Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T12:42:18.990Z Has data issue: false hasContentIssue false

3 - Imaging Liquid Processes Using Open Cells in the TEM, SEM, and Beyond

from Part I - Technique

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stokes, D. J., Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM) (Chichester: John Wiley & Sons, 2008).Google Scholar
Janiak, C., Ionic liquids for the synthesis and stabilization of metal nanoparticles. Z. Naturforsch., 68B (2013), 10591089.Google Scholar
Wang, C. M., Xu, W., Liu, J., et al., In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res., 25 (2010), 15411547.Google Scholar
Kuwabata, S., Kongkanand, A., Oyamatsu, D. and Torimoto, T., Observation of ionic liquid by scanning electron microscope. Chem. Lett., 35 (2006), 600603.CrossRefGoogle Scholar
Xia, Y., Xiong, Y. J., Lim, B. and Skrabalak, S. E., Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed., 48 (2009), 60103.CrossRefGoogle ScholarPubMed
Law, M., Goldberger, J. and Yang, P. D., Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res., 34 (2004), 83122.CrossRefGoogle Scholar
Klimov, V. I., Mikhailovsky, A. A., Xu, S. et al., Optical gain and stimulated emission in nanocrystal quantum dots. Science, 290 (2000), 314317.Google Scholar
Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A. and ElSayed, M. A., Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 272 (1996), 19241926.Google Scholar
Lauhon, L. J., Gudiksen, M. S., Wang, C. L. and Lieber, C. M., Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 420 (2002), 5761.CrossRefGoogle ScholarPubMed
Yin, Y. and Alivisatos, A. P., Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 437 (2005), 664670.Google Scholar
Tian, N., Zhou, Z. Y., Sun, S. G., Ding, Y. and Wang, Z. L., Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 316 (2007), 732735.Google Scholar
Liao, H. G., Jiang, Y. X., Zhou, Z. Y., Chen, S. P. and Sun, S. G., Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew. Chem. Int. Ed., 47 (2008), 91009103.Google Scholar
Bogner, A., Thollet, G., Basset, D., Jouneau, P. H. and Gauthier, C., Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy, 104 (2005), 290301.Google Scholar
Bogner, A., Jouneau, P. H., Thollet, G., Basset, D. and Gauthier, C.. A history of scanning electron microscopy developments: towards “Wet-STEM” imaging. Micron, 38 (2007), 390401.CrossRefGoogle ScholarPubMed
Barkay, Z., Wettability study using transmitted electrons in environmental scanning electron microscope. Appl. Phys. Lett., 96 (2010), 183109.CrossRefGoogle Scholar
Yoshida, K., Bright, A.N., Ward, M.R. et al., Dynamic wet-ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere. Nanotechnology, 25 (2014), 425702.CrossRefGoogle Scholar
Sakaue, M., Shiono, M., Konomi, M. et al., New preparation method using ionic liquid for fast and reliable SEM observation of biological specimens. Microsc. Microanal., 20 (Suppl. 3) (2014), 10121013.Google Scholar
Brodusch, N., Demers, H. and Gauvin, R., Ionic liquid used for charge compensation for high resolution imaging and analysis in the FE-SEM. Microsc. Microanal., 20 (Suppl 3) (2014), 3839.Google Scholar
Tarascon, J. M. and Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001), 359367.CrossRefGoogle ScholarPubMed
Yamamoto, K., Iriyama, Y., Asaka, T. et al., Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. Int. Ed., 49 (2010), 44144417.Google Scholar
Brazier, A., Dupont, L., Dantras-Laffont, L. et al., First cross-section observation of an all solid-state lithium-ion “nanobattery” by transmission electron microscopy. Chem.Mater., 20 (2008), 23522359.Google Scholar
Wang, C. M., Xu, W., Liu, J. et al., In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett., 11 (2011), 18741880.Google Scholar
Lux, S. F., Schmuck, M., Rupp, B. et al., Mixtures of ionic liquids in combination with graphite electrodes: the role of Li-salt. ECS Trans., 16 (2009), 4549.Google Scholar
Lewandowski, A. and Świderska-Mocek, A., Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide as an electrolyte. J. Power Sources, 171 (2007), 938943.Google Scholar
Huang, J. Y., Zhong, L., Wang, C. M. et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 330 (2010), 15151520.Google Scholar
Zhang, L. Q., Liu, X. H., Liu, Y. et al., Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. ACS Nano, 5 (2011), 48004809.Google Scholar
Wang, C. M., In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: a retrospective and perspective view. J. Mater. Res., 30 (2015), 326339.CrossRefGoogle Scholar
Liu, X. H., Zheng, H., Zhong, L. et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett., 11 (2011), 33123318.CrossRefGoogle ScholarPubMed
Wang, F., Yu, H.-C., Chen, M.-H. et al., Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun., 3 (2012), 1201.Google Scholar
Islam, M. M., and Bredow, T., Density functional theory study for the stability and ionic conductivity of Li2O surfaces. J. Phys. Chem. C, 113 (2009), 672676.Google Scholar
Gu, M., Kushima, A., Shao, Y. et al., Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett., 13 (2013), 52035211.Google Scholar
Liu, X. H., Zhang, L. Q., Zhong, L. et al., Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett., 11 (2011), 22512258.Google Scholar
Wang, C.-M., Li, X., Wang, Z. et al., In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett., 12 (2012), 16241632.CrossRefGoogle ScholarPubMed
Liu, X. H., Huang, S., Picraux, S. T. et al., Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: an in situ transmission electron microscopy study. Nano Lett., 11 (2011), 39913997.Google Scholar
Liu, Y., Hudak, N. S., Huber, D. L. et al., In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation–delithiation cycles. Nano Lett., 11 (2011), 41884194.CrossRefGoogle ScholarPubMed
Kushima, A., Liu, X. H., Zhu, G. et al., Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett., 11 (2011), 45354541.Google Scholar
Liu, X. H., Wang, J. W., Liu, Y. et al., In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons. Carbon, 50 (2012), 38363844.CrossRefGoogle Scholar
Liu, Y., Zheng, H., Liu, X. H. et al., Lithiation-induced embrittlement of multiwalled carbon nanotubes. ACS Nano, 5 (2011), 72457253.Google Scholar
Whittingham, M. S., Materials challenges facing electrical energy storage. MRS Bull., 33 (2008), 411419.Google Scholar
Wu, H., Chan, G., Choi, J. W. et al., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol., 7 (2012), 310315.CrossRefGoogle ScholarPubMed
Christensen, J. and Newman, J., Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem., 10 (2006), 293319.Google Scholar
McDowell, M. T., Ryu, I., Lee, S. W. et al., Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater., 24 (2012), 60346041.CrossRefGoogle ScholarPubMed
Liu, X. H., Zhong, L., Huang, S. et al., Size dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 6 (2012), 15221531.Google Scholar
Gu, M., Wang, Z. G., Connell, J. G. et al., Electronic origin for the phase transition from amorphous LixSi to crystalline Li15Si4. ACS Nano, 7 (2013), 63036309.Google Scholar
Gu, M., Parent, L. R., Mehdi, B. L. et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.CrossRefGoogle ScholarPubMed
Wang, C. M., Liao, H. G., Ross, F. M., Observation of materials processes in liquids by electron microscopy. MRS Bull., 40 (2015), 4652.Google Scholar
Zheng, H., Xiao, D. D., Li, X. et al., New insight in understanding oxygen reduction and evolution in solid-state lithium–oxygen batteries using an in situ environmental scanning electron microscope. Nano Lett., 14 (2014), 42454249.Google Scholar
Miller, D. J., Proff, C., Wen, J. G., Abraham, D. P., Bareño, J., Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy. Adv. Energy Mater., 3 (2013), 10981103.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×