited tanks: lateral excitation, SwRI, Tech. Rept. 2, Contract NAS8–20319.
Dalzell J. F., Chu W. H., and Modisette J. E. (1964), Studies of ship roll stabilization tanks, SwRI, Tech. Rept. 1.
Dalzell J. F. and Garza I. R. (1964), An exploratory study of simulation of liquid impact in space vehicle and booster tanks, SwRI, Tech. Rept. 9, Contract NAS8–1555.
Danabasoglu G. and Biringen S. (1988), Computational of convective flow with g-jitter in rectangular cavities, AIAA Paper 88–3727.
Da-Riva, I. and Martinez, I. (1979), Floating zone stability, Proc. 3rd Europ. Symp. Material Science in Space, Grenoble, ESA-SP-142, 67–73.Google Scholar
Davis, S. H. (1987), Thermocapillary instabilities, Ann. Rev. Fluid Mech. 19, 403–435.CrossRefGoogle Scholar
Dean, R. G. and Dalrymple, R. A. (1992), Water Wave Mechanics for Engineering and Scientists, Singapore, World Scientific.Google Scholar
Debnath, L. (1994), Nonlinear Water Waves, New York, Academic Press.Google Scholar
Debonginie, J. F. (1986), On a purely Lagrangian formulation of sloshing and fluid-induced vibrations of tanks eigenvalue problems, Com. Meth. Appl. Mech. Eng. 58, 1–18.CrossRefGoogle Scholar
Decent S. P. (1995), Hysteresis and mode competition in Faraday waves, Ph.D. thesis, University of St Andrews, Scotland.
Decent, S. P. (1997), The nonlinear damping of parametrically excited two-dimensional gravity waves, Fluid Dyn. Res. 19, 201–217.CrossRefGoogle Scholar
Decent, S. P. and Craik, A. D. D. (1995), Hysteresis in Faraday resonance, J. Fluid Mech. 293, 237–268.CrossRefGoogle Scholar
Decent, S. P. and Craik, A. D. D. (1997), On limit cycles arising from the parametric excitation of standing waves, Wave Motion 25(3), 275–294.CrossRefGoogle Scholar
Decent, S. P., and Craik, A. D. D. (1999), Sideband instability and modulations of Faraday waves, Wave Motion 30(1), 43–55.CrossRefGoogle Scholar
Defelice D. M. (1987), Cryogenic fluid management flight experiment (CFMFE), in R. Vernon, ed., Microgravity Fluid Management Symposium, NASA Lewis Research Center, Cleveland O. H., 119–124, NASA Conference Publication NASA-CP-2465.
Deffenbaugh D. M., Dodge F. T., and Green S. T. (1998), Liquid motion in a rotating tank experiment (LME), Final Report, SwRI Project 04–6322, Document No. 6322-FNL-01, NASA Contract NAS3–27252.
Gennes, P. G. and Prost, J. (1994) The Physics of Liquid Crystals, Oxford, Clarendon.Google Scholar
DeLombard R., McPherson K., Moskowitz M., and Hrovat K. (1997), Comparison tools for assessing the microgravity environment of missions, carriers and conditions, NASA Tech. Rept. TM 107446.
Hartog, J. P. (1985), Mechanical Vibrations, New York, Dover Publications.Google Scholar
Derdul J. D., Grubb L. S., and Petrash D. A. (1966), Experimental investigation of liquid outflow from cylindrical tanks during weightlessness, NASA TN D-3746.
Derendyayev N. V. (1988), Andronov–Hopf bifurcation in dynamics of rotor system contained liquid, Rept. Academy Sciences USSR 301, 789–801.
Derendyayev, N. V. and Sanalov, V. M. (1982), On stationary rotation stability of the cylinder partially filled with viscous incompressible liquid, Appl. Math. Mech. (PMM) 4.Google Scholar
Desyatov, V. T. (1986), Experimental investigation of stability of rotary motion of bodies filled with liquid, in Space Apparatus Dynamics and Outer Space Investigation, Moscow, Mashinostroyeniye.Google Scholar
Devitt, E. B. and Melcher, J. R. (1965), Surface electrodynamics with high-frequency fluids, Phys. Fluids 8(6), 1193–1195.CrossRef
Dias, F. and Kharif, C. (1999), Nonlinear gravity and capillary-gravity waves, Annu. Rev. Fluid Mech. 31, 301–346.CrossRefGoogle Scholar
Dillingham, J. (1981), Motion studies of a vessel with water on deck, Marine Technology 18(1), 38–50.Google Scholar
DiMaggio, F. L. (1975), Dynamic response of fluid-filled shells, Shock Vib. Digest 7(5), 5–12.CrossRefGoogle Scholar
DiMaggio, F. L. (1978), Recent research on the dynamic response of fluid-filled shells, Shock. Vib. Dig 10(7), 15–19.CrossRefGoogle Scholar
DiMaggio, F. L. (1981), Dynamic response of fluid-filled shells – an update, Shock Vib. Digest 13(6), 3–6.CrossRefGoogle Scholar
DiMaggio, F. L. (1984), Dynamic response of shells containing fluid, Shock Vib. Digest 16(6), 3–9.CrossRefGoogle Scholar
DiMaggio, O. D. and Rehm, A. S. (1965), Nonlinear free oscillations of a perfect fluid in a cylindrical container, AIAA Symp. Structural Dyn. Aeroelasticity 30, 156–161.Google Scholar
Dimentberg, M. F. (1988), Statistical Dynamics of Non-linear and Time-varying Systems, New York, John Wiley & Sons.Google Scholar
Dodge F. T. (1963), A review of research studies on bubble motion in liquids contained in vertically vibrating tanks, SwRI Tech. Rept. 1, (Contract NAS8–11045).
Dodge, F. T. (1968), Discussion of bubble trajectory and equilibrium levels in vibrated columns, J. Basic Eng. 90(4), 629.CrossRefGoogle Scholar
Dodge F. T. (1971), Study of flexible baffles for slosh suppression, NASA CR-1880.
Dodge, F. T. (1990), Fluid management in low gravity, Prog. Astronautics and Aeronautics, Low-Gravity Fluid Dynamics and Transport Phenomena 130, 3–14.Google Scholar
Dodge F. T. (1991), Fluid management technology liquid slosh dynamics and control: Interim report, SwRI, NASA-NTIS Washington, DC.
Dodge F. T. (1996), Liquid motion analytical models and pre-flight simulations for the liquid motion in a rotating tank experiment (LME), SwRI Project 04–6322.
Dodge F. T. (1999), Modeling liquid motions in spinning spacecraft tanks, Final Report SwRI Project 18-R9946.
Dodge F. T. and Abramson N. H. (2000), Liquid propellant dynamics in the SATURN/APOLLO vehicles – a look back, AIAA Paper 2000–1676.
Dodge, F. T. and Bowles, E. B. (1984), Vapor flow into a capillary propellant-acquisition device, J. Spacecraft and Rock. 21(3), 267–273.CrossRefGoogle Scholar
Dodge, F. T. and Garza, L. R. (1967a), Experimental and theoretical studies of liquid sloshing at simulated low gravity, ASME J. Appl. Mech. 34(3), 555–562.CrossRefGoogle Scholar
Dodge F. T. and Garza L. R. (1967b), Simulated low-gravity sloshing in cylindrical tanks including effects of damping and small liquid depth, NASA Tech. Rept. No 5, Contract NAS8–20290, 1–32.
Dodge F. T. and Garza L. R. (1968), Simulated low-gravity sloshing in cylindrical tanks including effects of damping and small liquid depth, Proc. 1968 Heat Transfer and Fluid Mechanics Institute held at Seattle, A. F. Emery and C. A. Depew, eds., Stanford University, 67–79.
Dodge F. T. and Garza L. R. (1970a), Simulated low-gravity sloshing in spherical, ellipsoidal, and cylindrical tanks, J. Spacecraft Rock. 7(1), 204–206.
Dodge F. T. and Garza L. R. (1970b), Magnetic fluid simulation of liquid sloshing in low gravity, NASA Tech. Rep. 9, 1–29.
Dodge F. T. and Garza L. R. (1971), Propellant dynamics in an aircraft type launch vehicle, NASA CR-119891.
Dodge, F. T. and Garza, L. R. (1972), Free surface vibrations of a magnetic liquid, J. Eng. for Indust., 103–108.CrossRefGoogle Scholar
Dodge F. T. and Green S. T. (2000), Spinning slosh test rig: Data analysis and determination of nutation time constant model parameters for the genesis spacecraft, Final Report, 1, SwRI Project 18.03513, Boeing/NASA-KSC Contract K59000001.
Dodge, F. T., Green, S. T., and Cruise, M. W. (1991), Analysis of small-amplitude low gravity sloshing in axisymmetric tanks, Micrograv. Sci. and Technol. IV(4), 228–234.Google Scholar
Dodge F. T., Green S. T., Petullo S. P., and Kuhl C. A., (1999), A forced motion spin table for launch vehicle slosh, Final Report SwRI Project 18–03303, Boeing Contract L5999006.
Dodge, F. T. and Kana, D. D. (1966), Moment of inertia and damping of liquid in baffled cylindrical tanks, J. Spacecraft Rock. 3(1), 153–155. (Also NASA CR-383, February).CrossRefGoogle Scholar
Dodge, F. T., and Kana, D. D. (1987), Dynamics of liquid sloshing in upright and inverted bladdered tanks, ASME J. Fluids Engineering 109(1), 58–63.CrossRefGoogle Scholar
Dodge, F. T., Kana, D. D., and Abramson, H. N. (1965), Liquid surface oscillations in longitudinally excited rigid cylindrical containers, AIAA J. 3(4), 685–695. (Also SwRI Tech Rept. No 2, 30 April, 1964.)Google Scholar
Dodge F. T., Unruh S. T., and Green S. T. (2000), A boundary layer estimate of viscous energy dissipation in spinning spacecraft tanks, AIAA Paper 2000–5215, AIAA Space 2000 Conference.
Dodge, F. T., Unruh, S. T., Green, S. T., and Cruse, M. W. (1994), A mechanical model of liquid inertial waves for use with spinning spacecraft, ASME FED 198, 13021.Google Scholar
Doǧangün, A.Durmuş, A., and Ayvaz, Y. (1996), Static and dynamic analysis of rectangular tanks by using the Lagrangian fluid finite element, Computers Struct. 59(1), 547–552.CrossRefGoogle Scholar
Dokuchaev, L. V. (1964), On the solution of a boundary value problem on the sloshing of a liquid in conical cavities, J. Appl. Math. Mech. (PMM) 28(1), 151–154.CrossRefGoogle Scholar
Dommermuth, D. G. (1993), The laminar interaction of a pair of vortex tubes with a free surface, J. Fluid Mech. 246, 91–112.CrossRefGoogle Scholar
Dong, R. G. (1978), Sloshing in pools under earthquake-like ground motions, J. Power Div. 104(2), 157–167.Google Scholar
Donnell, L. H. (1976), Beams, Plates, and Shells, New York, McGraw-Hill.Google Scholar
Donnelly, R. J. (1988), Superfluid turbulence, Scientific American 259(5), 100–108.CrossRefGoogle Scholar
Donnelly, R. J. (1991), Quantized Vortices in Helium I.I., Cambridge, Cambridge University Press.Google Scholar
Douady, S. (1990), Experimental study of the Faraday instability, J. Fluid Mech. 221, 383–409.CrossRefGoogle Scholar
Douady, S., Fauve, S., and Thual, O. (1989), Oscillatory phase modulation of parametrically forced surface waves, Europhys. Lett. 62, 309.CrossRefGoogle Scholar
Dowell, E. H. (1967), On the nonlinear flexural vibrations of rings, AIAA J. 5, 1508–1509.CrossRefGoogle Scholar
Dowell, E. H. (1998), Comments on the nonlinear vibrations of cylindrical shells, J. Fluids and Struct. 12, 1087–1089.CrossRefGoogle Scholar
Dowell, E. H. and Ventres, C. S. (1968), Modal equations for nonlinear flexural vibrations of a cylindrical shell, Int. J. Solids Struct. 4, 975–991.CrossRefGoogle Scholar
Drake, K. R. (1999), The effect of internal pipes on the fundamental frequency of liquid sloshing in a circular tank, Appl. Ocean Res. 21(3), 133–143.CrossRefGoogle Scholar
Drolet F. and Viñals J. (1998), Fluid physics in a fluctuating acceleration environment, Proc. 4th Microgravity Fluid Phys. and Transport Phenomena Conf., Cleveland, Ohio, August 12–14.
Druz, B. I. and Magula, V. Z. (1967), Small longitudinal vibrations of a fluid in a perfectly flexible, elastic, cylindrical shell, (in Russian)Inzh. Zh. Mekh. Tverdogo Tela. 6, 63–67.Google Scholar
Dupont, P. E. (1992), The effect of Coulomb friction on the existence and uniqueness of the forward dynamics problems, Proc. 1992IEEE Int. Conf. on Robotics and Automation1442–1447.Google Scholar
Dussan, V. E. B. (1976), The moving contact line: The slip boundary condition, J. Fluid Mech. 77, 665–668.CrossRefGoogle Scholar
Dussan, V. (1979), On the spreading of liquids on solid surfaces: Static and dynamic contact-lines, Annals Rev. Fluid Mech. 11, 371–400.CrossRefGoogle Scholar
Dussan, V. and Davis, S. H. (1974), On the motion of fluid–fluid interface along a solid surface, J. Fluid Mech. 77, 71–95.CrossRefGoogle Scholar
Dzyuba, V. V. and Kubenko, V. D. (2002), Axisymmetric interaction problem for a sphere pulsating inside an elastic cylindrical shell filled with and immersed into a liquid, Int. Appl. Mech. 38(10), 1210–1219.CrossRefGoogle Scholar
Easton, C. R. and Catton, I. (1970), Nonlinear free surface effects in tank draining at low gravity, AIAA J. 8(12), 2195–2199.Google Scholar
Ebert E. (1984), Study of slosh dynamics of fluid filled containers on a 3-axis spin stabilized spacecraft, 2, Fluid Slosh Studies 5328/83/NL/Bi(Sc), ESA.
Ebert E. (1989), Modeling of liquid sloshing effects in multi-body systems, Proc. Int. Conf. Spacecraft Structures and Mechanical Testing, Noordwijk, NL, 19–21 Oct 1988, ESA SP-289, 269–275.
Eckhardt, K. and Netter, G. (1982), Experiment for investigation of the dynamic behavior of fluid in a surface tension tank under microgravity condition, Acta Astronautica 9(9), 565–571.CrossRefGoogle Scholar
Edwards N. W. (1969), A procedure for dynamic analysis of thin walled cylindrical liquid storage tanks subjected to lateral ground motions, Ph.D. dissentation., University of Michigan, Ann Arbor, MI.
Edwards, W. S. and Fauve, S. (1993), Parametrically excited quasicrystalline surface waves, Phys. Rev. E 47, R788–791.CrossRefGoogle ScholarPubMed
Edwards, W. S. and Fauve, S. (1994), Patterns and quasi-patterns in the Faraday experiment, J. Fluid Mech. 278, 123–148.CrossRefGoogle Scholar
Eggleston D. M. (1968), Dynamic stability of space vehicles, XIV: Testing for booster propellant sloshing parameters, NASA CR-948.
Ehrlich L. W. (1959), Exact solutions for sloshing problems, Space Tech. Lab., Memo-PA 2450/79, 22 September.
Ehrlich, L. W., Riley, J. D., Strange, W. G., and Troesch, B. A. (1961), Finite difference techniques for a boundary problem with an eigenvalue in a boundary condition, J. Soc. Indust. Appl. Math. 9, 149–164.CrossRefGoogle Scholar
Eide D. G. (1964), Preliminary analysis of variation of pitch motion of a vehicle in a space environment due to fuel sloshing in a rectangular tank, NASA TN-D-2336.
Eidel, W. (1989), Nonlinear liquid oscillations in prolate spheroidal containers, Z. Flugwiss. Weltraumorsch 13, 159–165.Google Scholar
Eidel, W. and Bauer, H. F. (1988), Nonlinear oscillations of an inviscid liquid column under zero gravity, Ing. Arch. 58, 276–284.CrossRefGoogle Scholar
Einfeldt, J., Kutschke, K. H., and Weber, S. V. (1969), Computation of the shape of the free liquid surface in containers with axial symmetry, Monatsberichte der Deutschen Akademic der Wissenschaften Zu Berlin 11(8/9), 610–615 (in German).Google Scholar
Elliott, G. E. P. and Riddiford, A. C. (1967), Dynamic contact angles, I: The effect of increased motion, J. Colloid. Interface Sci. 23, 389–398.CrossRefGoogle Scholar
El-Rahib, M. and Wagner, P. (1981), Vibration of a liquid with a free surface in a spinning spherical tank, J. Sound Vib. 76, 83–93.CrossRefGoogle Scholar
Engin, A. E. (1969a), Vibrations of fluid-filled spherical shells, J. Acoust. Soc. Amer. 46(1), part 2, 184–190.CrossRefGoogle Scholar
Engin, A. E. (1969b), The axi-symmetric response of a fluid-filled spherical shell to a local radial impulse – a model for head injury, J. Biomech. 2, 325–341.CrossRefGoogle Scholar
Enright P. J. and Wong E. C. (1994), Propellant slosh models for the Cassini spacecraft, AIAA Paper 94–3730.
Epperson T. B. and Brown R. (1957), Dynamic loads due to fuel motion in missile tanks, SwRI, Final Report, Contract No DA-23–072-ORD-1062.
Epperson, T. B., Brown, R., and Abramson, H. N. (1961), Dynamic loads resulting from fuel motion in missile tanks, in Advances in Ballistic Missile & Space Tech, II, NY, Pergamon Press, 313–327.Google Scholar
Ergin, A. (1997), An approximate method for the free vibration analysis of partially filled and submerged, horizontal cylindrical shells, J. Sound Vib. 207, 761–767.CrossRefGoogle Scholar
Ergin, A. and Temarel, P. (2002), Free vibrations of a partially liquid-filled and submerged, horizontal cylindrical shell, J. Sound Vib. 254(5), 951–965.CrossRefGoogle Scholar
Erneux, T. and Mandel, P. (1986), Imperfect bifurcation with a slowly-varying control parameter, SIAM J. Appl. Math. 46(1), 1–15.CrossRefGoogle Scholar
Espinosa, F. M. and Gallego-Juarez, J. A. (1984), On the resonance frequencies of water-loaded circular plates, J. Sound Vib. 94, 217–222.CrossRefGoogle Scholar
Eulitz W. R. (1957), The sloshing phenomenon and the mechanics of a liquid in motion in an oscillating missile container, Army Ballistic Missile Agency, Rept. No. DS-R-31-Div. Operation.
Eulitz W. R. (1958), A Can Type anti-slosh device derived from basis slosh studies, Army Ballistic Missile Agency, Rept. No. DSD-TR-4–58.
Eulitz W. R. (1961), Analysis and control of liquid propellant sloshing during missile flight, NASA-MSFC, MTP-P and VE-P-61, December.
Eulitz W. R. (1963), Practical consequences of liquid propellant slosh characteristics derived by nomographic methods, NASA-MSFC, MTP-P and VE-P-63–7.
Eulitz W. R. and Glaser R. F. (1961), Comparative experimental and theoretical considerations on the mechanism of fluid oscillations in cylindrical containers, Army Ballistic Missile Agency, Rept. No. MTP-M-S and M-61, 29 May.
Evan-Iwanowski, R. M. (1976), Resonance Oscillations in Mechanical Systems, New York, Elsevier Science.Google Scholar
Evans, D. V. (1990), The wide-spacing approximation applied to multiple scattering and sloshing problems, J. Fluid Mech. 210, 647–658.CrossRefGoogle Scholar
Evans, D. V. and Linton, C. M. (1993), Sloshing frequencies, Quart. J. Mech. and Appl. Math. 46, 71–87.CrossRefGoogle Scholar
Evans, D. V. and McIver, P. (1987), Resonant frequencies in a container with vertical baffles, J. Fluid Mech. 175, 295–307.CrossRefGoogle Scholar
Evensen, D. A. (1963), Some observations on the nonlinear vibration of thin cylindrical shells, AIAA J. 1, 2857–2858.CrossRefGoogle Scholar
Evensen D. A. (1964), Nonlinear flexural vibrations of thin circular rings, Ph.D. thesis, California Inst. Tech.
Evensen, D. A. (1966), A theoretical and experimental study of the nonlinear flexural vibrations of thin circular rings, ASME J. Appl. Mech. 33, 553–560.CrossRefGoogle Scholar
Evensen D. A. (1967), A nonlinear flexural vibrations of thin-walled circular cylinders, NASA TND 4090.
Evensen, D. A. (1974), Nonlinear vibrations of circular cylindrical shells, in Thin Walled Structures: Theory, Experiment and Design, Fung, Y. C., and Sechler, E. E., eds., 133–155. Englewood Cliffs, Prentice-Hall.Google Scholar
Evensen, D. A. (1999), Nonlinear vibrations of cylindrical shells – logical rationale, J. Fluids & Struct. 13, 161–164.CrossRefGoogle Scholar
Ewart D. G. (1956), Fuel oscillations in cylindrical tanks and the forces produced thereby, De Havilland Propellers Ltd, G. W. Dynamics Dept, Tech. Note No 2050, 8 November.
Faltinsen, O. M. (1974), A nonlinear theory of sloshing in rectangular tanks, J. Ship Res. 18(4), 224–241.Google Scholar
Faltinsen, O. M. (1978), A numerical nonlinear method of sloshing in tanks with two-dimensional flow, J. Ship Res. 18(4), 224–241.Google Scholar
Faltinsen, O. M. and Rognebakke, O. F. (1999), Sloshing and slamming in tanks, in Hydona'99- Manoeuvring'99, Gdansk-Ostroda, Poland Technical University of Gdansk.Google Scholar
Faltinsen O. M., Olsen H. A., Abramson H. N., and Bass R. L. (1974), Liquid slosh in LNG carriers, Det. Norske Veritas, Norway, Publication No 85.
Faltinsen, O. M., Rognebakke, O. F., Lukovskii, I. A., and Timokha, A. N. (2000), Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth, J. Fluid Mech. 407, 201–234.CrossRefGoogle Scholar
Faltinsen, O. M., Rognebakke, O. F., and Timokha, A. N. (2003), Resonant three-dimensional nonlinear sloshing in a square base basin, J. Fluid Mech. 487, 1–42.CrossRefGoogle Scholar
Faltinesn, O. M. and Timokha, A. N. (2001), An adaptive multidimensional approach to nonlinear sloshing in a rectangular tank, J. Fluid Mech. 432, 167–200.Google Scholar
Faltinesn, O. M. and Timokha, A. N. (2002a), Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth, J. Fluid Mech. 470, 319–357.Google Scholar
Faltinesn, O. M. and Timokha, A. N. (2002b), Analytically-oriented approaches to two-dimensional fluid sloshing in a rectangular tank (survey), in Problems of Analytical Mechanics and its Applications 44, 321–345, Proc. Inst. Math. Ukrakian National Akad. Sci.Google Scholar
Faraday, M. (1831), On the forms and states assumed by fluids in contact with vibrating elastic surfaces, Phil. Trans. Royal Soc. (London) 121, 319–340.Google Scholar
Farooq, A. and Homsy, G. M. (1994), Streaming flows due to g-jitter-induced natural convection, J. Fluid Mech. 271, 351–378.CrossRefGoogle Scholar
Fauve, S., Kumar, K., Laroche, C., Beysens, D., and Garabos, Y. (1992), Parametric instability of a liquid-vapor interface close to the critical point, Phys. Rev. Lett. 68, 3160–3163.CrossRefGoogle ScholarPubMed
Fediw, A. A., Isyumov, N., and Vickery, B. J. (1995), Performance of a tuned sloshing water damper, J. Wind Eng. Indust. Aerodyn. 57(2/3), 237–247.CrossRefGoogle Scholar
Felippa, C. (1991), Mixed Variational Formulations of Finite Element Analysis of Elastoacoustic/Slosh Fluid Structure Interaction, NASA, NTIS, Washington, DC.Google Scholar
Felippa, C. A. and Ohayon, R. (1990), Mixed variational formulation of finite element analysis of acoustoelastic/slosh fluid-structure interaction, Int. J. Fluid Struct. 4, 35–57.CrossRefGoogle Scholar
Feng G. C. (1973), Dynamic loads due to moving liquid, AIAA Paper No 73–409.
Feng G. C. and Robertson S. J. (1971), Study on propellant dynamics during docking, Interim Rept., NASA-CR-119904, June.
Feng G. C., and Robertson S. J. (1972), Study on propellant dynamics during docking, NASA-CR-124055, 15 March.
Feng Z. C. (1990), Bifurcation analysis of surface waves, Ph.D. dissertation, University of Minnesota.
Feng, Z. C. and Sethna, P. R. (1989), Symmetry-breaking bifurcations in resonance surface waves, J. Fluid Mech. 199, 495–518.CrossRefGoogle Scholar
Ferrant, P. and Touze, D. (2001), Simulation of sloshing waves in a 3D tank based on a pseudo-spectral method, Proc. 16th Int. Workshop on Water Waves and Floating Bodies, Hiroshima, Japan.Google Scholar
Field, S. B. and Martin, J. P. (1976), Comparative effects of U-tube and free surface type passive roll stabilization systems, Royal Inst. Naval Archit. 2, 73–92.Google Scholar
Figarov N. G. (1971), Vibrations of fluids in elliptical reservoirs, in Structural Dynamics, Koreneva, B. G., ed., Moscow, Izdatelsvo Literatury po Stroitelstvu.Google Scholar
Filippov, A. (1964), Differential Equations with Discontinuous Right-Hand Sides, Rhode Island: Amer. Math. Soc. Translations 42, Series 2.Google Scholar
Filstead, C. G. Jr (1972), The design and operation of LNG ships with regard to safety, Shipping World and Shipbuilder 165(3866), 259–262.Google Scholar
Finn, R. (1974), A note on capillary problem, Acta Math. 132, 199–207.CrossRefGoogle Scholar
Finn, R. (1978), Some comparison properties and bounds for capillary surfaces, in Complex Analysis and its Applications (Moscow, Nauka), 555–562.Google Scholar
Finn, R. (1979), Existence and nonexistence of capillary surfaces, Manuscr. Math. 28, 1–9.CrossRefGoogle Scholar
Finn, R. (1983), Existence criteria for capillary free surfaces without gravity, Indiana University Math. J. 32, 439–460.CrossRefGoogle Scholar
Finn, R. (1984), A subsidiary variational problem and existence criteria for capillary surfaces, J. Reine. Angew. Math. 353, 196–214.Google Scholar
Finn, R. (1986), Equilibrium Capillary Surfaces, New York, Springer-Verlag.CrossRefGoogle Scholar
Finn, R. (1999), Capillary surface interface, Notices AMS 46, 770–781.Google Scholar
Fischer, D. F. (1979), Dynamic fluid effects in liquid filled flexible cylindrical tanks, Earthquake Eng. Struct. Dyn. 7, 587–601.CrossRefGoogle Scholar
Fischer, D. F. and Rammerstorfer, F. G. (1982), The stability of liquid-filled cylindrical shells under dynamic loading, in Buckling of Shells, Proc. State-of-the-Art Colloq., Berlin, 569–597.Google Scholar
Fischer D. F. and Rammerstorfer F. G. (1984), Stability of liquid storage tanks under earthquake excitation, Proc. 8th World Conf. Earthquake Eng., San Francisco, CA 5, 215–222.
Fischer, D. F., and Rammerstorfer, F. G. (1999), A refined analysis of sloshing effects in seismically excited tanks, Int. J. Pressure Vess. Piping 76(10), 693–709.CrossRefGoogle Scholar
Fischer D. F., Rammerstorfer F. G., and Scharf K. (1991), Earthquake resistant design of anchored and unanchored liquid storage tanks under three-dimensional earthquake excitation, in Structural Dynamics: Recent Advances, Schueller, G. I., ed., Berlin, Springer, 317–371.CrossRefGoogle Scholar
Floryan, J. M. and Rasmussen, H. (1989), Numerical methods for viscous flows with moving boundaries, ASME Appl. Mech. Rev. 42, 323–349.CrossRefGoogle Scholar
Flugrad, D. R. and Obermaier, L. A. (1992), Computer simulation of a test rig to model sloshing in spin-stabilized satellites, J. Dyn. Syst., Measurement and Control 114, 689–698.CrossRefGoogle Scholar
Fogiel, M. (1994), Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, Transforms, Piscataway, NJ, Research & Education Association.Google Scholar
Fontenot L. L. (1968), The dynamics of liquids in fixed and moving containers, VII in Dynamic Stability of Space Vehicles, NASA CR-941.
Fontenot, L. L. and Lianis, G. (1963), The free vibrations of thin elastic pressurized cylindrical shells filled with a perfect and incompressible liquid having a free surface, Int. Symp. on Space Technology and Science, Tokyo.Google Scholar
Fontenot L. L. and Lomen D. O. (1964), Dynamic behavior of partially filled containers of arbitrary geometry executing prescribed vertical excitation, Convair Rep. EER-AN-533.
Fontenot, L. L., McDonough, G. F., and Lomen, D. O. (1965), Liquid free surface instability resulting from random vertical acceleration, Proc. 6th Int. Symp. on Space Technology and Science, Tokyo.Google Scholar
Fossen, T. L. (1994), Guidance and Control of Ocean Vehicles, New York, John Wiley & Sons.Google Scholar
Foster, G. K. and ADD, Craik (1997), Second-harmonic resonance with Faraday excitation, Wave Motion 26, 361–377.CrossRefGoogle Scholar
Fox, D. W. and Kuttler, J. R. (1981), Upper and lower bounds for sloshing frequencies by intermediate problems, J. Appl. Math. Phys. (ZAMP) 32, 667–682.CrossRefGoogle Scholar
Fox, D. W., and Kuttler, J. R. (1983), Sloshing frequencies, J. Appl. Math. Phys. (ZAMP) 34, 668–696.CrossRefGoogle Scholar
Frahm, H. (1911), Results of trials of the anti-rolling tanks at sea, Transactions of the Inst. Naval Architecture 53, 183–197.Google Scholar
Francescutto A. and Contento G. (1994), An experimental study of the coupling between roll motion and sloshing in a compartment, ISOPE'94, Osaka, Japan, 3, 283–288.
Frandsen J. B. (2002), Sloshing effects in periodically and seismically excited tanks, 5th World Cong. Comput. Mech., Vienna, Austria.
Frandsen J. B. and Borthwick AGL (2002), Nonlinear sloshing in fixed and vertically excited containers, Proc. ASME WAM IMECE 2002–32948.
Frank, S. and Schwabe, D. (1998), Temporal and spatial elements of thermocapillary convection in floating zones, Experiments in Fluids 23, 234–251.CrossRefGoogle Scholar
Frasier, J. T. and Scott, W. E. (1971), Stability of a liquid-filled gyroscope: Inviscid analysis, viscous corrections and experiments, J. Spacecraft and Rock. 8(5), 523–526.CrossRefGoogle Scholar
Freed L. E. (1957), Stability of motion of conical pendulums, Space Technol. Labs. Memo. GM 45.3–434, October.
Froude, W. (1874), Considerations respecting the rolling of ships at sea, Transactions of the Inst Naval. Architecture 14, 96–116Google Scholar
Fu, R. D. (1993), Finite element analysis of lateral sloshing response in axi-symmetric tanks with triangular elements, Comp. Mech. 12, 51–58.Google Scholar
Fujii, K., Tamura, Y., Sato, T., and Wakahara, T. (1988), Wind-induced vibration of tower and practical applications of tuned sloshing damper, J. Wind Eng. 37, 537–646.Google Scholar
Fujii, K., Tamura, Y., Sato, T., and Wakahara, T. (1990), Wind-induced vibration of tower and practical applications of tuned sloshing damper, J. Wind Eng. and Indus. Aerodyn. 33, 263–272.CrossRefGoogle Scholar
Fujino, Y. and Abe, M. (1993), Design formulas for tuned dampers based on a perturbation technique, Earthquake Eng. Struct. Dyn. 22, 833–854.CrossRefGoogle Scholar
Fujino, Y., Pacheco, B. M., Chaiseri, P., and Fujii, K. (1988a), An experimental study on tuned liquid damper using circular containers, JSCE J. Struct. Eng. 34A, 603–616.Google Scholar
Fujino, Y., Pacheco, B. M., Chaiseri, P., and Sun, L. M. (1988b), Parametric study on tuned liquid damper (TLD) using circular containers by free-oscillation experiments, JSCE Struct. Eng./Earthquake Eng. 5(2), 177–187.Google Scholar
Fujino, Y., Pacheco, B. M., Chaiseri, P., Sun, L. M., and Koga, K. (1990), Understanding of LTD properties based on TMD analogy, JSCE J. Struct. Eng. 36A, 577–590.Google Scholar
Fujino, Y., Pacheco, B. M., Sun, L. M., Chaiseri, P., and Isobe, M. (1989), Simulation of nonlinear waves in rectangular tuned liquid damper (TLD) and its verification, JSCE J. Struct. Eng. 35A, 561–574.Google Scholar
Fujino, Y. and Sun, L. M. (1993), Vibration control by multiple tuned liquid dampers (MTLDs), ASCE J. Struct. Eng. 119(12), 3482–3502.CrossRefGoogle Scholar
Fujino, Y., Sun, L. M., and Koga, K. (1991), Simulation and experiment on tuned liquid damper subjected to pitching motion, JSCE J. Struct. Eng. 37A, 805–814.Google Scholar
Fujino, Y., Sun, L. M., Pacheco, B. M., and Chaiseri, P. (1992), Tuned liquid damper (LTD) for suppressing horizontal motion of structures, ASCE J. Eng. Mech. 118, 2017–2030.CrossRefGoogle Scholar
Fujino, Y.et al. (1992), Tuned liquid dampers for suppressing horizontal motion of structures, ASCE J. Eng. Mech. 118, 2017–2030.CrossRefGoogle Scholar
Fujita, K. (1981), A seismic response analysis of a cylindrical liquid storage tank including the effect of sloshing, Bull. JSME 24(195), 1634–1641.CrossRefGoogle Scholar
Fujita, K. (1985), Vibration analysis of fluid-coupled two coaxial axisymmetric shells containing fluid, Trans. JSME (in Japanese) 51, 1170–1179.CrossRefGoogle Scholar
Fujita, K., Ito, T., Kodama, T., Adachi, S., Sekine, K., Ozaki, H, Eguchi, Y., and Yamamoto, K. (1993), A study on flow-induced vibration of a flexible weir due to fluid discharge: effect of weir stiffness, ASME Proc. Flow-Induced Vib. and Fluid–Structure Interaction 258, 143–150.Google Scholar
Fujita, K., Ito, T., Kodama, T., Eguchi, Y., and Yamamoto, K. (1996), Flow-induced vibration of a flexible weir due to fluid discharge: effect of weir stiffness, J. of Fluid and Structures 10, 79–98.CrossRefGoogle Scholar
Fujita, K., Ito, T., Shiraishi, T., Kodama, T., Akutsu, M., and Okabe, Y. (1991), Study on sloshing characteristics in the reactor vessel of top entry system of FBR, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 223, 91–96.Google Scholar
Fujita, K., Ito, T., and Wada, H. (1990), Experimental study on the dynamic buckling of cylindrical shell due to seismic excitation, inFlow-Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 31–36.Google Scholar
Fukaya M., Baba M., Okamoto K., and Madarame H. (1995), Self-induced sloshing caused by a jet from a rectangular tank wall, Proc. HYDRA-2000, 26th Congress IAHR 1, 468–473.
Fukaya M., Madarame H., and Okamoto K. (1996), Growth mechanism of self-induced sloshing caused by vertical plane jet, Proc. ASME– JSME 4th Int. Conf.Nuclear Engineering, Rao, A. S., Duffey, R. B., and Elias, D., eds., New Orleans, 1, 781–787.Google Scholar
Fukaya M., Okamot K., Madarame H., and Iida M. (1993), Effect of tank geometries on self-induced sloshing caused by upward plane jet, Proc Asia-Pacific Vib. Conf., 93, 1, 271–276.
Fuller, C. R. and Fahy, F. J. (1982), Characteristics of wave propagation and energy distribution in cylindrical elastic shells filled with fluid, J. Sound Vib. 81(4), 501–518.CrossRefGoogle Scholar
Fultz, D. (1962), An experimental note on finite-amplitude standing gravity waves, J. Fluid Mech. 13, 193–212.CrossRefGoogle Scholar
Funakoshi, M. and Inoue, S. (1987), Chaotic behavior of resonantly forced surface waves, Phys. Lett A 121, 229–232.CrossRefGoogle Scholar
Funakoshi, M. and Inoue, S. (1988), Surface waves due to resonant horizontal oscillation, J. Fluid Mech. 192, 219–247.CrossRefGoogle Scholar
Funakoshi, M. and Inoue, S. (1991), Bifurcations in resonantly forced water waves, European J. Mech. B/Fluids 10, 31–36.Google Scholar
Fung, F. W. (1965), Dynamic response of liquids in partially filled containers suddenly experiencing weightlessness, Symp. on Fluid Mechanics and Heat Transfer under Low Gravitational Conditions, Lockheed Missiles & Space Co, 24–25 June.Google Scholar
Fung, Y. C.Sechler, E. E., and Kaplan, A. (1957), On the vibration of thin cylindrical shells under internal pressure, J. Aeron. Sci. 24(9), 650–660.CrossRefGoogle Scholar
Galiev Sh, U. (1977), The Dynamics of the Interaction of Structural Elements with a Pressure Wave in a Liquid, Kiev, Naukova Dumka (in Russian).Google Scholar
Galiev Sh, U. (1981), The Dynamics of Hydroelastoplastic Systems, Kiev, Naukova Dumka (in Russian).Google Scholar
Ganapathi, M. and Vardan, T. K. (1996), Large amplitude vibrations of circular cylindrical shells, J. Sound Vib. 192, 1–14.CrossRefGoogle Scholar
Ganiev, R. F. (1977), Nonlinear resonance oscillations of bodies with a liquid, Soviet Appl. Mech. 13(10), 978–984.CrossRefGoogle Scholar
Ganiev, R. F. and Kholopova, V. V. (1975), Nonlinear oscillations of a body with a fluid performing motion in space, Soviet Appl. Mech. 11(11), 65–77.CrossRefGoogle Scholar
Ganiev, R. F. and Koval'chuk, P. S. (1980), The Dynamics of Systems of Rigid and Elastic Bodies, Moscow, Mashinostroyeniye (in Russian).
Ganiev, R. F., Lakiza, V. D., and Tsapenko, A. S. (1976), On resonance effects for vibrating bodies containing a liquid under zero gravity, in Space Studies in the Ukrane9, 26–37, Kiev, Naukova Dumka.Google Scholar
Ganiev, R. F.Lakiza, V. D., and Tsapenko, A. S. (1977), On dynamic behavior of a free liquid surface under low gravity and vibrational effects, Soviet Appl. Mech. 13(5), 102–107.CrossRefGoogle Scholar
Gans R. F. and Yalisover S. M. (1981), Observations and measurements of flow in a partially-filled horizontally rotating cylinder, ASME Paper 81-WA/FE-21.
Gao, H. and Kwok, K. C. S. (1997), Optimization of tuned liquid column dampers, Eng. Struct. 19(6), 476–486.CrossRefGoogle Scholar
Gao, H., Kwok, K. C. S., and Samali, B. (1999), Characteristics of multiple tuned liquid column dampers in suppressing structural vibration, Eng. Struct. 21, 316–331.CrossRefGoogle Scholar
Gardarsson S. (1997), Shallow-water sloshing, Ph.D. thesis, University of Washington, Seattle.
Gardarsson, S., Yeh, H., and Reed, D. (2001), Behavior of sloped-bottom tuned liquid dampers, ASCE J. Eng. Mech. 127(3), 266–271.CrossRefGoogle Scholar
Garrett, C. (1970), On cross-waves, J. Fluid Mech. 41(4), 837–849.CrossRefGoogle Scholar
Garza L. R. (1963), A brief comparison of ring and asymmetrical baffle characteristics, SwRI Tech. Rept. 6.
Garza L. R. (1964), Measurements of liquid natural frequencies and damping in compartmented cylindrical tanks, SwRI Tech. Rept. 8.
Garza, L. R. (1966), Theoretical and experimental pressures and forces on a ring baffle under sloshing conditions, J. Spacecraft Rock. 3(2), 276–278.CrossRefGoogle Scholar
Garza L. R. and Abramson H. N. (1963), Measurements of liquid damping provided by ring baffles cylindrical tanks, SwRI, Tech. Rept. No 5, April.
Garza, L. R. and Dodge, F. T. (1967), Comparison of flexible and rigid ring baffles for slosh suppression, J. Spacecraft Rock. 4(6), 805–806.Google Scholar
Gau J. S. (1985), Deterministic behavior of elevated water tanks under vertical motion, Master thesis, Texas Tech University, Lubbock, TX.
Gauss K. F. (1829), Principia generalia theoriae figurae fluidorum in statu aequilibrii, Gött. Gelehrte Anz. 1829: 1641–1648, Werke 5, 287–292. Göttingen: K. Ges. Wiss. Gött. 1867, Hildesheim: Olms, 1973.
Gavrilyuk, I., Lukovsky, I. A., and Timokha, A. N. (2000), A multimodal approach to nonlinear sloshing in a circular cylindrical tank, Hybrid Methods in Engineering 2(4), 469–484.CrossRefGoogle Scholar
Gavrilyuk, I.Lukovsky, I. A., and Timokha, A. N. (2001), Nonlinear sloshing in a circular conical tank, Hybrid Methods in Engineering 3(4), 1–39.CrossRefGoogle Scholar
Gedikli, A., and Ergüven, M. E. (1999), Seismic analysis of a liquid storage tank with a baffle, J. Sound Vib. 223(1), 141–155.CrossRefGoogle Scholar
Genevaux, J. M., and Lu, D. (2000), On sloshing in a container with moving wall, J. Fluid Struct. 14(2), 275–278.CrossRefGoogle Scholar
Gerlach, C. R. (1968), Surface disintegration of liquid in longitudinally excited containers, J. Spacecraft Rock. 5(5), 553–560.CrossRefGoogle Scholar
Gerrits J. (2001), Dynamics of liquid-filled spacecraft: Numerical simulation of coupled solid–liquid dynamics, Ph.D. thesis, Rijksaniversiteit Groningen.
Gerrits J., Loots G. E., Fekken G., and Veldman AEP (1999), Liquid sloshing in space and on earth, in Moving BoundariesSarler, V. B., Brebbia, C. A., and Power, H., eds., Southampton, WIT Press, 111–120.Google Scholar
Gershuni, G. Z. and Lyubimov, D. V. (1998), Thermal Vibrational Convection, New York, Wiley.Google Scholar
Gershuni, G. Z. and Zhukhovitskii, E. M. (1963), On parametric excitation of convective instability, Prikl. Mat. Mekh. (PMM) 27(5), 1197–1204.CrossRefGoogle Scholar
Gershuni, G. Z. and Zhukhovitskii, E. M. (1964), On parametric excitation of a rigid rotating fluid, Prikl. Mat. Mekh. (PMM) 28(5), 1010–1016.CrossRefGoogle Scholar
Gershuni, G. Z. and Zhukhovitskii, E. M. (1976), Convective Stability of Incompressible Fluids, Jerusalem, Keter.Google Scholar
Gershuni, G. Z. and Zhukhovitskii, E. M. (1986), Vibrational thermal convection in zero gravity, Fluid Mech. – Sov. Res. 15, 63–84.Google Scholar
Ghali S. A. (1965), The dynamics of liquids in rectangular moving containers, Ph.D. thesis, University of Leeds, Dept. Civil Eng.
Giancaglia, G. E. O. (1972), Perturbation Methods in Nonlinear Systems, Berlin, Springer.CrossRefGoogle Scholar
Gilbert C. R. (1985), Gas payload No G-025: Study of liquid sloshing behavior in microgravity, NASA Goddard Space Flight Center's 1985 Get Away Special Experimenter's Symposium 165–176, NASA CP-2401.
Gilbert, C. R., Netter, G., and Vits, P. (1984), Study of liquid sloshing behavior in microgravity, Goddard Space Flight Center's 1984Get Away Special Experimenter's Symposium38–54.Google Scholar
Gillard P. (1963), Theoretical and experimental research of nonlinear oscillations of liquids in containers and channels of constant depth, Publ. Sci. Tech. Minist. l'Air, France, No 412 (in French).
Gillis, J. (1961), Stability of a column of rotating viscous liquid, Proc. Cambridge Phil. Soc. 57, 152–159.CrossRefGoogle Scholar
Gillis, J. and Kaufman, B. (1961), The stability of a rotating viscous jet, Quart. Appl. Math. 19(4), 301–308.CrossRefGoogle Scholar
Gillis, J. and Shuh, K. S. (1962), Stability of a rotating liquid column, Phys. Fluids 5, 1149–1155.CrossRefGoogle Scholar
Ginsberg, J. H. (1973), Large amplitude forced vibrations of simply supported thin cylindrical shells, ASME J. Appl. Mech. 40, 471–477.CrossRefGoogle Scholar
Ginsberg, J. H. (1974), Nonlinear axisymmetric free vibration in simply supported cylindrical shells, ASME J. Appl. Mech. 41, 310–311.CrossRefGoogle Scholar
Ginsberg, J. H. (1975), Multidimensional nonlinear acoustic wave propagation, part II: The nonlinear interaction of an acoustic fluid and plate under harmonic excitation, J. Sound Vib. 40, 359–379.CrossRefGoogle Scholar
Glaser R. F. (1967), Axi-symmetric vibrations of partially liquid filled cylindrical containers, NASA TN-D-4026, July.
Glimm, J. (1965), Solutions in the large for nonlinear-hyperbolic systems of equations, Comm. on Pure and Appl. Math. 18.CrossRefGoogle Scholar
Gluck, D. F. and Gille, J. P. (1965), Fluid mechanics of zero-g propellant transfer in spacecraft propulsion systems, J. Eng. for Industry 87(1), 1–8.CrossRefGoogle Scholar
Gluck, D. F., Gille, J. P., Simkin, D. J., and Zukoski, E. E. (1966), Distortion of the liquid surface during tank discharge under low-g conditions, J. Spacecraft Rock. 3(11), 1691–1692.Google Scholar
Gold H., McArdle J. G., and Petrash D. A. (1967), Slosh dynamics study in near zero gravity, description of vehicle and spacecraft, NASA TN-D-3985.
Goldberg, Z. A. (1972), Parametric amplification of standing waves in fluids, Sov. Phys. Dokl. 16(11), 949–950.Google Scholar
Goldsborough, G. H. (1930), The tidal oscillations in an elliptic basin of variable depth, Proc. Royal Soc. (London) A 130, 157–167.CrossRefGoogle Scholar
Goldstein, S. (1938), Modern Developments in Fluid Dynamics, 2, London, Oxford University Press.Google Scholar
Gollub, J. P. and Meyer, C. W. (1983), Symmetry-breaking instabilities on a fluid surface, Physica 6D, 337–346.Google Scholar
Gollub J. P. and Simonelli F. (1989), Bifurcation and modal interactions in fluid mechanics: surface waves, Proc. XVII Int. Congress of Theor. Appl. Mech, Grenoble, France, 21–27 August 1988, P Germain, M Piau, and D. Caillerie, eds., North Holland, Elsevier Sciences, 73–82.CrossRef
Goltser, I. M. and Kuntisyn, A. L. (1975), On the stability of autonomous systems with intrinsic resonance, J. Appl. Math. Mech. (PMM) 39(6), 974–984.Google Scholar
Golubitsky, M., Stewart, I., and Schaeffer, D. G. (1988), Singularity and Groups in Bifurcation Theory, II (69) in Appl. Math. Sci. Series, New York, Springer-Verlag.Google Scholar
Gonçalves, P. B. and Batista, R. C. (1988), Nonlinear vibration analysis of fluid-filled cylindrical shells, J. Sound Vib. 127, 133–143.CrossRefGoogle Scholar
Gonçalves, P. B. and Ramos, N. R. S. S. (1996), Free vibration analysis of cylindrical tanks partially filled with liquid, J Sound Vib. 195, 429–444.CrossRefGoogle Scholar
Goodrich, C. L., Shi, W. T., Hentschel, H. C. E., and Lathrop, D. P. E (1997), Viscous effects in droplet-ejecting capillary waves, Phys. Rev. 56, 472–475.Google Scholar
Goodrich, C. L., Shi, W. T., and Lathrop, D. P. E. (1996), Threshold dynamics of singular gravity-capillary waves, Phys. Rev. Lett. 76, 1824–1827.CrossRefGoogle Scholar
Gorbunov Yu, A. (1965), Experimental investigation of the vibrations of spherical and cylindrical shells with a liquid in the presence of pressure, Abstracts of Papers read at the 5th All-Union Conf. on the Theory of Plates and Shells, Moscow, Nauka, 57–61.Google Scholar
Görtler H. (1957), On forced oscillations in rotating fluids, Proc. 5th Midwestern Conf. Fluid Mechanics, University of Michigan, 1–10.
Gossard M. L. (1965), Axi-symmetric dynamic response of liquid-filled hemispherical, thin walled, elastic tanks, AIAA Symp. Struct. Dyn. Aeroelasticity, 30 August – 1September.
Gradshteyn, I. S. and Ryzhik, I. M. (1980), Tables of Integrals, Series, and Products, New York, Academic Press.Google Scholar
Graham E. W. (1951), The forces produced by fuel oscillations in a rectangular tank, Douglas Aircraft Co, SM-13748.
Graham, E. W. (1960), Discussion on ‘production of rotation in a confined liquid through translation motion of the boundaries’ by Berlot, ASME J. Appl. Mech. 27(2), 365.CrossRefGoogle Scholar
Graham, E. W. and Rodriguez, A. M. (1952), The characteristics of fuel motion which affect airplane dynamics, ASME J.Appl.Mech. 19(3), 381–388.Google Scholar
Graham-Eagle, J. (1983), A new method for calculating eigenvalues with application to gravity-capillary waves with edge constraints, Math. Proc. Cambridge Phil. Soc. 94, 553–564.CrossRefGoogle Scholar
Graham-Eagle J. (1984), Gravity-capillary waves with edge constraints, Ph.D. thesis, University of Oxford.
Grassia, P. and Homsy, G. M. (1998a), Thermocapillary and buoyant flows with low frequency jitter, I: Jitter confined to the plane, Phys. Fluids 10, 1273–1290.CrossRefGoogle Scholar
Grassia, P., and Homsy, G. M. (1998b), Thermocapillary and buoyant flows with low frequency jitter, II: Span wise jitter, Phys. Fluids 10, 1291.CrossRefGoogle Scholar
Greaves, D. M., Borthwick, A. G. L., Wu, G. X., and Eatock Taylor, R. (1997), A moving boundary finite element method for fully nonlinear wave simulations, J. Ship Res. 41(3), 181–194.Google Scholar
Grebogi, C., Ott, E., and Yorke, J. A. (1982), Chaotic attractors in crisis, Phys. Rev. Lett. 48(22), 1507–1510.CrossRefGoogle Scholar
Grebogi, C., Ott, E., Romeiras, F., and Yorke, J. A. (1987), Critical exponents for crisis-induced intermittency, Phys. Rev. 36, 5365–5380.CrossRefGoogle ScholarPubMed
Green J. W. (1957), Further remarks on conical sloshing, Memo. PA/M-553/2, STL.
Green J. W. (1959), On the approximation to the eigenvalues in a sloshing problem by the eigenvalues of the corresponding discrete problem, Space Tech. Lab., Memo. PA/M-245011, 21 August.
Green J. W. and Landau H. J. (1957), A third note on conical sloshing, Memo. PA/M-553/3, STL.
Greenhill, A. G. (1880), On the general motion of a liquid ellipsoid, Proc. Cambridge. Phil Soc. 4.Google Scholar
Greenhill, A. G. (1887), Wave motion in hydrodynamics, Amer. J. Math. 9, 62–112.CrossRefGoogle Scholar
Greenspan, H. P. (1968), The Theory of Rotating Fluids, Cambridge, Cambridge University Press.Google Scholar
Gribkov V. A. (1982), The Basic Results of Investigations of the Dynamic Characteristics of Shells Filled with a Liquid: Analysis and Systemization of Studies, Deposit in VINITO No 4577–82, Moscow.
Grigoliuk, E. I. (1970), Problems of interaction of shells with a liquid, Proc. 7th All Union Conf. on the Theory of Shells and Plates, Dnepropetrovsk, Moscow, Nauka, 755–778.Google Scholar
Grigoliuk, E. I. (Edi) (1980), Thin-Walled Cylindrical Shells, Moscow, Mashinostroenie (in Russian).Google Scholar
Grigoliuk, E. I., and Gorshkov, A. G. (1976), The Interaction of Elastic Structures with a Liquid, Moscow, Sudostryeniye.Google Scholar
Grigoliuk, E. I., Gorshkov, A. G., and Shkliarchuk, F. N. (1968), On a method of calculating the vibrations of a liquid partially filling an elastic shell of revolution, Izv. Akad. Nauk. SSSR, Mekh. zhid Gaza, No 3, 74–80.Google Scholar
Grigoliuk, E. I. and Shkliarchuk, F. N. (1970), Equations of perturbed motion of a solid with a thin-walled elastic shell partly filled with fluid, J. Appl. Mat. Mech.(PMM) 34(3).Google Scholar
Grigorev, E. T. (1966), The axisymmetric vibrations of a shell with a liquid, Sov. Applied. Mech. (Prikl. Mekh.) 2(4), 39–49.Google Scholar
Grigorev, E. T. (1967), The stability of longitudinal vibrations of a shell containing a fluid, Sov. Appl. Mech. (Prik. Mekh.) 3(6), 23–30.Google Scholar
Grigoryeva, N. B. (1999), The stability of the Jacobi ellipsoids of a rotating liquid, J. Appl. Mat. Mech. 63(6), 1052–1054.Google Scholar
Grigoryeva, N. B. (2000), The stability of the equilibrium ellipsoids of a rotating liquid, J. Appl. Mat. Mech. 64(6), 925–936.CrossRefGoogle Scholar
Grinchenko, V. T. and Komissarova, G. L. (1984), Wave propagation in a hollow elastic cylinder with a liquid, Soviet Appl. Mech. (Prikl. Mekh.) 20(1), 21–26.Google Scholar
Grinchenko, V. T., and Komissarova, G. L. (1988), Properties of normal non-axisymmetric waves in a thick-walled cylinder filled with a liquid, Sov Appl. Mech. (Prikl. Mekh.) 24(10), 15–20.Google Scholar
Grinchenko V. T. and Meleshko V. V. (1981), Harmonic vibrations and waves in elastic bodies, Kiev, Naukova Dumka (in Russian).
Grodzka, P. G. and Bannister, T. C. (1972), Heat flow and convection demonstration experiments aboard Apollo 14, Science 176, 506.CrossRefGoogle ScholarPubMed
Grubb L. S. and Petrash D. A. (1967), Experimental investigation of interfacial behavior following termination of outflow in weightlessness, NASA TN D-3896.
Gu X. M. (1986), Nonlinear surface waves of a fluid in rectangular containers subjected to vertical periodic excitations, Ph.D. dissertation, University of Minnesota.
Gu, X. M. and Sethna, P. R. (1987), Resonance surface waves and chaotic phenomena, J. Fluid Mech. 183, 543–565.CrossRefGoogle Scholar
Gu, X. M., Sethna, P. R., and Narain, A. (1988), On three-dimensional nonlinear subharmonic resonance surface waves in a fluid, part I: theory, J. Appl. Mech. 55, 213–219.CrossRefGoogle Scholar
Guadagnoli D. (1991), The description of a typical spacecraft, monopropellant reaction control system, using spherical propellant tanks with surface tension propellant management devices, GE Astro Space Division Memo.
Guarino, J. C. and Elger, D. F. (1992), Modal analysis of a fluid-filled elastic shell containing an elastic sphere, J. Sound Vib. 156, 461–479.CrossRefGoogle Scholar
Guibert J. P., Huynh H. T., and Marce J. L. (1978), Etude general de l'influence des liquids contenus dans les satellites, ONERA RT 1/3307 SY, September.
Gunter, N. M. (1965), Potential Theory and Its Application to Basic Problems of Mathematical Physics, New York, Frederick Unger Publishing Co.Google Scholar
Gupta, M. R. K. (1995a), Sloshing in shallow cylindrical tanks, J. Sound Vib. 180(3), 397–415.CrossRefGoogle Scholar
Gupta, M. R. K. (1995b), Free vibrations of partially filled cylindrical tanks, Engrg. Struct. 17(3), 221–230.CrossRefGoogle Scholar
Gupta, M. R. K. and Hutchinson, G. L. (1988), Free vibration analysis of liquid storage tanks, J. Sound Vib. 122, 491–506.CrossRefGoogle Scholar
Gupta, M. R. K., and Hutchinson, G. L. (1989), Solid-water interaction in liquid storage tanks, J. Sound Vib. 135(3), 357–374.CrossRefGoogle Scholar
Gupta, M. R. K., and Hutchinson, G. L. (1991), Effects of a wall flexibility on the dynamic response of liquid storage tanks, Engineering Structures 13, 253–267.CrossRefGoogle Scholar
Gustafson D. A. and Gustafson G. R. (1969), Heavy vehicle overturning problems, Chalmers' Institute Tech., Gothenburg, Sweden (in Swedish).
Guthar, G. S. and Wu, T. Y. (1991), Observation of a standing-kink cross wave parametrically excited, Proc. Royal Soc. London A 434, 430–440.Google Scholar
Guyan, R. J., Ujihara, B. H., and Welch, P. W. (1968), Hydroelastic analysis of axi-symmetric systems by a finite element method, Proc. of the 2nd Conf. on Matrix Methods in Structural Mechanics, Ohio, Wright-Patterson AFB, October.Google Scholar
Guyett P. R. (1967), Measurements of the unsteady forces acting on a circular cylindrical tank containing liquid during harmonic motion, ARE TR 67098, April.
Guz, A. N., Kubenko, V. D., and Babaev, A. E. (2002), Dynamics of shell systems interacting with a liquid, Int. Appl. Mech. 38(3), 260–301.CrossRefGoogle Scholar
Haberman, R. (1979), Slowly-varying jump and transition phenomena associated with algebraic bifurcation problems, SIAM J. Appl. Math. 37, 69–105.CrossRefGoogle Scholar
Habip, L. M. (1965), On the mechanics of liquids in sub-gravity, Acta Astronaut. 11(6), 401–409.Google Scholar
Hagiuda, H. (1989), Oscillation control system exploiting fluid force generated by water sloshing, (in Japanese), Mitsui Zosen Technical Review 137, 13–20.Google Scholar
Hale, J. K. (1969), Ordinary Differential Equations, New York, Wiley-Interscience.Google Scholar
Hamann, F. H. and Datton, C. (1971), The forces on a cylinder oscillating sinusoidally in water, J. Eng. for Industry 9(4), 1197–1202.CrossRefGoogle Scholar
Hamdi, M. and Ousset, V. (1978), A displacement method for the analysis of vibrations of coupled fluid–structure systems, Int. J. Num. Methods in Eng. 13, 139–150.CrossRefGoogle Scholar
Hamlin, N. A., Lou, Y. K., Maclean, W. M., Seibold, F., and Chandras, L. M. (1986), Liquid sloshing in slack ship tanks: theory, observations and experiments, SNAME Trans. 94, 159–195.Google Scholar
Hammack, J. L. and Henderson, D. M. (1993), Resonant interactions among surface water waves, Annu. Rev. Fluid Mech. 25, 55–97.CrossRefGoogle Scholar
Hanson R. D. (1973), Behavior of liquid storage tanks: the great Alaska earthquake of 1964, National Academy Sci. Washington D.C., 331–339.
Hara, F. (1990), Experimental study on sloshing characteristics of a flowing liquid in a tank, Trans. JSME Int. J., Series III 33(3), 330–338.Google Scholar
Hara F. (1992), Identification of sloshing suppression force generated by intermittent gas-bubble injection, Proc. 1st MOVIC, 1110–1115.
Hara, F. and Saito, O. (1988), Active control for earthquake-induced sloshing of a liquid contained in a circular tank, Proc. 9th World Conf. Earthquake EngineeringV, 889–894, Tokyo–Kyoto, Japan.Google Scholar
Hara, F. and Shibata, H. (1986), Experimental study on active control of sloshing of a liquid contained in a tank by intermittent gas-bubble injection, Trans. JSME 52(C-481), 2392–2396 (in Japanese).CrossRefGoogle Scholar
Hara, F. and Shibata, H. (1987), Experimental study on active suppression by gas bubble injection for earthquake induced sloshing in tanks, JSME Int. J. 30(260), 318–323.CrossRefGoogle Scholar
Hara, F. and Suzuki, T. (1992), Dynamic instability analysis of self-excited vibration of a flexible weir due to fluid discharge, ASME Symp. Flow-Induced Vibration and Noise, 5: Axial and Annular Flow-Induced Vibration and Instabilities, PVP- 244, 45–58.Google Scholar
Harlow, F. H., Amsden, A. A., and Nix, J. R. (1976), J. Comput. Phys. 20, 119CrossRef
Harlow, F. H. and Welch, J. E. (1965), Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. of Fluids 8, 2152–2196.CrossRefGoogle Scholar
Harlow, F. H., and Welch, J. E. (1966), Numerical study of large-amplitude free surface motions, Phys. of Fluids 9, 842.CrossRefGoogle Scholar
Haroun M. A. (1980), Dynamic analysis of liquid storage tanks, Ph.D. diss., Caltech, Pasadena, CA.
Haroun, M. A. (1983), Vibration studies and tests of liquid storage tanks, Earthquake Eng. Struct. Dyn. 11, 179–206.CrossRefGoogle Scholar
Haroun, M. A. (1991), Implications of observed earthquake-induced damage on seismic codes and standards, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 223, 1–7.Google Scholar
Haroun, M. A. and Elliathy, H. M. (1985a), Seismically induced fluid forces on elevated tanks, ASCE J. Tech. Topics in Civil Eng. 111, 1–15.Google Scholar
Haroun, M. A., and Elliathy, H. M. (1985b), Model for flexible tanks undergoing rocking, ASCE J. Eng. Mech. 111(2), 143–157.CrossRefGoogle Scholar
Haroun, M. A. and Housner, G. W. (1981a), Earthquake response of deformable liquid storage tanks, ASME J. Appl. Mech. 48, 411–418.CrossRefGoogle Scholar
Haroun, M. A. and Housner, G. W. (1981b), Dynamic interaction of liquid storage tanks and foundation soil, Proc. 2nd ASCE/EMD Specialty Conf. Dynamic Response of Structures, Atlanta, Georgia.Google Scholar
Haroun, M. A. and Housner, G. W. (1982), Complications in free vibration analysis of tanks, ASCE J. Eng. Mech. Div. 108(EM5), 801–818.Google Scholar
Haroun, M. A., Lee, L. R., and Elliathy, H. M. (1989), Dynamic behavior of shell towers supporting liquid filled tanks, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 1–8.Google Scholar
Haroun, M. A. and Mourad, S. A. (1990), Buckling behavior of liquid filled shells under lateral seismic shear, inFlow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 11–17.Google Scholar
Haroun, M. A., Mourad, S. A., and Pence, P. W. (1991), Vibration suppression through liquid oscillations, Mechanics Computing in 1990s and Beyond, EMD Special Conf., Columbus, Ohio, 2, 656–660.Google Scholar
Haroun, M. A., Pires, J. A., and Won, A. Y. J. (1994a), Hybrid liquid column dampers for suppression of environmentally-induced vibrations in tall buildings, Proc. 3rd Conf. Tall Buildings in Seismic Regions, Los Angeles, CA.Google Scholar
Haroun, M. A.Pires, J. A., and Won, A. Y. J. (1994b), Active orifice control in hybrid liquid column dampers, 1st World Conf. Structural Control 3, FA1–69–78, Los Angeles, CA.Google Scholar
Haroun, M. A.Pires, J. A., and Won, A. Y. J. (1996), Suppression of environmentally-induced vibration in tall buildings by hybrid liquid column dampers, Struct. Des. Tall Buildings 5, 45–54.3.0.CO;2-F>CrossRefGoogle Scholar
Haroun M. A. and Tayel M. A. (1984), Dynamic behavior of cylindrical liquid storage tanks under vertical earthquake excitation, Proc. 8th World Conf. Earthquake Eng., San Francisco, CA 7, 421–428.
Haroun, M. A. and Tayel, M. A. (1985a), Axi-symmetric vibrations of tanks – numerical, ASCE. J. Eng. Mech. Div. 111, 329–345.CrossRefGoogle Scholar
Haroun, M. A. and Tayel, M. A. (1985b), Axi-symmetric vibrations of tanks – analytical, ASCE J. Eng. Mech. Div. 111, 346–358.CrossRefGoogle Scholar
Haroun, M. A. and Tayel, M. A. (1985c), Response of tanks to vertical seismic excitations, Earthquake Eng. and Struct. Dyn. 13, 583–595.CrossRefGoogle Scholar
Harper J. (1958), Propellant sloshing in conical tank undergoing arbitrary forced translational motion, Convair, Astronautics, Rep. ZU-7–089-TN, 2 January.
Harrison J. V. and Murphy J. (1987), Sub-scale testing of liquid propellant tanks for the RCA USSB spacecraft, Final Rept. 529460–80-F50, RCA.
Hasegawa, E., Umehara, S., and Atsumi, M. (1983), The critical condition for the onset of waves on the free surface of a horizontal liquid layer under a vertical oscillation, Trans. JSME B 49(448), 2901–2907 (in Japanese).CrossRefGoogle Scholar
Hashimoto, H. and Sudo, S. (1980), Surface disintegration and bubble formation in vertically vibrated liquid column, AIAA J. 18(4), 442–449.Google Scholar
Hashimoto H. and Sudo S. (1982), Frequency characteristics of pressure induced by vertical vibration of a cylindrical container containing liquid, Proc. 1982 Joint Conf. on Experimental Mech. (SESA), 353–358.
Hashimoto, H. and Sudo, S. (1984), Basic behavior of liquid free surface in a cylindrical container subject to vertical vibration, Bulletin JSME 27(227) 923–930.CrossRefGoogle Scholar
Hashimoto, H. and Sudo, S. (1985a), Frequency characteristic of a bubble cluster in a vibrated liquid column, J. Spacecraft Rock. 22(6), 649–655.CrossRefGoogle Scholar
Hashimoto, H. and Sudo, S. (1985b), Dynamic behavior of stratified fluids in a rectangular container subjected to vertical excitation, Bull. JSME 28, 1910–1917.CrossRefGoogle Scholar
Hashimoto, H. and Sudo, S. (1987), Drop formation mechanism in a vertically vibrated liquid column, AIAA J. 25(5), 727–732.CrossRefGoogle Scholar
Hashimoto, H. and Sudo, S. (1988), Violent liquid sloshing in vertically excited cylindrical containers, Exp. Therm. Fluid. Sci. 1, 159–169.CrossRefGoogle Scholar
Hastings L. J. and Rutherford R. III (1968), Low gravity liquid–vapor interface shapes in axi-symmetric containers and a computer simulation, NASA TM X-53790.
Hastings L. J. and Toole L. E. (1968), An experimental study of the behavior of a sloshing liquid subjected to a sudden reduction in acceleration, NASA TM-X-5375.
Hatano, T. and Konno, H. (1966), Numerical solution of hydrodynamic pressures during earthquakes on arch dam, Trans. JSCE 131, 19–23 (in Japanese).Google Scholar
Hattori, M., Arami, A., and Yui, T. (1994), Wave impact pressure on vertical walls under breaking waves of various types, Coastal Engrg. 22, 79–114.CrossRefGoogle Scholar
Haxton, R. S. and Barr, A. D. S. (1972), Autoparametric vibration absorber, ASME J. Eng. Indust. 94, 119–125.CrossRefGoogle Scholar
Hayama, S., Aruga, K., and Watanabe, T. (1983), Nonlinear response of sloshing in rectangular tanks (1st report, nonlinear response of surface elevation), Bulletin JSME 26(219), 1641–1648.CrossRefGoogle Scholar
Hayama, S., Inoue, Y., and Watanabe, T. (1989), The suppression of sloshing in a liquid tank by means of a reversed u-tube, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 95–102. (Also JSME Int. J. Series III 33(3) 339–345, 1990.)Google Scholar
Hayama, S. and Iwabuchi, M. (1985), Sloshing suppression using inverse u-tube, Trans. JSME 51(470), 2505–2511 (in Japanese).CrossRefGoogle Scholar
Hayama, S. and Iwabuchi, M. (1986), A study on the suppression of sloshing in a liquid tank: 1st report: suppression of sloshing by means of a reversed u-tube, Bull. JSME 29, 1834–1841.CrossRefGoogle Scholar
Heinrich K. and Kaufman F. M. (1956), Sloshing stability for vehicles with one free surface, Space Technol. Labs. Memo. GM45–3–45, 12 July.
Heinrich R. T. (1986), Experimental investigation of random parametric liquid sloshing, Master thesis, Texas Tech University, Lubbock, TX.
Helmholtz, H. V. (1860), Über reibung tropfbarer flüssigkeiten, Sitzungsberichte der K Akademie der Wissenschaften zu Wien 40.Google Scholar
Henderson, D. M. (1998), Effects of surfactants on Faraday-wave dynamics, J. Fluid Mech. 365, 89–107.CrossRefGoogle Scholar
Henderson, D. M. and Miles, J. W. (1990), Single mode Faraday waves in small cylinders, J. Fluid Mech. 213, 95–109.CrossRefGoogle Scholar
Henderson, D. M. and Miles, J. W. (1994), Surface-wave damping in a circular cylinder with a fixed contact-line, J. Fluid Mech. 275, 285–299.CrossRefGoogle Scholar
Hendricks, P. C. (1986), Stability of a clamped-free rotor partially filled with liquid, ASME J. Appl. Mech. 53, 166–172.CrossRefGoogle Scholar
Hendricks, P. C. and Klauber, R. D. (1984), Optimal control of a rotor partially filled with an inviscid incompressible fluid, ASME J. Appl. Mech. 51, 863–868.CrossRefGoogle Scholar
Hendricks, S. L. and Morton, J. B. (1979), Stability of a rotor partially filled with a viscous incompressible fluid, ASME J. Appl. Mech. 46, 913–918.CrossRefGoogle Scholar
Henrici, P., Troesch, B. A., and Wuytack, L. (1970), Sloshing frequencies for a half-space with circular or stripe-like aperture, Zeit. Ang. Math. Phys. (ZAMP) 21(3), 285–318.CrossRefGoogle Scholar
Henstock, W. and Sani, R. L. (1974), On the stability of the free surface of a cylindrical layer of fluid in vertical periodic motion, Lett. Heat Transfer 1, 95–102.CrossRefGoogle Scholar
Hieatt J. L. and Riley J. D. (1959), Digital program for fluid sloshing in tanks with axial symmetry, Rept. TM-59000000389, Space Tech. Labs. (Now TRW), available from DDC as A. D. 607548.
Higuera, H. and Nicolás, J. A. (1997), Linear non-axisymmetric oscillations of nearly-inviscid liquid bridges, Phys. Fluids 9, 276–285.CrossRefGoogle Scholar
Higuera, H., Nicolás, J. A., and Vega, J. M. (1994), Linear oscillations of weakly dissipative axisymmetric liquid bridges, Phys. Fluids A 6, 438–450.CrossRefGoogle Scholar
Hill, D. E. and Baumgarten, J. R. (1992), Control of spin-stabilized spacecraft with sloshing fluid stores, J. Dyn. Syst., Measurement and Control 114, 728–731.CrossRefGoogle Scholar
Hill, D. E., Baumgarten, J. R., and Miller, J. T. (1988), Dynamic simulation of spin-stabilized spacecraft with sloshing fluid stores, J. Guidance 11(6), 597–599.CrossRefGoogle Scholar
Hiramatsu, T., Komura, Y., and Shintani, M. (1989a), Theoretical analysis for the dynamic behavior of nuclear power reactor internals, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 149–156.Google Scholar
Hiramatsu, T., Komura, Y., Shintani, M., and Shintaku, S. (1989b), Dynamic behavior of nuclear power reactor internals-model by experiments, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 157–163.Google Scholar
Hirata, A., Sakurai, M., Ohishi, N., Koyama, M., Morita, T., and Kawasaki, H. (1997), Transition process from laminar to oscillatory Marangoni convection in a liquid bridge under normal and microgravity, J. Japan Soc. Microgravity Appl. 14(2), 137–143.Google Scholar
Hirt, C. W., Amsed, A. A., and Cook, J. L. (1974), An arbitrary Lagrangian–Eulerian computing method of all speeds, J. Comput. Phys. 14, 227–253.CrossRefGoogle Scholar
Hirt, C. W. and Nichols, B. D. (1981), Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39, 201–225.CrossRefGoogle Scholar
Hirt C. W., Nichols B. D., and Romero N. C. (1975), SOLA – A numerical solution algorithm for transient fluid flows, Report LA-5852, Los Alamos Scientific Laboratory.
Hitchcock, P. A., Kwok, K. C. S., Watkins, R. D., and Samali, B. (1997a), Characteristics of liquid column vibration absorbers (LCVA) – I, Eng. Struct. 19(2), 126–134.CrossRefGoogle Scholar
Hitchcock, P. A., Kwok, K. C. S., Watkins, R. D., and Samali, B. (1997b), Characteristics of liquid column vibration absorbers (LCVA) – II, Eng. Struct. 19(2), 135–144.CrossRefGoogle Scholar
Hoard, C. Q., Robertson, C. R., and Acrivos, A. (1970), Experiments on the cellular structure in Benard convection, Int. J. Heat Mass Transf. 13, 849.CrossRefGoogle Scholar
Hocking, L. M. (1965), On the unsteady motion of a rotating fluid in a cavity, Mathematica 12, 97–106.Google Scholar
Hocking, L. M. (1976), A moving fluid interface on a rough surface, J. Fluid Mech. 76, 801–817.CrossRefGoogle Scholar
Hocking, L. M. (1977), A moving fluid interface, Part 2: The removal of the force singularity by a slip flow, J. Fluid Mech. 79, 209–229.CrossRefGoogle Scholar
Hocking, L. M. (1987a), The damping of capillary gravity waves at a rigid boundary, J. Fluid Mech. 179, 253–266.CrossRefGoogle Scholar
Hocking, L. M. (1987b), Waves produced by a vertically oscillating plate, J. Fluid Mech. 179, 267–281.CrossRefGoogle Scholar
Hocking, L. M. and Mahdmina, D. (1991), Capillary-gravity waves produced by a wave maker, J. Fluid Mech. 224, 217–226.CrossRefGoogle Scholar
Hocking, L. M. and Michael, D. H. (1959), The stability of a column of rotating liquid, Mathematika 6, 25–32.CrossRefGoogle Scholar
Hodges, B. R. and Street, R. L. (1999), On simulation of turbulent nonlinear free surface flows, J. Comput. Phys. 151, 425–457.CrossRefGoogle Scholar
Hollister, M. P. and Satterlee, H. M. (1965), Low gravity liquid reorientation, Proc. of a Symp. on Fluid mechanics and heat transfer under low gravitational conditions, Lockheed Missiles & Space Co.Google Scholar
Holm-Christenson, G. and Träger, K. (1991), A note on rotor instability caused by liquid motions, ASME J. Appl. Mech. 58, 804–811.CrossRefGoogle Scholar
Holmes, P. J. (1986), Chaotic motion in a weakly nonlinear model for surface waves, J. Fluid Mech. 162, 365–388.CrossRefGoogle Scholar
Homicz, G. F. and Gerber, N. (1987), Numerical model for fluid spin-up from rest in a partially filled cylinder, ASME J. Fluids Eng. 109, 194–197.CrossRefGoogle Scholar
Honda, K. and Matsushita, T. (1913), An investigation of the oscillations of tank water, Scientific Reports, Tohoku, Imperial University, First Series 21, 131–148.Google Scholar
Honda, K. and Tajima, K. (1979), Sloshing of two superposed liquid layer in a rectangular tank, Trans. JSME 45B, 1450–1457.CrossRefGoogle Scholar
Hori, G. I. (1966), Theory of the general perturbation with unspecified canonical variables, Astron. Soc. Japan 18(4).Google Scholar
Hori, Y., Kanai, M., and Fujisawa, F. (1994), Two-dimensional coupling vibration analysis of fluid and structure using FEM displacement method (in Japanese), Trans. JSME C 60(572), 1138–1143.CrossRefGoogle Scholar
Hoskins, L. M. and Jacobsen, L. S. (1957), Water pressure in a tank caused by a simulated earthquake, Bull. Seismol. Soc. Amer. 47(1), 1–32.Google Scholar
Hough, (1895), The oscillations of a rotating ellipsoidal shell containing fluid, Phil. Trans. A 186(1).CrossRefGoogle Scholar
Houghton, G. (1968), Particle retardation in vertically oscillating fluids, Canadian J. Chem. Eng. 46, 79–91.CrossRefGoogle Scholar
Housner, G. W. (1957), Dynamic pressures on accelerated fluid containers, Bull. Seis. Soc. Amer. 47(1), 15–35.Google Scholar
Housner, G. W. (1963a), The dynamic behavior of water tanks, Bull. Seis. Soc. Amer. 53(2), 381–387.Google Scholar
Housner G. W. (1963b), Dynamic pressure on fluid containers, TID-7024, Nuclear Reactors and Earthquakes, Chapter 6, (US Atomic Energy Commission), 183–209.
Housner G. W. (1963c), Dynamic analysis of fluids in containers subjected to acceleration, TID-7024, Nuclear Reactors and Earthquakes, Appendix F, (US Atomic Energy Commission), 368–390.
Housner J. (1980), Hydroelastic vibration analysis of partially liquid-filled shells using a series representation of the liquid, NASA, Sci. and Tech. Information Center, Washington, DC.
Howard, L. N. (1963), Fundamentals of the theory of rotating fluids, ASME J. Appl. Mech. 30, 481–485.CrossRefGoogle Scholar
Howell E. and Ebler F. G. (1956), Experimental investigation of the influence of mechanical baffles on fundamental sloshing mode of water in a cylindrical tank, Space Tech. Lab. Rep. GM-TR-69, 6 July.
Howell J. V. (1957), Motion of a conical pendulum, Space Tech. Lab. Memo. GM 42.4–4.
Hsieh, D. Y., Sun, S. M., and Shen, M. C. (1995), Nonlinear theory of forced surface waves in a circular basin, Wave Motion 21(4), 331–341.Google Scholar
Hsieh, K. C., Thompson, R. L., Zandt, D. V., DeWitt, K., and Nash, J. (1994), Oscillatory/chaotic thermocapillary flow induced by radiant heating, NASA 2nd Microgravity Fluid Physics Conf., Cleveland, Ohio, 57–63.Google Scholar
Hsiung H. C. H. and Weingarten V. I. (1973), Dynamic analysis of hydroelastic systems using the finite element method, University of Southern C. A., Dept. Civil Eng., Report USCCE 013, November.
Hu H., Kobayashi T., Saga T., Segawa T., Taniguch N., Nagoshi M., and Okamoto K. (1999), A PIV study on the self-induced sloshing in a tank with circulating flow, 2nd Pacific Symp. on Flow Visualization and Image Processing, PF-152.
Hu, H. C. and Kelly, R. E. (1994), The effect of finite-amplitude nonplanar flow oscillations upon the onset of Rayleigh–Bernard convection, Proc. 10thInt. Heat Transfer Conf. 7, 79.Google Scholar
Hu W. C. L. (1964), A survey of the literature of the vibrations of thin shells, SwRI Tech. Rept. 1.
Hu, W. and Tang, Z. M. (1989), Excitation mechanism of thermocapillary oscillatory convection, Sciences in China 33(8), 934–938.Google Scholar
Hu, W. R., You, H. T., and Cao, Z. H. (1992a), Free surface oscillation of thermocapillary convection in liquid bridge of half-floating zone, Sciences in China 35(9), 1101–1109.Google Scholar
Hu, W. R., Shu, J. Z., and Chen, Q. S. (1992b), Space experiment on free surface oscillation in liquid bridge of half floating zone, Microgravity Quart. 2, 153–158.Google Scholar
Huang, D. T. and Soedel, W. (1993), On the free vibrations of multiple plates welded to a cylindrical shell with special attention to mode pairs, J. Sound Vib. 166, 315–339.CrossRefGoogle Scholar
Huang, Y. Y. (1991), Orthogonality of wet modes in coupled vibrations of cylindrical shells containing liquids, J. Sound Vib. 145, 51–60.CrossRefGoogle Scholar
Huang, Z. J. and Hsiung, C. C. (1996), Nonlinear shallow-water flow on deck, J. Ship Res. 40(4), 303–315.Google Scholar
Huerta, A., Liu, W. K., Gvildys, J. (1989), Large-amplitude sloshing with submerged blocks, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 143–148.Google Scholar
Hughes T. J. R, Liu W. K., and Zimmermann T. K. (1981), Lagrangian–Eulerian finite element formulation for incompressible viscous flows, Proc. Interdisciplinary Finite Element Anal, 179–216, J. F. Abel, T. Kawai, and S. F. Shen, eds., Cornell University.
Huleux, A. (1964), Water oscillations in a container in uniformly accelerated translation, Bull. Acad. Royal Sci. 50(11), 1315–1330 (in French).Google Scholar
Hung, R. J. (1990), Superfluid and normal fluid helium I. I. in a rotating tank under low and microgravity environments, Proc. National Sci. Council A 14, 289–297.Google Scholar
Hung R. J. (1993a), Final report on sloshing dynamics on rotating helium Dewar tank, NASA NTIS, Washington, DC.
Hung R. J. (1993b), Simulation of sloshing dynamics induced forces and torques actuated on Dewar container driven by gravity gradient and g-jitter accelerations in microgravity, NASA NTIS, Washington, DC.
Hung R. J. (1994a), Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung R. J. (1994b), Annual report on numerical studies of the surface tension effect of cryogenic liquid helium, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung R. J. (1995a), Mathematical model of bubble sloshing dynamics for cryogenic liquid helium in orbital spacecraft Dewar container, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung R. J. (1995b), Effect of baffle on slosh reaction forces in rotating liquid helium subjected to a lateral impulse in microgravity, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung R. J. (1996), Sloshing of cryogenic helium driven by lateral impulsive/gravity gradient-dominated/or g-jitter-dominated accelerations and orbital dynamics, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung R. J. (1997), DynAmerl models for sloshing dynamics of helium II under low-g conditions, Final Research Report, University of Alabama in Huntsville, NASA, NTIS, Washington, DC.
Hung, R. J. and Lee, C. C. (1994), Effect of baffle on gravity gradient acceleration excited slosh waves in microgravity, J. Spacecraft Rock. 31(6), 1107–1114.CrossRefGoogle Scholar
Hung, R. J., Lee, C. C., and Leslie, F. W. (1990a), Slosh wave excitation in gravity probe-b spacecraft experiment, Develop. Theor. Appl. Mech., 197–205, Georgia Tech., Atlanta.Google Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1990b), Effects of g-jitters on the stability of rotating bubble under microgravity environment, Acta Astron. 21, 309–321.CrossRefGoogle Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1991a), Gravity-jitter response slosh waves excitation on the fluid in a rotating Dewar, Advances in Space Res. 11, 201–208.CrossRefGoogle Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1991b), Gravity-jitter effected slosh waves on the stability of rotating bubble under microgravity environment, Advances in Space Res. 11, 209–216.CrossRefGoogle Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1991c), Slosh wave excitation in a partially filled rotating tank due to gravity jitters in a microgravity environment, Acta Astron. 25, 523–551.CrossRefGoogle Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1992a), Spacecraft dynamical distributions of fluid stresses activated by gravity jitters-induced slosh waves, J. Guidance, Control and Dynamics 15(4), 817–824.CrossRefGoogle Scholar
Hung, R. J., andLee, C. C., and Leslie, F. W. (1992b), Similarity rules in gravity jitter-related spacecraft liquid propellant slosh waves excitation, J. Fluid Struct. 6, 493–522.CrossRefGoogle Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1993a), Effect of the baffle on the asymptotic gravity-jitter excited slosh waves and spacecraft moment and angular momentum fluctuations, J. Aerospace Eng. 207, 105–120.Google Scholar
Hung, R. J.Lee, C. C., and Leslie, F. W. (1993b), Effect of the baffle on the spacecraft fluid propellant viscous stress and moment fluctuations, Trans. Japanese Soc. Aeronaut. Space Sci. 35, 187–207.Google Scholar
Hung, R. J., Lee, C. C., and Shyu, K. L. (1990), Reorientation of rotating fluid in microgravity environment, Develop. Theor. Appl. Mech., 206–212, Georgia Tech., Atlanta.Google Scholar
Hung, R. J.Lee, C. C., and Shyu, K. L. (1991), Reorientation of rotating fluid in microgravity environment with and without gravity jitters, J. Spacecraft Rock. 28(1), 71–78.CrossRefGoogle Scholar
Hung, R. J., Lee, C. C., and Tsao, Y. D. (1990), Fluid behavior in microgravity environment, Proc. National Sci. Council A 14, 21–34.Google Scholar
Hung, R. J., Lee, C. C., and Wu, J. L. (1990), Gravity-jitters and excitation of slosh waves, Develop. Theor. Appl. Mech., 213–220, Georgia Tech, Atlanta.Google Scholar
Hung, R. J. and Leslie, F. W. (1988), Bubble shape in a liquid filled rotating container under low gravity, J. Spacecraft Rock. 26, 70–74.CrossRefGoogle Scholar
Hung, R. J. and Long, T. Y. (1995a), Response and decay of rotating cryogenic liquid reacted to impulsive accelerations in microgravity, Trans. Japanese Soc. Aeron. Space Sci. 37, 291–310.Google Scholar
Hung, R. J. and Long, Y. T. (1995b), Effect of baffle on slosh reaction forces in rotating liquid helium subjected to the lateral impulse in microgravity, Cryogenics 35, 589–597.CrossRefGoogle Scholar
Hung, R. J. and Long, Y. T. (1996), Response of lateral impulse on liquid helium sloshing with baffle effect in microgravity, Int. J. Mech. Sci. 38(8/9), 951–965.CrossRefGoogle Scholar
Hung, R. J., Long, Y. T., and Chi, Y. M. (1996), Slosh dynamics coupled with spacecraft attitude dynamics, Part 1: Formulation and theory, Part 2: Orbital environment application, J. Spacecraft Rock. 33(4), 575–581, 582–593.CrossRefGoogle Scholar
Hung, R. J., Long, Y. T., and Pan, H. L. (1994), Sloshing dynamics induced angular momentum fluctuations driven by jitter accelerations associated with slew motion in microgravity, Trans. Japn Soc. Aeronaut. Space Sci. 37, 217–233.Google Scholar
Hung, R. J., Long, Y. T., and Zu, G. J. (1996), Sloshing of cryogenic helium driven by lateral impulse/gravity gradient-dominated/or g-jitter dominated accelerations or orbital dynamics, Cryogenics 36(10), 829–841.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1993), Differences in gravity gradient and gravity jitter excited slosh waves in microgravity, Trans. Japan Soc. Aeronaut. and Space Sci. 36(1), 153–169.Google Scholar
Hung, R. J. and Pan, H. L. (1994a), Asymmetric slosh wave excitation in liquid–vapor interface under microgravity, Acta Mech. Sinica 9(2), 298–311.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1994b), Gravity gradient or gravity jitter induced viscous stress and moment fluctuations in microgravity, Fluid Dyn. Res. 14, 29–51.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1995a), Fluid force activated spacecraft dynamics driven by gravity gradient and jitter accelerations, J. Guidance, Control and Dyn. 18(5), 1190–1196.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1995b), Sloshing-modulated liquid–vapor interface fluctuations activated by orbital accelerations associated with spinning and /or slew motions, J. Colloid. and Interface Sci. 170, 538–549.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1995c), Mathematical model of bubble sloshing dynamics for cryogenic liquid helium in orbital spacecraft Dewar container, Appl. Math. Modeling 19(8), 483–498.CrossRefGoogle Scholar
Hung, R. J. and Pan, H. L. (1996), Modeling of sloshing modulated angular momentum fluctuations actuated by gravity gradient associated with spacecraft slow motion, Appl. Math. Modeling 20(5), 399–409.CrossRefGoogle Scholar
Hung, R. J., Pan, H. L., and Leslie, F. W. (1994a), Gravity gradient and gravity jitter induced viscous stress and moment fluctuations in microgravity, Fluid Dyn. Res. 34(1), 29–44.CrossRefGoogle Scholar
Hung, R. J.Pan, H. L., and Leslie, F. W. (1994b), Fluid system angular momentum and moment fluctuations driven by gravity gradient or gravity g-jitter in microgravity, J. Flight Sci. Space Res. 18, 195–202.Google Scholar
Hung, R. J., Pan, H. L., and Long, Y. T. (1994), Peculiar behavior of helium II disturbance due to sloshing dynamics driven by jitter acceleration associated with slew motion in microgravity, Cryogenics 34(8), 641–648.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1991a), Cryogenic hydrogen reorientation and geyser initiation at various liquid-filled levels in microgravity, Advances in Space Research 11, 217–226.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1991b), Cryogenic liquid hydrogen reorientation activated by high frequency impulsive acceleration of geyser initiation, Microgravity Quart. 1, 81–92.Google Scholar
Hung, R. J. and Shyu, K. L. (1991c), Space-based cryogenic liquid hydrogen reorientation activated by low frequency impulsive reverse thruster of geyser initiation, Acta Astron. 25, 709–719.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1992a), Constant reverse thrust activated reorientation of liquid hydrogen with geyser initiation, J. Spacecraft Rock. 29, 279–285.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1992b), Excitation of slosh waves associated with low frequency impulsive reverse gravity acceleration of geyser initiation, Acta Astron. 26, 425–433.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1992c), Medium frequency impulsive thrust activated liquid hydrogen reorientation with geyser, J. Propulsion Power 8, 987–994.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1995), Slosh wave and geyser excitations due to liquid hydrogen shut-off during draining in microgravity, Acta Astron. 35(8), 509–523.CrossRefGoogle Scholar
Hung, R. J. and Shyu, K. L. (1996), Liquid resettlement and slosh wave excitation during fluid reorientation in microgravity, Acta Astron. 36.Google Scholar
Hung, R. J., Shyu, K. L., and Lee, C. C. (1991), Slosh wave excitation associated with high frequency impulsive reverse gravity acceleration of geyser initiation, Microgravity Quart. 1, 125–133.Google Scholar
Hung, R. J., Shyu, K. L., and Lee, C. C. (1992a), Liquid hydrogen slosh waves excited by constant reverse gravity acceleration of geyser initiation, J. Spacecraft Rock. 29(4) 523–528.CrossRefGoogle Scholar
Hung, R. J., Shyu, K. L., and Lee, C. C. (1992b), Medium frequency impulsive thrust excited slosh waves during propellant reorientation with geyser, J. Propulsion and Power 8, 778–785.CrossRefGoogle Scholar
Hung R. J., Tsao Y. D., and Hong B. B. (1988a), Effect of surface tension on the dynamical behavior of bubble in rotating fluids under low gravity environment, Proc. 1st National Fluid Dyn. Cong., 1399–1409.
Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W. (1988b), Time dependent dynamical behavior of surface tension on rotating fluids under microgravity environment, Advances in Space Research 8(12), 205–213.CrossRefGoogle Scholar
Hung R. J., Tsao Y. D., Hong B. B., and Leslie F. W. (1988c), Surface tension and bubble shapes in a partially filled rotating cylinder under low gravity, AIAA Paper No 88–0455.
Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W. (1989a), Dynamical behavior of surface tension on rotating fluids in low and microgravity environments, Int. J. for Microgravity Res. Appl. 11, 81–95.Google Scholar
Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W. (1989b), Axisymmetric bubble profiles in slowly rotating helium Dewar under low and microgravity environment, Acta Astron. 19, 411–426.CrossRefGoogle Scholar
Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W. (1989c), Bubble behaviors in a slowly rotating helium Dewar in Gravity Probe-B spacecraft experiment, J. Spacecraft Rock. 26, 167–172.CrossRefGoogle Scholar
Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W. (1990), Dynamics of surface tension in microgravity environment, Progress in Aeronaut. and Astronaut. 127, 124–150.Google Scholar
Hunt, J. B. (1979), Dynamic Vibration Absorbers, Letchworth, The Garden City Limited.Google Scholar
Hunt, J. N. (1952), Viscous damping waves over an inclined bed in a channel of finite width, La Houille Blanche 6, 836–841.CrossRefGoogle Scholar
Hunt, J. N. (1964), The viscous damping of gravity waves in shallow water, La Houille Blanche 18, 685–692.CrossRefGoogle Scholar
Hunt, K. H. and Crossley, F. R. E. (1975), Coefficient of restitution interpreted as damping in vibro-impact, ASME J. Appl. Mech. 97, 440–445.CrossRefGoogle Scholar
Huntly, I. D. (1972), Observations on a spatial-resonance phenomenon, J. Fluid Mech. 53, 209–216.CrossRefGoogle Scholar
Huntly I. D. and Smith R. W. (1973), Hysteresis and nonlinear detuning in a spatial-resonance phenomenon, Report No 42, University of Essex, Fluid Mech. Res. Inst.
Hurwitz M. and Melcher J. R. (1968), Dielectrophoretic control of propellant slosh in low gravity, Final Report, NASA-CR-98168, 31 March.
Huther M., Dubois M., and Planeix J. M. (1973), Model studies on the movement of liquid in tanks, Marine Eng. Rev., January 5–16.
Hutton R. E. (1962), An investigation of resonance, nonlinear and nonplanar free surface oscillations of fluid, Ph.D. diss., UCLA, also as NASA TN-D-1870, (1963).
Hutton, R. E. (1964), Fluid particle motion during rotary sloshing, ASME J. Appl. Mech., 123–130.CrossRefGoogle Scholar
Hutton R. E. and Bhuta P. G. (1965), Propellant slosh loads, TRW Syst., Redondo Beach, CA, EM-15–10 (4388–6001–50000).
Hutton R. E. and Yeh G. C. K. (1964), Dynamic pressure force on a tank of arbitrary shape during liquid sloshing, TRW Syst., Redondo Beach, CA, Memo. 64–9713–6–11.
Hwang, C. (1965), Longitudinal sloshing of a liquid in a flexible hemispherical tank, ASME J. Appl. Mech., 665–670.CrossRefGoogle Scholar
Hwang, J. H., Kim, I. S., Soel, Y. S., Lee, S. C., and Chon, Y. K. (1992), Numerical simulation of liquid sloshing in three-dimensional tanks, Computers and Structures 44(1/2) 339–342.CrossRefGoogle Scholar
Ibrahim R. A. (1969), Unsteady motion of liquid propellants in moving containers, Master thesis, Department of Aeron. Engrg., Cairo University.
Ibrahim R. A. (1974), Autoparametric interaction in a structure containing a liquid, Ph.D. thesis, Dept. of Mech. Engrg., University of Edinburgh, Scotland.
Ibrahim, R. A. (1976), Multiple internal resonance in a structure–liquid system, J. of Eng. Indust. 98(3), 1092–1098.CrossRefGoogle Scholar
Ibrahim, R. A. (1985), Parametric Random Vibration, New York, Wiley.Google Scholar
Ibrahim, R. A. (1992), Nonlinear random vibration: Experimental results, ASME Appl. Mech. Rev. 44(10), 423–446, 1991.CrossRefGoogle Scholar
Ibrahim, R. I. and Barr, A. D. S. (1975a), Autoparametric resonance in a structure containing a liquid, part I: Two mode interaction, J. Sound Vib. 42(2), 159–179.CrossRefGoogle Scholar
Ibrahim, R. I. and Barr, A. D. S. (1975b), Autoparametric resonance in a structure containing a liquid, part II: Three mode interaction, J. Sound Vib. 42(2), 181–200.CrossRefGoogle Scholar
Ibrahim, R. I. and El-Sayad, M. A. (1999), Simultaneous parametric and internal resonances in systems involving strong nonlinearities, J. Sound Vib. 225(5), 857–885.CrossRefGoogle Scholar
Ibrahim, R. I., Gau, J. S., and Soundararajan, A. (1988), Parametric and autoparametric vibrations of an elevated water tower, part I: Parametric response, J. Sound Vib. 121(3), 413–428.CrossRefGoogle Scholar
Ibrahim, R. I. and Heinrich, R. T. (1988), Experimental investigation of liquid sloshing under parametric random excitation, ASME J. Appl. Mech. 55(2), 467–473.CrossRefGoogle Scholar
Ibrahim, R. I. and Latorre, G. (1988), Experimental investigation of dynamic parameters of viscous fluids in unsteady flow, ASME J. Pressure Vessel Tech. 110(1), 29–35.CrossRefGoogle Scholar
Ibrahim, R. I. and Li, W. (1988), Parametric and autoparametric vibrations of an elevated water tower, part II: Autoparametric response, J. Sound Vib. 121(3), 429–444.CrossRefGoogle Scholar
Ibrahim, R. A., Pilipchuk, V. N., and Ikeda, T. (2001), Recent advances in liquid sloshing dynamics, ASME Appl. Mech. Rev. 54(2), 133–199.CrossRefGoogle Scholar
Ibrahim, R. I. and Soundararajan, A. (1983), Nonlinear liquid sloshing under random vertical excitation, J. Sound Vib. 93(1), 119–134.CrossRefGoogle Scholar
Ibrahim, R. I. and Soundararajan, A. (1985), An improved approach for random parametric response of dynamic systems with nonlinear inertia, Int. J. Nonlinear Mech. 20(4), 309–323.CrossRefGoogle Scholar
Ibrahim, R. I., Soundararajan, A., and Heo, H. (1985), Stochastic response of nonlinear dynamic systems based on a non-Gaussian closure, ASME J. Appl. Mech. 52, 965–970.CrossRefGoogle Scholar
Ifrim M. and Bratu C. (1969), The effect of seismic action on the dynamic behavior of elevated water tanks, Proc. 4th World Conf. Earthquake Eng., Santiago, B-4, 127–142.
Iglesias, A. S., Rojas, L. P., and Rodriguez, R. Z. (2004), Simulation of anti-roll tanks and sloshing types problems with smoothed particle hydrodynamics, Ocean Engrg. 31, 1169–1192.CrossRefGoogle Scholar
Iida, M. (2000), Numerical analysis of self-induced free surface flow oscillation by fluid dynamics computer code splash-ale, Nuclear Engrg. Design 200, 127–138.CrossRefGoogle Scholar
Iida, M., Madarame, H., Okamoto, K., and Fukaya, M. (1993), Self-induced oscillation of cylindrical upward jet impinging on the free surface, Proc. Asia-Pacific Vib. Conf. '93, 1, 260–264.Google Scholar
Ikeda T. (1997), Nonlinear vibrations in an elastic structure subjected to vertical excitation and coupled with liquid sloshing in a rectangular tank, ASME Proc. DET '97, Sept 14–17, Sacramento, CA, 1–12.
Ikeda, T. (2003), Nonlinear parametric vibrations of an elastic structure with a rectangular liquid tank, Nonlin. Dyn. 33(1), 43–70.CrossRefGoogle Scholar
Ikeda T. and Ibrahim R. A. (2002), Random excitation of a structure interaction with liquid sloshing dynamics, Proc. ASME FSA, AE & FIV+N Symposium: Sloshing, Paper Number IMECE 2002–32934.
Ikeda T. and Murakami S. (1999), Nonlinear vibrations of an elastic structure subjected to vertical excitation and coupled with liquid sloshing in a cylindrical tank (resonance with an axi-symmetric mode), ASME 1999 Design Eng. Tech. Conf., Sept 12–16, Las Vegas, NV.
Ikeda T. and Murakami S. (2001), Nonlinear parametric vibrations of an elastic structure subjected to vertical excitation and coupled with liquid sloshing in a cylindrical tank (resonance with an anti-symmetric mode), ASME 2001 Design Eng. Tech. Conf., DETC2001/VIB-21650, Sept 9–12, Pittsburgh, PA.
Ikeda, T. and Nakagawa, N. (1995), Nonlinear vibrations of a structure caused by water sloshing in a cylindrical tank, ASME PVP 310, Fluid–Structure Interaction and Struct. Mechanics, 63–76.Google Scholar
Ikeda, T. and Nakagawa, N. (1997), Nonlinear vibrations of a structure caused by water sloshing in a rectangular tank, J. Sound Vib. 201(1), 23–41.CrossRefGoogle Scholar
Ikegawa M. (1974), Finite element analysis of fluid motion in a container, in Finite Element Methods in Flow Problems, Oden, J. T.et al., eds., Huntsville, AL, UAH Press, 737–738.Google Scholar
Ikegawa, M. and Washizu, K. (1973), Finite element method applied to analysis of flow over a spillway crest, Int. J. Num. Meth. Engrg. 6, 179–189.CrossRefGoogle Scholar
Inagaki T., Umeoka T., Fujita K., Nakamura T., Shiraishi T., Kiyokawa T., and Sigiyama Y. (1987), Flow induced vibration of inverted U-shaped piping containing flowing fluid of top entry system for LMFBR, Trans. Intl. Conf. Struct. Mech. in Reactor Technology, Lausanne, F. H. Wittman, ed., 9-E, 295–302, Balkema.
Ilgamov, M. A. (1969), The Vibrations of Elastic Shells Containing a Liquid and Gas, Moscow, Nauka (in Russian).Google Scholar
Ilgamov, M. A. (1975), Boundary conditions on the shell–liquid interface in the Euler–Lagrange form, Proc. 10th All-Union Conf. on Theory of Shells and Plates (in Russian), 2, Tbilisi, Metsniereba, 170–180.Google Scholar
Irons, F. E. (1990), Concerning the nonlinear behavior of the forced spherical pendulum including the dowsing pendulum, Eur. J. Phys. 11, 107–115.CrossRefGoogle Scholar
Isaacson, M. and Subbiach, K. (1991), Earthquake-induced sloshing in a rigid circular tank, Canadian J. Civil Eng. 18, 904–915.CrossRefGoogle Scholar
Isermann H. (1970), Die kippgrenze von sattelkraftfahrzeugen mit fester und flussiger ladung, Deutsche Kraftfahrtforschung und Strassenverkehrstechnik, Heft 200.
Ishibashi, H. and Hayama, S. (1989), Nonlinear response of sloshing based on the shallow water wave theory (2nd report, nonlinear response in rectangular tanks and cylindrical tanks), (in Japanese), Trans. JSME C 55(511), 663–670.CrossRefGoogle Scholar
Ishida K. and Kobayashi N. (1985), An effective method of analyzing rocking motion for unanchored cylindrical tanks including uplift, ASME Pressure Vess. Piping Conf., PVP- 98, 7.
Ishida, K. and Mieda, T. (1989), Calculation method of shear stress in bottom plate of anchored cylindrical tank under seismic loading, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 23–27.Google Scholar
Ishlinskiy, A. Yu., Gorbachuk, M. L., and Temochenko, M. Ye. (1986), On the small rotation stability of axially symmetric bodies supported by strings and having cavities filled with liquid, in Space Apparatus Dynamics and Outer Space Investigation, Moscow, Mashinostroyeniye (in Russian).Google Scholar
Ishlinskiy, A. Yu. and Temochenko, M. Ye. (1960), On small vibrations of the vertical axis of a top with a cavity completely filled with an ideal incompressible fluid, Prikl. Mekh. i Tekh. Fiz. 3.Google Scholar
Ishlinskiy, A. Yu., and Temochenko, M. Ye. (1966), On the stability of rigid body supported by a string and having ellipsoidal cavity completely filled with ideal incompressible liquid, PMM 30(1), 30–41.Google Scholar
Ivanova, A. A., Kozlov, V. G., and Evoux, P. (2001a), Interfacial dynamics of two-liquid system under horizontal vibrations, Izvestiya RAN Mekhanika Zhidkosti I Gasa (Fluid Dynamics) 3, 28–35.Google Scholar
Ivanova A. A., Kozlov V. G., and Legros J. C. (1997), Mean dynamics of two liquid system in a cavity subjected to rotational vibrations, Proc. Joint 10th Europ. and 6th Russian Symp. Phys. Sci. in Microgravity, St Petersburg, Moscow Inst. Probl. Mech. RAS 1, 260–273.
Ivanova, A. A., Kozlov, V. G., Lyubomov, D. V., Lyubimova, T. P., Merady, S., and Roux, B. (1998), Structure of averaged flow driven by a vibrating body with a large-curvature edge, Fluid Dyn. 33(5), 656–665.CrossRefGoogle Scholar
Ivanova, A. A., Kozlov, V. G., and Tasjkinov, S. I. (2001b), Interfacial dynamics of two-liquid system due to rotational vibrations (experiments), Izvestiya RAN Mekhanika Zhidkosti I Gasa (Fluid Dynamics) 6, 114–121.Google Scholar
Jacobsen, L. S. (1949), Impulsive hydrodynamics of fluid inside a cylindrical container, Bull. Seismol. Soc. Amer. 39, 189–202.Google Scholar
Jacobsen, L. S. and Ayre, R. S. (1951), Hydrodynamic experiments with rigid cylindrical tanks subjected to transient motions, Bull. Seismol. Soc. Amer. 41(4), 313–346.Google Scholar
Jacqmin, D. (1990), Stability of an oscillated fluid with a uniform density gradient, J. Fluid Mech. 219, 449.CrossRefGoogle Scholar
Jacqmin, D. and Duval, W. M. B. (1988), Instabilities caused by oscillating acceleration normal to a viscous fluid–fluid interface, J. Fluid Mech. 196, 495.CrossRefGoogle Scholar
Jahsman W. E. (1961), The equilibrium shape of the surface of a fluid in a cylindrical tank, in Developments in Mechanics, 1, Lay, J. E. and Malven, J. E., eds., New York, Plenum Press, 603–612.Google Scholar
Jain, R. K. (1974), Vibration of fluid-filled, orthotropic cylindrical shells, J. Sound Vib. 37, 379–388.CrossRefGoogle Scholar
Jeffries, H. (1924), Free oscillations of water in an elliptical lake, Proc. London Math. Soc. 23.Google Scholar
Jeffries, H. (1951), The surface elevation in cellular convection, Quart. J. Mech. 4, 283.CrossRefGoogle Scholar
Jen, Y. (1968), Laboratory study of inertia forces on a pile, ASCE J. Waterways and Harbors Div. 94(ww1), 59–76.Google Scholar
Jiang, L., Ting, C. L., Perlin, M., and Schultz, W. W. (1996), Moderate and steep Faraday waves: instabilities, modulation and temporal asymmetries, J. Fluid. Mech. 329, 275–307.CrossRefGoogle Scholar
Jiang, L., Ting, C. L., Perlin, M., and Schultz, W. W. (1998), Period tripling and energy dissipation of breaking standing waves, J. Fluid Mech. 369, 273–299.Google Scholar
Jitu, K., Chiba, T., and Mieda, T. (1994), An experimental study of the effect of liquid viscosity on dynamic response of the fluid-filled co-axial cylinder, Sloshing, Fluid-Structure Interaction and Struct. Response Due to Shock and Impact Loads, ASME Pressure Vess. Piping Conf., PVP- 272, 101–110.Google Scholar
Johnson, D. B., Raad, P. E., and Chen, S. (1994), Simulation of impacts of fluid free surfaces with solid boundaries, Int. J. Num. Meth. Fluids 19, 153–176.CrossRefGoogle Scholar
Jones, A. F. and Hulme, A. (1987), The hydrodynamics of water on deck, J. Ship Res. 31(2), 125–135.Google Scholar
Joo, S. W., Schultz, W. W., and Messiter, A. F. (1990), An analysis of the initial wave maker problem, J. Fluid Mech. 214, 161–183.CrossRefGoogle Scholar
Kachigan K. (1955), Forced oscillations of a fluid in a cylindrical tank, Convair, San Diego, CA, Rept. ZU-7–046.
Kagawa, K., Fujita, N., Nonaka, M., Matsuo, M., and Watanabe, E. (1990), Development of tuned liquid damper for ship vibration (2nd report), Trans. West.-Japan Soc. Naval Arch. 81, 181–188.Google Scholar
Kagawa, K., Koukawa, H., Fujita, K., Zensho, Y., and Matsuo, M. (1989), Development of tuned liquid damper for ship vibration, Trans. West.-Japan Soc. Naval Arch. 78, 251–258.Google Scholar
Kaliadasis, S., Kiyashko, A., and Demerkhin, E. A. (2003), Marangoni instability of a thin film heated from below by a local heat source, J. Fluid Mech. 475, 377–408.CrossRefGoogle Scholar
Kalinichenko, V. A., Kravtsov, A. V., Rodriguez-Mijangos, R., Sekerz-Zen'kovich, S. Ya., and Flores-Espinoza, R. (2000), Harmonic instability of a low-viscosity liquid in a vertically oscillating vessel, J. Appl. Mat. Mech. (PMM) 64(2), 275–282.CrossRefGoogle Scholar
Kalinichenko, V. A., Nesterov, S. V., Sekerz-Zen'kovich, S. Ya., and Chaykovskii, A. V. (1995), Experimental study of surface waves with Faraday resonance excitation, Fluid Dyn. 30(1), 101–106.CrossRefGoogle Scholar
Kalinowski A. J. (1975), Fluid/struct interactions, in Shock and Vibration Computer Programs: Reviews and Summaries, Pilky, W and Pilky, B., eds., Washington, DC, The Shock and Vib. Information Center.Google Scholar
Kamke, T. and Umeki, M. (1990), Nonlinear dynamics of two-mode interaction in parametric excitation of surface waves, J. Fluid Mech. 139, 461–471.Google Scholar
Kamotani, Y., Lee, J. H., Ostrach, S., and Pline, A. (1992), An experimental study of oscillatory thermocapillary convection in cylindrical containers, Phys. Fluid 4, 955–962.CrossRefGoogle Scholar
Kamotani, Y. and Ostrach, S. (1987), Design of a thermocapillary flow experiment in reduced gravity, J. Thermophys. Heat Transfer 1(1), 83–89.CrossRefGoogle Scholar
Kamotani, Y., Ostrach, S., and Vargas, M. (1984), Oscillatory thermocapillary convection in a simulated floating zone configuration, J. Crystal Growth 66, 83–90.CrossRefGoogle Scholar
Kamotani, Y. and Platt, J. (1992), Effect of free surface shape on combined thermocapillary and natural convection, J. Thermophys. Heat Transfer 6, 721–726.CrossRefGoogle Scholar
Kamotani, Y., Prasad, A., and Ostrach, S. (1981), Thermal convection in an enclosure due to vibration aboard spacecraft, AIAA J. 19(4), 511–516.CrossRefGoogle Scholar
Kana D. D. (1963a), Longitudinal forced vibration of a partially filled tank, SwRI, Tech. Rept. No 6.
Kana D. D. (1963b), Vertical oscillation of partially full spherical tanks, SwRI NASw-146, April.
Kana D. D. (1964a), Experiments on liquid dynamics in Titan I. I. propellant tanks, SwRI, Final Rept.
Kana D. D. (1964b), A resistive Wheatstone bridge liquid wave height transducer, SwRI, Tech. Rept. No 3.
Kana D. D. (1966), An experimental study of liquid surface oscillations in longitudinally excited compartmented cylindrical and spherical tanks, NASA CR-545.
Kana D. D. (1967), Parametric oscillations of a longitudinally excited cylindrical shell containing liquid, Ph.D. dissentation, University of Texas, Austin. (Also J. Spacecraft Rock. 5(1), 13–21.)
Kana, D. D. (1987), A model for nonlinear rotary slosh in propellant tanks, J. Spacecraft Rock. 24(3,4), 169–177.CrossRefGoogle Scholar
Kana, D. D. (1989), Validated spherical pendulum model for rotary liquid slosh, J. Spacecraft Rock. 26(3), 188–195.CrossRefGoogle Scholar
Kana D. D. and Abramson H. N. (1966), Longitudinal vibration of ring stiffened cylindrical shells containing liquids, SwRI, Tech. Rept. No 7.
Kana, D. D. and Chu, W. H. (1969), Influence of a rigid top mass on the response of a pressurized cylinder containing liquid, J. Spacecraft Rock. 6(2), 103–110.Google Scholar
Kana, D. D. and Chu, W. H. (1970), Dynamic stability of cylindrical propellant tanks, J. Spacecraft Rock. 7(5), 587–597.Google Scholar
Kana, D. D., and Craig, R. R. Jr (1968), Parametric oscillations of a longitudinally excited cylindrical shell containing liquid, J. Spacecraft Rock. 5(1), 13–21.Google Scholar
Kana, D. D. and Dodge, F. T. (1966), Bubble behavior in liquids contained in vertically vibrated tanks, J. Spacecraft Rock. 3(5), 760–763.Google Scholar
Kana, D. D. and Fox, D. J. (1995), Distinguishing the transition to chaos in a spherical pendulum, Chaos 5(1), 298–310.CrossRefGoogle Scholar
Kana, D. D. and Gormley, J. E. (1967), Longitudinal vibration of a model space vehicle propellant, J. Spacecraft Rock. 4(12), 1585–1591.Google Scholar
Kana, D. D., Glaser, R. F., Eulitz, W. R., and Abramson, H. N. (1968), Longitudinal vibration of spring supported cylindrical membrane shells containing liquid, J. Spacecraft Rock. 5(2), 189–196.Google Scholar
Kana, D. D., Ko, W. L., Francis, P. H., and Nagy, A. (1971), Coupling between structure and liquid propellant in a parallel stage shuttle design, J. Spacecraft Rock. 9(11), 789–790.CrossRefGoogle Scholar
Kana, D. D., Lindholm, U. S., and Abramson, H. N. (1966), An experimental study of liquid instability in a vibrating elastic tank, J. Spacecraft Rock. 3(8), 1183–1188.Google Scholar
Kana D. D., Unruh J. F., Fey T. A., and Dodge F. T. (1985), Development of simple models for Centaur g-prime/g model tank propellant slosh, Report 06–8190–001, SwRI, 14 June.
Kaneko, S. (1992), Dampers for structures utilizing the resonance of fluid in a tank, (in Japanese), J. Marine Eng. Soc. Japan 27(4), 323–329.Google Scholar
Kaneko, S. and Ishikawa, M. (1999), Modeling of tuned liquid damper with submerged nets, J. Pressure Vess. Tech. 121(3), 334–343.CrossRefGoogle Scholar
Kaneko, S. and Mizota, Y. (1996), Dynamic modeling of deep-water type cylindrical tuned liquid damper with a submerged net, ASME Pressure Vess. Pipes Conf. Fluid–Struct. Interaction, PVP- 337, 19–30.Google Scholar
Kaneko, S., Nagakura, H., and Nakano, R. (1999), Analytical model for self-excited vibration of an overflow flexible plate weir, J. Pressure Vess. Tech. 121(3), 296–303.CrossRefGoogle Scholar
Kaneko, S. and Yoshida, O. (1999), Modeling of deep water-type rectangular tuned liquid damper with submerged nets, J. Pressure Vess. Tech. 121(4), 413–422.CrossRefGoogle Scholar
Karapetyan, A. V. (1972), The stability of regular precession of a symmetrical rigid body with an ellipsoidal cavity, Vestnik Mosk Gos Univ, Ser 1: Matem Mekh 6, 122–125.Google Scholar
Karapetyan, A. V. (2001), The steady motions of a fluid-filled spheroid on a plane with friction, J. Appl. Mat. Mech. 65(4), 631–637.CrossRefGoogle Scholar
Karapetyan, A. V. and Prokomina, O. V. (2000), The stability of permanent rotations of a top with a cavity filled with liquid on a plane with friction, ASME J. Appl. Math. Mech. 64(1), 81–86.CrossRefGoogle Scholar
Kareem A. (1993), Liquid tuned mass dampers: past, present and future, Proc. 7th U.S. National Conf. Wind Eng., UCLA.
Kareem, A. (1994), The next generation of tuned liquid dampers, 1st World Conf. Structural Control 3, FP5–19–26.Google Scholar
Kareem, A. and Sun, W. J. (1987), Stochastic response of structures with fluid-containing appendages, J. Sound Vib. 119(3), 398–408.CrossRefGoogle Scholar
Kawakami, M., Michimoto, J., and Kobayashi, K. (1977), Prediction of long term whipping vibration stress due to slamming of large full ships in rough seas, Int. Shipbuild. Prog. 24, 83–110.CrossRefGoogle Scholar
Kayuk Ya, F (1995), The dynamics of a shell of revolution with a viscous incompressible liquid, Sov. Appl. Mech. (Prikl. Mekh.) 31(11), 58–64.Google Scholar
Kayuk Ya, F, Ivanov Yu, A, and Shekera, M. K. (1996), Nonstationary dynamic processes in a cylindrical reservoir containing a viscous liquid, Sov. Appl. Mech. (Prikl. Mekh.) 32(8), 72–79.Google Scholar
Kazarinoff, N. D. and Wilkowski, J. S. (1989), A numerical study of Marangoni flows in zone-refined silicone crystals, Phys. Fluids A 1, 625–627.CrossRefGoogle Scholar
Kazarinoff, N. D. and Wilkowski, J. S. (1990), Bifurcations of numerically simulated thermocapillary flows in axially symmetric float zones, Phys. Fluids A 2, 1797–1807.CrossRefGoogle Scholar
Kelland H. (1839), On waves, Trans. Royal Soc. EdinburghX.
Kelly, R. E. (1994), The onset and development of thermal convection in fully developed shear flows, Advanced Appl. Mech. 30, 35–112.CrossRefGoogle Scholar
Kelly, R. E. and Hu, H. C. (1993), The onset of Rayleigh–Benard convection in non-planar oscillatory flows, J. Fluid Mech. 249, 373–390.CrossRefGoogle Scholar
Kelly, R. E. and Or, A. (1994), Stabilization of thermocapillary convection by means of nonplanar flow oscillations, NASA 2nd Microgravity Fluid Physics Conf., Cleveland, Ohio, 15–20.Google Scholar
Kelvin, L. (1877), On the precessional motion of a liquid, Nature 15, 297–329.Google Scholar
Kelvin, L. (1880), On an experimental illustration of minimal energy in vortex motion, Nature 23, 69–70.Google Scholar
Kelvin, L. (1882), Mathematical and Physical Papers, 4, Cambridge, Cambridge University Press.Google Scholar
Keolian R. and Rudnick J. A. (1984), The sole of phase locking in quasi-pesiodic surface waves on liquid helium and water, in Frontiers in Physical Acoustics, D Sette, ed.
Keolian, R., Turkevich, L. A., Putterman, S. J., Rudnick, I., and Rudnick, J. A. (1981), Subharmonic sequences in the Faraday experiment: departures from period doubling, Phys. Rev. Lett. 47, 1133–1136.CrossRefGoogle Scholar
Kestin J. and Persen L. N. (1954), Slow oscillations of an infinite plate and an infinite disk in a viscous fluid, Brown University, Report No AF-891/1, Contract AF18 (600)-891.
Keulegan, G. H. (1959,) Energy dissipation in standing waves in rectangular basins, J. Fluid Mech. 6(1), 33–50.CrossRefGoogle Scholar
Keulegan, G. H. and Carpenter, L. H. (1958), Forces on cylinders and plates in an oscillating fluid, J. Res. Nat. Bur. Stand. 80, 423–440.CrossRefGoogle Scholar
Khabbaz, G. R. (1971), Dynamic behavior of liquids in elastic tanks, AIAA J. 9(10), 1985–1990.CrossRefGoogle Scholar
Khandelwal R. S. (1980), Some problems in the sloshing of liquid in moving containers, Ph.D. thesis, Indian Inst. Tech., Madras, India, Dept. Aeron. Eng.
Khandelwal, R. S. and Nigam, N. C. (1981), Parametric instabilities of a liquid free surface in a flexible container under vertical periodic motion, J. Sound Vib. 74(2), 243–249.CrossRefGoogle Scholar
Khazina, G. G. (1974), Certain stability in the presence of resonances, J. Appl. Math. Mech. (PMM) 38(1), 43–51.CrossRefGoogle Scholar
Khosropour, R., Cole, S. L., and Strayer, T. D. (1995), Resonant free surface waves in a rectangular basin, Wave Motion 22(2), 187–199.CrossRefGoogle Scholar
Kikura, H., Sawada, T., and Tanahashi, T. (1991), Surface behavior of magnetic fluid sloshing and its frequency response, Trans. JSME 57B, 1629–1634.CrossRefGoogle Scholar
Kim, Y. (2001), Numerical simulation of sloshing flows with impact load, Appl. Ocean Res. 23(1), 53–62.CrossRefGoogle Scholar
Kim, Y., Park, Y. J., and Lee, H. R. (1994), A numerical study on the prediction of sloshing impact pressure, Trans. Soc. Naval Arch. Korea 30(4), 61–73.Google Scholar
Kimura, K., Ogura, K., Mieda, T., Yamamoto, K., Eguchi, Y., Moriya, S., Hagiwara, Y., Takakuwa, M., Kodama, T., and Koike, K. (1995), Experimental and analytical studies on the multi-surface sloshing characteristics of a top entry loop type FBR, Nuc. Eng. Des. 157(1/2), 49–63.CrossRefGoogle Scholar
Kimura, N. and Ohashi, H. (1978), Nonlinear sloshing in containers with arbitrary axi-symmetric geometries, 1st report, derivation of governing equations and the behavior of their solutions, Trans. JSME 44, 3024–3033 (in Japanese).CrossRefGoogle Scholar
Kimura, K. and Takahara, H. (1997), Parametric vibration of liquid surface in a rectangular tank subjected to pitching excitation (1st report, asymmetric mode), Trans. JSME C 63(608), 1052–1060 (in Japanese).CrossRefGoogle Scholar
Kimura, K., Takahara, H., Ito, T., and Sakata, M. (1992), Nonlinear liquid oscillation in a circular cylindrical tank subjected to pitching excitation, Trans. JSME C 58(556), 3564–3571 (in Japanese).CrossRefGoogle Scholar
Kimura, K., Takahara, H., and Ogura, H. (1996b), Three-dimensional sloshing analysis in a rectangular tank subjected to pitching excitation, Trans. JSME C 62(596), 1285–1294 (in Japanese).CrossRefGoogle Scholar
Kimura, K., Takahara, H., and Oomori, N., and Sakata, M. (1994a), Free vibration analysis of liquid motion in a rotating circular cylindrical tank (elliptic mode), Trans. JSME C 60(570), 374–379 (in Japanese)CrossRefGoogle Scholar
Kimura, K., Takahara, H., and Sakata, M. (1993), Sloshing in a rigid tank subjected to pitching excitation (condition of excitation for liquid surface remain planar), Trans. JSME C 59(565), 2606–2612 (in Japanese).CrossRefGoogle Scholar
Kimura, K., Takahara, H., and Sakata, M. (1994b), Effects of higher order radial modes upon nonlinear sloshing in a circular cylindrical tank subjected to vertical excitation, Trans. JSME C 60(578), 3259–3267 (in Japanese).CrossRefGoogle Scholar
Kimura, K., Takahara, H., and Sakata, M. (1996a), Sloshing in a circular cylindrical tank subjected to pitching excitation (condition for liquid surface remaining plane), Proc. 73rd JSME Spring Ann. Meeting, 96–1(VI), 87–90.Google Scholar
Kimura, K., Utsumi, M., and Sakata, M (1995), Nonstationary responses of nonlinear liquid motion in a circular cylindrical tank to stochastic earthquake excitation with two-directional components, Proc. Int. Conf. Nonlinear Stoch. Dyn., Hanoi, Vietnam, 159–168.Google Scholar
Kirkham, D. (1958), Graphs and formulas of zeros of cross product Bessel functions, J. Math. Phys. 36, 371–377.CrossRefGoogle Scholar
Kit, E., Shemer, L., and Miloh, T. (1987), Experimental and theoretical investigation of nonlinear sloshing waves in a rectangular channel, J. Fluid Mech. 181, 265–291.CrossRefGoogle Scholar
Kitchens, C. W. (1980), Navier–Stokes equations for spin-up in a filled cylinder, AIAA J. 18, 929–934.CrossRefGoogle Scholar
Kleefsman T. (2000), Numerical simulation of ship motion stabilization by an activated U-tube anti-roll tank, Master thesis, Department of Mathematics, University of Groningen, the Netherlands.
Kobayashi, N. (1980), Impulsive acting on the tank roofs caused by sloshing liquid, Proc. 7th World Conf. Earthquake Eng. 5, 315–322.Google Scholar
Kobayashi, N. (1982), Anti sloshing device for oil storage tank using wire rope, Proc. JSME Kansai 55, 78–80 (in Japanese).Google Scholar
Kobayashi, N. (1986), A Study on the Behavior of Cylindrical Liquid Storage Tanks During Earthquakes, Ph.D. thesis, University of Tokyo, Dept. Mechanical Eng. (in Japanese).Google Scholar
Kobayashi, N. and Chiba, T. (1983), A comparison of the vibrational characteristics of fluid-coupled cylindrical shells and coaxial cylinder, Tech. Rept. Ishikawajima-Harima Heavy Industries 23, 233–237 (in Japanese).Google Scholar
Kobayashi, N., Mieda, N., Shibata, H., and Shinozaki, Y. (1989), A study of the liquid slosh response in horizontal cylindrical tanks, Trans. ASME, PVT, 111(1), 32–38.Google Scholar
Kobayashi, N., Mieda, T., Jitsu, K., and Shibata, H. (1995), Sloshing suppression by bulkhead in cylindrical and co-axial cylindrical liquid vessels, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP- 314, 1–6.Google Scholar
Kobrinsky, A. E. and Kobrinsky, A. A. (1973), Vibro-impact Systems, Moscow, Nauka (in Russian).Google Scholar
Kochin, N. E., Kibel, I. A., and Rose, N. V. (1964), Theoretical Hydrodynamics, New York, Interscience Publishers.Google Scholar
Kochupillai, J., Ganesan, N., and Padmanabhan, C. (2002), A semi-analytical coupled finite element formulation for shells conveying fluids, Comput. Struct. 80, 271–286.CrossRefGoogle Scholar
Koga, T. and Tsushima, M. (1990), Breathing vibrations of a liquid-filled circular cylindrical shell, Int. J. Solids Struct. 26(9/10), 1005–1015.Google Scholar
Koh, C. G., Mahatma, S., and Wang, C. M. (1994), Theoretical and experimental studies on rectangular liquid dampers with arbitrary excitations, Earthquake Eng. Struct. Dyn. 23, 17–31.CrossRefGoogle Scholar
Koh, C. G., Mahatma, S., and Wang, C. M. (1995), Reduction of structural vibrations by multiple-mode liquid dampers, Engrg. Struct. 17(2), 122–128.CrossRefGoogle Scholar
Koide, T. and Goto, Y. (1988), Fundamental study on feedback control system regarding sloshing in storage tank, Proc. 9th World Conf. Earthquake EngineeringV, 883–888, Tokyo Kyoto, Japan.Google Scholar
Koleshov, V. B. and Shveiko, Yu Yu (1971), Asymmetric oscillations of cylindrical shells partially filled with a liquid, Izv. Academii Nauk. SSSR, Mekh. Tverdogo Tela. 3, 126–136.Google Scholar
Kolesinkov, K. S. (1971), Longitudinal Vibrations of a Rocket with a Liquid Propellant Engine, Moscow, Mashinostroyeniye (in Russian).Google Scholar
Kolesnikov, N. N. (1962), On the stability of an unconstrained rigid body with a cavity filled with an incompressible viscous fluid, J. Appl. Math. Mech. (PMM) 26(4), 914–923.CrossRefGoogle Scholar
Kollmann F. G. (1962), Experimentelle und theoretische untersuchungen über die kritischen drehzahlen flussigkeitsgefüllter Hohlkörper, Forsch Ing Wes H.4–5, Bd 28, 115–153.
Komarenko, A. N., Lukovskii, I A (1974), Nonlinear oscillations of a liquid in a cylindrical vessel under low gravity, inDynamics and Stability of Multidimensional Systems, Inst. Metem. Akad. Nauk. Ukraine, Kiev, SSSR, 86–97.Google Scholar
Komatsu, K. (1987), Nonlinear slosh analysis of liquid in tanks with arbitrary geometries, Int. J. Nonlin. Mech. 22(3), 193–207.CrossRefGoogle Scholar
Komissarova, G. L. (1990), Solution of the problem on wave propagation in a cylinder with a liquid, Soviet Appl. Mech. (Prikl. Mekh.) 26(8), 25–29.Google Scholar
Komissarova, G. L. (2002), Propagation of normal waves through a fluid contained in a thin-walled cylinder, Int. Appl. Mech. 38(1), 103–112.CrossRefGoogle Scholar
Kondo, H. (1981a), Axi-symmetric free vibration analysis of a circular cylindrical tank, Bull. JSME 24(187), 215–221.CrossRefGoogle Scholar
Kondo, H. (1981b), Response of a circular cylindrical tank subjected to vertical excitation, Theor. and Appl. Mech. 31, 311–319.Google Scholar
Kondo, H. (1989), Seismic response of a reactor vessel subjected to horizontal excitation, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 55–60.Google Scholar
Kondo, H., Yamamoto, S., and Sasaki, Y. (1989), Fluid–structure interaction analysis program for axisymmetric structures, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 179–185.Google Scholar
Konstantinov, Akh., and Lapshin, A. L. (2001), Stability of the oscillating free liquid surface in a cylindrical cavity under random perturbations, Int. Appl. Mech. 37(10), 1332–1340.CrossRefGoogle Scholar
Konstantinov, Akh., Mikityuk Yu, I, and Pal'ko, L. S. (1978), Study of the dynamic stability of a liquid in a cylindrical cavity, in Dynamics of Elastic Systems with Continuous-Discrete Parameters, Kiev, Naukova Dumka, 69–72 (in Russian).Google Scholar
Korobkin, A. (1997), Liquid–Solid Impact, Siberian Branch of the Russian Academy, Novosibrisk.Google Scholar
Korobkin, A. A. and Pukhachov, V. V. (1988), Initial stage of water impact, Annu. Rev. Fluid Mech. 20, 159–185.CrossRefGoogle Scholar
Kornecki, A. (1983), Dynamics of a mobile tank partially filled with liquid: equations of motion and their linearization, SM Archives 8, 217–241.Google Scholar
Koschmieder, E. L. (1967), On convection under air surface, J. Fluid Mech. 30, 9–15.CrossRefGoogle Scholar
Koval, L. R. (1968), A zero slosh problem, J. Spacecraft Rock. 5(7), 865–868.CrossRefGoogle Scholar
Koval R. and Bhuta P. G. (1968), A direct solution for capillary-gravity waves in a cylindrical tank, Devel. in Mechanics, 3(2): Dynamics and Fluid Mechanics, T. C. Huang and M. N. Johnson Jr, eds., 277–290.
Koval'chuk P. S. (1990), The dynamic instability of thin-walled cylindrical shells carrying a liquid, Abstracts of papers read at the All-Union Conf. on the Nonlinear Vibrations of Mechanical Systems, Gor'kii, 42 (in Russian).
Koval'chuk, P. S. and Boyarshina, L. G. (1998), Spatial self-oscillations of a solid with a cylindrical cavity partially filled with liquid, Int. Appl. Mech. 34(4), 377–384.Google Scholar
Koval'chuk, P. S. and Filin, V. G. (2003a), Circumferential traveling waves in filled cylindrical shells, Int. Appl. Mech. 39(2), 192–196.CrossRefGoogle Scholar
Koval'chuk, P. S., and Filin, V. G. (2003b), On modes of flexural vibrations of initially bent cylindrical shells partially filled with a liquid, Int. Appl. Mech. 39(4), 464–471.CrossRefGoogle Scholar
Koval'chuk P. S. and Kholopova V. V. (1997), Analysis of energy interchange between the natural modes of a liquid in a cylindrical tank, Dokl. Akad. Nauk. Ukrain., Ser. A, No 1, 36–41.
Koval'chuk, P. S. and Kholopova, V. V. (2001), Analysis of the nonstationary slow passage of a cylindrical vessel partially filled with a liquid through resonant zones, Int. Appl. Mech. 37(6), 790–797.CrossRefGoogle Scholar
Koval'chuk, P. S., Krishtalev, V. V., and Podchasov, N. P. (1997), Analysis of the energy interchange between the natural modes of a liquid in a cylindrical vessel attached to elastic supports, Sov. Appl. Mech. (Prikl. Mekh.) 33(4), 54–61.Google Scholar
Koval'chuk, P. S. and Kruk, L. A. (2000), Nonlinear energy interchange between the natural modes of freely vibrating circular cylindrical shells filled with liquid, Int. Appl. Mech. 36(1), 103–110.CrossRefGoogle Scholar
Koval'chuk, P. S. and Kruk, L. A. (2002), Forced nonlinear vibrations of cylindrical shells filled with a liquid, Int. Appl. Mech. 38(11), 1388–1393.CrossRefGoogle Scholar
Koval'chuk P. S. and Kubenko V. D. (1991), Interaction of vibrating cylindrical shells with its liquid content, in Dynamics of Bodies Interacting with a Medium, Guz, A. N., ed., Kiev, Naukova Dumka, 168–214.Google Scholar
Koval'chuk P. S. and Pavlovskii V. S. (1992), The wave modes of the nonlinear deformation of liquid-containing shells under radial dynamic pressure, Dokl. Akad. Nauk. Ukrain., Ser. A, No 11, 24–28.
Koval'chuk, P. S. and Pavlovskii, V. S. (1993), The nonlinear wave deformation of cylindrical modes of liquid-containing shells under impulse radial pressure, Sov. Appl. Mech. (Prikl. Mekh.) 29(12), 43–50.Google Scholar
Koval'chuk, P. S. and Pavlovskii, V. S. (1994), Nonlinear wave processes in cylindrical liquid-containing shells under short-term dynamic loading, in Technical–Physical Problems of New Engineering: Abstract Book, Moscow, Izd MVTU (in Russian).Google Scholar
Koval'chuk, P. S., Pavlovskii, V. S., and Filin, V. G. (1993), The nonlinear dynamics of cylindrical bodies carrying liquid masses and subject to periodic and impulsive radial perturbation, in Fundamental and Applied Problems of Space Exploration, Moscow, Zhitomir, 23 (in Russian).Google Scholar
Koval'chuk, P. S.Pavlovskii, V. S., and Filin, V. G. (1994), Analysis of resonance regimes of the wave deformation of cylindrical shells carrying a liquid, Sov. Appl. Mech. (Prikl. Mekh.) 30(2), 49–54.Google Scholar
Koval'chuk, P. S.Pavlovskii, V. S., and Filin, V. G. (2000), Stability analysis of resonance regimes of the nonlinear vibrations of liquid-containing cylindrical shells under longitudinally transversal periodic excitation, Dokl. NAN Ukrain., No 3, 31–34.Google Scholar
Koval'chuk, P. S. and Podchasov, N. P. (1988), Nonlinear flexural waves in cylindrical shells with periodic excitation, Soviet Appl. Mech. 24(11), 1086–1090.CrossRefGoogle Scholar
Koval'chuk, P. S. and Podchasov, N. P. (1996), Nonstationary wave motions of a liquid in a vibrating cylindrical vessel when passing through a zone of resonance, Int. Appl. Mech. (Prikladnaya Mekhanika) 32(1), 30–34.CrossRefGoogle Scholar
Koval'chuk, P. S. and Podchasov, N. P. (1999), Simulation of the nonlinear multimodal vibrations of thin cylindrical shells with close fundamental frequencies, Int. Conf. Modeling and Investigation of System Stability, Kiev, May, 40.Google Scholar
Koval'chuk, P. S., Podchasov, N. P., and Kholopova, V. V. (2002), Periodic modes in the forced nonlinear vibrations of filled cylindrical shells with an imperfection, Int. Appl. Mech. 38(6), 716–722.CrossRefGoogle Scholar
Koval'chuk, P. S., Puchka, G. N., and Kholopova, V. V. (1987), The nonlinear resonance vibrations of a liquid in a cylindrical vessel under longitudinal and transverse periodic excitation, Soviet Appl. Mech. (Prikl. Mekh.) 23(8), 95–100.Google Scholar
Koval'chuk P. S., Puchka, G. N., and Kholopova V. V. (1989), Nonlinear wave motions in axi-symmetric cavities subjected to vibrations, Izv. Akad. Nauk. SSSR Mekh. Zhidk., Gaza 3, 120–125.
Koval'chuk, P. S.Puchka, G. N., and Kholopova, V. V. (1999), Nonstationary wave motion of a liquid in longitudinally oscillating cylindrical vessel, Dokl. NAN Ukrain., No 11, 26–31.Google Scholar
Krasnopolskaya, T. S. and Lavrov, K. A. (1988), The nonlinear vibrations of a liquid-containing cylindrical shell under limited excitation, Soviet Appl. Mech. (Prikl. Mekh.) 24(11), 50–58.Google Scholar
Krasnopolskaya, T. S. and Podchasov, N. P. (1992a), Waves in a liquid between two coaxial cylindrical shells due to the vibrations of the inner cylinder, Soviet Appl. Mech. (Prikl. Mekh.) 28(3), 61–70.Google Scholar
Krasnopolskaya, T. S. and Podchasov, N. P. (1992b), The forced vibrations of a liquid between two cylinders excited by the vibrations of the inner shell, Soviet Appl. Mech. (Prikl. Mekh.) 28(4), 42–48.Google Scholar
Krasnopolskaya, T. S. and Podchasov, N. P. (1993), Resonances and chaos in nonaxisymmetric dynamic processes in hydroelastic systems, Soviet Appl. Mech. (Prikl. Mekh.) 29(12), 72–77.Google Scholar
Krasnopolskaya, T. S. and Shvets, A. Yu. (1990), Regular and chaotic surface waves in a liquid in a cylindrical tank, Int. Appl. Mech., Priklad. Mekh. 26(8), 787–794.Google Scholar
Krasnopolskaya, T. S. and Shvets, A. Yu. (1992), Properties of chaotic oscillations of a liquid in cylindrical tanks, Int. Appl. Mech., Priklad. Mekh. 28(6), 52–58.Google Scholar
Krasnopolskaya, T. S. and Shvets, A. Yu. (1993), Parametric resonance in the system: liquid in tank + electric motor, Int. Appl. Mech., Priklad. Mekh. 29(9), 722–730.CrossRefGoogle Scholar
Kravtsov, A. V. and Sekerzhi-Zenkovich, S. Y. (1993), Parametric excitation of the oscillations of a viscous two-layer fluid in a closed vessel, Zh. Vychisl. Mat. Fiz. 33(4), 611–619.Google Scholar
Kravtsov, A. V. and Sekerzhi-Zenkovich, S. Y. (1996), Parametric excitation of the oscillations of a viscous continuously stratified fluid in a closed vessel, J. Appl. Math. Mech. (PMM) 60(3), 449–454.CrossRefGoogle Scholar
Krein, S. G. (1964), On the oscillations of a viscous fluid in a vessel, Soviet Math. Doklady. 5(6), 1467–1471.Google Scholar
Krein, S. G. and Kan, N. Z. (1969a), The problem of small motions of a body with a cavity partially filled with a viscous fluid, J. Appl. Math. Mech. (PMM) 30(1), 110–117.CrossRefGoogle Scholar
Krein, S. G., and Kan, N. Z. (1969b), Asymptotic method in the problem of oscillations of a strongly viscous fluid, J. Appl. Math. Mech. (PMM) 33(3), 442–450.CrossRefGoogle Scholar
Krein, S. G. and Laptev, G. I. (1968), On the problem of motion of a viscous fluid in an open vessel, Funkts. Analiz. 2(1), 38–47.CrossRefGoogle Scholar
Krein, S. G. and Moiseev, N. N. (1957), On vibrations of a rigid body containing liquid having free surface, J. Appl. Math. Mech. (PMM) 21, 169–174.Google Scholar
Kreis, A. and Klein, M. (1991), On the analysis of liquid filled free–free tanks, Proc. Int. Conf. Spacecraft Structures and Mechanical Testing, Noordwijk, the Netherlands, 437–442.Google Scholar
Krishnamurti, R. (1968), Finite amplitude convection with changing mean temperature, J. Fluid Mech. 33, 445–457.CrossRefGoogle Scholar
Kruse, H. P., Mahalov, A., and Marsden, J. E. (1999), On the Hamiltonian structure and three-dimensional instabilities of rotating liquid bridges, Fluid Dyn. Res. 24, 37–59.CrossRefGoogle Scholar
Krushinskaya S. I. (1965), Vibrations of a heavy viscous fluid in a moving vessel, Zh. Vychisl. Matem. i Matem. Fiz. 3.
Kubenko, V. D. (1979), The Nonstationary Interaction of Structural Elements with a Medium, (in Russian) Kiev, Naukova Dumka.Google Scholar
Kubenko, V. D. and Koval'chuk, P. S. (1987), The nonlinear vibrations and wave modes of deformation of cylindrical shells filled with a liquid, 11th Int. Conf on Nonlinear Oscillations, Budapest, 17–23 August, 44.Google Scholar
Kubenko, V. D. and Koval'chuk, P. S. (2000), Nonlinear problems of the dynamics of elastic shells partially filled with a liquid, Int. Appl. Mech. 36(4), 421–448.CrossRefGoogle Scholar
Kubenko, V. D., Koval'chuk, P. S., and Boyarshina, L. G. (1992), Nonlinear Dynamics of Axisymmetric Bodies Carrying a Liquid, Kiev, Naukova Dumka (in Russian).Google Scholar
Kubenko, V. D., Koval'chuk, P. S., and Krasnopo'skaya, T. S. (1984), Nonlinear Modal Interaction of Flexible Vibrations of Cylindrical Shells, Kiev, Naukova Dumka.Google Scholar
Kubenko, V. D., Koval'chuk, P. S., and Kruk, L. A. (2003), On multimode nonlinear vibrations of filled cylindrical shells, Int. Appl. Mech. 39(1), 85–92.CrossRefGoogle Scholar
Kubenko, V. D., Koval'chuk, P. S., and Podchsov, N. P. (1989), Nonlinear Vibrations of Cylindrical Shells, (in Russian) Kiev, Vyshcha Shkola.Google Scholar
Kubenko, V. D. and Kruk, L. A. (1994), On the oscillations of an incompressible liquid in an infinite cylindrical shell containing a spherical body oscillating along the shell axis, Soviet Appl. Mech. (Prikl. Mekh.) 30(4), 31–37.Google Scholar
Kubenko, V. D. and Lakiza, V. D. (1996), Dynamic behavior of a gas–liquid media in ellipsoidal shells subjected to vibration, Int. Appl. Mech. 32(2), 89–94.CrossRefGoogle Scholar
Kubenko, V. D. and Lakiza, V. D. (1998), Vibrational resonance modes of motion of gas–liquid media in shell structures under polyharmonic excitation, Int. Appl. Mech. 34(1), 54–59.Google Scholar
Kubenko, V. D. and Lakiza, V. D. (1999), Dynamic behavior of liquids and gases in conical shells in a vibrational force field, Int. Appl. Mech. 35(2), 128–133.CrossRefGoogle Scholar
Kubenko, V. D., Lakiza, V. D., Pavolvskii, V. S., and Pelykh, N. A. (1988), Dynamics of Elastic Gas–Liquid Systems under Vibratory Actions, Kiev, Naukova (in Russian).Google Scholar
Kubenko, V. D. and Savin, V. A. (2000), Construction of the velocity potential of a semi-infinite liquid column excited by a spherical calotte oscillating inside a cylindrical cavity, Int. Appl. Mech. 36(3), 358–366.CrossRefGoogle Scholar
Kubenk, V. D. and Savin, V. A. (2002), Dynamics of a semi-infinite cylindrical shell with a liquid containing a vibrating spherical segment, Int. Appl. Mech. 38(3), 974–982.CrossRefGoogle Scholar
Kuhlmann, H. C. and Rath, H. J. (1993a), Hydrodynamic instabilities in cylindrical thermocapillary liquid bridges, J. Fluid Mech. 247, 247–274.CrossRefGoogle Scholar
Kuhlmann, H. C. and Rath, H. J. (1993b), On the interpretation of phase measurements of oscillatory convection in liquid bridges, Phys. Fluids A 5, 2117–2120.CrossRefGoogle Scholar
Kuipers, M. (1964), On the stability of a flexible mounted rotating cylinder partially filled with liquid, Appl. Sci. Res. A 13(2/3), 121–137.CrossRefGoogle Scholar
Kuipers, M. (1966), Die instabilität eines federnd gelagerten und teilweise mit flussigkeit gefüllten umlaufenden hohlzylinders, Forsch. Ing. Wes. 32(6), 194–195.CrossRefGoogle Scholar
Kukner, A. and Baykal, M. A. (1999), Wave sloshing in corrugated bottom tanks with two-dimensional flow, Ocean Eng. 26(8), 703–712.CrossRefGoogle Scholar
Kumar, K. (1996), Linear theory of Faraday instability in viscous liquids, Proc. Royal Soc. London A 452, 1113–1126.CrossRefGoogle Scholar
Kumar, K. and Bajaj, K. M. S. (1995), Competing patterns in the Faraday experiment, Phys. Revs. E 52, R4606–4609.CrossRefGoogle ScholarPubMed
Kumar, K. and Tuckerman, L. S. (1994), Parametric instability of the interface between two fluids, J. Fluid Mech. 279, 49–68.CrossRefGoogle Scholar
Kumar, R. (1971), Flexural vibrations of fluid-filled circular cylindrical shells, Acoustica 24(3), 137–146.Google Scholar
Kumar, R. (1972), Dispersion of axially symmetric waves in empty and fluid-filled circular cylindrical shells, Acoustica 25(6), 317–329.Google Scholar
Kumok Yu, Z. and Novgorodtseva, L. Z. (1965), Small free oscillations of a rotating cylinder partially filled with a liquid, Prikl. Mekh. 1(12), 87–94.Google Scholar
Kunitsyn, A. L. (1971), On the stability of pure imaginary roots in the critical case in the presence of intrinsic resonance, J. Appl. Math. Mech. (PMM) 35, 164–167.CrossRefGoogle Scholar
Kunitsyn, A. L. and Markeev, A. P. (1979), Stability in resonance cases, in Achievements of Science and Technology, General Mechanics4, Moscow, Viniti.Google Scholar
Kunitsyn, A. L. and Matveyev, M. V. (1991), The stability of a class of reversible systems, J. Appl. Math. Mech. (PMM) 55(6), 780–788.CrossRefGoogle Scholar
Kunitsyn, A. L. and Muratov, A. S. (1993), The stability of a class of quasi-autonomous periodic systems with internal resonance, J. Appl. Math. Mech. (PMM) 57(2), 247–255.CrossRefGoogle Scholar
Kunitsyn, A. L. and Perezhogin, A. A. (1985), The stability of neutral systems in the case of a multiple fourth-order resonance, J. Appl. Math. Mech. (PMM) 49(1), 53–57.CrossRefGoogle Scholar
Kunitsyn, A. L. and Tuyakbayev, A. A. (1992), The stability of Hamiltonian systems in the case of a multiple fourth-order resonance, J. Appl. Math. Mech. (PMM) 56(4), 572–576.CrossRefGoogle Scholar
Kurdolli, A. and Gollub, J. P. (1996a), Patterns and spatio-temporal chaos in parametrically forced surface waves: a systematic survey at large aspect ratio, Physica D 97, 133–154.Google Scholar
Kurdolli, A. and Gollub, J. P. (1996b), Localized spatio-temporal chaos in surface waves, Phys. Revs. E 54, R1052–1055.Google Scholar
Kurdolli, A., Pier, B., and Gollub, J. P. (1998), Superlattice patterns in surface waves, Physica D 123, 99–111.Google Scholar
Kurihara, C., Masuko, Y., and Sakurai, A. (1992), Sloshing impact pressure in roofed liquid tanks, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 232, 19–24.Google Scholar
Kuttler, J. R. and Sigillito, V. G. (1969), Lower bounds for sloshing frequencies, Quart. Appl. Math. 27(3), 405–408.CrossRefGoogle Scholar
Kuttler, J. R., and Sigillito, V. G. (1978), Bounding eigenvalues of elliptic operators, SIAM J. Math. Anal. 9, 768–773.CrossRefGoogle Scholar
Kuttler, J. R. and Sigillito, V. G. (1984), Sloshing of liquids in cylindrical tanks, AIAA J. 22(2), 309–311.Google Scholar
Kuz'ma, V. M. and Kholopova, V. V. (1983), Oscillations of the free surface of a liquid in a cylindrical container with longitudinal vibrations, Prikl. Mekh. 19(3), 249–253.Google Scholar
Kwak, M. K. (1991), Vibration of circular plates in contact with water, ASME J. Appl. Mech. 58, 480–483.CrossRefGoogle Scholar
Kwak, M. K. (1997), Hydroelastic vibration of circular plates, J. Sound Vib. 201, 293–303.CrossRefGoogle Scholar
Kwok, K. C. S. (1984), Damping increase in building with tuned mass damper, ASCE J. Eng. Mech. 110, 1645–1649.CrossRefGoogle Scholar
Kwok, K. C. S., Samali, B., and Xu, Y. L. (1991), Control of wind induced vibration of tall structures by optimized tuned liquid column dampers, Proc. Asia-Pacific Conf. Computational Mechanics, Hong Kong, 569–574.Google Scholar
Labus T. L. (1969), Natural frequency of liquids in annular cylinders under low gravitational conditions, NASA TN D-5412.
Lacovic R. F., Yeh F. C., Szabo S. V., Brun R. J., Stofan A. J., and Berns J. A. (1968), Management of cryogenic propellants in a full-scale orbiting space vehicle, NASA TN D-4571.
Lai, C. L. (1990), Unsteady thermocapillary flows and free surface oscillations in reduced gravity environments, Acta Astron. 21, 171–181.CrossRefGoogle Scholar
Lakis, A. A. and Laveau, A. (1991), Nonlinear dynamic analysis of anisotropic cylindrical shells containing a flowing fluid, Int. J. Solids & Struct. 28, 1079–1094.CrossRefGoogle Scholar
Lakis, A. A. and Sinno, M. (1992), Free vibrations of axisymmetric and beam-like cylindrical shells, partially filled with liquid, Int. J. for Num. Methods in Engrg. 33, 235–268.CrossRefGoogle Scholar
Lakis, A. A. and Païdoussis, M. P. (1971), Free vibrations of cylindrical shells partially filled with liquid, J. Sound Vib. 19(1), 1–15.CrossRefGoogle Scholar
Lakiza, V. D. (1995), Experimental studies of the dynamic behavior of a gas–liquid media in spherical shells under the action of vibration, Int. Appl. Mech. 31(1), 61–65.CrossRefGoogle Scholar
Lamb, H. (1945), Hydrodynamics, Cambridge, Cambridge University Press.Google Scholar
Landau, L. D. and Lifshitz, E. M. (1959), Fluid Mechanics, Reading, MA, Addison.Google Scholar
Langbein, D. (1992), Stability of liquid bridges between parallel plates, Microgravity Sci. Technol. V/1, 2.Google Scholar
Langbein, D., Falk, F., and Grossbach, R. (1995), Oscillations of liquid columns under microgravity, Adv. Space Res. 16, 23–26.CrossRefGoogle Scholar
Langner C. G. (1963), A preliminary analysis for optimum design of ring and vertical wall antislosh baffles, SwRI, TR 7, April.
Lappa, M. and Savino, R. (1999), Parallel solution of the three-dimensional Marangoni flow instabilities in liquid bridges, Int. J. Num. Meth. Fluids 31(5).3.0.CO;2-B>CrossRefGoogle Scholar
Lappa, M., Savino, R., and Monti, R. (2001), Three-dimensional numerical simulation of Marangoni instabilities in liquid bridges: Influence of geometrical aspect ratio, Int. J. Heat Mass Transfer 44(10), 1983–2003.CrossRefGoogle Scholar
Larraza, A. P. and Putterman, S. (1984), Theory of non-propagating surface-wave solitons, J. Fluid Mech. 148, 443–449.CrossRefGoogle Scholar
Lau, D. T. and Zeng, X. (1992), Hydrodynamic forces in uplifting cylindrical tanks, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 232, 39–44.Google Scholar
Lavalley, R., Amberg, G., and Alfredsson, H. (2001), Experimental and numerical investigation of nonlinear thermocapillary oscillations in an annular geometry, Eur. J. Mech. B-Fluids 20, 771–797.CrossRefGoogle Scholar
Laverón-Simavilla, A. and Perales, J. M. (1995), Equilibrium shapes of non-axisymmetric liquid bridges of arbitrary volume in gravitational fields and their potential energy, Phys. Fluids 7, 1204–1213.CrossRefGoogle Scholar
Lawrence, H. R., Wang, C. J., and Reddy, R. B. (1958), Variational solution of fuel sloshing modes, Jet Propul., Publication of Amer. Rocket Soc. 28(11), 728–736.Google Scholar
Lee, B. S. and Vassalos, D. (1996), Investigation into the stabilization effects of anti-roll tanks with flow obstructions, Int. Shipbuilding Progress 43, 70–88.Google Scholar
Lee, C. P., Anilkumar, A. V., and Wang, T. G. (1996), Streaming generated in a liquid bridge due to nonlinear oscillations driven by the vibrations of an endwall, Phys. Fluids 8(12), 3234–3246.CrossRefGoogle Scholar
Lee, D. Y. and Choi, H. S. (1999), Study of sloshing in cargo tanks including hydroelastic effects, J. Marine Sci. Technol. 4(1), 27–34.CrossRefGoogle Scholar
Lee, S. C. and Reddy, D. V. (1982), Frequency tuning of offshore platforms by liquid sloshing, Appl. Ocean Res. 4, 226–231.CrossRefGoogle Scholar
Lee, S. H., et al. (1995), Simulation of 3-D sloshing and structural response in ship's tanks taking account of fluid–structure interaction, SNAME Trans. 103, 321–342.Google Scholar
Lee, T. H., Zhou, Z., and Cao, Y. (2002), Numerical simulations of hydraulic jumps in water sloshing and water impacting, ASME J. Fluids Engrg. 124(1), 215–226.CrossRefGoogle Scholar
Leissa A. W. (1973), Vibration of shells, NASA SP-288.
Leonard H. W. and Walton W. C. Jr (1961), An investigation of the natural frequencies and mode shapes of liquids in oblate spheroidal tanks, NASA TN-D-904.
Leonov, G. A. and Morozov, A. V. (1988), On the global stability of the forced motions of a liquid within an ellipsoid, J. Appl. Math. Mech. (PMM) 52(1), 133–135.CrossRefGoogle Scholar
Lepelletier, T. G. and Raichlen, F. (1988), Nonlinear oscillation in rectangular tanks, ASCE J. Eng Mech 114(1), 1–23.CrossRefGoogle Scholar
Leroy, J. (1963), On breathing vibrations of thin cylinders partially full of liquid, Comptes Rendus 257(18), 2607–2609 (in French).Google Scholar
Leslie, F. W. (1985), Measurements of rotating bubble shapes in a low gravity environment, J. Fluid Mech. 161, 269–279.CrossRefGoogle Scholar
Levenstam, M. and Amberg, G. (1995), Hydrodynamic instability of thermocapillary flow in a half-zone, J. Fluid Mech. 297, 357–372.CrossRefGoogle Scholar
Levich, V. G. and Krylov, V. S. (1969), Surface tension driven phenomena, Ann. Rev. Fluid Mech. 1, 293–316.CrossRefGoogle Scholar
Levin E. (1957), Conical sloshing, Memo. PA/M-553/1, STL.
Levin, E. (1963), Oscillations of a fluid in rectilinear conical containers, AIAA J. 1(6), 1447.CrossRefGoogle Scholar
Levine N. B., Krainman H., and Green J. (1966), Positive expulsion bladders for storable propellants, AFML-TR-65–379.
Levleva, O. B. (1964), Small oscillations of a pendulum having a spherical cavity filled with a viscous fluid, J. Appl. Math. Mech. (PMM) 28(6), 1359–1361.CrossRefGoogle Scholar
Levleva, O. B. (1966), Oscillations of a body filled with a viscous fluid, J. Appl. Mech. Tech. Phys. (English translation) 7(6), 18–22.CrossRefGoogle Scholar
Levy A. M., Chin J. H., Donaldson J. O., Gallagher L. W., Harper E. Y., Hurd S. E., and Satterlee H. M. (1964), Analytical and experimental study of liquid orientation and stratification in standard and reduced gravity fields, Lockheed Missiles & Space Co., Rept. No 205641.
Lewin, L., Burger, M., and Souli, M. (1997), Simulation of dynamic fuel sloshing using an explicit finite element approach, ASME Symp. Adv. Analytical, Experimental and Computational Technologies in Fluids, Structures, Transients and Natural Hazards, PVP- 355, 103–111.Google Scholar
Lewis, D. J. (1950), The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. Royal Soc. (London) A 202, 81–96.CrossRefGoogle Scholar
Lewison, B. A. (1975), Optimum design of passive roll stabilizer tanks, Royal Inst. Naval Archit. 78, 31–45.Google Scholar
Li, L. (1983a), On the stability of the rotational motion of a rigid body having a liquid-filled cavity under finite initial disturbance, Appl. Math. Mech. 4, 667–680.CrossRefGoogle Scholar
Li, L. (1983b), On the global stability of rotational motion and the qualitative analysis of the behavior of distributed motion of a rigid body having a liquid-filled cavity, Appl. Math. Mech. 4, 865–874.CrossRefGoogle Scholar
Li W. (1985), Response of a nonlinear two-degree-of-freedom system to a horizontal harmonic excitation, Master thesis, Texas Tech University, Lubbock, TX.
Lichter, S. and Shemer, L. (1986), Experiments on nonlinear cross-waves, Phys. Fluids 29, 3971–3975.CrossRefGoogle Scholar
Lichtenberg, G. (1982), Vibration of an elastically mounted spinning rotor partially filled with liquid, J. Mech. Des. 104(2) 389–396.CrossRefGoogle Scholar
Lidström M. (1976), Road tankers overturning limit: the steady-state case, (in Swedish) National Road and Traffic Research Institute, Linköping, Sweden, Working Paper 1976–12–17.
Lidström M. (1977), Road tanker overturning: with and without longitudinal baffles, (in Swedish) National Road and Traffic Research Institute, Linköping, Sweden, Report No 115.
Liepmann, H. W. and Lagina, G. A. (1984), Nonlinear interaction in the fluid mechanics of helium II, Annu. Rev. Fluid Mech. 16, 139–177.CrossRefGoogle Scholar
Lifshitz, R. and Petrich, D. M. (1997), Theoretical model for Faraday waves with multiple-frequency forcing, Phys. Rev. Lett. 79, 1261–1264.CrossRefGoogle Scholar
Lighthill, M. J. (1966), Dynamics of rotating fluids: A Survey, J. Fluid Mech. 26, 411–431.CrossRefGoogle Scholar
Limarchenko O. S. (1978a), Variational formulation of the problem on the motion of a tank with fluid, Dopovidi Akademii Nauk. Ukrains'koi RSR, A 10, 903–907 (in Ukranian).
Limarchenko O. S. (1978b), Direct method for solution of nonlinear dynamic problems for a tank with fluid, Dopovidi Akademii Nauk. Ukrains'koi RSR, A 11, 999–1002 (in Ukranian).
Limarchenko, O. S. (1980), Variational method investigation of problems of nonlinear dynamics of a reservoir with a liquid, Soviet Appl. Mech. 16(1), 74–79.CrossRefGoogle Scholar
Limarchenko, O. S. (1981), Effect of capillarity on the dynamics of a container liquid system, Soviet Appl. Mech. 17(6), 601–604.CrossRefGoogle Scholar
Limarchenko, O. S. (1983a), Direct method of solving problems on the combined spatial motions of a body fluid system, Soviet Appl. Mech. 19(8), 715–721.CrossRefGoogle Scholar
Limarchenko, O. S. (1983b), Application of a variational method to the solution of nonlinear problems of the dynamics of combined motions of a tank with fluid, Soviet Appl. Mech. 19(11), 1021–1025.CrossRefGoogle Scholar
Limarchenko, O. S. (1987), Application of direct methods to the study of applied problems of nonlinear dynamics of bodies partially filled by a liquid, Inst. Mathematics, Ukraine, Academy of Sciences, No 87.8, Kiev.Google Scholar
Limarchenko O. S. (1991), Modeling of dynamics of structures hosting a liquid with a free surface in cavities of revolution, Inst. Math., Ukraine, Academy of Sciences, No 91.16, Kiev.
Limarchenko, O. S. (1995), Non-steady rotation of a cylindrical storage tank partially filled with a viscose fluid, Int. Appl. Mech. (Prikl. Mekh.) 31(5), 406–411.CrossRefGoogle Scholar
Limarchenko, O. S., Lukovskii, I. A., and Timokha, A. N. (1992), Nonlinear models in applied dynamics problems of bodies with a free surface liquid, Prikl. Mekh. 28(11), 757–763.Google Scholar
Limarchenko, O. S. and Yasinskii, V. V. (1996), Nonlinear Dynamics of Constructions with a Fluid, Kiev Polytechnic University (in Russian).Google Scholar
Lin, C. C. (1954), On a perturbation theory based on the method of characteristics, J. Math. Phys. 33, 117.CrossRefGoogle Scholar
Lin J. (1994), Measurement of free surface deformation in oscillatory flow, M.Sc., thesis, Case Western Reserve University, Cleveland, OH.
Lin J. D. and Howard L. N. (1960), Nonlinear standing waves in a rectangular tank due to forced oscillations, MIT Hydrodynamics Lab., TR 44.
Lin, J., Kamotani, Y., and Ostrach, S. (1995), An experimental study of free surface deformation in oscillatory flow, Acta Astronaut. 35(8), 525–536.CrossRefGoogle Scholar
Lin, T. C. and Morgan, G. W. (1956), Wave propagation through fluid contained in a cylindrical elastic shell, J. Acoust. Soc. Amer. 28(6), 1165–1176.CrossRefGoogle Scholar
Lin, Y. K. (1967), Probabilistic Theory of Struct Dynamics, New York, McGraw-Hill.Google Scholar
Lindholm, U. S., Chu, W. H., Kana, D. D., and Abramson, H. N. (1963), Bending vibrations of a circular cylindrical shell containing an internal liquid with a free surface, AIAA J. 1(9), 2092–2099.Google Scholar
Lindholm, U. S., Kana, D. D., and Abramson, H. N. (1962a), Breathing vibrations of a circular cylindrical shell with an internal liquid, J. of Aero./Space Sciences 29(9), 1052–1059.CrossRefGoogle Scholar
Lindholm U. S., Kana D. D., Chu W. H., and Abramson H. N. (1962b), Research in liquid dynamics in missile fuel tanks, SwRI, TR 7.
Lindstrom, K., Kjellander, H., and Jonsson, C. (1969), A new instrument for the measurement of liquid level, Rev. Sci. Instruments 4, 1083–1087.Google Scholar
Liu, A. P. C. and Lou, J. Y. K. (1990), Dynamic coupling of a liquid–tank system under transient excitation, Ocean Engrg. 17(3), 263–277.Google Scholar
Liu F. C. (1964), Pressure on baffle rings due to sloshing in a cylindrical tank, NASA MSFC, R-AERO-4–64.
Liu, W. K. and Belytschko, T. B. (1983), Fluid structure interaction with sloshing, Trans. 7th Int. Conf. Struct. Mech. in Reactor Tech. B, 11–18.Google Scholar
Liu, W. K., Chen, Y. J., Tsukimori, K., and Uras, R. A. (1991), Recent advances in dynamic buckling analysis of liquid-filled shells, ASME J. Pressure Vessel Tech. 113, 314–320.CrossRefGoogle Scholar
Liu, W. K. and Lam, D. (1983), Nonlinear analysis of liquid-filled tank, J. Eng. Mech. 109, 1344–1357.CrossRefGoogle Scholar
Liu, W. K. and Ma, D. C. (1982), Coupling effect between liquid sloshing and flexible fluid-filled systems, Nuclear Engrg. Des. 72, 345–357.CrossRefGoogle Scholar
Liu, W. K. and Uras, R. A. (1988), Variational approach to fluid–structure interaction with sloshing, Nuclear Eng. and Design 106, 69–85.CrossRefGoogle Scholar
Liu, W. K., and Uras, R. A. (1989a), Transient buckling analysis of liquid-storage tanks – part I: Theory, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 35–40.Google Scholar
Liu, W. K., and Uras, R. A. (1989b), Transient buckling analysis of liquid-storage tanks – part II: Applications, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP-157, 41–46.Google Scholar
Liu, Y. Z. (1992), The stability of a fluid-filled top rotating on a horizontal plane, Arch. Appl. Mech. 62, 487–494.CrossRefGoogle Scholar
Liu, Z. P. and Huang, Y. (1994), A new method for large amplitude sloshing problems, J. Sound Vib. 175(2), 185–195.CrossRefGoogle Scholar
Lloyed, A. R. J. M. (1989), Seakeeping – Ship Behavior in Rough Weather, Chichester, Ellis Harwood.Google Scholar
Lomen D. O. (1965a), Liquid propellant sloshing in mobile tanks of arbitrary shape, NASA CR-222, April.
Lomen D. O. (1965b), Digital analysis of liquid propellant sloshing in mobile tanks with rotational symmetry, NASA CR-230.
Lomen, D. O. and Fontenot, L. L. (1967), Fluid behavior in parabolic containers undergoing vertical excitation, J. Math. Phys. 46(1), 43–53.CrossRefGoogle Scholar
Longuet-Higgins, M. S. (1985), Bifurcation in gravity waves, J. Fluid Mech. 151, 457–475.CrossRefGoogle Scholar
Longuet-Higgins, M. S. (2000), Theory of water waves derived from a Lagrangian, Part 1: standing waves, J. Fluid Mech. 423, 275–292.CrossRefGoogle Scholar
Lorell J. (1951), Forces produced by fuel oscillations, Jet Prop. Lab. Progress Report 20–149.
Lorell J. (1952), Effect of fuel sloshing on the position of the center of rotation of a missile, Jet Propulsion Labs., Caltech, Rept. 20–65.
Lorenz, E. N. (1963), Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130–141.2.0.CO;2>CrossRefGoogle Scholar
Lou, J. Y. K, Lutes, L. D., and Li, J. (1994), Active tuned liquid damper for structural control, Proc. 1st World Conf. Structural Control, Los Angeles 2, TP1–70–79.Google Scholar
Lou Y. K., Wu M. C., and Lee C. K. (1985), Further studies on liquid sloshing, Maritime Admins. Rept. No MA-RD-760–85009, March.
Lowry, B. J. and Steen, P. H. (1995), Flow-induced stabilization of liquid columns, J. Colloid. Interface Sci. 170, 38–43.CrossRefGoogle Scholar
Lu, D., Kondo, S., and Takizawa, A. (1995), Analysis of overflow-induced sloshing coupled with oscillation of elastic wall, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP- 314, 147–152.Google Scholar
Lu, D., Takizawa, A., and Kondo, S. (1997), Overflow-induced vibration of a weir coupled with sloshing in a downstream tank, J. Fluids Struct. 11, 367–393.CrossRefGoogle Scholar
Lu, D.Takizawa, A. and Kondo, S. (1998), Extension of physical component BFC method for the analysis of free-surface flows coupled with moving boundaries, Comput. Mech. 21(1), 71–80.CrossRefGoogle Scholar
Lübeck G. (1873), Über den einfluss, welchen auf die bewegung eimes pendels mit einem kugelförmigen hohlraume ein in ihm enthaltens reibende flüssigkeit ausübt, Journal f, reine u ang Math 77.
Lubin, B. T. and Springer, G. S. (1967), The formulation of a dip on the surface of a liquid draining from a tank, J. Fluid Mech. 29, 385–390.CrossRefGoogle Scholar
Ludwieg, H. (1951), Die ausgebildete kanalströmung in einem rotierenden system, Ing. Archiv. 19, 296–308.CrossRefGoogle Scholar
Lught, H. J. and Ohring, S. (1992), The oblique ascent of a viscous vortex pair toward a free surface, J. Fluid Mech. 236, 461–480.CrossRefGoogle Scholar
Lugovski V. V. (1961), On an investigation of the hydrodynamic forces in oscillations of finite amplitude, Tsentral Nauchnoissled Inst Morskogo Flota, Trudy, Vyp 351, 40–48.
Lui, A. P. and Lou, J. Y. K. (1990), Dynamic coupling of a liquid tank system under transient excitation, Ocean Eng. 17(3), 263–277.Google Scholar
Luk C. H. (1969), Finite element analysis for liquid sloshing problems, MIT, Aeroelastic and Struct. Res. Lab., Tech. Rept. TR-144–3, AFOSR 69–1504, May.
Luke, J. C. (1967), A variational principle for a fluid with a free surface, J. Fluid Mech. 27, 395–397.CrossRefGoogle Scholar
Lugovski, V. V. (1961), On an investigation of the hydrodynamic forces in oscillations of finite amplitude, Tsentral Nauchnoissled Inst Morskogo Flota, Trudy, Vyp 351, 40–48.Google Scholar
Lukovskii, I. A. (1961a), Small wave motions of homogeneous incompressible fluid in containers which are solids of revolution, Dopovidi Akad Nauk Ukrain RSR, 1013–1017.Google Scholar
Lukovskii, I. A. (1961b), Perturbed motion of a solid body with spherical cavity partly filled with liquid, Dopovidi Akad Nauk Ukrain RSR, 1418–1423.Google Scholar
Lukovskii, I. A. (1967), Variational method in the nonlinear problems of the dynamics of a limited liquid volume with free surface, in Oscillations of Elastic Constructions with Liquid, 260–264, Moscow, Volna (in Russian).Google Scholar
Lukovskii, I. A. (1975), Nonlinear Fluid Oscillations in Vessels of Complex Geometrical Shapes, Kiev, Naukova Dumka (in Russian).Google Scholar
Lukovskii, I. A. (1990), Introduction to the Nonlinear Dynamics of Aircraft with Liquid, Kiev, Nauk Dumka (in Russian).Google Scholar
Lukovskii I. A., Barnyak M. Y., and Komarenko A. N. (1984), Approximate methods of solving the problems of the dynamics of a limited liquid volume, Kiev, Naukova Dumka (in Russian).
Lukovskii, I. A. and Bilyk, A. N. (1985), Forced nonlinear oscillations of a liquid in moving axial-symmetric conical tanks, in Numerical-Analytical Methods of Studying the Dynamics and Stability of Multidimensional Systems, Institute of Math 12–26, Kiev. (in Russian)Google Scholar
Lukovskii, I. A. and Timokha, A. N. (1991a), Acoustic action on a free surface bounded by a liquid volume, Akust Zhurnal 37(1), 144–149.Google Scholar
Lukovskii, I. A. and Timokha, A. N. (1991b), Stabilization of a separation surface of a liquid and a gas during interaction with acoustic fields in a gas, Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaz 3, 80–86.Google Scholar
Lukovskii, I. A. and Timokha, A. N. (1992), Variational formulations of the problem of the interaction of a “liquid–gas” interface with acoustic fields in the gas, in Math. Methods of Investigating Applied Problems of the Dynamics of Bodies Carrying a Liquid, Kiev, Inst. Math. 3–10.Google Scholar
Lukovskii, I. A. and Timokha, A. N. (1995), Variational Methods in Nonlinear Dynamics of a Limited Liquid Volume, Kiev, Inst. Math. (in Russian).Google Scholar
Lukovskii, I. A. and Timokha, A. N. (1999), Nonlinear theory of sloshing in mobile tanks: classical and non-classical problems (survey), in Problems of Analytical Mechanics and its Applications, Kiev, Institute of Mathematics of NASU, 169–200.Google Scholar
Lukovskii, I. A. and Timokha, A. N. (2000a), Steady state nonlinear sloshing in a rectangular tank: passage to shallow water, Dopovidi of National Academy of Sciences of Ukraine 11, 48–51.Google Scholar
Lukovskii, I. A. and Timokha, A. N. (2000b), Modal modeling of nonlinear fluid sloshing in tanks with non-vertical walls: Non-conformal mapping technique, Applied Hydromechanics (Prykl. Hydromechanika) 2(74), No 4.32–47 (in Russian).Google Scholar
Lukovskii, I. A. and Timokha, A. N. (2001), Asymptotic and variational methods in non-linear problems of the interaction of surface waves with acoustic fields, J. Appl. Mat. Mech. 65(3), 463–470.CrossRefGoogle Scholar
Lukovskii, I. A., Trotsenko, V. A., and Usyukin, V. I. (1989), Interaction of Thin-Walled Elastic Elements with a Liquid in Mobile Cavities, Kiev, Naukova Dumka (in Russian).Google Scholar
Luskin, H. and Lapin, E. (1952), An analytical approach to the fuel sloshing and buffeting problems of aircraft, J. Aeronaut. Sci. 19(4), 217–228.CrossRefGoogle Scholar
Lyubimov, D. B. and Cherepanov, A. A. (1986), Development of a steady relief at the interface of fluids in a vibrational field, Fluid Dyn. 21, 849–854.CrossRefGoogle Scholar
Lyubimov, D. B. and Cherepanov, A. A. (1989), The occurrence of a stationary relief on the interface between fluids in a vibration field, Izv. Akad. Nauk. SSSR, MZhG 6, 8–13.Google Scholar
Lyubimov D. B., Cherepanov A. A., and Briskan V. A. (1981), Control of the fluid free surface by fluctuating fields: II, All Union Seminar on Hydromechanics and Heat and Mass Transfer, Abstracts, Perm 112–114.
Lyubimov, D. B., Lyubimova, T. P., Skuridin, R. V., Chen, G., and Roux, B. (2002), Numerical investigation of meniscus deformation and flow in an isothermal liquid bridge subject to high-frequency vibrations under zero gravity conditions, Comput. Fluids 31, 663–682.CrossRefGoogle Scholar
Ma, D. C., Gvildys, J., Chang, Y. W., and Liu, W. K. (1982), Seismic behavior of liquid-filled shells, Nuclear Eng. Design 70, 437–455.CrossRefGoogle Scholar
Macdonald, H. M. (1894), Waves in Canals, Proc. Lond. Math. Soc. XXV, 101–111.Google Scholar
Machida, T., Kaneko, S., and Watanabe, T. (1998), Nonlinear characteristics of sloshing with inlet and outlet flow in a rectangular tank (in Japanese), Trans. JSME C 64(620), 1184–1192.CrossRefGoogle Scholar
Mack L. R. (1960), Finite amplitude gravity waves of an ideal liquid in a right circular cylindrical tank with horizontal bottom, Ph.D. dissertation, University of Michigan, Ann Arbor.
Mack, L. R. (1962), Periodic finite-amplitude, axi-symmetric gravity waves, J. Geophys. Res. 67(2), 829–843.CrossRefGoogle Scholar
Mack, L. R., Jay, B. E., and Sattler, D. E. (1967), Standing gravity waves of finite amplitude, Dev. Theor. Appl. Mech.3, 3, Pergamon Press.Google Scholar
Madarame, H., Okamoto, K., and Hagiwara, T. (1992), Self-induced sloshing in a tank with circulating flow, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 232, 5–11.Google Scholar
Madarame, H., Fukaya, M., Iida, M., and Okamoto, K. (1993a), Self-induced oscillations of upward plane jet impinging on free surface, ASME Pressure Vess. Piping, PVP- 258, 113–119.Google Scholar
Madarame, H., Iida, M., Okamoto, K., and Fukaya, M. (1993b), Jet-flutter: self-induced oscillations of upward plane jet impinging on free surface, Proc. Asia-Pacific Vib. Conf. '93, 1, 265–270.Google Scholar
Madarame, H. and Ida, M. (1998), Mechanism of jet-flutter: self-induced oscillation of an upward plane jet impinging on a free surface, JSME Int. J. B 41, 610–617.CrossRefGoogle Scholar
Madarame, H., Okamoto, K., and Ida, M. (2002), Self-induced sloshing caused by an upward round jet impinging on the free surface, J. Fluid Struct. 16(3), 417–433.CrossRefGoogle Scholar
Madsen, R. A. and Easton, C. R. (1970), Numerical analysis of low-g propellant flow problems, J. Spacecraft Rock. 7(1), 89–91.Google Scholar
Magnus, K. (1971), Kreisel (Gyroscope), Berlin, Springer-Verlag.CrossRefGoogle Scholar
Mahajan, M. P., Tsige, M., Taylor, P. L., and Rosenblatt, C. (1998), Paramagnetic liquid bridge in a gravity-compensating magnetic field, Phys. Fluids 10(9), 2208–2211.CrossRefGoogle Scholar
Mahajan, M. P.Tsige, M.Taylor, P. L., and Rosenblatt, C. (1999a), Stability of magnetically levitated liquid bridges of arbitrary volume subjected to axial and lateral gravity, J. Colloid Interface Sci. 213, 592–595.CrossRefGoogle Scholar
Mahajan, M. P.Tsige, M.Taylor, P. L., and Rosenblatt, C. (1999b), Stability of liquid crystalline bridges, Phys. Fluids 11(2), 491–493.CrossRefGoogle Scholar
Mahajan, M. P., Tsige, M., Zhang, S., Alexander, J. I. D., Taylor, P. L., and Rosenblatt, C. (2000), Collapse dynamics of liquid bridges investigated by time-varying levitation, Phys. Rev. Lett. 84(2), 338–341.CrossRefGoogle ScholarPubMed
Mahajan, M. P.Tsige, M.Zhang, S.Alexander, J. I. D.Taylor, P. L., and Rosenblatt, C. (2002), Resonance behavior of liquid bridges under axial and lateral oscillating total body forces, Experiments in Fluids 33, 503–507.CrossRefGoogle Scholar
Mahony, J. J. and Smith, R. (1972), On a model representation for certain spatial-resonance phenomena, J. Fluid Mech. 53, 193–208.CrossRefGoogle Scholar
Malashenko, S. V. (1960), Some experimental investigations relating to rotation of bodies, PMTPH 3, 205–211 (in Russian).Google Scholar
Malhotra, P. K. (1995), Base uplifting analysis of flexibly supported liquid storage tanks, Earthquake Engg. and Struct. Dyn. 24(12), 1591–1607.CrossRefGoogle Scholar
Manasseh, R. (1993), Visualization of the flows in precessing tanks with internal baffles, AIAA J. 31(2), 312–318.CrossRefGoogle Scholar
Manevich, L. I., Prokopalo, E. F., and Shukurov, A. Kh. (1976), Investigation of parametric oscillations of fluid-filled shells, in Vibrations of Elastic Structures with Fluids, Volna Scientific Information Bureau, Moscow (in Russian).Google Scholar
Manos, G. C. (1989), Study of the behavior of cylindrical liquid storage tanks when subjected to lateral loads, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 75–82.Google Scholar
Manos, G. C. (1990), Testing of cylindrical liquid-storage tank scaled models subjected to lateral loads, Flow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 19–24.Google Scholar
Manos G. C. and Clough R. W. (1982), Further study of the earthquake response of a broad cylindrical liquid-storage tank model, Report UCB/EERC-82/7, University of California, Berkeley.
Manos, G. C., and Clough, R. W. (1985), Tank damage during the May 1983 Coalinga earthquake, Earthquake Eng. Struct. Dyn. 13, 449–466.CrossRefGoogle Scholar
Manos G. C. and Talaslidis D. (1986), Experimental and numerical study of unanchored cylindrical tanks subjected to lateral load, Proc. 3rd Int. Conf. Comp. Methods and Exp. Meas., Greece.
Marangoni, C. G. (1871), Ueber die ausbreitung der tropfen einer flüssigkeit auf der oberfläche einer anderen, Ann. Phys. Chem. (Poggendorf) 143(7), 337–354.CrossRefGoogle Scholar
Markeyev, A. P. (1985a), The stability of the rotation of a top filled with fluid, Izv. Akad. Nauk. SSSR, MTT 3, 19–26.Google Scholar
Markeyev, A. P. (1985b), The oscillations of rigid body with a cavity containing liquid on an absolutely rough plane, in Some Problems and Methods for Investigating the Dynamics of Mechanical Systems, Mosk. Aviats. Inst., Moscow, 19–25.Google Scholar
Markus, S. (1988), Mechanics of Vibrations of Cylindrical Shells, Amsterdam, Elsevier.Google Scholar
Marr-Lyon, M. J., Thiessen, D. B., and Marston, P. L. (1997), Stabilization of a cylindrical capillary bridge far beyond the Rayleigh–Plateau limit using acoustic radiation pressure and active feedback, J. Fluid Mech. 351, 345–357.CrossRefGoogle Scholar
Marston P. L., Marr-Lyon M. J., Morse S. F., and Thiessen D. B. (1996), Stabilization and low frequency oscillation of capillary bridges with modulated acoustic radiation pressure, 3rd Microfluid Physics Conf., Cleveland, Ohio, NASA Conference Publication 3338, 475.
Martel, C., Nicolas, J. A., and Vega, J. M. (1998), Surface-wave damping in a brimful circular cylinder, J. Fluid Mech. 360, 213–228.CrossRefGoogle Scholar
Martin E. R. (1971), Fuel slosh and dynamic stability of Intelsat IV, AIAA Paper 71–954.
Martinez, I. (1976), Floating zone under reduced gravity-axisymmetric equilibrium shapes, 2nd Europ. Symp. Material Sciences in Space, Frascati, Italy, ESA-SP-114, 277–282.Google Scholar
Martinez, I. (1987), Stability of liquid bridges, Results of SL-D1 experiment, Acta Astron. 15, 449–453.CrossRefGoogle Scholar
Martinez I., Haynes J. M., and Langbein D. (1987), Fluid statics and capillary, in Fluid Sciences and Materials Sciences in Space, Walter, H. U., ed., New York, Springer-Verlag.CrossRefGoogle Scholar
Martinez I. and Perales J. M. (2001), Mechanical behavior of liquid bridges in microgravity, in Physics of Fluid in MicrogravityMonti, R., ed., Taylor & Francis, 21–45.Google Scholar
Maschek, A., et al. (1992), Investigation of sloshing fluid motions in pools related to recriticalities in liquid-metal fast breeder reactors, Nuclear Techn. 98(1), 27–35.CrossRefGoogle Scholar
Maschek, A., Flad, M., Arnecke, G., and Pinto, Lo P. (1998), Mitigation of core disruptive accident energetics in burner cores, Prog. Nuclear Energy 32(3/4), 639–646.CrossRefGoogle Scholar
Masica W. J. (1967), Experimental investigation of liquid surface motion in response to lateral acceleration during weightlessness, NASA TN-D-4066, July.
Masica W. J., Derdul J. D., and Petrash D. A. (1964a), Hydrostatic stability of the liquid-vapor interface in a low-acceleration field, NASA TN-D-2444.
Masica W. J., Petrash D. S., and Otto E. W. (1964b), Hydrostatic instability of the liquid-vapor interface in a gravitational field, NASA TN-D-2267.
Masica, W. J. and Salzman, J. A. (1965), An experimental investigation of the dynamic behavior of the liquid-vapor interface under adverse low-gravitational conditions, AFOSR/LMSC Symp. Fluid Mechanics and Heat Transfer under Low Gravitational Conditions, Lockheed Missile & Space Co., (June 24–25), 25–41.Google Scholar
Masica W. J., and Salzman J. A. (1969), Lateral sloshing in cylinders under low gravity conditions, NASA TN D-5058m.
Mason, P., Collins, D., Petrac, D., Yang, L., Edeskuty, F., Schuch, A., and Williamson, K. (1978), The behavior of superfluid helium in zero gravity, Proc. 7th Int. Cryogenic Engineering Conf., Surrey, England, Science and Technology Press.Google Scholar
Mathiessen, J. (1976), Sloshing loads due to random pitch motion, Norwegian Maritime Research 4(3), Det. Norske Veritas.Google Scholar
Mathiessen, L. (1868), Akustische versuche, die klieinsten transversalivellen der flussigkeiten betreffend, Annalen der Physik 134, 107–117.CrossRefGoogle Scholar
Mathiessen, L. (1870), Uber die transversal-schwingungen tonender tropharer und elastisher flus-sigkeiten, Annalen der Physik 141, 375–393.Google Scholar
Mathieu, E. (1868), Memoire sur le movement vibratoire d'une membrane de forme elliptique, J. Math. Pures Appli. (J Liouville) 13, 137–203.Google Scholar
Matsuura F., Matsubara Y., Sawada T., and Tanahashi T. (1995), Surface behaviors of two-layers liquid sloshing under non-uniform magnetic field, Advanced Computational and Design Techniques in Applied Electronic Systems, Han, S. Y., ed., Amsterdam, Elsevier Sciences, 517–520.Google Scholar
Matsuura, Y., Matsumoto, K., Mizuuchi, M., Arima, K., Jouuchi, H., and Hayashi, S. (1986), On a mean to reduce excited-vibration with the sloshing in a tank, J. Soc. Naval. Archit. Japan 160, 424–432.CrossRefGoogle Scholar
Matsuzaki, Y. and Fung, Y. C. (1977), Unsteady fluid dynamic forces on a simply-supported circular cylinder of finite length conveying a flow, with application to stability analysis, J. Sound Vib. 54, 317–330.CrossRefGoogle Scholar
Matsuzaki, Y. and Kobayashi, S. (1969a), An analytical study of the nonlinear flexural vibration of thin circular cylindrical shells, J. Japan Soc. Aeron. Space Sci. 17, 308–315 (in Japanese).Google Scholar
Matsuzaki, Y. and Kobayashi, S. (1969b), A theoretical and experimental study of the nonlinear flexural vibration of thin circular cylindrical shells with clamped ends, Trans. J. Japan Soc. Aeron. Space Sci. 12, 55–62.Google Scholar
Maulard, J. and Jourdin, A. (1966), Experimenting on liquid behavior at the weightlessness laboratory, Rech. Aero-Spatiale 110, 29–37 (in French).Google Scholar
McCarty J. L., Leonard H. W., and Walton W. C. Jr (1960), Experimental investigation of the natural frequencies of liquids in toroidal tanks, NASA TN D-531.
McCarty J. L. and Stephens D. G. (1960), Investigation of the natural frequencies of fluid in spherical and cylindrical tanks, NASA TN D-252.
McCaughan, F. E. and Bedir, H. (1992), Marangoni convection with a deformable free surface, ASME WAM Symp. on Fluid Mechanics Phenomena in Microgravity, ed. D. A. Siginer and M. M. Weislogel, AMD- 154/FED- 142, 77–84.Google Scholar
McEwan, A. D. (1970), Inertial oscillations in a rotating fluid cylinder, J. Fluid Mech. 40, 603–640.CrossRefGoogle Scholar
McGoldrick, L. F. (1970), On Wilton's ripples: a special case of resonance interactions, J. Fluid Mech. 42, 193–200.CrossRefGoogle Scholar
McIver, P. (1989), Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth, J. Fluid Mech. 201, 243–257.CrossRefGoogle Scholar
McIver, P. and McIver, M. (1993), Sloshing frequencies of longitudinal modes for a liquid contained in a trough, J. Fluid Mech. 252, 525–541.CrossRefGoogle Scholar
McLachlan, N. W. (1947), Theory and Application of Mathieu Functions, New York, Oxford University Press.Google Scholar
McMahon, J. (1894), On the roots of the Bessel and certain related function, Ann. Mathematics 9, 23–30.CrossRefGoogle Scholar
McNeil, W. A. and Lamb, J. P. (1970), Fundamental sloshing frequency for an inclined fluid-filled right circular cylinder, J. Spacecraft Rock. 7(8), 1001–1002.Google Scholar
McRobie, F. A., Popov, A. A., and Thomson, J. M. T. (1999), Autoparametric resonance in cylindrical shells using geometric averaging, J. Sound Vib. 227, 65–84.CrossRefGoogle Scholar
Mei, C. C. and Liu, L. F. (1973), The damping of surface gravity waves in a bounded liquid, J. Fluid Mech. 59(2), 239–256.CrossRefGoogle Scholar
Meirovitch, L. (1970), Methods of Analytical Dynamics, New York, McGraw-Hill.Google Scholar
Meron, E. and Procaccia, I. (1986a), Theory of chaos in surface waves: the reduction from hydrodynamics to few-dimensional dynamics, Phys. Rev. Lett. 56, 1323–1326.CrossRefGoogle Scholar
Meron, E. and Procaccia, I. (1986b), Low-dimensional chaos in surface waves: theoretical analysis of an experiment, Phys. Revs. A 34, 3221–3237.CrossRefGoogle Scholar
Merten K. F. and Stephenson B. H. (1952), Some dynamic effects of fuel motion in simplified model tip tanks on suddenly excited bending oscillations, NACA TN-2789.
Meseguer, J. (1983), The breaking of axisymmetric slender liquid bridges, J. Fluid Mech. 130, 123–152.CrossRefGoogle Scholar
Meseguer, J., Slobozhanin, L. A., and Perales, J. M. (1995), A review on the stability of liquid bridges, Adv. Space Res. 16(7), (7)5–(7)14.CrossRefGoogle Scholar
Meserole, J. S. and Fortini, A. (1987), Slosh dynamics in a toroidal tank, J. Spacecraft 24(6), 523–531.CrossRefGoogle Scholar
Mesquita, G. N., Kane, S., and Gollub, J. P. (1992), Transport by capillary waves: fluctuating Stokes drift, Phys. Revs. A 45, 3700–3705.CrossRefGoogle ScholarPubMed
Mettler E. (1968), Combination resonance in mechanical systems under harmonic excitations, Proc. 4th Int. Conf. Nonlinear Oscillations, Prague, Academia, Publishing House of Czechoslovak Academy of Science, 51–70.
Mieda T., Ishida K., Jitu K., and Chiba T. (1993), An experimental study of viscous damping in sloshing mode of cylindrical tanks, Struct. Mech. in Reactor Techn., 122–131.
Mikelis N. E., Miller J. K., and Taylor K. V. (1984), Sloshing in partially filled tanks and its effect on ship motions: numerical simulations and experimental verification, Proc. Royal Inst. Naval Archit., Spring Meeting.
Mikhlin, S. G. (1964), Variational methods in mathematical physics, 2nd edition, New York, Pergamon Press.Google Scholar
Mikishev, G. N. and Dorozhkin, N. (1961), Experimental investigation of free oscillations of a liquid in tanks, Izv. Akad. Nauk. SSSR Otd. Tekhn. Nauk. Mekh. i Mashinostr. 4, 48–53. (Translated into English by D. D. Kana, SwRI, June 30, 1963).Google Scholar
Mikishev, G. N. and Rabinovich, B. I. (1968), Dynamics of a rigid body with cavities partly filled with fluid, Moscow, Mashinostroeie (in Russian).Google Scholar
Mikishev, G. N., and Rabinovich, B. I. (1971), Dynamics of Thin-Walled Constructions with Compartments Containing a Liquid, Moscow, Mashinostroyeniye.Google Scholar
Miles J. W. (1956), On the sloshing of liquid in a cylindrical tank, Ramo-Wooldridge Corp. Guided Missile Research Div., GM-TR-18.
Miles, J. W. (1958a), On the sloshing of liquid in a flexible tank, J. Appl. Mech. 25(2), 277–283.Google Scholar
Miles, J. W. (1958b), Ring damping of free surface oscillations in a circular tank, J. Appl Mech. 25(2), 274–276.Google Scholar
Miles J. W. (1959a), On the free surface oscillations in a rotating liquid, Space Technol. Lab., GM-TR-0165–00458.
Miles J. W. (1959b), Centrifugal slosh, Space Technol. Lab., Memo. GM-59, 8021, 6–1&602, February.
Miles, J. W. (1959c), Free surface oscillations in a rotating liquid, Phys. Fluids 2(3), 297–305.CrossRefGoogle Scholar
Miles, J. W. (1962a), Stability of forced oscillations of a spherical pendulum, Quart. Appl. Math. 20, 21–32.CrossRefGoogle Scholar
Miles, J. W. (1962b), Note on the damping of free surface oscillations due to draining, J. Fluid Mech. 12(3), 438–440.CrossRefGoogle Scholar
Miles, J. W. (1963), The Cauchy–Poisson problem for a rotating liquid, J. Fluid Mech. 17, 75–88.CrossRefGoogle Scholar
Miles, J. W. (1964), Free-surface oscillations in a slowly rotating liquid, J. Fluid Mech. 18(2), 187–194.CrossRefGoogle Scholar
Miles, J. W. (1967), Surface-wave damping in closed basins, Proc. Royal Soc. (London), A, Math. Phys. 297, 459–475.CrossRefGoogle Scholar
Miles, J. W. (1972), On the eigenvalue problem for fluid sloshing in a half-space, Zeit. Ang. Math. Phys. (ZAMP) 23, 861–869.CrossRefGoogle Scholar
Miles, J. W. (1976a), Nonlinear surface waves in closed basins, J. Fluid Mech. 75, 419–448.CrossRefGoogle Scholar
Miles, J. W. (1976b), On internal resonance of two damped oscillators, Stud. Appl. Math. 55(4), 351–359.CrossRefGoogle Scholar
Miles, J. W. (1984a), Nonlinear Faraday resonance, J. Fluid Mech. 146, 285–302.CrossRefGoogle Scholar
Miles, J. W. (1984b), Internally resonance surface waves in a circular cylinder, J. Fluid Mech. 149, 1–14.CrossRefGoogle Scholar
Miles, J. W. (1984c), Resonant motion of a spherical pendulum, Physica 11(D), 309–323.Google Scholar
Miles, J. W. (1984d), Resonantly forced surface waves in a circular cylinder, J. Fluid Mech. 149, 15–31.CrossRefGoogle Scholar
Miles, J. W. (1984e), Parametrically excited solitary waves, J. Fluid Mech. 148, 451–460.CrossRefGoogle Scholar
Miles, J. W. (1984f), Resonant non-planar motion of a stretched string, J. Acoust. Soc. Amer. 75, 1505–1510.CrossRefGoogle Scholar
Miles J. W. (1984g), Strange attractors in fluid dynamics, Adv. Appl Mech. 24, Hutchinson, J. W. and Wu, T. Y., eds., 189–214, New York, Academic Press.Google Scholar
Miles, J. W. (1985a), Note on a parametrically excited trapped cross-wave, J. Fluid Mech. 151, 391–394.CrossRefGoogle Scholar
Miles, J. W. (1985b), Resonantly forced, nonlinear gravity waves in a shallow rectangular tank, Wave Motion 7(1985), 291–297.CrossRefGoogle Scholar
Miles, J. W. (1988a), Resonance and symmetry breaking for the pendulum, Physica D 31, 252–268.CrossRefGoogle Scholar
Miles, J. W. (1988b), Parametrically excited, standing cross-waves, J. Fluid Mech. 186, 119–127.CrossRefGoogle Scholar
Miles J. W. (1989), The pendulum from Huygens' horologium to symmetry breaking and chaos, Proc. XVII Int. Congress of Theo. Appl. Mech., Grenoble, France, P Germain, M Piau, and D. Caillerie, eds., North Holland, Elsevier Science, 193–215.
Miles, J. W. (1990a), Parametrically excited standing edge waves, J. Fluid Mech. 214, 43–57.CrossRefGoogle Scholar
Miles, J. W. (1990b), Capillary-viscous forcing surface waves, J. Fluid Mech. 219, 635–646.CrossRefGoogle Scholar
Miles, J. W. (1991a), The capillary boundary layer for standing waves, J. Fluid Mech. 222, 197–205.CrossRefGoogle Scholar
Miles, J. W. (1991b), Wave motion in a viscous fluid of variable depth: moving contact-line, J. Fluid Mech. 223, 47–55.CrossRefGoogle Scholar
Miles, J. W. (1992) On surface waves with zero contact angle, J. Fluid Mech. 245, 485–492.CrossRefGoogle Scholar
Miles, J. W. (1993), On Faraday waves, J. Fluid Mech. 248, 571–683.CrossRefGoogle Scholar
Miles, J. W. (1994) Faraday waves: rolls versus squares, J. Fluid Mech. 269, 353–371.CrossRefGoogle Scholar
Miles, J. W. (1996), On forced capillary-gravity waves in a circular cylinder, Wave Motion 23(4), 387–391.CrossRefGoogle Scholar
Miles, J. W. and Ball, F. K. (1963), On free-surface oscillations in a rotating paraboloid, J. Fluid Mech. 17(2), 257–266.CrossRefGoogle Scholar
Miles, J. W. and Becker, J. (1988), Parametrically excited, progressive cross-waves, J. Fluid Mech. 186, 129–146.CrossRefGoogle Scholar
Miles, J. W. and Henderson, D. M. (1990), Parametrically forced surface waves, Ann. Rev. Fluid Mech. 22, 143–165.CrossRefGoogle Scholar
Miles, J. W., and Henderson, D. M. (1998), A note on interior vs boundary layer damping of surface waves in a circular cylinder, J. Fluid Mech. 364, 319–323.CrossRefGoogle Scholar
Miles, J. W. and Troesch, B. A. (1961), Surface oscillations of a rotating liquid, ASME J. Appl Mech. 28, 491–496.CrossRefGoogle Scholar
Miles J. W. and Young D. (1958), Generalized missile dynamics analysis in sloshing, Space Tech. Lab., GM-TR-165–00361, 7 April.
Miles, J. W. and Zhou, Q. P. (1993), Parametric excitation of a tuned spherical pendulum, J. Sound Vib. 164, 237–250.CrossRefGoogle Scholar
Milgram, J. H. (1969), The motion of a fluid in a cylindrical container with a free surface following vertical impact, J. Fluid Mech. 37(3), 435–448.CrossRefGoogle Scholar
Milner, S. T. (1991), Square patterns and secondary instabilities in driven capillary waves, J. Fluid Mech. 225, 81–100.CrossRefGoogle Scholar
Minowa C. (1980), The dynamic analysis for rectangular water tanks, recent advances in lifeline earthquake eng. in Japan, ASME Pressure Vess. Piping Conf., PVP- 43, 135–141.
Minowa, C. (1989), Surface-sloshing behaviors of liquid storage tanks, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 165–171.Google Scholar
Minowa, C. (1994), Sloshing impact of rectangular water tank (water tank damage caused by Kobe earthquake), Trans. JSME C 63(612), 2643–2649.CrossRefGoogle Scholar
Minowa C. and Kiyosumi K. (1997), Sloshing impact analysis of roof damaged water tank in Kobe earthquake, ASME Symp. Adv. Anal. Exper. Comp. Tech. Fluids Struct. Trans. Nat. Hazards, PVP- 355, 271–278.
Minowa, C., Ogawa, N., Harada, I., and Ma, D. C. (1994), Sloshing roof impact tests of a rectangular tank, Sloshing, Fluid–Structure Interaction and Struct. Response Due to Shock and Impact Loads, ASME Pressure Vess. Piping Conf., PVP- 272, 13–21.Google Scholar
Minrosky, N. (1935), Problems of anti-rolling stabilization of ships by the activated tank method, American Society of Naval Engineers (ASNE) 47, 87–119.CrossRefGoogle Scholar
Mitchell R. R. (1968), Stochastic stability of the liquid free surface in vertically excited cylinders, NASA-CR-98009, May.
Mixon J. S. and Catherine J. J. (1964a), Experimental lateral vibration characteristics of a 1/5-scale model of Saturn SA-I with an eight-cable suspension system, NASA TN D-2214.
Mixon J. S., and Catherine J. J. (1964b), Comparison of experimental vibration characteristics obtained from a 1/5-scale model and from a full-scale Saturn SA-I, NASA TN D-2215.
Mixon J. S., Catherine J. J., and Arman A. (1963), Investigation of the lateral vibration characteristics of a 1/5-scale model of Saturn SA-I, NASA TN D-1593.
Mixon J. S. and Herr R. W. (1962), An investigation of the vibration characteristics of pressurized thin walled circular cylinders partially filled with liquid, NASA TR R-145.
Miyata, H. (1986), Finite difference simulation of breaking waves, J. Comput. Phys. 65, 179–214.CrossRefGoogle Scholar
Miyata, H., Inui, T., and Kajitani, H. (1980), Free surface shock waves around ships and their effects on ship resistance, J. Soc. Naval Archit. Japan 147, 1–9.CrossRefGoogle Scholar
Miyata, T., Yamada, H., and Saito, Y. (1988), Suppression of tower-like structures vibration by damping effect of sloshing water contained (in Japanese), Trans. JSCE 34A, 617–626.Google Scholar
Miyata, T., Yamada, H., and Saito, Y. (1989), Feasibility study of the sloshing damper system using rectangular containers (in Japanese), Trans. JSCE 35A, 553–560.Google Scholar
Modi, V. J. and Munchi, R. S. (1998), An efficient liquid sloshing damper for vibration control, J. Fluids Struct. 12, 1055–1071.CrossRefGoogle Scholar
Modi, V. J. and Seto, M. L. (1997), Suppression of flow-induced oscillations using sloshing liquid dampers, J. Wind Eng. Indust. Aerodyn. 67/68, 611–625.CrossRefGoogle Scholar
Modi, V. J. and Seto, M. L. (1998), Passive control of flow-induced oscillations using rectangular nutation dampers, J. Vib. Control 4(4), 381–404.CrossRefGoogle Scholar
Modi, V. J. and Welt, F. (1984), Nutation dampers and suppression of wind induced instabilities, ASME Joint Multidivisional Symp. on Flow-Induced Oscillations 1, 173–187.Google Scholar
Modi V. J. and Welt F. (1987), Vibration control using nutation dampers, Proc. Int. Conf. Flow-Induced Vib., England, 369–376.
Modi, V. J. and Welt, F. (1988), Damping of wind induced oscillation through liquid sloshing, J. Wind Eng. Indust. Aerodyn. 30, 85–94.CrossRefGoogle Scholar
Modi, V. J., Welt, F. and Irani, M. B. (1988), On the suppression of vibrations using nutation dampers, J. Wind Eng. 37, 547–556.Google Scholar
Modi, V. J., Welt, F., and Seto, M. L. (1995), Control of wind-induced instabilities through application of nutation dampers: a brief review, Eng. Structures 17(9), 626–638.CrossRefGoogle Scholar
Moiseev, N. N. (1952a), The motion of a rigid body with cavities partially filled with an ideal liquid, Dokl. Akad. Nauk. SSSR 85(4), 719–722.Google Scholar
Moiseev, N. N. (1952b), On oscillations of a heavy ideal and incompressible liquid in a container, Dokl. Akad. Nauk. SSSR 85(5), 963–966.Google Scholar
Moiseev, N. N. (1952c), Dynamics of a ship having a liquid load, Izv. Akad. Nauk. SSSR Otd. Tekhn. Naud. 7, 27–45.Google Scholar
Moiseev, N. N. (1952d), The problem of small oscillations of an open vessel with a fluid under the action of an elastic force, Ukrainian Mat. Zh. 4, 168–173.Google Scholar
Moiseev, N. N. (1953), The problem of the motion of a rigid body filled with a liquid having a free surface, Matemticheskii Sbornik 47(7), issue 1, Acad. Sci. SSSR, 61–96.Google Scholar
Moiseev, N. N. (1954), Some questions on the theory of oscillations of vessel with a fluid, Inzhenernyi Sbornik 19, 167–170.Google Scholar
Moiseev N. N. (1956), Studies of the motion of a solid body containing fluid masses with free surfaces, Vestnik Acad. Sci. SSSR5.
Moiseev, N. N. (1958), On the theory of nonlinear vibration of a liquid of finite volume, Prikl. Math. Mekh. (PMM) 22, 612–621.Google Scholar
Moiseev, N. N. (1959), On the theory of vibration of elastic bodies with liquid cavities, Prkl. Math. Mekh. 23(5), 862–878.Google Scholar
Moiseev, N. N. (1960), On the theory of elastic oscillations of a fluid filled body, Dokl. Akad. Nauk. SSSR 27(1), 53–56. Also Soviet Physics 4(4), February.Google Scholar
Moiseev, N. N. (1961), On boundary-value problem for linearized Navier–Stokes equations for the case of low viscosity, Zh. Vychisl. Matem. i Matem. Fiz. 1(3).Google Scholar
Moiseev N. N. (1964), Introduction to the theory of oscillations of liquid-containing bodies, Adv. Appl. Mech.8, 233–289, Dryden, H. L. and Karman, Th, eds., New York, Academic Press.Google Scholar
Moiseev, N. N. (1968), Introduction to the Dynamics of Bodies Containing Liquids in the Weightless State, Vychislitelnyi Tsentr. AN SSSR, Moscow (in Russian).Google Scholar
Moiseev, N. N. (1970), Some problems in the hydrodynamics of surface waves, in Advances in Mechanics in USSR over 50 years, 2, Moscow, Nauka, 55–72.Google Scholar
Moiseev, N. N. and Chernousko, F. L. (1965), Problems of oscillations of a liquid subject to surface tension forces, Zh. Vychisl. Mat. Mat. Fiz. 5, 1071–1082.Google Scholar
Moiseev, N. N. and Petrov, A. A. (1965), Numerical Methods of Calculating the Natural Frequencies of Vibrations of a Bounded Volume of Fluid, Moscow, Acad. Sci. USSR Press.Google Scholar
Moiseev, N. N. and Petrov, A. A. (1966), The calculation of free oscillations of a liquid in a motionless container, Adv. Appl. Mech.9, 91–154, NY, Academic Press.Google Scholar
Moiseev N. N. and Rumnyantsev V. V. (1968), Dynamic Stability of Bodies Containing Fluid, Applied Physics and Eng./An. Int. Series, 6, H. N. Abramson, ed., Springer-Verlag.
Molin, B. (2001), On the piston and sloshing modes in moonpools, J. Fluid Mech. 430, 27–50.CrossRefGoogle Scholar
Molin, B., Cointe, R., and Fontaine, E. (1996), On energy arguments applied to slamming force, Proc. 11th Int. Workshop on Water Waves and Floating Bodies, Hamburg, Germany.Google Scholar
Mololkov, L. A. and Krauklis, P. V. (1967), Oscillations of a cylindrical shell filled with a fluid and surrounded by an elastic medium, Prikl. Math. Mekh. (PMM) 31(5), 922–925.CrossRefGoogle Scholar
Momoi, T. A. (1965), A motion of water excited by earthquake, part 1: Rectangular basin (one dimensional), Bull. Earthquake Res. Inst., Tokyo University 43(1), 111–127.Google Scholar
Monti, R. (1990a), On the onset of the oscillatory regimes in Marangoni flows, Acta Astronaut. 15, 557–560.CrossRefGoogle Scholar
Monti R. (1990b), Gravity jitters: Effects on typical fluid science experiments, in Low Gravity Fluid Dynamics and Transport Phenomena, J. N. Koster and R. L. Sani, eds., Progress in Astronautics and Aeronautics130, 275–307.
Monti, R. (2001), Physics of Fluids in Microgravity, London, Taylor & Francis.Google Scholar
Monti, R. and Fortezza, R. (1989), Oscillatory Marangoni flow in a floating zone: design of a Telescience experiment for Texus 23, Proc. 7thEuropean Symp. Materials and Fluid Sci. in Microgravity, 285–289.Google Scholar
Monti R., Fortezza R., and Desiderio G. (1992), Onset of oscillatory Marangoni flow: Scientific results of the experiment performed in Telescience on Texus 23, Final Report of Sounding Rocket Experiments, in Fluid Science and Material Science, ESA SP-1132, 2.
Monti, R. and Savino, R. (1994a), A new approach to the g-level tolerability for fluid and material science experiments, Acta Astron. 37, 313–331.CrossRefGoogle Scholar
Monti, R., and Savino, R. (1994b), Transient developments of thermocapillary, natural and vibrational convection in floating zone, Microgravity Quart. 4(4), 247–258.Google Scholar
Monti, R., and Savino, R. (1994c), Effect of unsteady thermal boundary condition on Marangoni flow in liquid bridges, Microgravity Quart. 4, 163–170.Google Scholar
Monti R. and Savino R. (1995), G-jitter effect in fluid-physics microgravity experimentation, Proc. Int. Congress In Space '95, 16–17 October, Tokyo, 112–175.
Monti R., and Savino R. (1996), Influence of g-jitter on fluid physics experimentation on-board the International Space Station, ESA-SP-385, 215–224.
Monti, R., Savino, R., and Alterio, G. (1997a), Modeling and simulation of g-jitter effects on fluid science experimentation: Impact on the utilization of the ISS, Acta Astron. 40(2–8), 369–381.CrossRefGoogle Scholar
Monti, R., Savino, R., and Lappa, M. (1997b), Oscillatory thermocapillary flows in simulated floating-zones with time-dependent temperature boundary conditions, Acta Astron. 41(12), 863–875.CrossRefGoogle Scholar
Monti R., Savino R., and Lappa M. (1998), Influence of geometrical aspect ratio on the oscillatory Marangoni convection in liquid bridges, 49th IAF Congress, Melbourne, Australia.
Monti, R., Savino, R., and Lappa, M. (2000a), Influence of geometrical aspect ratio on the oscillatory Marangoni convection in liquid bridges, Acta Astron. 47, 10, 753–761.CrossRefGoogle Scholar
Monti, R., Savino, R., and Lappa, M. (2001), On the convective disturbances induced by g-jitter on the space station, Acta Astron. 48(5–12), 603–615.CrossRefGoogle Scholar
Monti, R., Savino, R., Lappa, M., Carotenuto, L., Castagnolo, D., and Fortezza, R. (2000b), Flight results on Marangoni flow instability in liquid bridges, Acta Astron. 47(2–9), 325–334.CrossRefGoogle Scholar
Moody, F. J. and Reynolds, W. C. (1972), Liquid surface motion induced by accelerated and external pressure, ASME J. Basic Eng. 94, 606–612.CrossRefGoogle Scholar
Mooney J., Ryan J., and Walls J. (1964b), Slosh handbook, NSL Tech. Memo. 1, 21 February.
Mooney J., Walls J., and Ryan J. (1964a), Liquid natural frequencies of a tank with partially submerged sector walls, NSL Tech. Memo. 14, 7 April.
Moore, R. E. and Perko, L. M. (1965), Inviscid fluid flow in an accelerating cylindrical container, J. Fluid Mech. 22(2), 305–320.CrossRefGoogle Scholar
Morand J. J. P. (1977), Deux theorems de Congruence relatifs aux Vibrations de Liquides Couples a des structures, Proc. Int. Conf. ESA-CNES, Publ. SP-129, Toulouse.
Morand H. J. P. and Ohayon R. (1975), Internal pressure effects on the vibration of partially filled elastic tanks, Proc. World Cong. Finite Element Methods in Struct. Mech., Bournemouth, TP ONERA 66.
Morand H. J. P. and Ohayon R. (1989), Finite element method applied to the prediction of the vibrations of liquid-propelled launch vehicles, Proc. ASME-PVP Conf. 176, Hawaii.
Morand, H. J. P. and Ohayon, R. (1995), Fluid Structure Interaction: Applied Numerical Methods, New York, John Wiley & Sons.Google Scholar
Morgan, G. W. (1951), A Study of motion in a rotating liquid, Proc. Royal Soc. (London) A 206, 108–130.CrossRefGoogle Scholar
Morison, J. P., O'Brien, M. P., Johnson, J. W., and Schaaf, S. A. (1950), The force exerted by surface waves on a pile, Petroleum Trans. 189, 149–154.Google Scholar
Morris B. T. (1938), A laboratory model study of the behavior of liquid filled cylindrical tanks in earthquakes, Thesis, Stanford University, June.
Morse, P. M. and Feshbach, H. (1953), Methods of Theoretical Physics, New York, McGraw-Hill.Google Scholar
Morse, S. F., Thiessen, D. B., and Marston, P. L. (1996), Capillary bridge modes driven with modulated ultrasonic radiation pressure, Phys. Fluids 8, 3–5.CrossRefGoogle Scholar
Muehlner, K. A., Schatz, M., Petrov, V., McCormic, W. D., Swift, J. B., and Swinney, H. L. (1997), Observation of helical traveling-wave convection in a liquid bridge, Phys. Fluids 9, 1850–1852.CrossRefGoogle Scholar
Muenz, K. and Marcello, J. M. (1964), Technique for measuring amplitudes of small surface waves, Rev. Sci. Instrum. 35(8), 953–957.CrossRefGoogle Scholar
Müller, H. W. (1993), Periodic triangular patterns in the Faraday experiment, Phys. Rev. Lett. 71, 3287–3290.CrossRefGoogle ScholarPubMed
Müller H. W., Friedrich R., and Papathanassiou D. (1998), Theoretical and experimental investigations of the Faraday instability, Evolution Spontaneous Structures in Dissipative Continuous Systems, Buses, F and Müller, S. C., eds., Lecture Notes in Physics, 231–265, Berlin, Springer-Verlag.Google Scholar
Müller, H. W., Wittmer, C., Wagner, C., Albers, J., and Knorr, K. (1997), Analytic stability theory for Faraday waves and the observation of the harmonic surface response, Phys. Rev. Lett. 78, 2357–2360.CrossRefGoogle Scholar
Mundrane, M. R. and Zebib, A. (1994), Oscillatory thermocapillary convection, NASA 2nd Microgravity Fluid Physics Conf., Cleveland, Ohio, 27–32.Google Scholar
Mushtari, Kh. M. and Galimov, K. Z. (1957), The Nonlinear Theory of Elastic Shells, Tatknigoizdat, Kazan (in Russian).Google Scholar
Muto, K., Kasai, Y., and Nakahara, M. (1988), Experimental tests for suppression effects of water restraint plates on sloshing of a water pool, ASME J. Pressure Vess. Tech. 110, 240–246.CrossRefGoogle Scholar
Myshkis, A. D., Babskii, V. G., Kopachevskii, N. D., Slobozhanin, L. A., and Tyuptsov, A. D. (1987), Low-Gravity Fluid Mechanics, New York, Springer-Verlag.CrossRefGoogle Scholar
Myshkis A. D., Babskii V. G., Zhukov M. Y., Kopachevskii N. D., Slobozhanin L. D., and Typsov A. D. (1992), Methods of Solving Fluid Mechanics Problems under Conditions of Weightlessness, Myshkis, A. D., ed., Kiev, Naukova Dumka.Google Scholar
Nachtigall, I., Gebbeken, N., and Urrutia-Galicia, J. L. (2003), On the analysis of vertical circular cylindrical tanks under earthquake excitation at its base, Engrg. Struct. 25, 201–213.CrossRefGoogle Scholar
Nagakura, H. and Kaneko, S. (1995), A study on self-excited sloshing due to the fluid discharge over a flexible weir, ASME Fluid–Structure Interaction and Struct. Mechanics 310, 15–22.Google Scholar
Nagakura, H. and Kaneko, S. (1998a), Self-excited sloshing due to the fluid discharge over a flexible weir (1st report, excitation mechanism of instability in the rectangular model), Trans. JSME C 64(623), 2437–2445 (in Japanese).CrossRefGoogle Scholar
Nagakura, H. and Kaneko, S. (1998b), Self-excited sloshing due to the fluid discharge over a flexible weir (2nd report, excitation mechanism of instability in the cylindrical model), Trans. JSME D 64(623), 2446–2454 (in Japanese).CrossRefGoogle Scholar
Nagakura, H. and Kaneko, S. (1998c), Self-excited sloshing due to the fluid discharge over a flexible weir (3rd report, comparison between experimental and analytical results and discussion on the parameters which effect on the stability of the system), Trans. JSME C 64(624), 2882–2885 (in Japanese).CrossRefGoogle Scholar
Nagakura, H. and Kaneko, S. (2000a), Self-excited sloshing due to the fluid discharge over a flexible cylindrical weir, ASME. J. Pressure Vessel Tech. 122, 33–39.CrossRefGoogle Scholar
Nagakura, H. and Kaneko, S. (2000b), Self-excited sloshing due to the fluid discharge over a flexible plate weir, ASME J. Pressure Vessel Tech. 122, 192–197.CrossRefGoogle Scholar
Nagata, M. (1989), Nonlinear Faraday resonance in a box with a square base, J. Fluid Mech. 209, 265–284.CrossRefGoogle Scholar
Nagata, M. (1991), Behavior of parametrically excited surface waves in square geometry, Eur. J. Mech. B/Fluids 10(2). 61–66.Google Scholar
Nagay, K. and Takeuchi, J. (1984), Vibration of a plate with arbitrary shape in contact with a fluid, J. Acoust Soc. Amer. 74(5), 1511–1518.CrossRefGoogle Scholar
Nakagaki, K., Arima, K., Ueda, T., and Kadou, H. (1990), On natural vibration and damping effect of tuned sloshing damper, JSCE J. Struct Eng. 36A, 591–602.Google Scholar
Nakagawa K. (1955), On the vibration of an elevated water-tank – II, Tech. Rept. Osaka University 5(170), 317–336.
Nakagawa K. (1956), On the vibration of an elevated water-tank – III, Tech. Rept. Osaka University 6(193), 53–62.
Nakayama, T. and Washizu, K. (1980), Nonlinear analysis of liquid motion in a container subjected to forced pitching oscillations, Int. J. Numer. Methods Eng. 15, 1207–1220.CrossRefGoogle Scholar
Nakayama, T. and Washizu, K. (1981), The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems, Int. J. Numer. Methods Eng. 17(11), 1631–1646.CrossRefGoogle Scholar
Napolitano, L. G. (1982), Surface tension and buoyancy driven free convection, Acta Astron. 9, 199–215.CrossRefGoogle Scholar
Narimanov, G. S. (1956), Concerning the motion of a rigid body with a cavity partially filled with a liquid, Prikl. Math. Mekh. (PMM) 20(1), 21–38.Google Scholar
Narimanov, G. S. (1957a), Concerning the motion of a symmetrical gyroscope with cavity partially filled with liquid, Prikl. Math. Mekh. (PMM) 21, 696–700.Google Scholar
Narimanov, G. S. (1957b), Concerning the motion of a container partially filled with a liquid taking into account large motion of the latter, Prikl. Math. Mekh. (PMM), 21(4), 696–700 (Space Tech. Lab. Trans. T-RU-18.).Google Scholar
Narimanov G. S. (1957c), Concerning the vibration of fluids in moving cavities, Izv. Acad. Sci. SSSR, OTN 10.
Narimanov, G. S., Dokuchaev, L. V., and Lukovskii, I. A. (1977), Nonlinear Dynamics of Aircraft with Liquid, Moscow, Mashinostroenie (in Russian).Google Scholar
Nash, W. A., Yu, B. Q., and Kirchhoff, R. H. (1989), Struct. behavior of liquid-elastic solid systems, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 89–94.Google Scholar
Natsiavas, S. (1987), Response and failure of fluid-filled tanks under base excitation, Ph. D. dissertation, Caltech, Pasadena, CA.Google Scholar
Natsiavas, S. (1988), An analytical model for unanchored fluid-filled tanks under base excitation, ASME J. Appl. Mech. 110, 648–653.CrossRefGoogle Scholar
Natsiavas S. (1989), Simplified models for the dynamic response of tall unanchored liquid storage tanks, Sloshing and Fluid Structure Vibration, D. C. Ma, J Tani, Chenss, and Liu WK, eds., ASME Pressure Vess. Piping Conf., PVP- 157, 15–22.
Natsiavas, S. and Babcock, C. D. (1988), Behavior of unanchored fluid-filled tanks subjected to ground excitation, ASME J. Appl. Mech. 55, 654–659.CrossRefGoogle Scholar
Natushkin, V. F. and Rakhimov, I. S. (1964), Oscillation of a cylindrical shell partially filled with a fluid, Aviat. Tekh. 17(3), IAAA 64–28276.Google Scholar
Nayfeh, A. H. (1985), Problems in Perturbation, New York, Wiley Interscience.Google Scholar
Nayfeh, A. H. (1987), Surface waves in closed basins under parametric and internal resonances, Phys. Fluids 30, 2976–2983.CrossRefGoogle Scholar
Nayfeh, A. H. (1993), Methods of Normal Forms, New York, John Wiley and Sons.Google Scholar
Nayfeh, A. H. and Mook, D. (1979), Nonlinear Oscillations, New York, Wiley.Google Scholar
Nayfeh, A. H. and Nayfeh, J. F. (1990), Surface waves in closed basins under principal and autoparametric resonances, Phys. Fluids A 2(9), 1635–1648.CrossRefGoogle Scholar
Nayfeh, A. H. and Raouf, R. A. (1987), Nonlinear oscillations of circular cylindrical shells, Int. J. Solids Struct. 23, 1625–1638.CrossRefGoogle Scholar
Neitzel, G. P. (1994), Control of oscillatory thermocapillary convection in microgravity, NASA 2nd Microgravity Fluid Physics Conf., Cleveland, OH, 21–26.Google Scholar
Nelson E. S. (1991), An experimentation of anticipated g-jitter on space station and its effects on materials process, NASA TM 103775.
Nelson, R. H. Jr (1960), The sloshing of a fluid draining from a flexible tank, Ph.D. thesis, MIT, Cambridge, MA.Google Scholar
Nesterov, A. V. (1982), Parametric excitation of internal waves in a continuously stratified fluid, Izv. Akad. Nauk. SSSR, MZhG 5, 167–169.Google Scholar
Netter G. and Eckhardt K. (1981), Fluid dynamic experiment in a surface tension tank: Phase 1/Phase 2A, Final Report, MBB/ERNO, Rept. No BMFT-FB-W-83–002 (in German).
Neu, J. T. and Good, R. J. (1963), Equilibrium behavior of fluids in containers at zero gravity, AIAA J. 1(4), 814–819.Google Scholar
Nevolin, V. G. (1983), Parametric excitation of oscillations of a fluid flowing out of a container, Izv. Akad. Nauk. SSSR, Mekh. Zhidkosti i Gaza 2, 293–295.Google Scholar
Nevolin V. G. (1985), Parametric excitation of surface waves, J. Eng. Phys. 49, 1482–1494. Translation 1984 from Inzh. Fiz. Zh. 47, 1028–1042.
Newmark, N. M. and Rosenbluetch, E. (1971), Fundamentals of Earthquake Engineering, Englewood Cliffs, Prentice Hall.Google Scholar
Ngan, C. G. and Dussan, E. B. (1982), On the nature of the dynamic contact-angle: an experimental study, J. Fluid Mech. 118, 27–40.CrossRefGoogle Scholar
Nichols, B. D. and Hirt, C. W. (1971), Improved free surface conditions for numerical incompressible flow computations, J. Comput Phys. 8, 434–448.CrossRefGoogle Scholar
Nichols, B. D. and Hirt, C. W. (1975), Method for calculating multi-dimensional transient free surface flow past bodies, Proc.1st Int. Conf. Numerical Ship Hydrodynamics, Gaithersburg, MD.Google Scholar
Nichols B. D., Hirt C. W., and Hotchkiss R. S. (1980), SOLA-VOF: A solution algorithm for transient fluid flow with multiple free boundaries, LA 8355, Los Alamos Scientific Laboratory, Los Alamos, NM.
Nicolás, J. A. (1992), Magnetohydrodynamic stability of cylindrical liquid bridges under a uniform axial magnetic field, Phys. Fluids A 4, 2573–2577.CrossRefGoogle Scholar
Nicolás, J. A. and Vega, J. M. (1996), Weakly nonlinear oscillations of axisymmetric liquid bridges, J. Fluid Mech. 328, 95–128.CrossRefGoogle Scholar
Nicolás, J. A., Rivas, D., and Vega, J. M. (1997), The interaction of thermocapillary convection and low-frequency vibration near-inviscid liquid bridges, Z. Angew. Math. Phys. 48, 389–423.CrossRefGoogle Scholar
Nicolás, J. A., Rivas, D., and Vega, J. M. (1998), On the steady streaming flow due to high-frequency vibration in nearly inviscid liquid bridges, J. Fluid Mech. 354, 147–174.CrossRefGoogle Scholar
Nikitin S. K. (1987), The nonstationary interaction of elastic solids of revolution partially filled with a liquid, Ph. D. dissertation, S. P. Timoshenko Institute of Machanics, National Academy of Sciences of Ukraine, Kiev (in Russian)
Nishino, H. and Mochio, T. (1995), Sloshing analysis of cylindrical shell with rubber-covered surface, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP-314, 43–55.Google Scholar
Niwa, A. (1978), Seismic behavior of tall liquid storage tanks, Rept. EERC 78–04, Earthquake Eng. Res. Center, UCA, Berkeley.Google Scholar
Niwa, A. and Clough, R. W. (1982), Buckling of cylindrical liquid-storage tanks under earthquake excitation, Earthquake Eng. and Struct. Dyn. 10, 107–122.CrossRefGoogle Scholar
Noji, T., Yoshida, H., Tatsumi, E., Kosaka, H., and Haguida, H. (1988), Study on vibration control damper utilizing sloshing of water, J. Wind Eng. 37, 557–566.Google Scholar
Noji, T., Yoshida, H., Tatsumi, E., Kosaka, H., and Haguida, H. (1990), Study of water-sloshing vibration control damper, J. Struct. Const. Eng. AIJ 411, 97–105.Google Scholar
Novozhilov, V. V. (1962), The Theory of Thin Shells, Leningrad, Sudpromgiz (in Russian).Google Scholar
Nowinski, J. (1963), Nonlinear transverse vibrations of orthotropic cylindrical shells, AIAA J. 1, 617–620.CrossRefGoogle Scholar
Nussle R. G., Derdul J. D., and Petrash D. A. (1965), Photographic study of propellant weightlessness, NASA TN D-2572.
Obraztsova, E. I. (1976a), Nonlinear parametric vibrations of a cylindrical shell with a liquid under longitudinal excitation, Izv. Vyssh. Uchebn. Zaved. Aviats. Tekh. 3, 87–93.Google Scholar
Obraztsova E. I. (1976b), The forced nonlinear vibrations of a cylindrical shell with a liquid under longitudinal excitation, Proc. 3rd Symp. on Vibration of Elastic Structures with a Liquid, Moscow, 314–319 (in Russian).
Obraztsova, E. I. and Shklyarchuk, F. N. (1979), Nonlinear parametric vibrations of a cylindrical tank containing a liquid, Izv. Akad. Nauk. SSSR Mekh. Tverd. Tela. 4, 115–126.Google Scholar
Obraztsova, E. I. and Shklyarchuk, F. N. (1980), The nonlinear parametric vibrations of an orthotropic cylindrical tank partially filled with liquid, in The Vibrations of Elastic Structures with a Liquid, Tsentr. Byuro Nauch.-Tekhn. Inform., Voln, Moscow, 216–224 (in Russian).Google Scholar
Ochi, M. K. and Motter, L. E. (1971), A method to estimate the slamming characteristics for ship design, Mar. Technol. 8, 219–232.Google Scholar
Ockendon, J. R. and Ockendon, H. (1973), Resonance surface waves, J. Fluid Mech. 59(2), 397–413.CrossRefGoogle Scholar
Ockendon, J. R. and Ockendon, H. (2001), Nonlinearity in fluid resonances, Meccanica 36(3).CrossRefGoogle Scholar
Ockendon, H., Ockendon, J. R., and Johnson, A. D. (1986), Resonant sloshing in shallow water, J. Fluid Mech. 167, 465–479.CrossRefGoogle Scholar
Ockendon, H., Ockendon, J. R., and Waterhouse, D. D. (1996), Multimode resonances in fluids, J. Fluid Mech. 315, 317–344.CrossRefGoogle Scholar
Ogawa, N., Chiba, T., Nakajima, S., and Ma, D. C. (1996), An experimental study of the sloshing behavior of the worm tank, ASME Pressure Vess. Piping Conf. Fluid–Structure Interaction, PVP-337, 141–146.Google Scholar
Ogawa, N., Chiba, T., Nakajima, S., Shibata, H., and Ma, D. C. (1997), An experimental study of the fluid–structure interaction behavior of the worm tank, ASME Symp. Advances in Analytical, Exp. and Comp. Tech. Fluids, Struct., Transients and Natural Hazards, PVP-355, 237–243.Google Scholar
Ohaba, M., Sawada, T., Saito, S., Sudo, S., and Tanahashi, T. (1998), Axisymmetric interfacial oscillations of a magnetic fluid column, JSME Int. J. B 41(2), 511–523.CrossRefGoogle Scholar
Ohaba, M. and Sudo, S. (1995), Liquid surface behavior of a magnetic liquid in a container subjected to magnetic field and vertical vibration, J. Magnetism Magnetic Materials 149, 38–41.CrossRefGoogle Scholar
Ohaba, M., Sugimoto, T., Sawada, T., Sudo, S., and Tanahashi, T. (1998), Magnetic field effects on axi-symmetrically oscillating magnetic liquid columns, J. Japan Soc. Microgravity Appl. 15, 243–248.Google Scholar
Ohaba, M., Sugimoto, T., Sawada, T., Sudo, S., and Tanahashi, T. (1999), Oscillations of magnetic liquid column subjected to random vibration, J. Magnetism and Magnetic Materials 201, 293–296.CrossRefGoogle Scholar
Ohaba M., Tomonori M., Sawada T., Sudo S., and Tanahashi T. (1998), Axisymmetric oscillation of magnetic liquid columns in a magnetic field, Studies in Appl. Electromagn. Mech. 13, Nonlinear Electromagnetic Systems, 863.
Ohayon R. (1989), Alternative formulations for static and modal analysis of structures containing fluids, Proc. ASME- PVP Conf. 176, Hawaii.
Ohayon, R. and Felippa, C. A. (1990), The effect of wall motion on the governing equations of contained fluids, J. Appl. Mech. 57, 783–785.CrossRefGoogle Scholar
Ohayon, R. and Morand, H. (1995), Mechanical and numerical modeling of a fluid–structure vibration instabilities of liquid propelled launch vehicles, Chaos, Solitons, Fractals 5(9), 1705–1724.CrossRefGoogle Scholar
Ohnishi, M. and Azuma, H. (1992), Computer simulation of oscillatory Marangoni flow, Acta Astron. 26(8–10), 685–696.CrossRefGoogle Scholar
Ohyama, T. and Fuji, K. (1989), A boundary element analysis for two-dimensional nonlinear sloshing problem, JSCE J. Struct. Eng. 35A, 575–584 (in Japanese).Google Scholar
Okamoto, K., Fukaya, M., and Madarame, H. (1993), Self-induced sloshing caused by flow in a tank, ASME PV&P 258, 105–111.Google Scholar
Okamoto, K. and Kawahara, M. (1990), Two-dimensional sloshing analysis by Lagrangian finite element method, Int. J. Num. Methods Fluids 11, 453–477.CrossRefGoogle Scholar
Okamoto, K. and Madarame, H. (1998), Fluid dynamics of free surface in liquid metal fast breeder reactors, Prog. Nuclear Energy 32, 195–207.CrossRefGoogle Scholar
Okamoto, K., Madarame, H., and Hagiwara, T. (1991), Self-induced oscillation of free surface in a tank with circulating flow, Proc. IMech EFlow-Induced Vibration 1991–6, 539–545.Google Scholar
Okamoto, K., Madarame, H., and Hagiwara, T. (1992), Self-induced water level oscillation in a tank with flow pattern transformation, ASME Pressure Vess. Piping Conf., PVP-232, 13–17.Google Scholar
Okamoto K., Saeki S., Madarame H., Saga T., and Kobayashi T. (2000), Analysis on the self-induced sloshing using particle image velocimetry, http://www.egr.msu.edu/∼huhui/paper/2000/2000/okamoto.pdf.
Okazaki, K., Nozaki, Y., Tani, J., and Shimizu, N. (1990), Seismic response analysis of a multi-walled coaxial cylindrical tank under horizontal excitation, Flow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 55–61.Google Scholar
Okazaki, K. and Tani, J. (1991), Seismic response analysis of a multi-walled coaxial cylindrical tank under vertical excitation, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP-223, 223, 9–16.Google Scholar
Okazaki, K., Watanabe, K., and Tani, J. (1995), Experimental study on chaos of a liquid-filled tank under vertical excitation, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP- 314, 99–108.Google Scholar
Okazaki K., Zhu Q., Tani J., and Watanabe K. (1993), Experimental study on chaos of a liquid-filled tank under horizontal excitation, ASME Pressure Vess. Piping Conf., Denver, CO.
Okhotsimski, D. E. (1956), On the motion of a body with cavities partly filled with a liquid, NASA TTF-33, (May, 1960), (NASA translation fromPrikl. Math. Mekh. (PMM) 20(1)).Google Scholar
Okubo, M., Ishibashi, Y., Oshima, S., Katakura, H., and Yamane, R. (1990), Interfacial waves of the magnetic fluid in vertical alternating magnetic fields, J. Magn. Mat. 85, 163–166.CrossRefGoogle Scholar
Olson, L. G. and Bathe, K. J. (1983), A study of displacement-based fluid finite elements for frequencies of fluid and fluid–structure system, Nuc. Engrg. Des. 76, 137–151.CrossRefGoogle Scholar
Olson, M. D. (1965), Some experimental observations on the nonlinear vibration of cylindrical shells, AIAA J. 3, 1775–1777.CrossRefGoogle Scholar
Omura, N., Yamashita, K., and Sawada, T. (1999), Dynamic characteristic of a magnetic fluid column formed by magnetic field, J. Magn. Magnet. Mater. 201, 297.CrossRefGoogle Scholar
O'Neill J. P. (1960), Final report on an experimental investigation of sloshing, Space Tech. Lab. STL/TR-59–000–09960 March.
Or, A. C. (1992), Rotor-pendulum model for the Perigee assist module nutation anomaly, J. Guidance Cont. Dyn. 15(2), 297–303.CrossRefGoogle Scholar
Or, A. C., Challoner, A. D., and Yip, P. P. (1994), Stability of a liquid-filled spinning top: A numerical approach, J. Sound Vib. 175(1), 17–37.CrossRefGoogle Scholar
Ortiz, J. L. and Barhorst, A. A. (1997), Closed-form modeling of fluid–structure interaction with nonlinear sloshing potential flow, AIAA J. 35(9), 1510–1517.CrossRefGoogle Scholar
Ostrach, S. (1982), Low gravity fluid flows, Annual Review Fluid Mechanics 14, 313–345.CrossRefGoogle Scholar
Oser, H. (1958), Experimentelle Untersuchung uber harmonische schwingungen in rotierenden flussigkeiten, Z. Angew. Math. Mech. (ZAMM) 38, 386–391.CrossRefGoogle Scholar
Ostrach, S., Kamotani, Y., and Lai, C. L. (1985), Oscillatory thermocapillary flows, Phys. Chem. Hydro. 6(5/6) 585–599.Google Scholar
Padday J. F. (1969), Theory of surface tension, in Surface and Colloid Science, Matijevic, E., ed., 1, 39–251, New York, Wiley.Google Scholar
Padday, J. F. (1971), The profiles of axially symmetric menisci, Phil. Trans. Royal Soc. London A 269, 265–472.CrossRefGoogle Scholar
Padday, J. F. (1976), Capillary forces and stability in zero gravity environments, Proc. 2nd European Symp. Material Sciences in Space, Frascati, Italy, ESA-SP-114, 443–454.Google Scholar
Paidoussis, M. P. (1998), Fluid–Structure Interactions: Slender Structures and Axial Flow, 1, London, Academic Press.Google Scholar
Paidoussis, M. P., Chan, S. P., and Misra, A. K. (1984), Dynamics and stability of coaxial cylindrical shells containing flowing fluid, J. Sound Vib. 97, 201–235.CrossRefGoogle Scholar
Paidoussis, M. P. and Denise, J. P. (1972), Flutter of thin cylindrical shells conveying fluid, J. Sound Vib. 20, 9–26.CrossRefGoogle Scholar
Paidoussis, M. P., Misra, A. K., and Chan, S. P. (1985), Dynamics and stability of coaxial cylindrical shells conveying viscous fluid, ASME J. Appl. Mech. 52, 389–396.CrossRefGoogle Scholar
Pal, N. C., Bhattacharyya, S. K., and Sinha, P. K. (2003), Nonlinear coupled slosh dynamics of liquid-filled laminated composite containers: a two-dimensional finite element approach, J. Sound Vib. 261, 729–749.CrossRefGoogle Scholar
Palmer, J. H. and Asher, G. W. (1965), Calculation of axi-symmetric longitudinal modes for fluid-elastic-ullage gas system and comparison with model test results, Proc. AIAASyst. Struct. Dyn. Aeroelasticity, 189–193.Google Scholar
Palmer, J. H. and Berge, J. C. (1971), Convective instability in liquid pools heated from below, J. Fluid Mech. 47, 779–787.CrossRefGoogle Scholar
Pantazonpoulos, M. S. (1988), Three-dimensional sloshing of water on decks, Marine Technology 25(4), 253–261.Google Scholar
Pantazonpoulos, M. S. and Adee, B. H. (1987), Three-dimensional shallow water waves in an oscillating tank, Proc. ASCE Conf. Coastal Hydrodynamics, University of Delaware, Newark, DE, 399–412.Google Scholar
Papell S. S. (1965), Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. US Patent 3215572.
Park, J. E. and Rezvani, M. A. (1995), In-tank fluid sloshing impact effects during earthquakes: a preliminary computational simulation, inFluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP- 314, 73–78.Google Scholar
Park, J. H., Koh, H. M., and Kim, J. K. (2000), Seismic isolation of pool-type tanks for the storage of nuclear spent fuel assemblies, Nuclear Engrg. Des. 199, 143–154.CrossRefGoogle Scholar
Park Y. J., Choi J. K., Kim Y. S., and Bae Y. S. (1995), A practical prediction method of sloshing loads in cargo ship tanks on board ships, PRADS'95, Souel, September, 1418–1425.
Parker, S. P. (ed.) (1983), McGraw-Hill Encyclopedia of Physics, New York, McGraw-Hill.Google Scholar
Parks, P. C. (1979), Stability of liquid-filled spinning spheroids via Liapunov's second method, J. Appl Mech. 46, 259–262.CrossRefGoogle Scholar
Parkus, H. (1982), Modes and frequencies of vibrating liquid-filled cylindrical tanks, Int. J. Eng. Sci. 20(2), 319–326.CrossRefGoogle Scholar
Passerone A., Liggieri L., and Ravera F. (2001), Interfacial phenomena, in Physics of Fluids in Microgravity, Monti, R, ed., London, Taylor & Francis, 46–77.Google Scholar
Patel, N. M., Dodge, M. R., Alexander, J. I. D., Slobozhanin, L. A., Taylor, P. L., and Rosenblatt, C. (2002), Stability of connected cylindrical liquid bridges, Phys. Rev. E 65(2), Paper No 026306, 4 pages.CrossRefGoogle ScholarPubMed
Patrom, L. S. (1985), Numerical calculation of equivalent moment of inertia for a fluid in a cylindrical container with partitions, J. Numer. Meth. Fluids 5, 25–42.Google Scholar
Patrom, L. S. (1987), Application of the VOF method to the sloshing of a fluid in a partially filled cylindrical container, J. Numer. Meth. Fluids 7, 535–550.Google Scholar
Pavolvskii, V. S. (2000), The nonlinear vibrations and stability of orthotropic cylindrical liquid-carrying shells under periodic actions, Int. Appl. Mech. 36(10), 1369–1379.CrossRefGoogle Scholar
Pavlovskii, V. S. and Filin, V. G. (1979), Stability of vibrations of a cylindrical shell filled with a liquid under conditions of nonlinear resonances, Prikl. Mekh. 15(8), 709–716.Google Scholar
Pavlovskii, V. S. and Filin, V. G. (1981), The nonlinear resonant vibrations of cylindrical shells with a liquid under transversal loads, 5th seminar on the Dynamics of Elastic and Rigid Bodies Interacting with a Liquid, Izd. Tomsk. University, Tomskogo, 158–163 (in Russian).Google Scholar
Pavlovskii, V. S. and Filin, V. G. (1985), Nonlinear parametric vibrations of liquid-filled cylindrical shells with an initial deflection, Prikl. Mekh. 21(3), 249–258.Google Scholar
Pawell, A. (1997), Free surface waves in a wave tank, Int. Series Num. Math. 124, 311–320, Birkhauser.Google Scholar
Paynter H. L. (1964a), Special zero gravity fluid problems, Rocket Propellant and Pressurization Systems, E Ring, ed., Englewood Cliffs, NJ, Prentice-Hall.
Paynter, H. L. (1964b), Time for a totally wetting liquid to deform from a gravity-dominated to a nulled-gravity equilibrium state, AIAA J. 2(9), 1627–1634.CrossRefGoogle Scholar
Pearson, J. R. (1958), On convection cells induced by surface tension, J. Fluid Mech. 4, 489–500.CrossRefGoogle Scholar
Peek, R. (1986), Analysis of unanchored liquid storage tanks under seismic loads, Ph. D. dissentation, Caltech, Pasadena, CA.Google Scholar
Peek, R. (1988), Analysis of unanchored liquid storage tanks under lateral loads, Earthquake Eng. Struct. Dyn. 16, 1087–1100.CrossRefGoogle Scholar
Peek, R. and Jennings, P. C. (1988), Simplified analysis of unanchored tanks, Earthquake Eng. Struct. Dyn. 16, 1073–1085.CrossRefGoogle Scholar
Peltier, L. J. and Biringen, S. (1993), Time-dependent thermocapillary convection in a rectangular cavity: numerical results for a moderate Prandtl number, J. Fluid Mech. 257, 339–357.CrossRefGoogle Scholar
Pengelley, C. D. (1968), Natural frequency of longitudinal modes of liquid propellant space launch vehicles, J. Spacecraft Rock. 5(12), 1425–1431.CrossRefGoogle Scholar
Penney, W. G. and Price, AT (1952), Finite periodic stationary waves in a perfect liquid, part II, Phil. Trans. Royal Soc. (London) 244, 254–284.CrossRefGoogle Scholar
Perales, J. M. and Meseguer, J. (1992), Theoretical and experimental-study of the vibration of axisymmetrical viscous-liquid bridges, Phys. Fluids. A 4, 1110–1130.CrossRefGoogle Scholar
Perko, L. M. (1969), Large-amplitude motions of a liquid-vapor interface in an accelerating container, J. Fluid Mech. 35(1), 77–96.CrossRefGoogle Scholar
Perlin, M. and Schultz, W. W. (1996), On the boundary conditions at an oscillating contact-line: a physical/ numerical experimental program, Proc. NASA 3rd Microgravity Fluid Physics Conf., Cleveland, OH, 615–620.Google Scholar
Perlin, M. and Schultz, W. W. (2000), Capillary effects on surface waves, Annu. Rev. Fluid Mech. 32, 241–274.CrossRefGoogle Scholar
Peterson L. D. (1987), The nonlinear coupled dynamics of fluids and spacecraft in low gravity, Ph. D. dissentation, Dept. Aeronaut. and Astronaut., MIT, Cambridge, MA, SSL Rep 22–87.
Peterson, L. D., Crawley, E. F., and Hansman, R. J. (1989), Nonlinear fluid slosh coupled to the dynamics of a spacecraft, AIAA J. 27(9), 1230–1240.CrossRefGoogle Scholar
Petrash D. A. and Nelson T. M. (1963), Effect of surface energy on the liqui–vapor interface during weightlessness, NASA TN D-1582.
Petrash D. A., Nussel R. C., and Otto E. W. (1963), Effect of the acceleration disturbances encountered in the MA-7 spacecraft on the liquid–vapor interface in a baffled tank during weighlessness, NASA TN D-2075.
Petrash, D. A. and Otto, E. W. (1962), Studies of the liquid–vapor interface configuration in weighlessness, Amer. Rocket Soc. Space Power Systems Conf., 25–28 September.Google Scholar
Petrash, D. A. and Otto, E. W. (1964), Controlling the liquid–vapor interface under weightlessness, AIAA J. 2(3), 56.Google Scholar
Petrash D. A., Zappa R. F., and Otto E. W. (1962), Experimental study of the effects of weightlessness on the configurations of mercury and alcohol in spherical tanks, NASA TN-D-1197.
Petrenko, M. O. (1969), The natural vibrations of a liquid with a free surface and the elastic bottom of a cylindrical cavity, Soviet Appl. Mech. (Prikl. Mekh.) 5(6), 44–50.Google Scholar
Petrenko, M. O. (1970), The concurrent vibrations of a liquid and the elastic bottom of a cylindrical tank, Proc. 7th All-Union Conf. on The Theory of Shells and Plates, Moscow, Nauka, 474–478 (in Russian).Google Scholar
Petrenko M. O. (1978), Resonance vibrations of the free liquid surface in a tank with an elastic bottom, Proc. 3rd Workshop on the Dynamics of Elastic and Rigid Bodies Interacting with a Liquid, Tomsk, 91–97 (in Russian).
Petrov, A. A. (1961), Oscillations of a fluid in an annular cylindrical vessel with horizontal generators, Zh. Vychislit. Matem. Fiz. 1, 741–746.Google Scholar
Petrov A. A. (1962a), Oscillations of fluids in cylindrical basins with horizontal generators – variational methods in problems of oscillations of a fluid and of a body with a fluid, Vych. Tsenter. Akad. Nauk. SSSR, Moscow, 179–202.
Petrov A. A. (1962b), Approximate solution of the problem of oscillations of a fluid in a cylindrical vessel with horizontal generators – variational methods in problems of oscillations of a fluid and of a body with a fluid, Vych. Tsentr. Akad. Nauk. SSSR, Moscow, 213–230.
Petrov A. A. (1962c), Equations of motion of an airplane carrying tanks with liquids – variational methods in problems of oscillations of a fluid and of a body with a fluid, Vych. Tsentr. Akad. Nauk. SSSR, Moscow, 231–236.
Petrov, A. A. (1963), Approximate methods for calculating the natural vibrations of a fluid in vessels of arbitrary shape and of Zhukovskiy's potentials for these vessels, Zh. Vychisl. Matem. Fiz. 5.Google Scholar
Petrov, V., Schatz, M., Muehlner, K. A., Hook, S. J., McCormic, W. D., Swift, J. B., and Swinney, H. L. (1996), Nonlinear control of remote unstable states in a liquid bridge convection experiment, Phys. Rev. Lett. 77, 3779.CrossRefGoogle Scholar
Pfeiffer, F. (1967a), On the fuel sloshing in rotational symmetric rocket tanks with arbitrary internal boundary, Jahrbuch der Wissenschaftlichen Gesellschaft fur Luft Raumfahrt E V, 408–413 (in German).Google Scholar
Pfeiffer, F. (1967b), Linearized free oscillations of fuel in arbitrary containers, (in German), Zeitschrift fur Flugwissenschaften 16(6), 188–194.Google Scholar
Pfeiffer F. (1977), Problems of contained rotating fluids with respect to aerospace applications, CNESS-ESA Conf. on Attitude Control of Space Vehicles, Toulouse, ESA SP-129, 51–62.
Pih, H. and Wu, C. G. (1969), Experimental studies of vibrations of axially excited circular shells containing cylindrical shells containing fluid, ASME J. Eng. Industry 91(4), 1119–1127.CrossRefGoogle Scholar
Pilipchuk, V. N. and Ibrahim, R. A. (1997), The dynamics of a nonlinear system simulating liquid sloshing impact in moving structures, J. Sound Vib. 205(5), 593–615.CrossRefGoogle Scholar
Pilipchuk, V. N. and Ibrahim, R. A. (1999), Application of the Lie group transformations to nonlinear dynamical systems, J. Appl Mech. 66(2), 439–447.CrossRefGoogle Scholar
Pilipchuk, V. N. and Ibrahim, R. I. (2000), Dynamics of a two-pendulum model with impact interaction and an elastic support, Nonlinear Dyn. 21(3), 221–247.CrossRefGoogle Scholar
Pinson L. D. (1963), Propellant-dome impact analysis, NASA Internal Memo., November.
Pinson L. D. (1964), Longitudinal spring constants for liquid propellant tanks with ellipsoidal tanks, NASA TN D-2220, November.
Pinson L. D. and Leonard H. W. (1969), Longitudinal vibration characteristics of 1/10-scale Apollo/Saturn V replica model, NASA TN D-5159, April.
Plank, W. S.Beardsley, G. F., and Burt, W. V. (1972), An exprimental evaluation of a passive anti-roll tank system, Ocean Engrg. 2(3), 131–139.CrossRefGoogle Scholar
Plateau J. A. F (1863), Experimental and theoretical researches on the figures of equilibrium of a liquid mass withdrawn from the action of gravity, Smithsonian Inst. Ann. Rep., 207–285; also (1864), 286–369; (1865), 411–435, (1866), 255–289, Washington, Government Printing Office.
Platt G. K. (1967), Space vehicle low gravity fluid mechanics problems and the feasibility of their experimental investigation, NASA TM X-53589.
Pocha J. J., (ed) (1986), An Experimental Investigation of Spacecraft Sloshing, ESA Proc. Intl. Symp. Spacecraft Flight Dynamics, ESA SP-255, 307–314.
Podesta G. (1956), Acceleration and differential feed-back methods for controlling the instability due to propellant sloshing in missiles, Convair, Report No ZU–7–070–TN, 15 November.
Poincaré, H. (1885), Sur l'équilibra d'une masse fluide animée d'un mouvement de rotation, Acta Math. 7, 259.CrossRefGoogle Scholar
Poincaré, H. (1910), Sur la precession des corps deformable, Bull. Astronomique 27, 321–356.Google Scholar
Poisson, S. D. (1828–9), Sur les petites oscillations de l'eau contenue dans un cylindre, Ann. De Gergonne XIX, 2225.Google Scholar
Pomeau, Y. and Manneville, P. (1980), Intermittent transition to turbulence in dissipative dynamical systems, Com. Math. and Phys. 74, 189–197.CrossRefGoogle Scholar
Ponder C. A., Blount D. H., and Fritz C. G. (1964), Bubble coalescence in a longitudinal vibrated liquid column, part 1, NASA TM X-53180, December.
Popov, A. A. (2003), Parametric resonance in cylindrical shells: A case study in the nonlinear vibration of structural shells, Engrg. Struct. 25, 789–799.CrossRefGoogle Scholar
Popov, A. A., Thomson, J. M. T., and McRobie, F. A. (2001), Chaotic energy exchange through autoparametric resonance in cylindrical shells, J. Sound Vib. 248(3), 395–411.CrossRefGoogle Scholar
Popov, G. V., Sankar, S., and Sankar, T. S. (1992), Liquid sloshing in rectangular road containers, Computers and Fluids 21(4), 551–569.CrossRefGoogle Scholar
Popov, G., Sankar, S., and Sankar, T. S. (1993a), Dynamics of liquid sloshing in baffled and compartmented road containers, J. Fluid Struct. 7, 803–821.CrossRefGoogle Scholar
Popov, G., Vatistas, G. H., Sankar, S., and Sankar, T. S. (1993b), Numerical simulation of viscous liquid sloshing in arbitrary shaped reservoirs, AIAA J. 31(1), 10–11.CrossRefGoogle Scholar
Popplewell N., Lu M. L., and Shah A. H. (2002), Behavior of a nutation damper undergoing a coupled horizontal/rotational motion, Proc. ASME WAM IMECE2002–32861.
Porter, A. W. (1933), The calculation of surface tension from experiment, Phil. Magazine 15, 163–169.Google Scholar
Pozhalostin, A. A. (1967), Free oscillations of a fluid in a rigid circular cylindrical container with an elastic shallow, spherical shell bottom, IZV Vys Uchebnykh Zavedenii, Aviatsion Tekh. 2, 21–27 (in Russian).Google Scholar
Pozharitskiy, G. K. (1962), The problem of a minimum in the problem of stability of a rigid body partially filled with a fluid, Prikl. Math. Mekh. (PMM) 26(4), 895–913.CrossRefGoogle Scholar
Pozharitskiy, G. K. (1964), On the effect of viscosity on the stability of equilibrium and of steady-state rotations of a rigid body with a cavity partially filled with a viscous fluid, Prikl. Math. Mekh. (PMM) 28(1), 67–76.CrossRefGoogle Scholar
Pozharitskiy, G. K. and Rumyantsev, V. V. (1963), The problem of the minimum in the problem of stability of motion of a rigid body with a fluid-filled cavity, Prikl. Math. Mekh. (PMM) 27(1), 18–32.CrossRefGoogle Scholar
Poznyak E. (1994), Paradoxes and analogies in the problems of dynamics for rotating containers partially filled with liquid, unpublished review article.
Preisser, F., Schwabe, D., and Scharmann, A. (1983), Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface, J. Fluid Mech. 126, 545–567.CrossRefGoogle Scholar
Prokopalo, E. F., Gruzhin, V. I., and Shchukurov Akh, . (1980), Study of the parametric vibrations of glass-fiber-reinforced plastic shells filled with a liquid, in The Vibrations of Elastic Structures with a Liquid, Tsentr Byuro Nauch-Tekhn Inform “Volna”, Moscow, 243–247 (in Russian).Google Scholar
Pshenichnov G. I. (1969), Application of asymptotic method of integration to problems of free oscillations of a thin elastic shell of revolution partly filled with fluid, Tr VII A 11 Union Conf. on the Theory of Shells and Plates Dnepropetrovsk.
Pshenichnov, G. I. (1971), Exact solutions of some problems concerned with oscillations of fluid contained in an elastic momentless shell, Prikl. Math. Mekh. (PMM) 35(4), 689–694.CrossRefGoogle Scholar
Pshenichnov, G. I. (1972), Free oscillations of liquid in rigid vessels, Prikl. Math. Mekh. (PMM) 36(2), 229–235.CrossRefGoogle Scholar
Puchka, G. N. and Kholopova, V. V. (1996), Nonlinear surface waves in liquid within a cylindrical vessel, Int. Appl. Mech. 32(4), 307–309.CrossRefGoogle Scholar
Pursi, A. and Malik, S. K. (1995), Parametrically excited nonlinear surface waves and chaos in magnetic fluids, J. Magn. Magnet. Mater. 149, 132–136.Google Scholar
Qinque, W. and Lidu, H. (1992), Eigen-problem of liquid-container coupling, Comput. Struct. 44(1/2), 353–355.CrossRefGoogle Scholar
Qiu, S., and Scherer, R. J. (1994), Active control of liquid sloshing in tank under seismic excitation, 1st World Conf. Structural Control1, WP1–108–113, Los Angeles, CA.Google Scholar
Raake, D. and Siekmann, J. (1991), Axially excited natural frequencies in a rapidly rotating cylindrical container, Z. Flugwiss. Weltraumforsch. 15, 289–296.Google Scholar
Rabinovich, B. I. (1956), Concerning the equations of perturbed motion of a solid body with a cylindrical cavity partially filled with a fluid, PMM 20(1), 39–50.Google Scholar
Rabinovich B. I. (1959), Concerning the equations of elastic vibrations of thin-walled, fluid-filled rods with free fluid surfaces, Izvestiya Acad. Sci. SSSR, OTN, Mekhanika I Mashinostroyniye, No. 3; English transl by Space Technol. Lab., STL-T-RV-19.
Rabinovich B. I. (1964), Concerning the equations of transverse vibrations of fluid-filled shells, Izvestiya Acad. Sci. SSSR, series Mekhanika I Mashinostroyeniye, No. 1, 166–169, English translation NASA TT-F-216.
Rabinovich, B. I. (1980), Oscillation of structures with fluid-filled cavities, Handbook Vibration in Engineering 3, 61–89.Google Scholar
Raco, R. J. (1968), Stability of a liquid in a longitudinal time varying electric field, AIAA J. 6, 979–980.CrossRefGoogle Scholar
Radwan, H. R. and Genin, J. (1975), Nonlinear modal equations for thin elastic shells, Int. J. Nonlin. Mech. 10, 15–29.CrossRefGoogle Scholar
Radwan, H. R., and Genin, J. (1976), Nonlinear vibrations of thin cylinders, ASME J. Appl. Mech. 43, 370–372.CrossRefGoogle Scholar
Rajappa, N. R. (1970a), A new approach to the study of standing surface waves of finite amplitude, Acta Mech. (91/2), 130–136.CrossRefGoogle Scholar
Rajappa, N. R. (1970b), On the instability of fluid surfaces when accelerated perpendicular to their planes, Acta Mech. 10, 193–205.CrossRefGoogle Scholar
Raju, K. K. and Rao, V. G. (1976), Large amplitude asymmetric vibrations of some thin shells of revolution, J. Sound Vib. 44, 327–333.CrossRefGoogle Scholar
Rakesh G. (1997), Tuned liquid column dampers for vibration control of tall structures, M. Eng. thesis, National University of Singapore.
Rakheja, S., Sankar, S., and Ranganathan, R. (1988), Roll plane analysis of articulated tank vehicles during steady turning, Vehicle Sys. Dyn. 17(1–2), 81–104.CrossRefGoogle Scholar
Rammerstofer F. G., Scharf K., and Fischer F. D. (1989), On problems in the use of earthquake response spectrum methods for fluid–structure–soil interaction, Sloshing and Fluid Structure Vibration, D. C. Ma, et al., editors., ASME Pressure Vess. Piping Conf., PVP-157, 61–68.
Rammerstofer, F. G., Scharf, K., and Fischer, F. D. (1990), Storage tanks under earthquake loading, ASME Appl. Mech. Rev. 43(11), 261–283.CrossRefGoogle Scholar
Ramos, J., Incecik, A., and Guedes Soares, C. (2000), Experimental study of slam-induced stresses in a containership, Marine Struct. 13, 25–51.CrossRefGoogle Scholar
Rand, R. and DiMaggio, F. (1967), Vibrations of fluid-filled spherical and spheroidal shells, J. Acoustical Soc. Amer. 42(6), 1278–1286.CrossRefGoogle Scholar
Ranganathan R., Rakheja S., and Sankar S. (1989a), Dynamic analysis of a b-train carrying liquid cargo – part I: Response to steady steer inputs, ASME Proc. WAM Advan. Automot. Technol., DSC-13, 1–18.
Ranganathan, R., Rakheja, S., and Sankar, S. (1989b), Dynamic analysis of a b-train carrying liquid cargo – part II: Response to transient steer inputs, ASME Proc. WAM. Advan. Automot. Technol., DSC-13, 19–30.Google Scholar
Rankine, W. J. M. (1865), Supplement to a paper on streamlines, Phil. Mag. 29(4), 25–28.CrossRefGoogle Scholar
Ransleben, G. E. Jr and Abramson, H. N. (1960), Discussion of the Berlot paper: production of rotation in a confined liquid through translation motion of the boundaries, ASME J. Appl. Mech. 27(2), 265–270.Google Scholar
Rapoport I. M. (1968), Dynamics of Elastic Containers Partially Filled with Liquids, NY, Springer-Verlag, Applied Physics and Eng./an Int. Series 5, H. N. Abramson, ed., translation by Technical S. Inc.
Rashed M. I. I. (1965), Inertia and damping effects due to the flow in a cylindrical vessel filled with fluid and subjected to a simple harmonic oscillatory motion, Tech. Rept., Cairo University, Dept. Aeronaut. Eng., Giza.
Rattayya J. V. (1965), Sloshing of liquids in axi-symmetric ellipsoidal tanks, AIAA Paper 65–114, AIAA 2nd Aerospace Science Meeting, New York.
Rayleigh, J. W. S. (Lord) (1879), On the capillarity phenomena of jets, Proc. Royal Soc. XXIX, 71–97; On instability of jets, Proc. London Math. Soc. X, 4–13.CrossRefGoogle Scholar
Rayleigh, J. W. S. (Lord) (1883a), On the crispations of fluid resting upon a vibrating support, Phil. Mag. 15, 229–235.CrossRefGoogle Scholar
Rayleigh, J. W. S. (Lord) (1883b), On maintained vibrations, Phil. Mag. 15, 229–235 (Scientific Papers, 2, 188–193).CrossRefGoogle Scholar
Rayleigh, J. W. S. (Lord) (1887), On the maintenance of vibrations by forces of double frequency and on the propagation of waves through a medium endowed with a periodic structure, Phil. Mag. 24, 145–159.CrossRefGoogle Scholar
Rayleigh J. W. S. (Lord) (1892), On the instability of cylindrical surfaces, Collected papers, 594, 3, Cambridge, England, Cambridge University Press.
Rayleigh, J. W. S. (Lord) (1916), On the convection currents in a horizontal layer of fluid when the higher temperature is on the under side, Phil. Mag. 32, 529–546.CrossRefGoogle Scholar
Rayleigh, J. W. S. (Lord) (1945), The Theory of Sound, New York, Dover.Google Scholar
Reed, D., Yu, J., Yeh, H., and Gardarsson, S. (1998a), Investigation of tuned liquid dampers under large amplitude of excitation, ASCE J. Eng. Mech. 124, 405–413.CrossRefGoogle Scholar
Reed, D., Yeh, H., Yu, J., and Gardarsson, S. (1998b), Tuned liquid dampers under large amplitude excitation, J. Wind Eng. Indust. Aerodyn. 74–76, 923–930.CrossRefGoogle Scholar
Reed F. E. (1961), Dynamic vibration absorbers and auxiliary mass dampers, Chapter 6, Shock and Vibration Handbook, Harris, CM, and Crede, C. E., eds., 1, New York, McGraw-Hill.Google Scholar
Reese J. R. (1955), Some effects of fluid on pylon-mounted tanks on flutter, NACA RML 55F10.
Reese J. R. and Sewal J. L. (1955), Effective moments of inertia of a fluid in offset and swept wing tanks undergoing pitching oscillations, NACA TN-3353.
Rehbinder, G. and Apazidis, N. (1995), Motion of a torsion pendulum immersed in a linear viscous liquid, J. Sound Vib. 184(5), 745–758.CrossRefGoogle Scholar
Reifel M. D. (1964), Vibrations of pressurized thin elastic circular cylinders filled with liquid subjected to translational excitations, Report ERR AN-653, General Dynamics/Astronautics.
Reismann, H. (1958), Liquid propellant inertia and damping due to airframe roll, Amer. Rocket Soc. J. 28(11), 746–747.Google Scholar
Reissner E. (1955), Nonlinear effects in vibrations of cylindrical shells, Ramo-Wooldridge Co. Rept. AM5–6.
Reissner E. (1956), Notes on forced and free vibrations of pressurized cylindrical shells which contains a heavy liquid with a free surface, Space Technol. Lab., AM 6–15, GM TR87, Los Angeles.
Reissner E. (1957), Complementary energy procedure for vibrations of liquid filled circular cylindrical tanks, Space Technol. Lab., GM TR, EM7–9.
Reynolds, J. M. (1965), Stability of an electrostatically supported fluid column, Phys. Fluids 8(1), 161–170.CrossRefGoogle Scholar
Riecke, H. (1990), Stable wave number kinks in parametrically excited standing waves, Europhys. Lett. 11(3), 213–218.CrossRefGoogle Scholar
Riley, J. D. and Trembath, N. W. (1961), Sloshing of liquid in spherical tanks, J. Aer./Space Sci. 28(3), 245–246.CrossRefGoogle Scholar
Ring, E. (1964), Propellant sloshing, in Rocket Propellant and Pressurization System, Englewood Cliffs, NJ, Prentice Hall.Google Scholar
Roberts, J. B. and Spanos, P. D. (1990), Random Vibration and Statistical Linearization, New York, Wiley.Google Scholar
Roberts J. R., Basurto E. R., and Chen P. Y. (1966), Slosh design handbook, NASA CR-406.
Rocca, M. L., Mele, P., and Armenio, V. (1997), Variational approach to the problem of sloshing in a moving container, J. Theoret. Appl. Fluid Mech. 1(4), 280–310.Google Scholar
Rocca, M. L., Sciortino, G., and Boniforti, M. A. (2000), A fully nonlinear model for sloshing in a rotating container, Fluid Dyn. Res. 27(1), 23–52.CrossRefGoogle Scholar
Rocca, M. L., Sciortino, G., and Boniforti, M. A. (2002), Interfacial gravity waves in a two-fluid system, Fluid Dyn. Res. 30(1), 31–66.CrossRefGoogle Scholar
Rogge T. R. and Weiss H. J. (1965), An approximate nonlinear analysis of the stability of sloshing modes under translational and rotational excitation, NASA CR-220.
Rosenblat, S. (1959), Torsional oscillations of a plane in a viscous fluid, J. Fluid Mech. 6(2), 206–220.CrossRefGoogle Scholar
Rosenhead, L. (1963), Laminar Boundary Layer, Oxford, Clarendon Press.Google Scholar
Rosensweig, R. E. (1987), Magnetic fluids, Annu. Rev. Fluid Mech. 19, 417–463.CrossRefGoogle Scholar
Ross G. O. (1994), Helium II. slosh in low gravity, 2nd Microgravity Fluid Physics Conf., NASA Lewis Research Center, Cleveland, 213–218.
Rudenko, T. V. (2002), The stability of the steady motion of a gyrostat with a liquid in a cavity, J. Appl. Mat. Mekh. 66(2), 171–178.CrossRefGoogle Scholar
Rumold, W. (1998), Modeling and simulation of sloshing liquids, Z. Angew. Math. Mech. (ZAMM) 78, S691–S692.Google Scholar
Rumold, W. (2001), Modeling and simulation of vehicles carrying liquid cargo, Multibody System Dynamics 5, 375–386.CrossRefGoogle Scholar
Rumyantsev, V. V. (1954), Equations of motion of a rigid body having cavities partially filled with a liquid, Prikl. Math. Mekh. (PMM) 18(6), 719–728.Google Scholar
Rumyantsev, V. V. (1955), On equations of motion of a rigid body with a cavity filled with liquid, Prikl. Math. Mekh. (PMM) 19(1), 1–12.Google Scholar
Rumyantsev, V. V. (1959a), The stability of Maclaurin ellipsoids of a rotating liquid, Prikl. Math. Mekh. (PMM) 23, 494–504.Google Scholar
Rumyantsev, V. V. (1959b), On the stability of rotational motion of a rigid body filled with a fluid, Prikl. Math. Mekh. (PMM) 23(6), 1512–1524.CrossRefGoogle Scholar
Rumyantsev, V. V. (1960), On the stability of motion of a top with a cavity filled with a viscous fluid, Prikl. Math. Mekh. (PMM) 24(4), 903–912.CrossRefGoogle Scholar
Rumyantsev, V. V. (1962), On the stability of steady motions of rigid bodies with fluid-filled cavities, Prikl. Math. Mekh. (PMM) 26(6).Google Scholar
Rumyantsev, V. V. (1964a), On the motion of a rigid body containing cavities with a viscous fluid, Prikl. Math. Mekh. (PMM) 28(6), 1353–1358.CrossRefGoogle Scholar
Rumyantsev, V. V. (1964b), Lyapunov method in the study of stability of motion of rigid bodies with fluid-filled cavities, Adv. Appl. Math.8, 183–232, HL Dryden and Th von Karman, eds., New York, Academic Press.Google Scholar
Rumyantsev, V. V. (1964c), On the stability of motion of a solid with a liquid having surface tension, Prikl. Math. Mekh. (PMM) 28, 746–751.Google Scholar
Rumyantsev, V. V. (1966), On the motion of rigid bodies with fluid-filled cavities, Prikl. Math. Mekh. (PMM) 30(1), 57–77.CrossRefGoogle Scholar
Rumyantsev, V. V. (1968), On the motion and stability of a solid with a rotor and liquids having surface tension, in Introduction to the Dynamics of a Body Containing a Liquid under Zero-Gravity Conditions, Vychisl. Tsentr. Akad. Nauk. SSSR, Moscow, 259–268 (in Russian).Google Scholar
Rumyantsev, V. V. (1969a), Collision with obstacle of a body containing a viscous fluid, Prikl. Math. Mekh. (PMM) 33(5), 876–881.CrossRefGoogle Scholar
Rumyantsev, V. V. (1969b), On the motion and stability of an elastic body with a cavity containing a fluid, Prikl. Math. Mekh. (PMM) 33(6), 927–937.CrossRefGoogle Scholar
Rumyantsev, V. V., Rubanovsky, V. N., and Stepanov, S. Y. (1979) Oscillation and stability of rigid bodies with cavities containing a fluid, Handbook Vibration in Engineering, 2, 280–305.Google Scholar
Rundgren L. (1958), Water wave forces, A theoretical and laboratory study, Ph.D. thesis, Royal Inst. Tech., Stockholm.
Rupp, R., Muller, G., and Neumann, G. (1989), Three-dimensional time-dependent modeling of the Marangoni convection in zone melting configuration for GaAs, J. Crystal Growth 97, 34.CrossRefGoogle Scholar
Russell S. (1844), Report on waves, Brit. Ass. Rept.
Ryan R. S. and Buchanan H. (1966), An evaluation of the low-g propellant behavior of a space vehicle during waiting orbit, NASA TM X-53476.
Rybicki, A. and Florian, J. M. (1987), Thermocapillary effects in liquid bridges, I: Thermocapillary convection, Phys. Fluids 30, 1956–1965.CrossRefGoogle Scholar
Saad, M. A. and Oliver, D. A. (1964), Linearized time-dependent free-surface flow in rectangular and circular tanks, Heat Transfer and Fluid Mechanics Institute, California, Stanford University Press.Google Scholar
Saeki, S., Madarame, H., and Okamoto, K. (2001), Self-induced sloshing excited by a horizontally injected plane jet, J. Fluid Mech. 448, 81–114.CrossRefGoogle Scholar
Saga, T., Hu, H., Kobayashi, T., Murata, S., Okamoto, K., and Nishio, S. (2000b), A comparative study of the PIV and LDV measurement on a self-induced sloshing flow, J. Visualization 3(2), 145–156.CrossRefGoogle Scholar
Saga, T., Hu, H., Kobayashi, T., Segawa, S., and Taniguchi, N. (2000a), Research on the self-induced sloshing phenomena in a rectangular tank, 9th Int. Symp. Flow Visualization, Paper number 259, 1–10.Google Scholar
Saito, S. and Someya, T. (1980), Self-excited vibration of a rotating hollow shaft partially filled with liquid, ASME J. Mech. Des. 102, 185–192.CrossRefGoogle Scholar
Sakai, F. (1985), The state-of-the-art and future subjects on seismic design and study, Trans. JSCE 362(I-4), 1–6 (in Japanese).Google Scholar
Sakai, F. and Isoe, A. (1989), Computation and experiment on base-uplift behavior of cylindrical oil storage tanks during earthquakes, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP-157, 9–14.Google Scholar
Sakai, F., Isoe, A., Hirakawa, H., and Mentani, Y. (1989), Large scale static tilt tests of seismic behavior of flat-bottomed cylindrical liquid storage tanks, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 69–74.Google Scholar
Sakai, F., Takaeda, S., and Tamaki, T. (1989), Tuned liquid column damper, new type device for suppression of building vibrations, Proc. Int. Conf. Highrise Buildings, Nanjing, China, 926–931.Google Scholar
Sakai, F., Takaeda, S., and Tamaki, T. (1991a), Tuned liquid column dampers (TLCD) for cable-stayed bridges, Proc. Specialty Conf. Innovation in Cable-Stayed Bridges, Fukuoka, Japan, 197–205.Google Scholar
Sakai, F., Takaeda, S., and Tamaki, T. (1991b), Experimental study on tuned liquid column dampers (TLCD), Proc. Colloq. Structural Control, JSCE, Tokyo, 189–196 (in Japanese).Google Scholar
Sakata, M., Kimura, K., and Utsumi, M. (1983), Non-stationary random responses of nonlinear liquid motion in a circular cylindrical tank, Trans. JSME C 49(442), 963–970 (in Japanese).CrossRefGoogle Scholar
Sakata, M., Kimura, K., and Utsumi, M. (1984a), Non-stationary response of nonlinear liquid motion in a cylindrical tank subjected to random base excitation, J. Sound Vib. 94(3), 351–363.CrossRefGoogle Scholar
Sakata, M., Kimura, K., and Utsumi, M. (1984b), Non-stationary random vibration of an elastic circular cylindrical liquid storage tank to a simulated earthquake excitation, Trans. JSME C 50(458), 2004–2012 (in Japanese).CrossRefGoogle Scholar
Sakata, M., Kimura, K., and Utsumi, M. (1991), Non-stationary random responses of an elastic circular cylindrical liquid storage container to a simulated earthquake excitation, Trans. 11th Int. Conf. Struct. Mech. Reactor Technol. K, K35/6, 571–576.Google Scholar
Sakata, M., Kimura, K., Utsumi, M., and Okada, T. (1986), The coupled oscillations of a liquid and the elastic side walls of a rectangular tank, Trans. JSME C 52(479), 1915–1921 (in Japanese).CrossRefGoogle Scholar
Saleme, E. and Liber, T. (1965), Breathing vibrations of pressurized partially filled tanks, AIAA J. 3(1), 132–136.Google Scholar
Salzman J. A., Coney T. A., and Masica W. J. (1968), Effects of liquid depth on lateral sloshing under weightless conditions, NASA TN D-4458.
Salzman J. A., Labus T. L., and Masica W. J. (1967), An experimental investigation of the frequency and viscous damping of liquids during weightlessness, NASA TN D-4132.
Salzman J. A. and Masica W. J. (1967), Experimental investigation of liquid propellant reorientation, NASA TN D-3789.
Salzman J. A. and Masica W. J. (1969), An experimental investigation of the frequency and damping of liquids during weightlessness, NASA TN D-5058.
Salzman J. A., Masica W. J., and Lacovie R. E. (1973), Low gravity reorientation in a scale-model Centaur liquid hydrogen tank, NASA TN-7168.
Samali B., Kwok K. C. S., and Tapner D. (1992a), Vibration control of structures by tuned liquid column dampers, Proc. IABSE Congress, New Delhi, India, 461–466.
Samali, B., Kwok, K. C. S, Parsanejad, S., and Xu, Y. L. (1992c), Vibration control of buildings by tuned liquid column dampers, Proc. 2nd Int. Conf. Highrise Buildings, Nanjing, China, 425–430.Google Scholar
Samali, B., Kwok, K. C. S., Young, G., and Xu, Y. L. (1992b), Effectiveness of optimized tuned liquid column dampers in controlling vibration of tall buildings subject to strong ground motions, Proc. 2nd Int. Conf. Highrise Buildings, Nanjing, China, 402–407.Google Scholar
Samali, B., Lee, P., and Kwok, K. C. S. (1992d), Wind-induced vibration control of tall buildings with tuned liquid column dampers, 1st Int. Conf. Motion and Vibration Control, Yokohama, Japan, 182–187.Google Scholar
Sames, P. C., Marcouly, D., and Schellin, T. E. (2002), Sloshing in rectanagular and cylindrical tanks, J. Ship Res. 46(3), 186–200.Google Scholar
Samoylov Y. A. and Pavlov B. S. (1964), Vibrations of a fluid-filled semi-spherical shell, IVUZ, Aviatson-naya Tekh. 7(3), 79–86, IAAA64–28277.
Sandorff P. E. (1960), Principles of design of dynamerlly similar models for large propellant tanks, NASA TN D-99.
Sankaran, S. and Saville, D. (1993), Experiments on the stability of a liquid bridge in an axial electric field, Phys. Fluids A 5, 1081–1087.CrossRefGoogle Scholar
Sanz, A. (1985), The influence of outer bath in the dynamics of axisymmetric liquid bridges, J. Fluid Mech. 156, 101–140.CrossRefGoogle Scholar
Sanz, A. and Diez, J. L. (1989), Non-axisymmetric oscillations of liquid bridges, J. Fluid Mech. 205, 503–521.CrossRefGoogle Scholar
Sanz, A. and Martinez, I. (1983), Minimum volume for a liquid bridge between equal disks, J. Colloid Interface Sci. 93, 1–9.CrossRefGoogle Scholar
Saoka Y., Tamaki T., Sakai F., and Takaeda S. (1989), A proposal for suppression of structural vibrations by tuned liquid dampers, Proc. 43rd Ann. Meeting JSCE (in Japanese).
Satterlee, H. M. (1962), Propellant control at zero-g, Space/Aeronaut.72–75.Google Scholar
Satterlee H. M. and Chin J. L. (1965), Meniscus shape under reduced gravity conditions, symp. on fluid mechanics and heat transfer under low gravitational conditions, Lockheed Missiles & Space Co.
Satterlee H. M. and Reynolds W. C. (1964), The dynamics of the free liquid surface in cylindrical containers under strong capillary and weak gravity conditions, Stanford University, Dept. Mech. Eng., Tech. Rept. LG2.
Savino, R. (1997), Order of magnitude analysis of g-jitter induced disturbances in fluid-dynamic microgravity experimentation, Microgravity Quart. 7(4), 141–154.Google Scholar
Savino R. (2000), Influence of residual-g and g-jitter on the measurement of thermophysical properties in microgravity, 33rd COSPAR Scientific Assembly, 16–23 July, Warsaw, Poland.
Savino, R. and Monti, R. (1996), Oscillatory convection in a cylindrical liquid bridge, Phys. Fluids 8, 2906–2920.CrossRefGoogle Scholar
Savino, R. and Monti, R. (1999), Convection induced by residual-g and g-jitters in diffusion experiments, Int. J. Heat Mass Trans. 42, 111–126.CrossRefGoogle Scholar
Savino R., and Monti R. (2001), Fluid-dynamic experiment sensitivity to accelerations prevailing on microgravity platforms, in Physics of Fluids in Microgravity, Monti, R, ed., London, Taylor & Francis, 513–559.Google Scholar
Savino, R., Paterna, D., and Lappa, M. (2003), Marangoni flotation of liquid droplets, J. Fluid Mech. 479, 307–326.CrossRefGoogle Scholar
Sawada T., Fujiwara Y., Omura N., Ohaba M., and Tanahashi T. (1998), Lateral vibration of magnetic fluid column, Studies in Appl. Electromagn. Mech. 13, Nonlinear Electromagnetic Systems, 871.
Sawada, T., Hashimoto, H., and Katagiri, K. (1987), Interfacial instability of magnetic fluid in a rectangular container, JSME Int J. 30, 1086–1092.Google Scholar
Sawada, T., Hikura, H., Shibata, S., and Tanahashi, T. (1993), Lateral sloshing of a magnetic fluid in a container, J. Magn. Magnetic Mater. 122, 424–427.CrossRefGoogle Scholar
Sawada, T., Hikura, H., Shibata, S., and Tanahashi, T. (1999), Kinematic characteristics of magnetic fluid sloshing in a rectangular container subjected to nonuniform magnetic fields, Exp. Fluids 26(3), 215–221.CrossRefGoogle Scholar
Sawada, T., Ohira, Y., and Houda, H. (2002a), Sloshing motion of a magnetic fluid in a cylindrical container due to horizontal oscillation, Energy Conv. Manag. 43(3), 299–308.CrossRefGoogle Scholar
Sawada, T., Ohira, Y., and Houda, H. (2002b), Sloshing behavior of a magnetic fluid in a cylindrical container, Exp. Fluids 32(2), 197–203.CrossRefGoogle Scholar
Sayad M. A. El- (1999), Parametric excitation of nonlinear coupled oscillators simulating liquid sloshing impact loading, Ph.D. thesis, Alexandria University, Egypt.
Sayad, M. A., El-Hanna, S. N., and Ibrahim, R. A. (1999), Parametric excitation of nonlinear elastic systems involving hydrodynamic sloshing impact, Nonlinear Dyn. 18(1), 25–50.CrossRefGoogle Scholar
Sayar, B. A. (1971), Fluid slosh dampers, Ph.D. dissertation, Georgia Tech., Atlanta.Google Scholar
Sayar, B. A. and Baumgarten, J. R. (1981), Pendulum analogy for nonlinear fluid oscillations in spherical containers, J. Appl Mech. 48, 769–772.CrossRefGoogle Scholar
Sayar, B. A. and Baumgarten, J. R. (1982), Linear and nonlinear analysis of fluid slosh dampers, AIAA J. 20(11), 1534–1538.CrossRefGoogle Scholar
Scarsi, G. (1971), Natural frequencies of viscous liquids in rectangular tanks, Meccanica 6(4), 223–234.CrossRefGoogle Scholar
Scarsi, G. and Brizzolara, E. (1970), On the behavior of liquids in a rectangular tank motion, Int. Shipbuilding Progress 17(194), 316–329.CrossRefGoogle Scholar
Schilling, U. and Siekmann, J. (1980), Calculation of the free oscillations of a heavy incompressible fluid in an axially symmetrical vessel by means of panel methods, Israel J. Tech. 18, 13–20.Google Scholar
Schilling, U. and Siekmann, J. (1981), Numerical calculation of the natural frequencies of a sloshing liquid in axial symmetrical tanks under strong capillary and weak gravity conditions, Israel J. Techn. 19, 44–50.Google Scholar
Schilling, U. and Siekmann, J. (1982), Numerical calculation of the translational forced oscillations of a sloshing liquid in axially symmetric tanks, Israel J. Techn. 20, 201–205.Google Scholar
Scharf K. (1990), Beitraege zur erfassung des Verhaltens von erdbebebenerregten, oberirdischen tankbauwerken, Ph.D. thesis, Fortschritt-Berichte VDI, Reihe 4 (97), Duesseldorf, FRG.
Schlichting, H. (1960), Boundary Layer Theory, New York, McGraw-Hill.Google Scholar
Schluter, A., Lortz, D., and Busse, F. H. (1965), On the stability of steady finite amplitude convection, J. Fluid Mech. 23, 129–144.CrossRefGoogle Scholar
Schmidt, G. (1975), Parametric OscillationVEB Deutscher Verlarg der Wissenschaften, Berlin (in German).Google Scholar
Schmidt, G. and Weidenhammer, F. (1961), Instability of damped rheolinear vibrations, Mathematische Nachtichten 23, 301–318 (in German).CrossRefGoogle Scholar
Schmitt A. F. (1956), Forced oscillations of a fluid in a cylindrical tank undergoing both translation and rotation, Rept. No ZU-7–079, Convair San Diego, CA.
Schmitt A. F. (1957), Forced oscillations of a fluid in cylindrical tank oscillating in a carried acceleration field: a correction, Rept. No ZU-7–074 Convair San Diego, CA, 4 February.
Schneider, C. C. and Likins, P. W. (1973), Nutation damper versus precession dampers for axisymmetric spinning spacecraft, J. Spacecraft Rock. 10, 218–222.CrossRefGoogle Scholar
Schneider, J., Schwabe, D., and Scharmann, A. (1996), Experiments on the surface waves in dynamic thermocapillary liquid layers, Microgravity Sci. Technol. IX(2), 86–97.Google Scholar
Schoenhals R. J. and Overcamp T. J. (1965), Pressure distribution and bubble formation induced by longitudinal vibration of flexible liquid-filled cylinder, NASA TM-X-53353, MSFC.
Schoenhals R. J., Winter E. R. F, and Griggs E. I. (1967), Effects of longitudinal vibration on discharge of liquids from propellant tanks, Proc. 1967 Heat Transfer and Fluid Mech. Inst., San Diego, 277–297, Stanford University Press.
Scholl H. F., Pinson L. D., and Stephens D. G. (1971), Investigation of slosh anomaly in Apollo lunar module propellant gage, NASA-TM-X-2362, L-7757.
Scholl H. F., Stephens D. G., and Davis P. K. (1972), Ring-baffle pressure distribution and slosh damping in large cylindrical tanks, NASA Tech. Note TND-6870.
Schotte J. S. (2001), Effect of gravity on the linear vibrations of an elastic structure containing an incompressible liquid, Ph.D. thesis, CNAM Paris (in French).
Schotte J. S. and Ohayon R. (1999), Vibration analysis of elastic tanks partially filled with incompressible liquids in presence of a gravity field, Proc. Launch Vehicle Vibrations, 1st European Conf. Launcher Technology, CNES Toulouse, France.
Schotte J. S. and Ohayon R. (2001), Interactions between sloshing modes and incompressible hydroelastic modes for internal fluid–structure systems, Proc. 1st MIT Conf. Comput. Fluid and Solid Mech., Elsevier Science.
Schotte J. S. and Ohayon R. (2002), Effect of gravity on a free–free fluid–structure system, Proc. ASME WAM IMECE2002–32868.
Schulkes, R. M. and Cuvelier, C. (1991), On the computation of normal modes of a rotating, viscous incompressible fluid with a capillary free boundary, Comp. Methods Appl. Mech. Eng. 92(1), 97–120.CrossRefGoogle Scholar
Schultz, W. W., Vanden-Broeck, J., Jiang, L., and Perlin, M. (1998), Highly nonlinear standing water waves with small capillary effects, J. Fluid Mech. 369, 253–272.Google Scholar
Schwabe, D. and Metzeger, J. (1989), Coupling and separation of the buoyant thermocapillary convection, J. Crystal Growth 97, 23–33.CrossRefGoogle Scholar
Schwabe, D., Möller, U., Schneider, J., and Scharmann, A. (1992), Instabilities of shallow dynamic thermocapillary liquid layers, Phys. Fluids A 4, 2368–2381.CrossRefGoogle Scholar
Schwabe, D. and Scharmann, A. (1979), Some evidence for the existence and magnitude of a critical Marangoni number for the onset of oscillatory flow in crystal growth melts, J. Crystal Growth 46, 125–131.CrossRefGoogle Scholar
Schwabe D., Scharmann A., and Preisser F. (1979), Steady and oscillatory Marangoni convection in floating zones under microgravity, Proc. 3rd European Symp. Material Sciences in Space, Grenoble.
Schwabe, D., Scharmann, A., Preisser, F., and Oeder, R. (1978), Experiments on surface tension driven flow in floating zone melting, J. Crystal Growth 43, 305–312.CrossRefGoogle Scholar
Schwabe, D., Scharmann, A., and Xiadong, D. (1991), Prandtl number dependence on the onset of thermocapillary flow in floating zones, Adv. Space Res. XI, 233–240.CrossRefGoogle Scholar
Schwabe, D., Velten, R., and Scharmann, A. (1990), The instability of surface tension driven floating zones under normal and reduced gravity, J. Crystal Growth 99, 1258–1266.CrossRefGoogle Scholar
Schwartz, E. (1961), Study of liquid behavior under zero and reduced gravity, in Weightlessness – Physical Phenomena and Biological Effects, New York, Plenum, 138–149.Google Scholar
Schwind R. G., Scotti R. S., and Skogh J. (1964), The effect of baffles on tank sloshing, Lockheed Missiles Space Co., LMSCA642961.
Schwind, R. G., Scotti, R. S., and Skogh, J. (1967), Analysis of flexible baffles for damping tank sloshing, J. Spacecraft Rock. 4(1), 47–53.CrossRefGoogle Scholar
Schy A. A. (1952), A theoretical analysis of the effects of fuel motion on airplane dynamics, NACA Rept. 1080.
Scolan, Y. M. and Korobkin, A. A. (2001), Three-dimensional theory of water impact, Part q: Inverse Wagner problem, J. Fluid Mech. 440, 293–326.CrossRefGoogle Scholar
Scolan, Y. M. and Korobkin, A. A. (2003), Energy distribution from vertical impact of a three-dimensional solid body unto the flat free surface of an ideal fluid, J Fluids Struct 17, 275–286.CrossRefGoogle Scholar
Scott, W. E. (1973), The dynamical effect of inertial waves on the gyroscopic motion of a body containing several eccentrically located liquid-filled cylinders, J. Fluid Mech. 57(1), 161–165.CrossRefGoogle Scholar
Scott, W. E. (1975), The large amplitude motion of liquid-filled gyroscope and the non-interaction of inertial and Rossby waves, J. Fluid Mech. 72(4), 649–660.CrossRefGoogle Scholar
Scriven, L. E. and Sternling, L. V. (1960), Marangoni effects, Nature 187, 186–188.CrossRefGoogle Scholar
Scriven, L. E. and Sterling, L. V. (1964), On cellular convection driven by surfactant gradients: effect of mean surface tension and viscosity, J. Fluid Mech. 19, 321–340.CrossRefGoogle Scholar
Scurlock, R. G. (1991), History and Origins of Cryogenics, Oxford, Oxford University Press.Google Scholar
Seebold, G., Hollister, M. P., and Satterlee, H. M. (1967), Capillary hydrostatics in annular tanks, J. Spacecraft 4(1), 101–105.Google Scholar
Sekerzhi-Zenkovich, S. Y. (1983), Parametric resonance in a stratified fluid when there are vertical oscillations of the vessel, Dokl. Akad. Nauk. SSSR 270(5), 1089–1091.Google Scholar
Sen, B. M. (1927), Waves in canals and basins, Proc. London Math. Soc. Series 2(26), 363–376.CrossRefGoogle Scholar
Selmane, A. and Lakis, A. A. (1997a), Nonlinear dynamic analysis of orthotropic open cylindrical shells subjected to a flowing fluid, J. Sound Vib. 202, 67–93.CrossRefGoogle Scholar
Selmane, A. and Lakis, A. A. (1997b), Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid, J. Fluids Struct. 11, 111–134.CrossRefGoogle Scholar
Semenov, V. O. (1975), On the flow of a liquid from an oscillating cylindrical tank with a curvilinear bottom, inDifferential Equations and Their Applications 3 Dneprropetrvsk, 106–1114.Google Scholar
Senda K. and Nakagawa K. (1954), On the vibration of an elevated water-tank – I, Tech. Rept. Osaka University 4(117), 247–264.
Seto M. L. (1996), An investigation on the suppression of flow-induced vibrations of baffled bodies, Ph.D. thesis, University of British Columbia, Vancouver, Canada.
Seto M. L. and Modi V. J. (1997), A numerical approach to liquid sloshing dynamics and control of fluid–structure interaction instabilities, ASME Fluids Eng. Div. Summer Meeting, Paper No FEDSM 97–3302.
Sewal J. L. (1957), An experimental and theoretical study of the effects of fuel on pitching-translation flutter, NACA TN-4166.
Shaaban S. H. and Nash W. A. (1975), Finite element analysis of seismically excited cylindrical storage tank, ground supported and partially filled with liquid, University of Massachusetts, Amherst, MA.
Shang, S. P. and Lei, G. P. (1988), The free vibration of orthotropic moderately thick shells conveying fluid, Applications of Mechanics in Engineering, Hangshou, 231–241.Google Scholar
Shankar, K. and Balendra, T. (2002), Application of the energy flow method to vibration control of buildings with multiple liquid dampers, J. Wind Engrg & Indust. Aerodyn. 90, 1893–1906.CrossRefGoogle Scholar
Shankar, P. N. and Kidambi, R. (2002), A modal method for finite amplitude nonlinear sloshing, Pramana-J. Physics 59(4), 631–651.CrossRefGoogle Scholar
Sharma, C. B., Darvizeh, M., and Darvizeh, A. (1996), Free vibration response of multilayered orthotropic fluid-filled circular cylindrical shells, Compos. Struct. 34, 349–355.CrossRefGoogle Scholar
Sharma, C. B., Darvizeh, M., and Darvizeh, A. (1998), Natural frequency response of vertical cantilever composite shells containing fluid, Engrg Struct. 20, 732–737.CrossRefGoogle Scholar
Sharma, R., Semercill, S. E., and Turan, O. F. (1992), Floating and immersed plates to control sloshing in a cylindrical container at the fundamental mode, J. Sound and Vib. 115(2), 365–370.CrossRefGoogle Scholar
Shemer, L. (1990), On the directly generated resonant standing waves in a rectangular tank, J. Fluid Mech. 217, 143–165.CrossRefGoogle Scholar
Shemer, L. and Chamesse, M. (1990), On the hysteresis phenomenon in the directly excited nonlinear resonance sloshing waves in a tank, Acta Mech. 81(1/2), 47–58.CrossRefGoogle Scholar
Shemer, L., Chamesse, M., and Kit, E. (1989), Measurements of the dissipation coefficient at the wave maker in the process of generation of the resonant standing waves in a tank, Exp. Fluids 7, 506–512.CrossRefGoogle Scholar
Shemer, L. and Kit, E. (1988), Study of the role of dissipation in evolution of nonlinear sloshing waves in a rectangular channel, Fluid Dyn. Res. 4(2), 89–105.CrossRefGoogle Scholar
Shemer, L., Kit, E., and Miloh, T. (1987), Measurements of two- and three-dimensional waves in a channel including the vicinity of cut-off frequencies, Exper. Fluids 5, 66–72.CrossRefGoogle Scholar
Shen, M. C., Sun, S. M., and Hsieh, D. Y. (1993), Forced capillary–gravity waves in a circular basin, Wave Motion 18, 401–402.CrossRefGoogle Scholar
Shen, Y., Neitzel, G. P., Jankowki, D. F., and Mittelmann, H. D. (1990), Energy stability of thermocapillary convection in a model of float-zone crystal-growth process, J. Fluid Mech. 217, 639–669.CrossRefGoogle Scholar
Shepherd R. (1969), Earthquake resistant design of petroleum storage tanks, Proc. 2nd Austral. Conf. Mech. Struct. and Mat., Adelaide, 8.1–8.11.
Shepherd, R. (1972), The two mass representation of a water tower structure, J. Sound Vib. 23(3), 391–396.CrossRefGoogle Scholar
Shevtsova, V. M., Ermakov, M. K., Ryabitskii, E., and Legros, J. C. (1997), Oscillations of a liquid bridge free surface due to the thermal convection, Acta Astron. 41(4–10), 471–479.CrossRefGoogle Scholar
Shevtsova V. M., Kuhlmann H. C., and Rath H. J. (1995), Thermocapillary convection in liquid bridges with a deformed surface, 46th Cong. Int. Astronaut. Federation, Oslo, Norway, 2–6 Oct.
Shevtsova V. M. and Legros J. C. (1997), Influence of the free surface shape on stability of liquid bridges, Proc. 10th European and 6th Russian Symp. Physical Sciences in Microgravity, St. Petersburg, 15–21 June.
Shevtsova, V. M. and Legros, J. C. (1998a), Convection motion and stability of strongly deformed liquid bridges, Phys. Fluids 7.Google Scholar
Shevtsova, V. M. and Legros, J. C. (1998b), Oscillatory convective in deformed liquid bridges, Phys. Fluids 10, 1621–1634.CrossRefGoogle Scholar
Shevtsova, V. M., Mojahed, M., Legros, J. C. (1999), The loss of stability in ground based experiments in liquid bridges, Acta Astron. 44(7–12), 625–634.CrossRefGoogle Scholar
Shevtsova V. M., Wanschura M., Kuhlmann H. C., Shu J. Z., and Legros J. C. (1996), Thermocapillary motion and stability of liquid bridges, 2nd European Symp. Fluids in Space, Naples.
Shi J. J. (1987), Fluid sloshing analysis for toroidal tank, Proc. AIAA/ASME/ASCE/AFS 28th Struct. Struct. Dyn. Mat. Conf., Part 2A, 40–44.
Shibata H., Sato H., and Shigeta T. (1965), A seismic design of machine structure, Proc. 3 WCEE II, 552–562.
Shibata, H., Shinozaki, Y., Kobayashi, N., and Mieda, T. (1986), A study of the liquid slosh response in horizontal cylindrical tanks, ASMEProc. Pressure Vess. Piping Conf., PVP-108, 137–142.Google Scholar
Shih C. C. (1966), On subgravity hydroelastic sloshing of a liquid with a curved free surface in a cylindrical tank having a flexible bottom, Thesis, University of Florida.
Shih, C. C. and Buchanan, H. J. (1971), The drag oscillating flat plate in liquids at low Reynolds numbers, J. Fluid Mech. 48(2, 229–239.CrossRefGoogle Scholar
Shih C. F. (1981), Failure of liquid storage tanks due to earthquake excitation, Ph.D. dissertation, Caltech, Pasadena, CA.
Shimizu, N. (1983), Advancements and trends of seismic design of liquid storage tanks (in Japanese), Trans. JSME 49(438, C), 145–159.CrossRefGoogle Scholar
Shimizu, N. (1990), Advances and trends in design of cylindrical liquid storage tanks, Flow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 1–9. (Also JSME Int. J. Series III, 33(2), 111–124.).Google Scholar
Shimizu, T. and Hayama, S. (1987), Nonlinear response of sloshing based on the shallow water wave theory, JSME Int. J. 30(263), 806–813.CrossRefGoogle Scholar
Shinkai, A., Mano, M., and Tamai, S. (1994), Numerical analysis of sloshing problems for the middle sized double hull tanker, J. Soc. Naval Arch. Japan 176, 387–396.CrossRefGoogle Scholar
Shinkai, A., Tamia, S., and Mano, M. (1995), Sloshing impact pressure induced on cargo oil tank walls on the middle-sized double hull tanker, Trans. Soc. Naval Arch. West. Japan 90, 91–98.Google Scholar
Shiojiri, H. and Hagiwara, Y. (1990), Development of a computational method for nonlinear sloshing by BEM, in Flow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP-191, 149–154.Google Scholar
Shkenev Yu. S. (1964) The dynamics of an elastic and elastoplastic shell filled with an ideal liquid, Proc. 4th All-Union Conf. on The Theory of Shells and Plates, Izd. Akad. Nauk. SSSR, Moscow, 997–1007 (in Russian).
Shkenev Yu, S. (1970), On the stability of an elastic shell filled with an ideal liquid, Prikl. Mekh. 6(8), 128–132.Google Scholar
Shklyarchuk, F. N. (1965a), The axisymmetric vibrations of a liquid inside an elastic cylindrical shell with an elastic bottom, Izv. Vuzov., Aviats. 4, 75–83.Google Scholar
Shklyarchuk, F. N. (1965b), Approximate method of calculating symmetric oscillations of fluid-filled shells of revolution, Izv. AN SSSR Mekhanika 6, 123–129.Google Scholar
Shklyarchuk F. N. (1966), Variational methods of calculating axi-symmetric oscillations of shells of revolution, partially filed with fluid, Tr V. I. Vses Konferentsii Po Teorii Obolocheki Plastemok, Moscow, Nauka, 835–840 (in Russian).
Shklyarchuk, F. N. (1970a), The dynamic stability of a cylindrical shell partially filled with a liquid and subject to longitudinal vibrations, Proc. 7th All-Union Conf. on The Theory of Shells and Plates, Moscow, Nauka, 619–624 (in Russian).Google Scholar
Shklyarchuk, F. N. (1970b), Parametric vibrations of a cylindrical shell partially filled with a liquid and subject to longitudinal excitation, Proc. 7th All-Union Conf. on the Theory of Shells and Plates, Moscow, Nauka, 314–329 (in Russian).Google Scholar
Shklyarchuk, F. N. (1973), The effect of the compressibility of a liquid on the longitudinal vibrations of a cylindrical tank, in Vibrations of Elastic Structures with a Liquid, Novosib, Elektrotekh Inst, Novosibirk, 291–313.Google Scholar
Shklyarchuk, F. N. (1983), The Dynamics of Structures of Aircrafts, Izd. Moskovskogo Aviats. Inst., Moscow (in Russian).Google Scholar
Shmakov, V. P. (1964), Concerning the equations of axi-symmetrical vibrations of a fluid cylindrical shell, Izvestiya Acad. Sci. SSSR, Series Mekh. i Mash. 1, 170–173, Translated as NASA TT-F-219.Google Scholar
Shrimali, M. K. and Jangid, R. S. (2002), Nonlinear seismic response of base-isolated liquid storage tanks to bi-directional excitation, Nuclear Engrg Des. 217, 1–20.CrossRefGoogle Scholar
Shved, G. L. (1959), Small oscillations of the free surface of an ideal fluid in a plane moving vessel with smooth vertical walls, Trudy Odessk, Teknol. Inst. Pislch., ikholodil'n Promysh 8, 150–160.Google Scholar
Shuleikin, V. V. (1962), Some remarks on the behavior of a liquid approaching zero-g conditions, Dokl. Akad. Nauk. SSSR 147, 1075–1083.Google Scholar
Shul'ga, N. A., and Shul'ga, O. M. (2003), Wave propagation in an orthotropic cylinder with a liquid, Int. Appl. Mech. 39(6), 736–740.CrossRefGoogle Scholar
Shveiko Yu. Yu. and Kuleshov V. B. (1973), Investigation of natural oscillations of cylindrical shells with fluid, in Oscillations of Elastic Structures with Fluid, Izd-vo Novosib Elektrotekhn in-ta, Novosibirska (in Russian).
Shyu, K. L. and Kuo, H. C. (1996) Dynamic behavior of a U-type tuned liquid damper, Int. Shipbuilding Prog. 43(436), 331–345.Google Scholar
Siegel, R. (1961), Transient capillary rise in reduced and zero gravity fields, ASME J. Appl. Mech. 28(2), 165–186.CrossRefGoogle Scholar
Siegert C. E., Petrash D. A., and Otto E. W. (1964), Time response of liquid–vapor interface after entering weightlessness, NASA TN D-2458.
Siegert C. E. Petrash D. A., and Otto E. W. (1965), Behavior of liquid–vapor interface of cryogenic liquids during weightlessness, NASA TN D-2658.
Siekmann, J. and Chang, S. C. (1966), On liquid sloshing in a cylindrical tank with a flexible bottom, Proc. Southeastern Symp. Missile and Aerospace Vehicles Sciences, Am. Astronaut. Soc. 2(1–8), 98–105.Google Scholar
Siekmann, J. and Chang, S. C. (1967), On liquid sloshing in a cylindrical tank with a flexible bottom under strong capillary and weak gravity conditions, J. Astronaut. Sci. XIV(4), 167–172.Google Scholar
Siekmann, J. and Chang, S. C. (1968), On the dynamics of liquids in a cylindrical tank with a flexible bottom, Ing. Arch. 37, 99–109.CrossRefGoogle Scholar
Siekmann, J. and Chang, S. C. (1971a), Dynamic interaction of liquid with elastic structure of a circular cylindrical container, Ing. Arch. 4, 266–280.Google Scholar
Siekmann, J. and Chang, S. C. (1971b), On the change of natural frequencies of a sloshing liquid by movable devices, Acta Mech. 11(1/2), 73–86.CrossRefGoogle Scholar
Siekmann, J., Scheideler, W., and Tietze, R. (1981), Static meniscus configurations in propellant tanks under reduced gravity, Comput. Methods Appl. Mech. Engrg. 28, 103–108.CrossRefGoogle Scholar
Siekmann, J. and Schilling, U. (1974a), Calculation of the free oscillations of a liquid in axi-symmetric motionless containers of arbitrary shape, Zeit. Flugwiss. 22, 168–173.Google Scholar
Siekmann, J. and Schilling, U. (1974b), Calculation of the free oscillations of a liquid in motionless axisymmetric containers of arbitrary shape, Zeit. Flugwiss. 22, 168–173.Google Scholar
Silber, M. and Knobloch, E. (1989), Parametrically excited surface waves in square geometry, Phys. Lett. 137, 349–354.CrossRefGoogle Scholar
Silber, M. and Proctor, M. R. E. (1998), Nonlinear competition between small and large hexagonal patterns, Phys. Rev. Lett. 81, 2450–2453.CrossRefGoogle Scholar
Silber, M. and Skeldon, A. C. (1999), Parametrically excited surface waves: two-frequency forcing, normal form symmetries, and pattern selection, Phys. Revs. E 59, 5446–5456.CrossRefGoogle ScholarPubMed
Silber, M., Topaz, C. M., and Skeldon, A. C. (2000), Two-frequency forced Faraday waves: weakly damped modes and pattern selection, Physica D 143(1–4), 205–225.CrossRefGoogle Scholar
Silveira M. A., Stephens D. C., and Leonard H. W. (1961), An experimental investigation of damping of liquid oscillations in cylindrical tanks with various baffles, NASA TN D-715.
Simonelli, F. and Gollub, J. P. (1989), Surface wave mode interactions: effects of symmetry and degeneracy, J. Fluid Mech. 199, 471–494.CrossRefGoogle Scholar
Sivak, V. F. (1998), Experimental study of the resonance and dissipative properties of a liquid-filled glass fiber composite reinforced plastic cylindrical shell, Int. Appl. Mech. 34(2), 136–139.Google Scholar
Sivak, V. F. (2001), Experimental investigation of the natural vibrations of shells of revolution with a liquid and added masses, Int. Appl. Mech. 37(1), 122–125.CrossRefGoogle Scholar
Sivak, V. F. and Telalov, A. I. (1991), Experimental investigation of the vibrations of a cylindrical shell contacting with a liquid, Soviet Appl. Mech. (Prikl. Mekh.) 27(10), 121–123.Google Scholar
Sivak, V. F. and Telalov, A. I. (1992), Experimental investigation of the vibration damping of a longitudinally reinforced cylindrical shell contacting with a liquid, Soviet Appl. Mech. (Prikl. Mekh.) 28(4), 77–80.Google Scholar
Sivak, V. F. and Telalov, A. I. (1998), Experimental investigation of the resonance and dissipative properties of a glass-fiber-reinforced plastic cylindrical shell filled with a liquid, Sov. Appl. Mech. (Prikl. Mekh.) 34(2), 39–42.Google Scholar
Skalak, M. A. and Conly, J. F. (1964), Surface waves on a rotating fluid, AIAA J. 2(2), 306–312.Google Scholar
Skalak, R. and Yarymovich, M. I. (1962), Forced large amplitude surface waves, Proc. 4thUS Nat. Congress Appl. Mech., 1411–1418.Google Scholar
Slabinski V. J. (1977), Intelsat I. V. in-orbit liquid slosh tests and problems in the theoretical analysis of the data, ESA SP-129, 87–102.
Slafer, L. I. and Challoner, A. D. (1988), Propellant interaction with the payload control system of dual-spin spacecraft, J. Guidance 11(4), 343–351.CrossRefGoogle Scholar
Slibar A. and Troger H. (1975), Dynamic steady state behavior of a tractor-semitrailer-system carrying liquid load, Proc. IUTAM Symp. 1975081822, The Dynamics of Vehicles on Roads & Railway Tracks, Hans B. Pacejka, ed., the Netherlands, Swts & Zeitlinger BV.
Slibar A. and Troger H. (1976), Die kritischen fahrzustande des tank-aufliegerzuges bei verschiedenen baladungsgraden und beruhrbedingungen im stationaren fahrbetrieb. Bundes-miniserium fur Bauten und Technik Wien, Strassenforschung, Heft 55.
Slibar, A. and Troger, H. (1977), The steady state behavior of tank trailer system carrying rigid or liquid cargo, VSD-IUTAM Symp. Dynamics of Vehicles on Roads & Trucks, Vienna, 256–264.Google Scholar
Sloane M. N. (1960), The dynamics of the sloshing phenomenon: a literature survey, Rept. GM- 60–5111–5, Space Tech. Lab., Inc.
Slobozhanin L. A. (1966), Hydrostatics in weak force fields: equilibrium shapes of rotating liquid surface at zero-g, Fluid Dynamics 1(5), 113–116. (Translation of Izvestiya Acad. Nauk. SSSR Mekh. Zhid. Gaza1(5), 157–160, 1966, by New York, Faraday Press.
Slobozhanin, L. A. and Alexander, J. I. D. (2000), Stability of disconnected free surfaces in a cylindrical container under zero gravity: Simple cases, Phys. Fluids 12(11), 2800–2808.CrossRefGoogle Scholar
Slobozhanin L. A., Alexander J. I. D, and Fedoseyev A. I. (1999a), Doubly connected axisymmetric free surface in a cylindrical container: Shape, stability and application, AIAA Paper AIAA-99–1029, 37th AIAA Aerospace Sciences Meeting, Reno, NV.
Slobozhanin, L. A., Alexander, J. I. D, and Fedoseyev, A. I. (1999b), Shape and stability of doubly connected axisymmetric free surface in a cylindrical container, Phys. Fluids 11, 3668–3677.CrossRefGoogle Scholar
Slutskii F. (1895), De la rotation de la terre supposeé fluide a son intérieur, Bull. de la Soc. des Naturalistes de Moscow9.
Smith C. (1948), The effect of fuel sloshing on the lateral stability of a free-flying airplane model, NACA RM L8C.
Smith, K. A. (1966), On convective instability induced by surface tension gradients, J. Fluid Mech. 24, 401–414.CrossRefGoogle Scholar
Smith K. W. (1947), Fuel sloshing relation between surface movement and moving masses displacement for a circular tank, RAE, Great Britain, G W File Ref GW/55 027/KWS.
Smith K. W. (1956), Presented work on the effects of fuel sloshing in the control of ballistic missile, RAE, Great Britain, Note GW/5/507/LKWS.
Sneddon, I. H. (1972), The Use of Integral Transforms, New York, McGraw-Hill.Google Scholar
Snowdon, J. C. (1968), Vibration and Shock in Damped Mechanical Systems, New York, John Wiley.Google Scholar
Snyder, H. A. (1999), Sloshing in microgravity, Cryogenics 39(12), 1047–1055.CrossRefGoogle Scholar
Snyder, H. A. (2001), Effect of sloshing on the mechanics of Dewar systems in low-gravity, Cryogenics 41(11/12), 825–832.CrossRefGoogle Scholar
Sobolev, S. L. (1960), On the motion of a symmetrical top with a fluid-filled cavity, Prikl. Mekh. i Tekh. Fiz. 3, 20–55.Google Scholar
Soedel, S. M. and Soedel, W. (1994), On the free and forced vibration of a plate supporting a freely sloshing surface liquid, J. Sound Vib. 171(2), 159–171.CrossRefGoogle Scholar
Sogabe K. and Shibata H. (1974a), Response analysis on sloshing of liquid in a cylindrical storage i: basic equation and response to sinusoidal input, J. Inst. Indust. Scie., University of Tokyo 26(3), 119–122 (in Japanese).
Sogabe K. and Shibata H. (1974b), Response analysis on sloshing of liquid in a cylindrical storage ii: transient response to sinusoidal input, J. Inst. Indust. Scie., University of Tokyo26(4), 152–155 (in Japanese).
Sokolov, VI (1954), The influence of rotor contained fluid mass on the critical velocity of centrifugal machine shafts, Proc. Moscow Inst. Meat and Milk Indust. 11, 71–72.
Solaas F. (1995), Analytical and numerical studies of sloshing in tanks, Ph.D. thesis, The Norwegian Institute of Technology, Trondheim.
Solaas, F. and Faltinsen, O. M. (1997), Combined numerical and analytical solution for sloshing in two-dimensional tanks of general shape, J. Ship Research 41, 118–129.Google Scholar
Someya, S., Okamoto, K., and Madarame, H. (1995), Self-induced sloshing caused by upward jet impinging on upper-inner-structure, inFluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP-314, 115–120.Google Scholar
Someya, S., Okamoto, K. and Madarame, H. (2000), The self-induced free-surface “swell flapping” caused by the interaction among a jet, a free surface and a structure, J. Fluids Struct. 14(4), 511–528.CrossRefGoogle Scholar
Sonobe, Y. and Nishikawa, T. (1969), Study of the earthquake proof design of elevated water tanks, Proc. 4th World Conf. Earthquake Eng., SantiagoB-4, 11–24.Google Scholar
Soong, T. T. and Constantinou, M. C. (1994), Passive and Active Structural Vibration Control in Civil Engineering, New York, Springer.CrossRefGoogle Scholar
Sorokin, V. I. (1957), The effect of fountain formation at the surface of a vertically oscillating liquid, Soviet Physics-Dokl. 3(3), 281–291.Google Scholar
Souli, M. and Zolesio, J. P. (2001), Arbitrary Lagrangian–Eulerian and free surface methods in fluid mechanics, Comput. Meth. Appl. Mech. Engrg. 191, 451–466.CrossRefGoogle Scholar
Soundararajan A. (1983), Stationary response of liquid free surface under wide-band random parametric excitation, Master thesis, Texas Tech. University, Lubbock, TX.
Soundararajan, A. and Ibrahim, R. A. (1988), Parametric and autoparametric vibrations of an elevated water tower, part iii: random response, J. Sound Vib. 121(3), 445–462.CrossRefGoogle Scholar
Souto, A. and Gonzalez, V. (2001), Passive stabilizer simulation using SPH models, Proc. Fluid–Structure Interaction 2001, Halkidiki, Greece1, 35–44.Google Scholar
Souto, A., Laioz, I., Abril, S., and Abad, R. (2001), Passive stabilizer tanks dimensioning using SPH simulations, Proc. 4th Int. Conf. Marine Technology, Sczcecin, Poland1, 171–181.Google Scholar
Spradley L. W., Bourgeois S. L., and Lin F. N. (1975), Space processing convection evaluation, g-jitter convection of confined fluids in low gravity, AIAA Paper 75–695.
Squire H. B. (1958), Aero. Res. Counc., London16, 021.
Sretanskii, L. N. (1956), Propagation of waves of finite amplitudes in a circular channel, Trudy. Mor. Gidrofiz. in-ta Akad. Nauk. SSSR 6, 3–6.Google Scholar
Sretanskii, L. N. (1957), The oscillations of liquid in a moving container, Izv. Akad. Nauk. SSSR Otd. Tekh. Nauk. 10, 1494.Google Scholar
Standberg L. (1978), Lateral Stability of Road Tankers, National Road & Traffic Res. Inst. Rept. 138A, Sweden.
Steel Structure & Civil Eng Division, 1991, Oscillation control of pylon and cables in cable stayed Sakitama, Bridge (up-route side), Mitui Zosen Tech. Rev. 143, 17–25.
Steklov M. W. (1902), Sur les problemes fondamentaux de la physique mathematique, Ann. Sci. Ecole Norm. Sup. 19, 455–490.
Stephens D. G. (1965), Experimental investigation of liquid impact in a model propellant tank, NASA TN D-2913.
Stephens, D. G. (1966), Flexible baffles for slosh damping, J. Spacecraft Rock. 3(5), 765–766.CrossRefGoogle Scholar
Stephens D. G. and Leonard H. W. (1963), The coupled dynamic response of a tank partially filled with a liquid undergoing free and forced planner oscillations, NASA TN D-1945.
Stephens D. G., Leonard H. W., and Perry T. W. (1962), Investigation of the damping of liquids in right circular tanks including the effects of a time-variant liquid depth, NASA TN D-1367.
Stephens D. G., Leonard H. W., and Silveira M. A. (1963), An experimental investigation of the damping of liquid oscillations in an oblate spheroidal tank with and without baffles, NASA TN D-808.
Stephens D. G. and Scholl H. F. (1967), Effectiveness of flexible and rigid ring baffles for damping liquid oscillations in large-scale cylindrical tanks, NASA TN D-3878.
Sternling, C. V. and Scriven, L. E. (1959), Interfacial tension hydrodynamic instability and the Marangoni effect, AICHE J. 5, 514.CrossRefGoogle Scholar
Steven, G. P. (1976), Consistent mass matrix in fluid sloshing problems, AIAA J. 14(2), 245–247.CrossRefGoogle Scholar
Stewartson, K. (1959), On the stability of a spinning top containing liquid, J. Fluid Mech. 5(4), 577–592.CrossRefGoogle Scholar
Stigter, C. (1966), The performance of U-tanks as a passive anti-rolling device, Royal Inst. Naval Archit. 13, 249–275.Google Scholar
Stillman, W. E. (1973), Free vibration of cylinders containing liquid, J. Sound Vib. 30, 509–524.CrossRefGoogle Scholar
Stofan A. J. and Armstead A. L. (1962), Analytical and experimental investigation of forces and frequencies resulting from liquid sloshing in a spherical tank, NASA TN D-1281.
Stofan A. J. and Irvine E. S. (1963), Experimental investigation of the slosh-damping effectiveness of positive-expulsion bags and diaphragms in spherical tanks, NASA TN D-1712.
Stofan A. J. and Pauli A. J. (1962), Experimental damping of liquid oscillations in a spherical tank by positive expulsion bags and diaphragms, NASA TN D-1311.
Stofan A. J. and Sumner I. E. (1963), Experimental investigation of the slosh-damping effectiveness of positive-expulsion bags and diaphragms in spherical tanks, NASA TN D-1712.
Stoker, J. J. (1957), Water Waves, London, Interscience Publishers Inc.Google Scholar
Stokes Sir, G. G. (1851), On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cambridge Phil. Soc. 9(11), 8–106.Google Scholar
Stokes Sir, G. G. (1880), Considerations relative to the greatest height of oscillatory waves which can propagated without change of form, Math. Phys. Pap. 1, 225–228.Google Scholar
Stokes, G. G. Sir (1905), Mathematical and Physical Paper (1813–1903), London, Cambridge University Press, 1, 1880–1905.Google Scholar
Stokes Sir G. G. (1947), On the theory of oscillatory waves, Trans. Camb. Phil. Soc. 8, 441–455, Reprinted in Math. Phys., Papers 1, 197–219.
Stokes Sir G. G. (1949a), On some cases of fluid motion, Trans. Camb. Phil. Soc. 8.
Stokes Sir G. G. (1949b), On the critical values of sums of periodic series, Trans. Camb. Phil. Soc. 8.
Struble, R. A. (1962), Nonlinear Differential Equations, New York, McGraw-Hill.Google Scholar
Sturtevant, B. (1966), Optical depth gauge for laboratory studies of water waves, Review of Scientific Instruments 37(11), 1460–1463.CrossRefGoogle Scholar
Su, T. C. (1981), The effect of viscosity on free oscillations of fluid-filled spherical shells, J. Sound. Vib. 74(2), 205–220.CrossRefGoogle Scholar
Su, T. C. (1983), The effect of viscosity on the forced vibrations of a fluid-filled elastic shell, ASME J. Appl. Mech. 50, 517–524.CrossRefGoogle Scholar
Su, T. C. (1987), Sloshing due to acceleration in the rectangular tanks, Proc. ASME Symp. Fluid–Structure Vibration and Liquid Sloshing, PVP-128, 69–79.Google Scholar
Su, T. C. (1992), Nonlinear sloshing and the coupled dynamics of liquid propellants and spacecraft, Tech. Rept. Florida Atlantic University, NTIS ADA250023.
Su, T. C. and Kang, S. Y. (1984a), Analysis of liquid impact of moving containers, Dev. Appl. Mech., 12.Google Scholar
Su T. C. and Kang S. Y. (1984b), Numerical simulation of liquid sloshing, Eng. Mech. Civil Eng., Boresi, A. P. and Chong, K. P., eds., ASCE2, 1069–1072.Google Scholar
Su T. C. and Kang S. Y. (1986), Analysis and testing of the large amplitude liquid sloshing in rectangular containers, Seismic Eng. Piping Systems, Tanks and Power Plant Equip., PVP- 108, ASME, 149–154.
Su, T. C. and Lian, Q. X. (1992), Some preliminary observations of vortex formation during draining, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 232, 1–4.Google Scholar
Su T. C., Lou Y. K., Flipse J. E., and Bridges T. (1982a), A numerical analysis of large amplitude liquid sloshing in baffled containers, Rept. MA-RD-940–82046, US DoT, Maritime Admin, 290 pages.
Su T. C., Lou Y. K. Flipse J. E., and Bridges T. (1982b), A nonlinear analysis of liquid sloshing in rigid containers, Rept. DOT/RSPA/DMA-50/82/1, Office of University Research, US DoT.
Su, T. C. and Wang, Y. (1989), Numerical simulation of three-dimensional large amplitude liquid sloshing in rectangular containers subjected in vertical excitation, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 115–126.Google Scholar
Su, T. C. and Wang, Y. (1990), Numerical simulation of three-dimensional large amplitude liquid sloshing in cylindrical tanks subjected to arbitrary excitations, Flow-Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 127–148.Google Scholar
Su, T. C. and Wang, H. (1991), The control of large amplitude liquid sloshing in rectangular containers by active baffles, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 223, 81–89.Google Scholar
Sudo, S. and Hashimoto, H. (1986), Dynamic behavior of a liquid in a cylindrical container subject to horizontal vibration (on nonlinear response of liquid surface), Trans. JSME B 52(483), 3655–3659 (in Japanese).CrossRefGoogle Scholar
Sudo, S. and Hashimoto, H. (1987), Unsteady pressure response of a liquid in a cylindrical container subject to vertical vibration, Trans. JSME B 53(491), 2047–2053 (in Japanese).CrossRefGoogle Scholar
Sudo, S., Hashimoto, H., Ikeda, A., and Katagiri, K. (1987c), Some studies of magnetic liquid sloshing, J. Magn. Magn. Mat. 65(2/3), 219–222.CrossRefGoogle Scholar
Sudo, S., Hashimoto, H., and Katagiri, K. (1987a), Interfacial instability of magnetic fluids in a rectangular container, JSME Int. J. 30, 1086–1092.CrossRefGoogle Scholar
Sudo, S., Hashimoto, H., Katagiri, K., and Ikeda, A. (1987b), Experimental study of surface behavior in magnetic liquid sloshing, Trans. JSME B 53(495), 3242–3246 (in Japanese).CrossRefGoogle Scholar
Sudo, S., Hashimoto, H., Katagiri, K., and Shibuya, T. (1988), Nonlinear response of a liquid surface in lateral sloshing, Trans. JSME B 54(507), 3242–3246 (in Japanese).CrossRefGoogle Scholar
Sudo, S., Hashimoto, H., Tani, J., and Chiba, M. (1985), Dynamic behavior of a liquid in a cylindrical container subject to horizontal vibration (liquid surface response in an elastic container subject to vibration with higher frequencies), Trans. JSME B 51(472), 4155–4161 (in Japanese).CrossRefGoogle Scholar
Sudo S. and Ohaba M. (1998), Interfacial phenomena of liquids in moving container, Res. Bull. Iwaki Meisei University 11, 45–59 (in Japanese).
Sudo, S., Ohaba, M., Katagiri, K., and Hashimoto, H. (1993), Dynamic behavior of magnetic liquid drop on a solid base subject to magnetic field and vertical vibration, J. Magn. Magn. Mat. 122, 248–258.CrossRefGoogle Scholar
Sudo, S., Ohaba, M., Katagiri, K., and Hashimoto, H. (1997), Magnetic fluid sloshing in moving container, Magnetohydrodynamics 33(4), 480–485.Google Scholar
Sumner I. E. (1963), Preliminary experimental investigation of frequencies and forces resulting from liquid sloshing in toroidal tanks, NASA TN D-1709.
Sumner I. E. (1964), Experimental investigation of slosh suppression effectiveness of annular ring baffles in spherical tanks, NASA TN D-2519.
Sumner I. E. (1965), Experimentally determined pendulum analogy of liquid sloshing in spherical and oblate-spheroidal tanks, NASA TN D-2737.
Sumner I. E. (1966), Experimental investigation of stability boundaries for planar and nonplanar sloshing in spherical tanks, NASA TN D-3210.
Sumner I. E., Lacovic R. F., and Stofan A. J. (1966), Experimental investigation of liquid sloshing in a scale-model Centaur liquid hydrogen tank, NASA TN X-1313.
Sumner I. E. and Stofan A. J. (1963), An experimental investigation of the viscous damping of liquid sloshing in spherical tanks, NASA TN D-1991.
Sumner I. E., Stofan A. J., and Shramo D. J. (1964), Experimental sloshing characteristics and a mechanical analogy of liquid sloshing in a scale-model centaur liquid oxygen tank, NASA TM X-999.
Sun, K. (1994), Earthquake responses of buildings with liquid column dampers, Proc. 5th U.S. National Conf. Earthquake Eng.II, 411–420, Chicago.Google Scholar
Sun, L. M. and Fujino, Y. (1994), A semi-analytical model for tuned liquid damper (TLD) with wave breaking, J. Fluid Struct. 8(5), 471–488.CrossRefGoogle Scholar
Sun, L. M., Fujino, Y., Chaiseri, P., and Pacheco, B. M. (1995), The properties of tuned liquid dampers using a TMD analogy, Earthquake Eng. Struct. Dyn. 24, 967–976.CrossRefGoogle Scholar
Sun, L. M., Fujino, Y., Pacheco, B. M., and Isobe, M. (1989), Nonlinear waves and dynamic pressures in rectangular tuned liquid damper (LTD) – simulation and experimental verification, JSCE Struct. Eng./Earthquake Eng. 6(2) 251s–262s.Google Scholar
Sun, S. M., Shen, M. C., and Hsieh, D. Y. (1995), Nonlinear theory of forced waves in a circular basin, Wave Motion 21(4), 331–341.CrossRefGoogle Scholar
Sun Tsao (1960), On fluid surface waves influenced by centrifugal force pressure, PMTPH 3, 90–96.
Swalley, F. E., Platt, G. K., and Hastings, L. J. (1965), Sturn V low-gravity fluid mechanics problems and their investigation by full-scale experiment, AFOSR/LMSC Symp. Fluid Mechanics and Heat Transfer under Low-g, Palo Alto, 1–24.Google Scholar
Symans, M. D. and Constantinou, M. C. (1999), Semi-active control systems for seismic protection of structures: a state-of-the art review, Eng. Struct. 21, 469–487.CrossRefGoogle Scholar
Szymczyk, J. A. and Siekmann, J. (1989), Experimental investigation of the thermocapillary flow along cylindrical interfaces under rotation, Proc. 7th Europ. Symp. Materials and Fluid Sciences in Microgravity, Oxford, ESA-SP-295, 315–320.Google Scholar
Tadjbakhsh, I. and Keller, J. B. (1960), Standing waves of finite amplitude, J. Fluid Mech. 8(3), 442–451.CrossRefGoogle Scholar
Takahara, H. and Kimura, K. (1997), Parametric vibration of liquid surface in rectangular tank subjected to pitching excitation (2nd report, symmetric mode), Trans. JSME C 63(610), 1861–1868 (in Japanese).CrossRefGoogle Scholar
Takahara, H., Kimura, K., Ito, T., and Sakata, M. (1993a), Nonlinear liquid oscillation in an elastic circular tank subjected to pitching excitation, Trans. JSME C 59(561), 1378–1385 (in Japanese).CrossRefGoogle Scholar
Takahara, H., Kimura, K., and Sakata, M. (1993b), Nonlinear liquid oscillation in a circular cylindrical tank subjected to pitching excitation, Proc. of Asia-Pacific Vibration Conf. '93 1, 294–299.Google Scholar
Takahara, H., Kimura, K., and Sakata, M. (1994b), Effects of higher order radial modes upon nonlinear sloshing in a circular cylindrical tank subjected to pitching excitation, Trans. JSME C 60(574), 1924–1932 (in Japanese).CrossRefGoogle Scholar
Takahara, H., Kimura, K., and Sakata, M. (1994c), Parametric vibration of liquid surface in a circular cylindrical tank subjected to pitching excitation, Trans. JSME C 60(579), 3727–3732 (in Japanese).CrossRefGoogle Scholar
Takahara, H., Kimura, K., and Sakata, M. (1995), Frequency response of sloshing in a circular cylindrical tank subjected to pitching excitation, Proc. Asia-Pacific Vibration Conf. '95 II, 703–708.Google Scholar
Takahara, H., Kimura, K., Tsutsui, M., and Sakata, M. (1994a), Frequency response of sloshing in a circular cylindrical tank subjected to pitching excitation, Trans. JSME C 60(572), 1210–1216 (in Japanese).CrossRefGoogle Scholar
Takahashi, S. and Hirano, Y. (1970), Vibration of a combination of circular plates and cylindrical shells: first report, a cylindrical shell with circular plates at ends, Bull. JSME 13, 240–247.CrossRefGoogle Scholar
Takayangi, M. (1990), Parametric resonance of liquid storage axi-symmetric shell under horizontal excitation, Flow–Structure Vibration Sloshing, ASME Pressure Vess. Piping Conf., PVP-191, 63–68.Google Scholar
Takemoto, H., Oka, S., et al. (1994), Experimental study on sloshing impact loads of middle sized tankers with double hull, J. Soc. Naval Arch. Japan 176, 399–410.CrossRefGoogle Scholar
Takizawa, A. and Kondo, S. (1993), Flow-induced sloshing of in-vessel free-surface flow: Computer discovery using PCBFC method, Proc. 5th Int. Symp. Computational Fluid Dynamics 3, 193–198.Google Scholar
Takizawa, A. and Kondo, S. (1995), Computer discovery of the mechanism of flow-induced sloshing, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP-314, 153–158.Google Scholar
Takizawa, A., Koshisuka, S., and Kondo, S. (1992), Generalization of physical component boundary filled coordinate (PCBFC) method for the analysis of free surface flow, Int. J. Numer. Meth. Fluids 15, 1213–1237.CrossRefGoogle Scholar
Tam B. T. (1998), A displacement-based formulation of nearly-incompressible fluid element for analysis of large amplitude liquid sloshing for tuned liquid damper applications, Ph.D. dissertation, Asian Inst. Tech., Bangkok, Thailand.
Tamura, Y. (1990), Suppression of wind-induced vibrations of buildings, J. Wind Engrg. 44, 71–84.Google Scholar
Tamura, Y., Fujii, K., Sato, T., Wakahara, T., and Kosugi, M. (1988), Wind-induced vibration of tall towers and practical applications of tuned sloshing damper, Proc. Workshop Serviceability of Buildings, Ottawa, 228–241.Google Scholar
Tamura, Y., Kohsaka, R., and Modi, V. J. (1992), Practical application of nutation damper for suppressing wind induced vibrations of airport towers, J. Wind Eng. Indust. Aerodyn. 41–44, 1919–1930.CrossRefGoogle Scholar
Tamura, Y., Kohsaka, R., Nakamura, O., Miyashita, K. I., and Modi, V. J. (1996), Wind-induced response of an airport tower – efficiency of tuned liquid damper, J. Wind. Eng. Indust. Aerodyn. 65, 121–131.CrossRefGoogle Scholar
Tan DGH (1994), Dynamics of a spinning spacecraft containing liquid propellant, in Aerospace Vehicle Dynamics and Control, Cook, M. V. and Rycroft, M. J., eds., Clarendon, 417–438.Google Scholar
Tanaka, S., Kaneko, S., and Watanabe, T. (1999), Self-excited oscillations of dual cylindrical flexible weir shells due to over flow fluid, Trans. JSME C 65(634), 2226–2234 (in Japanese).CrossRefGoogle Scholar
Tanaka, S., Kaneko, S., and Watanabe, T. (2000), Self-excited oscillations of dual cylindrical flexible weir shells due to over flow fluid, J. Vib. Control 6(3), 351–373.CrossRefGoogle Scholar
Tanaka, H. and Nakayama, T. (1991), A boundary element method for the analysis of nonlinear sloshing in three-dimensional containers, Trans. JSME B 57(538), 1934–1940 (in Japanese).CrossRefGoogle Scholar
Tanaka N. and Fukuhara K. (1996), Numerical prediction of self-excited free surface sloshing, in Flow Modeling Turbulence Measurements V. I., Proc. 6th Int. Symp., Tallahassee, FL (Chen, , Shih, , and King, , eds.,) 671–678, Balkema.Google Scholar
Tang, Y. (1992), Hydrodynamic pressure in a tank containing two liquids, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 232, 25–30.Google Scholar
Tang Y. (1993), Sloshing displacements in a tank containing two liquids, Proc. ASME Pressure Vessel Piping Conf., PVP- 258, 143–149.
Tang, Y. (1994), SSI effects for a tank containing two liquids, Sloshing, Fluid–Structure Interaction and Struct. Response Due to Shock and Impact Loads, ASME Pressure Vess. Piping Conf., PVP- 272, 6771.Google Scholar
Tang Y. and Chang Y. W. (1993a), The exact solutions to the dynamic response of tanks containing two liquids, Tech. Rept. ANL/RE-93/2, ANL, Argonne, IL.
Tang Y. and Chang Y. W. (1993b), Rocking response of tanks containing two liquids, Technical Report ANL/RE-93/5, ANL, Argonne, IL.
Tang, Y., Ma, D. C., and Chang, Y. W. (1991), Sloshing response in a tank containing two liquids, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 223, 97–104.Google Scholar
Tang Y., Uras R. A., and Chang Y. W. (1993), Effect of viscosity on dynamic response of a liquid storage tank, Proc. ASME. Pressure Vess. Piping Conf., PVP- 258, 135–142.
Tani, J., Chonan, S., Zhang, H., and Kondo, K. (1989a), Free vibrations of partially liquid-filled rotating cylindrical shells, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 173–178.Google Scholar
Tani J. and Haiji H. (1986), The free vibration of free-clamped fluid-coupled coaxial cylindrical shells (in Japanese), Trans. JSME C 52, 3137–3144.CrossRef
Tani, J., Kodama, S., Sakai, T., and Chiba, M. (1989b), Dynamic stability of fluid-coupled coaxial cylindrical shells under vertical excitation, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 41–46.Google Scholar
Tani, J., Ohtomo, K., Sakai, T., and Chiba, M. (1989c), Hydroelastic vibration of partially liquid-filled coaxial shells, Sloshing and Fluid Structure Vibration, ASME Pressure Vess. Piping Conf., PVP- 157, 29–34.Google Scholar
Tao, M. and Zhang, W. (2002a), Dynamic stability of a flexible spinning cylinder partially filled with a liquid, ASME J. Appl. Mech. 69, 708–710.CrossRefGoogle Scholar
Tao, M. and Zhang, W. (2002b), Dynamic stability of a rotor partially filled with a viscous liquid, ASME J. Appl. Mech. 69, 705–707.CrossRefGoogle Scholar
Tao Y. and Kou S. (1996), Thermocapillary convection in a low Pr material under simulated reduced gravity condition, 3rd Microgravity Fluid Phys. Conf., NASA cp 3338, 301.
Taylor G. I. (1950), The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. Royal Soc. (London) A201, 192–196.CrossRef
Taylor G. I. (1954), An experimental study of standing waves, Proc. Royal Soc. (London) A218, 44–59.
Temochenko Mye (1969), On the investigation of stability criteria of rigid body supported by a string and the top both having ellipsoidal cavity filled with liquid, Proc. Acad. Sci. USSR, MTT 1, 26–31 (in Russian).
Terashima, K. and Yano, K. (2001), Sloshing analysis and suppression control of tilting-type automatic pouring machine, Control Eng. Practice 9(6), 607–620.CrossRefGoogle Scholar
Thevenard, D. and Ben Hadid, H. (1991), Low Prandtl number convection in a rectangular cavity with longitudinal thermal gradient and transverse g-jitters, Int. J. Heat Mass Transfer 34(8), 2167–2173.CrossRefGoogle Scholar
Thomson J. R., Casademunt J., and Viňals J. (1995), Cavity flow induced by a fluctuating acceleration field, Phys. Rev. Lett. 74, 690.
Thomson J. R., Drolet F., and Viňals J. (1996), Fluid physics in a fluctuating acceleration environment, Proc. 3rd Microgravity Fluid Physics Conf., NASA Conf. Publications 3338, 429–434.
Thomson, M. M. (1965), Theoretical Hydrodynamics, New York, MacMillan.Google Scholar
Thoroddsen, S. T. and Mahadevan, L. (1997), Experimental study of coating flows in a partially-filled horizontally rotating cylinder, Experiments in Fluids 23(1), 1–13.CrossRefGoogle Scholar
Timokha A. N. (1992), Behavior of the free surface of a fluid in a vibrating bounded vessel, Akad. Nauk. Ukraine Inst. Mat. 22, 46 pages.
Timokha, A. N. (1997), The effect of transverse vibrations of the container on the free surface of a liquid, Tekh. Mekh. 5, 33–41.Google Scholar
Ting, C. L. and Perlin, M. (1995), Boundary conditions of the contact-line at a vertically oscillating plate: an experimental investigation, J. Fluid. Mech. 295, 263–300.CrossRefGoogle Scholar
Tokuda, N. and Sakurai, N. (1994), Sloshing analysis method using exciting FEM structure analysis codes, Trans. JSME C 60(572), 1217–1222 (in Japanese).CrossRefGoogle Scholar
Tome, M. F., Castelo, A., Murakami, J., Cuminato, J. A.Minghim, R., Oliveira, M. C. F., Mangiavacchi, N., and Mckee, S. (2000), Numerical simulation of axisymmetric free surface flows, J. Comput. Phys. 157, 441–472.CrossRefGoogle Scholar
Tondl, A. (1965), Some Problems of Rotor Dynamics, London, Chapman and Hall.Google Scholar
Tong P. (1966), Liquid motion in an elastic container, Ph.D. dissertation, Caltech.
Tong, P. (1967), Liquid motion in a circular cylindrical container with a flexible bottom, AIAA J. 5(10), 1842–1848.CrossRefGoogle Scholar
Tong P. and Fung Y. C. (1965), The effect of wall elasticity and surface tension on the forced oscillations of a liquid in a cylindrical container, Paper 11 in Fluid Mechanics and Heat Transfer Under Low Gravity, Cohan, H and Rogers, H., eds., Lockheed Missiles and Space Company A. D. 633580.Google Scholar
Toole, L. E. and Hastings, L. J. (1968), Behavior of a sloshing liquid subjected to a sudden reduction in axial acceleration, AIAA/Aerospace Corp. Symp. Low Gravity Propellant Orientation and Expulsion, Los Angeles, 1–17.Google Scholar
Toorani, M. H. and Lakis, A. A. (2001), Dynamic analysis of anisotropic cylindrical shells containing flowing fluid, ASME J. Presure Vess. Tech. 123, 454–460.CrossRefGoogle Scholar
Toorani, M. H., and Lakis, A. A. (2003), Dynamic behavior of axisymmetric and beam-like anisotropic cylindrical shells conveying fluid, J. Sound Vib. 259(2), 265–298.CrossRefGoogle Scholar
Topliss M. E. (1994), Water wave impact on structures, Ph.D. thesis, School of Mathematics, University of Bristol.
Townsond, A. A. (1976), The Structure of Turbulent Shear Flow, Cambridge, Cambridge University Press.Google Scholar
Trembath N. W. (1957), Fluid sloshing in tanks of arbitrary shape, R-GM-45, 3–378, STL 28 August.
Triol, J. (1965), Study of the breathing modes of a cylindrical container for cryogenic fluid (in French), J. Mec. 4(2), 133–150.Google Scholar
Tritton, D. (1986a), Chaos in the swing of a pendulum, New Scientist 24, 37–40.Google Scholar
Tritton, D. J. (1986b), Ordered and chaotic motion of a forced spherical pendulum, Eur. J. Phys. 7, 162–169.CrossRefGoogle Scholar
Troesch B. A. (1957), Pendulum analogy, Space Tech. Lab. Memo. GM 42.4–4.
Troesch B. A. (1960), Free oscillations of a fluid in a container, in Boundary Problems in Differential Equations, (RE Langner, , ed.), Madison, University of Wisconsin Press, 279–299.Google Scholar
Troesch, B. A. (1967), Fluid motion in a shallow trapezoidal container, SIAM J. Appl. Math. 15(3), 627–637.CrossRefGoogle Scholar
Troesch, B. A. (1970), An isoperimetric problem for sloshing in a shallow convex, Zeit. Ang. Math. Phys. (ZAMP) 21(4), 501–513.CrossRefGoogle Scholar
Troesch, B. A. and Troesch, H. R. (1972), A remark on the sloshing frequencies for a half-space, Z. Angew. Math. Phys. 23, 703–711.CrossRefGoogle Scholar
Trotsenko, V. A. (1967), Free oscillations of a liquid in a cylinder with annular ribs, Prikl. Mekh. 3(12), 73–77.Google Scholar
Troung, T. D., Semercigil, S. E., and Turan Ö, F. (2003), Experiments for control of structural oscillations using free and restricted sloshing waves, J. Sound Vib. 264, 235–244.CrossRefGoogle Scholar
Tsai, W. T. and Yue, D. K. P. (1996), Computation of nonlinear free surface flows, Annu. Rev. Fluid Mech. 28, 249–265.CrossRefGoogle Scholar
Tsai, W. T., Yue, D. K. P., and Yip, K. M. K. (1990), Resonantly excited regular and chaotic motions in a rectangular wave tank, J. Fluid Mech. 216, 343–380.CrossRefGoogle Scholar
Tsui, T. Y. and Small, N. C. (1968), Hydroelastic oscillations of a liquid surface in an annular circular cylindrical tank with flexible bottom, J. Spacecraft Rock. 5(2), 202–206.Google Scholar
Tsukimori, K., Liu, W. K., and Uras, R. A. (1991), Dynamic buckling analysis of liquid-filled shells with imperfections, Fluid–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 223, 71–80.Google Scholar
Tufillaro, N. B., Ramshankar, R., and Gollub, J. P. (1989), Order-disorder transition in capillary ripples, Phys. Rev. Lett. 62, 422.CrossRefGoogle ScholarPubMed
Ueda, T., Nakagaki, R., and Koshida, K. (1992), Suppression of wind-induced vibration by dynamic dampers in tower-like structure, J. Wind Eng. Ind. Aerodyn. 41/44, 1907–1918.CrossRefGoogle Scholar
Ulitin, G. M. (1986), The dynamic stability of a cylindrical shell filled with a liquid to different levels, Teor. Prikl. Mekh. 17, 93–98.Google Scholar
Umeki, M. (1991), Faraday resonance in rectangular geometry, J. Fluid Mech. 227, 161–192.CrossRefGoogle Scholar
Umeki, M. and Kambe, T. (1989), Nonlinear dynamics and chaos in parametrically excited surface waves, J. Phys. Soc. Japan 58, 140–154.CrossRefGoogle Scholar
Unruh, J. F., Kana, D. D., Dodge, F. T., and Fey, T. A. (1986), Digital data analysis techniques for extraction of slosh model parameters, J. Spacecraft Rock. 23(3,4), 171–177.CrossRefGoogle Scholar
Uras R. A. (1989), Dynamic stability of fluid-filled shells, Proc. AIAA/ASME/ASCE/ AHS/ASC 30th Struct. Struct. Dyn. Materials Conf., Mobile, Alabama, Paper 89–1207–CP, 447–453.
Uras, R. A. (1995), Sloshing analysis of viscous liquid storage tanks, Fluid-Sloshing and Fluid–Structure Interaction, ASME Pressure Vess. Piping Conf., PVP- 314, 63–72.Google Scholar
Uras, R. A. and Liu, W. K. (1990), Dynamic buckling of liquid-filled shells under horizontal excitation, J. Sound Vib. 141(3), 389–408.CrossRefGoogle Scholar
Uras, R. A., Liu, W. K., and Chen, Y. J. (1990), Study of the influence of imperfections on the dynamic stability of tanks, Flow–Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 47–54.Google Scholar
Ursell, F. (1952), Edge waves on a sloping beach, Proc. Royal Soc. London A 214, 79–97.CrossRefGoogle Scholar
Ushima, S. (1998), Three-dimensional arbitrary Lagrangian–Eulerian numerical prediction method for nonlinear free surface oscillations, Int. J. Numer. Methods Fluids 26, 605–623.3.0.CO;2-W>CrossRefGoogle Scholar
Utsumi, M. (1988), Liquid sloshing in an axi-symmetric container in low-gravity environments, Trans. JSME C 54(505), 2041–2050 (in Japanese).CrossRefGoogle Scholar
Utsumi M. (1989), The meniscus and sloshing of a liquid in an axi-symmetric container at low-gravity, in Sloshing and Fluid Structure Vibration (Ma, D. C., Tani, J., Chen, S. S., and Liu, W. K., eds.), PVP- 157, 103–113, New York, ASME. (Also JSME Intl. J. III 33(3), 346–356, 1990).Google Scholar
Utsumi, M. (1995), Liquid sloshing in an axisymmetric container in low-gravity environments (2nd Report, Forced vibration analysis), Trans. JSME C 61(585), 1784–1791.CrossRefGoogle Scholar
Utsumi, M. (1997), Position of propellant in teardrop tank systems, J. Spacecraft Rock. 34(6), 799–804.CrossRefGoogle Scholar
Utsumi, M. (1998), Low-gravity propellant slosh analysis using spherical coordinates, J. Fluid Struct. 12(1), 57–83.CrossRefGoogle Scholar
Utsumi, M., Kimura, K., and Sakata, M. (1983), Nonstationary responses of an elastic rectangular container with an internal liquid to a random base excitation, Trans. JSME C 49(446), 1670–1680 (in Japanese).CrossRefGoogle Scholar
Utsumi, M., Kimura, K., and Sakata, M. (1984), Stochastic response analysis of an elastic rectangular container with an internal liquid to simulated seismic excitation, J. Sound Vib. 96(1), 83–99.CrossRefGoogle Scholar
Utsumi, M., Kimura, K., and Sakata, M. (1986), Non-stationary vibration of an elastic circular cylindrical liquid storage tank to a simulated earthquake excitation with two-directional horizontal components, Trans. JSME C 52(473), 279–287 (in Japanese).CrossRefGoogle Scholar
Utsumi, M., Kimura, K., and Sakata, M. (1987), The nonstationary random vibration of an elastic circular cylindrical liquid storage tank in simulated earthquake excitation (straightforward analysis of tank wall deformation), JSME Int. J. III 30(261), 467–475.CrossRefGoogle Scholar
Utsumi, M. and Kondo, H. (1987), Liquid sloshing in a spherical container at low-gravity environments (1st Report, Static configuration of liquid surface), Trans. JSME C 53(492), 1683–1690.CrossRefGoogle Scholar
Van Daalen E. F. G, Kleefsman K. M. T, Gerrits J., Luth H. R., and Veldman A. E. P (2000), Anit-roll tank simulations with a volume of fluid (VoF) based Navier–Stokes solver, Symp. Naval Hydrodynamics, Val de Rueil, September.
Van Daalen E. F. G, Van Doeveren A. G., Driessen P. C. M, and Visser C. (1999), Two-dimensional free surface anti-roll simulations with a volume of fluid based NavierStokes solver, Report No. 15306–1–OE, Maritime Research Inst., the Netherlands, October.
Bosch, J. J. and Vugts, J. H. (1964), Some notes on the performance of free surface tanks as passive anti-rolling devices, The Report of the Shipbuilding Laboratory No 119, Technological University of Delft, Delft, 3–52.Google Scholar
Bosch, J. J. and Vugts, J. H. (1966), On roll damping by free-surface tanks, Transactions of the Inst. Naval Architecture 69, 345–361.Google Scholar
Vanden-Broeck, J. M. (1984), Nonlinear gravity-capillary standing waves in water of arbitrary uniform depth, J. Fluid Mech. 139, 97–104.CrossRefGoogle Scholar
Dorn, W. G. (1966), Boundary dissipation of oscillating waves, J. Fluid Mech. 24, 769–779.CrossRefGoogle Scholar
Erp, F. C. (1969), Oscillation problems with a water tower, Ingenieur 81(42), 148–152 (in Dutch).Google Scholar
Van Schoor M. C. and Crawley E. F. (1992), The nonlinear forced response characteristics of contained fluids in microgravity, ASME WAM Symp. Fluid Mechanics Phenomena in Microgravity, AMD- 154/FED- 142, 145–160. Also in J. Spacecraft Rock. 32(3), 521–532, 1995.
Van Schoor M. C., Peterson L. D., and Crawley E. F. (1990), The coupled nonlinear dynamic characteristics of contained fluids in zero gravity, Proc. 31st AIAA/ASME/ASCE/AHS Struct. Struct. Dyn. Materials Conf., Longbeach, CA.
Sciver, S. W. (1986), Helium Cryogenics, New York, Plenum Press.CrossRefGoogle Scholar
Varadan T. K., Prathap G., and Ramani H. V. (1989), Nonlinear free flexural vibration of thin circular cylindrical shells, AIAA J. 27, 1303–1304.
Vasta, J., Giddings, A. J., Taplin, A., and Stillwell, J. J. (1961), Roll stabilization by means of passive tanks, Trans. SNAME 69, 411–460.Google Scholar
Velarde M. and Nepomnyashchy A. A. (2001), Interfacial patterns and waves, in Physics of Fluids in Microgravity, Monti, R, ed., London, Taylor & Francis, 126–148.Google Scholar
Veldman, A. E. P. and Vogels, M. E. S. (1984), Axi-symmetric liquid sloshing under low gravity conditions, Acta Astron. 11, 641–649.CrossRefGoogle Scholar
Veletsos, A. S. (1974), Seismic effects in flexible liquid storage tanks, Proc. 5th World Conf. Earthquake Eng.1, Rome, Italy, 630–639.Google Scholar
Veletsos, A. S. and Kumar, A. (1984), Dynamic response of vertically excited liquid storage tanks, Proc. 8th World Conf. Earthquake Eng., San Francisco, VII, 453–459.Google Scholar
Veletsos, A. S. and Shivakumar, P. (1993), Sloshing response of layered liquids in rigid tanks, Earthquake Eng. Struct. Dyn. 22, 801–821.CrossRefGoogle Scholar
Veletsos, A. S. and Tang, Y. (1986), Dynamics of vertically excited liquid storage tanks, ASCE J. Struct. Eng. 112(6), 1228–1246.CrossRefGoogle Scholar
Veletsos, A. S., and Tang, Y. (1990), Soil–structure interaction effects for laterally excited liquid storage tanks, Earthquake Engg. and Struct. Dyn. 19, 473–496.CrossRefGoogle Scholar
Veletsos A. S. and Turner J. W. (1979), Dynamics of out-of-round liquid storage tanks, Proc. 3rd EMD Special Conf., Austin, 471–474.
Veletsos A. S. and Yang J. Y. (1977), Earthquake response of liquid storage tanks, advances in civil eng. through eng. mech., Proc. Ann. ASCE EMD Specialty Conf., Raleigh, NC, 1–24.
Velten, R., Schwabe, D., and Scharmann, A. (1991), The periodic instability of thermocapillary convection in cylindrical liquid, Physics of FluidsA 3(2), 267–279.CrossRefGoogle Scholar
Venediktov, B. L. and Shibanov, R. A. (1986), Self-excitation of low-frequency vibrations in a liquid due to the high-frequency vibrations of a vessel, in The Dynamics of Spacecraft and Extraterrestrial Investigations, Moscow, Mashinostroyniya, 215–227.Google Scholar
Verhagen, J. H. G. and WijnGaarden, L. V. (1965), Nonlinear oscillations of fluid in a container, J. Fluid Mech. 22(4), 737–751.CrossRefGoogle Scholar
Verma, G. R. and Keller, J. B. (1962), Three-dimensional standing surface waves of finite amplitude, Phys. Fluids 5(1), 52–56.CrossRefGoogle Scholar
Victorov, E. D. (1965), Computation of the damping factor for free oscillations of a viscous liquid in a cylindrical vessel, J. Appl. Mech. Tech. Phys. (PMTF) 2, 138–146.Google Scholar
Viecelli, J. A. (1969), A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique, J. Comput. Phys. 4, 543–551.CrossRefGoogle Scholar
Viring, J. C., Berman, A. S., and Sethna, P. R. (1988), On three-dimensional nonlinear subharmonic resonance surface waves in a fluid, part ii: experiment, J. Appl. Mech. 55, 220–224.CrossRef
Viviani, A., Golia, C., and Cioffi, M. (1997), Magnetic effects on nonlinear Marangoni flow in plane liquid bridge, Acta Astron. 41(2), 113–120.CrossRefGoogle Scholar
Vladimirov, V. A. (1981), Parametric resonance in a stratified liquid, Zh. Prikl. Mekh. Tekh. Fiz. 6, 168–174.Google Scholar
Vladimirov, V. A. and Ilin, K. I. (1999), On the stability of the dynamerl system: rigid body + inviscid fluid, J. Fluid Mech. 386, 43–75.CrossRefGoogle Scholar
Vlasov, V. Z. (1949), The General Theory of Shells and Its Application in Engineering, Moscow, Gostekhizdat (in Russian).Google Scholar
Volfson, D. and Viňals, J. (2001), Flow induced by a randomly vibrating boundary, J. Fluid Mech. 432, 387–408.Google Scholar
Vogel, T. I. (1982), Asymmetric unbounded liquid bridges, Ann. Scuola Norm. Super. Pisa. Cl. Sci. 9, 433–442.Google Scholar
Vollman, J., Breu, R., and Dual, J. (1997), High-resolution analysis of the complex spectrum in a cylindrical shell containing a viscoelastic medium, part II: Experimental results versus theory, J. Acoust. Soc. Amer. 102(2), 909–920.CrossRefGoogle Scholar
Vollman, J. and Dual, J. (1997), High-resolution analysis of the complex spectrum in a cylindrical shell containing a viscoelastic medium, part I: Theory and numerical results, J. Acoust. Soc. Amer. 102(2), 896–908.CrossRefGoogle Scholar
Vol'mir, A. S. (1972), Nonlinear Dynamics of Plates and Shells, Moscow, Nauka (in Russian).Google Scholar
Vol'mir, A. S. (1979), Shells in Fluid Flow: Hydroelastic Problems, Moscow, Nauka (in Russian).Google Scholar
Von Karman T. (1921), Z. Angew. Math. Mech. (ZAMM)1, 233.
Vrane, D. R. and Smith, M. K. (1994), The behavior of unsteady thermocapillary flows, NASA 2nd Microgravity Fluid Physics Conf., Cleveland, Ohio, 51–56.Google Scholar
Vreeburg, J. P. B. (1986), Observations on behavior of liquid in weightlessness, Proc. Symp. Fluid Dynamics and Space, Rhode-St-Genese, Belgium, ESA SP-265, 129–136.Google Scholar
Vreeburg J. P. B. (1992), Free motion of an unsupported tank that is partially filled with liquid, in Microgravity Fluid Dynamics, Rath, H. R., ed., Springer, 519–528.Google Scholar
Vreeburg J. P. B. (1999), Simulation of liquid dynamics onboard slosh sat FLEVO, Proc. STAIF-99, Albuqurque N. M., Am. Inst. Phys. CP 458, 836–841.
Vreeburg J. P. B. and Veldman A. E. P (2001), Transient and sloshing in an unsupported container, in Physics of Fluids in Microgravity, Monti, R., ed., London, Taylor & Frances, 293–321.Google Scholar
Vreeburg, J. P. B. and Vogels, M. E. S. (1986), Liquid motion in partially filled containers: preliminary results of the D-1 mission, Adv. Space Res. 6(5), 85–92.CrossRefGoogle Scholar
Vugts, J. H. (1969), A comparative study on four different passive roll damping tanks – Part I. I., Int. Shipbldg Prog. 16, 212–223.CrossRefGoogle Scholar
Wagner, C., Müller, H. W., and Knorr, K. (1999), Faraday waves on a viscoelastic liquid, Phys. Rev. Lett. 83, 308–311.CrossRefGoogle Scholar
Wagner, H. (1932), Über stoss – und gleitvorgänge an der oberfläche von flüssigkeiten, Z. Angew. Math. Mech. (ZAMM) 12, 193–215.CrossRefGoogle Scholar
Wakahara, T. (1993), Wind-induced response of TLD-structure coupled system considering nonlinearity of liquid motion, Shimizu Tech. Res. Bull. 12, 41–52.Google Scholar
Wakahara, T., Ohyama, T., and Fujii, K. (1991), Wind response analysis of LTD structure system considering nonlinearity of liquid motion, J. Struct. Construct. Eng. AIJ 426, 79–88.Google Scholar
Wakahara, T., Ohyama, T., and Fujii, K. (1992), Suppression of wind-induced vibration of a tall building using tuned liquid damper, J. Wind Eng. Ind. Aerodyn. 41/44, 1895–1906.CrossRefGoogle Scholar
Walter, H. U., (Ed) (1987), Fluid Sciences and Materials Sciences in Space, New York, Springer-Verlag.CrossRefGoogle Scholar
Wang, M. and Hung, T. (1986), A nonlinear hydrodynamic analysis on Pine Flat dam, ASCEAdvan. Aerodynamics, Fluid Mech. and Hydraulics, 629–636.Google Scholar
Wang, W., Wang, X., Wang, J., and Wei, R. (1996), Dynamical behavior of parametrically excited solitary waves in Faraday's water trough experiment, Phys. Lett. A 219, 74–78.CrossRefGoogle Scholar
Wanschura, M., Shevtsova, V. M., Kuhlmann, H. C., and Rath, H. J. (1995), Convective instability mechanism in thermocapillary liquid bridges, Phys. Fluids 5, 912–925.CrossRefGoogle Scholar
Ward, C. A., Yee, D., Sasges, M. R., Pataki, L., and Stangam, D. (1992), Configurationally stability of fluid systems in near-weightlessness, ASME WAM Symp. Fluid Mechanics Phenomena in Microgravity, D. A. Siginer and M. M. Weislogel, AMD- 154/FED- 142, 111–123.Google Scholar
Warnitchai, P. and Pinkaew, T. (1998), Modeling of liquid sloshing in rectangular tanks with flow-damping devices, Engrg Structures 20, 593–600.CrossRefGoogle Scholar
Washizu K., Nakayama T., Ikegawa M., and Tanaka Y. (1977), Application of the finite element method to some free surface fluid problems, in Finite Elements in Water Resources, Gray, W. G., et al., eds., London, Pentech Press, 4.247–4.266.Google Scholar
Washizu K., Nakayama T., Ikegawa M., Tanaka Y., and Adachi T. (1984), Some finite element techniques for the analysis of nonlinear sloshing problems, Chapter 17, 357–376, in Finite Elements in Fluids, 5, Gallagher, R. H., Oden, J. T., Zienkiewicz, O. C., and Kawahara, M., eds., New York, John Wiley.Google Scholar
Watanabe, S. (1969), Methods of vibration reductions, Proc. Japan Naval Arch. Soc. Symp., 156–179.Google Scholar
Waterhouse, D. D. (1994), Resonant sloshing near a critical depth, J. Fluid Mech. 281, 313–318.CrossRefGoogle Scholar
Watkins R. D. (1991), Tests on various arrangements of liquid column vibration absorbers, Research Rept. R639, School of Civil and Mining Eng., University of Sidney.
Watkins, R. D. and Hitchcock, P. A. (1992), Tests on various liquid column vibration absorbers, Proc. Int. Conf. Motion and Vibration Control, Yokohama, Japan, 1130–1134.Google Scholar
Watts, P. (1883), On a method of reducing the rolling of ship at sea, Transactions of the Inst. Naval Architecture 1, 165.Google Scholar
Watts, P. (1885), The use of water chambers for reducing the rolling of ships at sea, Transactions of the Inst. Naval Architecture 2, 30.Google Scholar
Webster, W. C. (1967), Analysis of the control of activated anti-roll tanks, Soc. Naval Archit. Marine Engrg (SNAME) Transactions 75, 296–331.Google Scholar
Webster, W. C., Dalzell, J. F., and Barr, R. A. (1988), Prediction and measurement of the performance of free flooding ship anti-rolling tanks, Soc. Naval Archit. Marine Engrg (SNAME) Transactions 96, 333–364.Google Scholar
Wedemeyer, E. H. (1964), The unsteady flow within a spinning cylinder, J. Fluid Mech. 20(3), 383–399.CrossRefGoogle Scholar
Wedemeyer E. H. and Reese J. R. (1953), Moment of inertia and damping of fluid in tanks undergoing pitching oscillations, NACA RM L 53E, June.
Wehausen J. V. and Laitone E. V. (1960), Surface waves, Article in Encyclopedia of Physics, Flügge, S, ed., IX, p. 446, Berlin, Springer-Verlag.Google Scholar
Weihs, D. and Dodge, F. T. (1991), Liquid motions in nonaxisymmetric, partially filled containers rotating at zero gravity, J. Spacecraft Rock. 28(4), 425–432.CrossRefGoogle Scholar
Weiqiu, C., Ding, H. J., Guo, Y. M., and Yang, Q. D. (1997), Free vibrations of fluid-filled orthotropic cylindrical shells, ASCE. J. Eng. Mech. 123, 1130–1133.CrossRefGoogle Scholar
Weisend, J. G. II (1998), Handbook of Cryogenic Engineering, Philadelphia, PA, Taylor & Frances.Google Scholar
Weislogel, M. (1991), Stability of capillary surfaces, ASME Forum on Microgravity Flows, 1st ASME/JSME Fluids Eng. Conf. FED- 111, 11–13.Google Scholar
Weiss H. J. and Rogge T. R. (1965), A nonlinear analysis for sloshing forces and moments on a cylindrical tank, NASA CR-221.
Welch J. E., Harlow F. H., Shannon J. P., and Daly B. J. (1965), The MAC method: a computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces, Los Alamos Sci. Lab. Rept. LA-3425.
Welt, F. and Modi, V. J. (1989a), Vibration damping through liquid sloshing, part I: A non-linear analysis, Proc. ASME Design Technical Conf. Fluid Structure Interaction H0508E.Google Scholar
Welt, F., and Modi, V. J. (1989b), Vibration damping through liquid sloshing, part II: experimental results, Proc. ASME Design Technical Conf. Fluid Structure Interaction H0508E.Google Scholar
Welt, F., and Modi, V. J. (1992a), Vibration damping through sloshing, part I: A nonlinear analysis, ASME J. Vib. and Acoust. 114(1), 10–16.CrossRefGoogle Scholar
Welt, F., and Modi, V. J. (1992b), Vibration damping through sloshing, part II: Experimental results, ASME J. Vib. and Acoust. 114(1), 17–23.CrossRefGoogle Scholar
Weng, C. (1992), Roll motion stabilization for small fishing vessels, Ph.D. thesis, Memorial University of Newfoundland, Canada.Google Scholar
Werner P. W. and Coldwell J. T. (1961), Experimental evaluation of analytical models for the inertias and natural frequencies of fuel sloshing in a circular cylindrical tanks, NASA TN D-865.
Werner, P. W. and Sundquist, K. J. (1949), On hydrodynamic earthquake effects, Trans. Amer. Geophys. Union 30(5), 636–657.CrossRefGoogle Scholar
Westera, M. T., Binks, D. J., and DeWater, W. V. (2003), Patterns of Faraday waves, J. Fluid Mech. 496, 1–32.CrossRefGoogle Scholar
Westergaard, H. M. (1933), Water pressures on dams during earthquakes, Trans. ASCE 98, 418–472.Google Scholar
White W. F. (1964), LOX tank four-ring slosh baffle test, DSV-IVB, Rept. SM-46762, Douglas Aircraft Co., Inc.
Whitham, G. B. (1967), Variational methods and applications to water waves, Proc. Royal Soc. A 299(1456), 6–25.CrossRefGoogle Scholar
Whittakar, E. T. and Watson, G. N. (1962), A Course of Modern Analysis, 4th edn. Cambridge, Cambridge University Press.Google Scholar
Whittenburry, C. G., Huber, E. A., and Newell, G. S. (1959), Instrument for measuring water waves, Rev. Sci. Instrum. 30(8), 674–676.CrossRefGoogle Scholar
Wichterle, K. and Wichterle, O. (1970), Surface shapes of fluids in rotating vessels, Appl. Sci. Res. 22(2), 150–158.CrossRefGoogle Scholar
Wilde P. and Vanyo J. (1993), Spin-up and spin-over transients of liquid fuels: Flow visualization and energy dissipation, AIAA Paper 93–1184.
Williams, A. N. and Wang, X. (1992), Nonlinear transient wave motions in base-excited rectangular tanks, J. Fluid Struct. 6(4), 471–491.CrossRefGoogle Scholar
Williams, R. E. and Hussey, R. G. (1972), Oscillating cylinders and Stokes' paradox, Phys. of Fluids 15(2), 2083–2088.CrossRefGoogle Scholar
Wilner, L. B., Morrison, W. L., and Brown, A. E. (1960), An instrument for measuring liquid and slosh in the tanks of a liquid propellant rocket, J. Proc. IRE 48(4), 786–788.CrossRefGoogle Scholar
Wilson, E. L. and Khalvati, M. (1983), Finite elements for the dynamic analysis of fluid–solid systems, Int. J. Num. Methods Eng. 19, 1657–1668.CrossRefGoogle Scholar
Winch D. M. (1962), An investigation of the liquid level at the wall of a spinning tank, NASA TN D-1536.
Wohlen R. L., Park A. C., and Warner D. M. (1975), Finite element solution of low bond number sloshing, Martin-Marietta, Denver, Co., Contractor Rep. MCR–75–139, Contract NAS8–29946.
Wohlsbruck, R. (1985), Stability of a rotor whose cavity has an arbitrary meridian and is partially filled with fluid, ASME J. Vib. Acoust. Stress and Reliab. in Des. 4, 440–445.CrossRefGoogle Scholar
Wolf, I. A. (1968), Whirl dynamics of a rotor partially filled with liquid, ASME J. Appl. Mech. 35, 676–682.CrossRefGoogle Scholar
Won, A. Y. J., Pires, J. A., and Haroun, M. A. (1996), Stochastic seismic performance evaluation of tuned liquid column dampers, ASCE J. Eng. Mech. 118(1), 20–39.Google Scholar
Won, A. Y. J., Pires, J. A., and Haroun, M. A. (1997), Performance assessment of tuned liquid column dampers under random seismic loading, Int. J. Nonlin. Mech. 32(4), 745–758.CrossRefGoogle Scholar
Wood, D. J., Beregrine, D. H., and Bruce, T. (2000), Study of wave impact against a wall with pressure-impulse theory: Part 1, Trapped air, J. Waterway, Port, Coastal Ocean Engrg 126, 182–190.CrossRefGoogle Scholar
Woodward J. H. (1966), Fluid Motion in a Circular Tank of Sector-Annular Cross-Section when Subjected to Longitudinal Excitation, Ph.D. dissertation, Georgia Tech.
Woodward, J. H. and Bauer, H. F. 1970, Fluid behavior in a longitudinally excited cylindrical tank of arbitrary sector-annular cross section, AIAA J. 8(4), 713–719.Google Scholar
Wright J. H. (1999), Numerical simulations of two-dimensional Faraday oscillations, Doctoral dissertation, Department of Mathematics, UCA, Berkeley.
Wright, J. H., Yon, S., and Pozrikidis, C. (2000), Numerical studies of two-dimensional Faraday oscillations of inviscid fluids, J. Fluid Mech. 402, 1–32.CrossRefGoogle Scholar
Wu, G. X., Ma, Q. W., and Taylor, R. E. (1998), Numerical simulation of sloshing waves in a 3-D tank based on a finite element method, Appl Ocean Res. 20(6), 337–355.CrossRefGoogle Scholar
Wu, J., Keolian, R., and Rudnick, I. (1984), Observation of a non-propagating hydrodynamic soliton, Phys. Rev. Lett. 52, 1421–1424.CrossRefGoogle Scholar
Wu, J. S. and Hsieh, M. (2002), Study on the dynamic characteristic of a U-type tuned liquid damper, Ocean Eng. 29, 689–709.CrossRefGoogle Scholar
Wu, W. F. and Lin, Y. K. (1984), Cumulant neglect closure for nonlinear oscillators under random parametric excitation, Int. J. Nonlin. Mech. 19, 349–362.CrossRefGoogle Scholar
Wuest, W. (1976), Fluid dynamics of a floating zone, Proc. 2nd European Symp. Material Sciences in Space, Frascati, Italy ESA-SP-114, 455–465.Google Scholar
Wunderlich, W. and Seiler, C. (2000), Nonlinear treatment of liquid-filled storage tanks under earthquake excitation by a quasistatic approach, Comput. Struct. 78, 385–395.CrossRefGoogle Scholar
Xu, J. J. and Davis, S. H. (1983), Liquid bridges with thermocapillary, Phys. Fluids 26, 2880–2886.CrossRefGoogle Scholar
Xu, Y. L., Kwok, K. C. S., and Samali, B. (1992b), The effect of tuned mass dampers and liquid dampers on cross-wind response of tall/slender structures, J. Wind Eng. Indust. Aerodyn. 10, 33–54.CrossRefGoogle Scholar
Xu, Y. L., Samali, B., and Kwok, K. C. S. (1992a), Control of along wind response of structures by mass and liquid dampers, ASCE J. Eng. Mech. 118, 20–39.CrossRefGoogle Scholar
Xue S. D. (1999), Torsional vibration control of suspension bridge decks using tuned liquid column dampers, Ph.D. thesis, The Hong Kong Polytechnic University, Hong Kong.
Xue, S. D., Ko, J. M., and Xu, Y. L. (2000), Tuned liquid column damper for suppressing pitching motion of structures, Engrg. Struct. 23, 1538–1551.CrossRefGoogle Scholar
Yakubovich, V. A. and Starzhinskii, V. M. (1975), Linear Differential Equations with Periodic Coefficients, (two volumes), New York, John Wiley & Sons, Israel Program for Scientific Translations.Google Scholar
Yalla, S. and Kareem, A. (1999), Modeling tuned liquid dampers as sloshing-slamming dampers, in Wind Engineering into the 21st Century, Rotterdam, Netherlands, Balkema Press.Google Scholar
Yalla, S. and Kareem, A. (2000), Optimal absorber parameters for tuned liquid column dampers, ASCE J. Struct. Eng. 126, 906–915.CrossRefGoogle Scholar
Yalla, S. and Kareem, A. (2001a), Semi-active tuned liquid column dampers for vibration control of structures, Eng. Struct. 23, 1469–1479.CrossRefGoogle Scholar
Yalla, S. and Kareem, A. (2001b), Beat phenomenon in combined structure–liquid damper systems, Eng. Struct. 23, 622–630.CrossRefGoogle Scholar
Yalla, S., Kareem, A., and Kantor, J. C. (1998), Semi-active control strategies for tuned liquid column dampers to reduce wind and seismic response of structures, Proc. 2nd World Conf. Structural Control, Kyoto, Japan, John Wiley, 559–568.Google Scholar
Yam, Y., Mingori, D. L., and Halsmer, D. M. (1997), Stability of a spinning axisymmetric rocket with dissipative internal mass motion, J. Guid. Contr. Dyn. 20(2), 306–313.CrossRefGoogle Scholar
Yamada, Y., Iemura, H., Noda, S. and Shimada, S. (1987), Long-period response spectra from nonlinear sloshing analysis under horizontal and vertical excitations, Natural Disaster Sci. 9(2), 39–54.Google Scholar
Yamaguchi, A. (1996), SPLASH program for three-dimensional fluid dynamics with free surface boundaries, Comput. Mech. 18(1), 12–23.CrossRefGoogle Scholar
Yamaguchi, S. and Shinkai, A. (1995), An advanced adaptive control system for activated anti-rolling tank, Int. J. Offshore Polar Engrg 5(1), 17–22.Google Scholar
Yamaki, N., Tani, J., and Yamaji, T. (1984), Free vibration of a clamped–clamped circular cylindrical shell partially filled with liquid, J. Sound Vib. 94, 531–550.Google Scholar
Yamamoto, K. and Kawahara, M. (1999), Structural oscillation control using tuned liquid damper, Comput. Struct. 71, 435–446.CrossRefGoogle Scholar
Yamamoto, S., Kataoka, F., Shioda, S., Ashitani, Y. (1995), Study on impact pressure due to sloshing in midsized LNG, Int. J. Offshore Polar Engrg., 5(1), 10–23.Google Scholar
Yamamoto, Y. (1981), A variational principle for a solid–water interaction system, Int. J. Eng. Sci. 19(12), 1757–1763.CrossRefGoogle Scholar
Yamamoto, T. and Basoglu, B. (1995), Optimal geometry for fuel solution sloshing based on the boundary perturbation theory, Annals Nuc. Energy 22(10), 649–658.CrossRefGoogle Scholar
Yang, J. Y. (1976), Dynamic Behavior of Fluid–Tank Systems, Ph.D. disentation, Rice University, Texas.Google Scholar
Yangyi O. and Jingliang M. (1985), Dynamic interaction of elastic container with fluid, Proc. ASME 10th Biennial Conf. Mech. Vib. Noise, Cincinnati, OH, Symp. Fluid–Structure Interaction and Aerodynamic Damping, 225–230.
Yarymovich M. I. (1959), Forced large amplitude surface waves, D.Sc. thesis, Columbia University.
Yasiro, T., Kawashima, H., and Sakurai, A. (1987), A study on nonlinear sloshing of pool type LMFBR coolant, Proc. 9th Int. Conf. Struct. Mech. in Reactor Tech., North-Holland, K, 459–464.Google Scholar
Ye, Z. and Birk, A. M. (1994), Fluid pressure in partially liquid-filled horizontal cylindrical vessels undergoing impact acceleration, J. Pressure Vessel Tech. 116, 449–459.CrossRefGoogle Scholar
Yeh G. C. K. (1965), Liquid sloshing in a moving tank with time dependent discontinuous boundary, Developments in Mechanics, 3 (2), (Dynamics and Fluids), T. C. Huang and M. N. Johnson, Jr, eds., 265–276.
Yeh, G. C. K. (1966), Sloshing of a liquid in connected cylindrical tanks owing to u-tube free oscillations, J. Acoust. Soc. Amer. 40(4), 807–812.CrossRefGoogle Scholar
Yeh, G. C. K. (1967), Free and forced oscillations of a liquid in an axi-symmetric tank at low gravity environments, J. Appl. Mech. 34(1), 23–28.CrossRef
Yeh G. C. K. and Graham D. J. (1969), Draining of a liquid from a transversely moving cylindrical tank, AIAA Paper 679.
Yeh, H. H. (1986), Experimental study of standing edge waves, J. Fluid Mech. 168, 291–304.CrossRefGoogle Scholar
Yepishev L. V. (1959), On dynamic instability of spinning rotor incompletely filled with liquid, Scientific Reports of High School, Service Mechanical Engineering and Instrument-Making Industry 2, 66–79.
Yi W. and Natsiavas S. (1990), Seismic response of anchored fluid-filled tanks using finite elements, in Flow-Structure Vibration and Sloshing, ASME Pressure Vess. Piping Conf., PVP- 191, 25–30.
Yih, C. S. (1968a), Instability of unsteady flows or configurations, part I: Instability of a horizontal liquid layer on an oscillatory plane, J. Fluid Mech. 31(4), 737–751.CrossRefGoogle Scholar
Yih, C. S. (1968b), Stability of a horizontal fluid interface in a periodic vertical electric field, Phys. Fluid 11(7), 1447–1449.CrossRefGoogle Scholar
Yilmaz, O., Incecik, A., and Han, J. C. (2003), Simulation of green water flow on deck using nonlinear dam breaking theory, Ocean Engrg. 30, 601–610.CrossRefGoogle Scholar
Yin, L., Wang, B., Ma, X., and Zou, J. (1999), The nonlinear sloshing of liquid in tank with pitching, ASME J. Appl. Mech. 66, 1032–1034.CrossRefGoogle Scholar
Yaussef, K. S., Mook, D. T., Nayfeh, A. H., and Ragab, S. A. (2003), Roll stabilization by passive anti-roll tanks using an improved model of tank–liquid motion, J. Vibration and Control 9, 839–862.Google Scholar
Youssef, K. S., Ragab, S. A., Nayfeh, A. H., and Mook, D. T. (2002), Design of passive anti-roll tanks for roll stabilization in the nonlinear range, Ocean Engrg. 29, 177–192.CrossRefGoogle Scholar
Yoneda, M. (1989), A practical study of tuned liquid damper with application to Sakitama bridge, JAWE J. Wind Eng. 41, 105–106.Google Scholar
Yoneda, M., Chaiseri, P., Maeda, K., and Fujino, Y. (1991), A practical study on tuned liquid damper with application to cable-stayed bridge tower, JSCE J. Struct. Eng. 37A, 1019–1028.Google Scholar
Yoshida, S. and Miyoshi, T. (1987), Seismic response analysis of a multi-walled coaxial cylindrical tank, Trans. JSME 53, 1670–1675 (in Japanese).CrossRefGoogle Scholar
Yoshida, S. and Miyoshi, T. (1989), Seismic response analysis of a multi-walled coaxial cylindrical tank under vertical excitation, Trans. JSME 55, 1638–1643 (in Japanese).CrossRefGoogle Scholar
Yoshimatsu, K. and Funakoshi, M. (1998), Primary patterns in Faraday surface waves at high aspect ratio, J. Phys. Soc. Japan 67, 451–461.CrossRefGoogle Scholar
Young, G. W. and Davis, S. H. (1987), A plate oscillating across a liquid interface: effect of contact-angle hysteresis, J. Fluid Mech. 174, 327–356.CrossRefGoogle Scholar
Young, P. G. (2002), A parametric study on the axisymmetric modes of vibration of multi-layered spherical shells with liquid cores of relevance to head impact modeling, J. Sound Vib. 256(4), 665–680.CrossRefGoogle Scholar
Young-Sun, C. and Chung-Bang, Y. (1996), Sloshing characteristics in rectangular tanks with a submerged block, Comp. Struct. 61(3), 401–413.Google Scholar
Young, T. (1805), An essay on the cohesion of fluids, Trans. Royal Soc. London 95, 65–87.CrossRefGoogle Scholar
Yu, B., Nash, W. A., and Kirchhoff, R. H. (1987), A nonlinear analysis of sloshing in circular cylindrical tanks by perturbation method, Proc. ASME Symp. Fluid–Structure Vibration and Liquid Sloshing, PVP- 128, 63–68.Google Scholar
Yu J. (1997), Nonlinear characteristics of tuned liquid dampers, Ph.D. dissertation, University of Washington.
Yu, Y. Y. (1955), Free vibration of thin cylindrical shells, ASME J. Appl. Mech. 22, 547–552.Google Scholar
Yuan, J. and Dickinson, S. M. (1992), On the use of artificial springs in the study of the free vibrations of systems comprised of straight and curved beams, J. Sound Vib. 153, 203–216.CrossRefGoogle Scholar
Yuan, J. and Dickinson, S. M. (1994), The free vibration of circularly cylindrical shell and plate systems, J. Sound Vib. 175, 241–263.CrossRefGoogle Scholar
Zakharov, V. E. (1968), Stability of periodic waves on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 2, 190–194.Google Scholar
Zang, Y., Street, R. L., and Koseff, J. R. (1994), A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates, J. Comput. Phys. 114, 18–39.CrossRefGoogle Scholar
Zebib, A., Homsy, G. M., and Meiburg, E. (1985), High Marangoni number convection in a square cavity, Phys. Fluids 28(12), 3467–3476.CrossRefGoogle Scholar
Zelazo, R. E. and Melcher, J. R. (1969), Dynamics and stability of ferrofluids surface interaction, J. Fluid Mech. 39, 1–24.CrossRefGoogle Scholar
Zenkevich, V. B. (1965), Behavior of a fluid in conditions of weightlessness (in Russian), Teplofiz Vysokikh Temperatur 2(2), 230–237, Ref Zh Mekh 2, Rev. 2B364.Google Scholar
Zhang, S., Yue, D. K. P., and Tanizawa, K. (1996), Simulation of plunging wave impact on a vertical wall, J. Fluid Mech. 327, 221–254.CrossRefGoogle Scholar
Zhang, W., Casademunt, J., and Vincaronals, J. (1993), Study of the parametric oscillator driven by narrow-band noise to model the response of a fluid surface to time-dependent accelerations, Phys. Fluids A 5(12) 3147–3161.CrossRefGoogle Scholar
Zhang, W., Tang, J., and Tao, M. D. (1996), Dynamic stability of a rotor filled or partially filled with liquid, ASME J. Appl. Mech. 63, 101–105.CrossRefGoogle Scholar
Zhang, W. and Viňals, J. (1997a), Pattern formation in weakly damped parametric surface waves, J. Fluid Mech. 336, 301–330.CrossRefGoogle Scholar
Zhang, W. and Viňals, J. (1997b), Pattern formation in weakly damped parametric surface waves driven by two frequency components, J. Fluid Mech. 341, 225–244.CrossRefGoogle Scholar
Zhang, Y. L., Reese, J. M., and Gorman, D. G. (2001), A comparative study of axisymmetric finite elements for the vibration of cylindrical shells conveying fluids, Int. J. Num. Methods Engrg. 54, 89–110.CrossRefGoogle Scholar
Zhang, Y. L., Reese, J. M., and Gorman, D. G. (2002), Initially tensioned orthotropic cylindrical shells conveying fluid: a vibration analysis, J. Fluid Struct. 16(1), 53–70.CrossRefGoogle Scholar
Zhao, Z. and Fujino, Y. (1993), Numerical simulation and experimental study of deeper-water TLD in the presence of screens, J. Struct Eng., Tokyo 39, 699–711.Google Scholar
Zhong, Z., Falzarano, J., and Fithen, R. (1998), Numberical study of U-tube passive anti-rolling tanks, Proc. 8th Int. Offshore and Polar Engrg. Conf., Montreal, 3, 504–512.Google Scholar
Zhou, D. and Cheung, Y. K. (2000), Vibration of vertical rectangular plate in contact with water on one side, Earthquake Eng. Struct. Dyn. 29, 693–710.3.0.CO;2-V>CrossRefGoogle Scholar
Zhou, Q. and Graebel, W. P. (1990), Axisymmetric draining of a cylindrical tank with a free surface, J. FluidMech. 221, 511–532.CrossRefGoogle Scholar
Zhou Z., deKat J. O., and Buchner B. (1999), A nonlinear 3-D approach to simulate green water dynamics on deck, Proc. 7th Int. Symp. Numerical Ship Hydrodynamics, Rept. No 82000-NSH 7, May, France.
Zhu, F. (1991), Orthogonality of wet modes in coupled vibration, J. Sound Vib. 146, 439–448.Google Scholar
Zhu, Q., Liu, Y., and Yue, D. K. P. (2003), Three-dimensional instability of standing waves, J. Fluid Mech. 496, 213–242.CrossRefGoogle Scholar
Zhu, R. Z. (1984), Stability theory of steady rotation of a gyroscope with liquid-filled cavity, Scientia Sinica A 27, 624–633.Google Scholar
Zhu, R. Z. (1988), Spectrum analysis and potential theory of operators in state space for stability of spinning solid body with liquid-filled cavity on plane, Scientia Sinica A 31, 687–693.Google Scholar
Zhu, R. Z. (1992), Distribution, stability, bifurcations and catastrophe of steady rotation of a symmetric heavy gyroscope with viscous-liquid-filled cavity, Int. J. Nonlinear Mech. 27, 477–488.Google Scholar
Zhu W. Q. and Huang T. C. (1984), Dynamic instability of liquid free surface in a container with elastic bottom under combined harmonic and stochastic longitudinal excitation, in Random Vibrations, ASME WAM Proc AMD- 65, 195–220.
Zhukovskii, N. Y. (1936), On the motion of a rigid body having cavities filled with a homogeneous liquid, Collected Works3, Moscow, Nauka.Google Scholar
Zhukovskii, N. Y. (1948), Concerning the motion of a solid body containing cavities filled with a homogeneous liquid, Collected Works, 1, Moscow, Gostekhizdat.Google Scholar
Zhukovskii, N. Y. (1949), The motion of a rigid body having cavities filled with a homogeneous liquid, in Collected Papers, 2, Moscow, Gostekhizdat, 152–309.Google Scholar
Zhuravlev, V. F. (1977), Investigation of certain vibro-impact systems by the method of non-smooth transformation, Prikl. Mat. Mekh. (PMM) 49, 572–578.Google Scholar
Zhuravlev, V. F. (1986), The application of monomial lie groups to the problem of asymmetrically integrating equations of mechanics, Prikl. Mat. Meks. (PMM) 50, 346–352.Google Scholar
Zhuravlev, V. F. (1992), Oscillations shape control in resonant systems, J. Appl. Math. Mech. (PMM) 56(5), 725–735.CrossRefGoogle Scholar
Zhuravlev, V. F. and Klimov, D. M. (1988), Applied Methods in Vibration Theory, Moscow, Nauka.Google Scholar
Zienkiewicz, O. C. and Bettes, P. (1978), Fluid–structure dynamic interaction and wave forces: an introduction to numerical treatment, Int. J. Numer. Methods Engrg. 13, 1–16.CrossRefGoogle Scholar
Zinchenko, A. Z., Rother, M. A., and Davis, R. H. (1999), Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm, J. Fluid Mech. 391, 249–292.CrossRefGoogle Scholar
Zui, H. and Shinke, T. (1985), Seismic deformation analysis of unanchored cylindrical tanks accompanied with the uplift of the bottom plate, Proc. Struct. Eng. Symp. 31A.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Raouf A. Ibrahim, Wayne State University, Michigan
  • Book: Liquid Sloshing Dynamics
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536656.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Raouf A. Ibrahim, Wayne State University, Michigan
  • Book: Liquid Sloshing Dynamics
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536656.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Raouf A. Ibrahim, Wayne State University, Michigan
  • Book: Liquid Sloshing Dynamics
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536656.015
Available formats
×