Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-10T10:17:27.987Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 November 2016

Kuo-Nan Liou
Affiliation:
University of California, Los Angeles
Ping Yang
Affiliation:
Texas A & M University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Light Scattering by Ice Crystals
Fundamentals and Applications
, pp. 392 - 426
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, T. P., Liou, K. N., Valero, F., and Pfister, L. (1988). Heating rates in tropical anvils. J. Atmos. Sci., 45, 1606–23.2.0.CO;2>CrossRefGoogle Scholar
Airy, G. B. (1838). On the intensity of light in the neighbourhood of a caustic. Trans. Cambridge Philos. Soc., 6, 397403.Google Scholar
Alberta, T. L., Charlock, T. P., Whitlock, C. H., et al. (1994). Climate observations with GEWEX Surface Radiation Budget Project data. In Proceedings of the Eighth Conference on Atmospheric Radiation. Nashville, TN: American Meteorological Society, pp. 22–4.Google Scholar
Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–30.CrossRefGoogle ScholarPubMed
Alexander, R. C. and Mobley, R. L. (1975). Monthly average sea-surface temperatures and ice-pack limits on a 1° global grid. Mon. Wea. Rev., 104, 143–8.Google Scholar
Ambartzumian, V. A. (1936). The effect of absorption lines on the radiative equilibrium of the outer layers of the stars. Publ. Observ. Astronom. Univ. Leningrad, 6, 718.Google Scholar
Aoki, T., Aoki, T., Fukabori, M., et al. (2000). Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface. J. Geophys. Res., 105, 10219–36.CrossRefGoogle Scholar
Appleman, H. (1953). The formation of exhaust condensation trails by jet aircraft. Bull. Am. Meteorol. Soc., 34, 1420.CrossRefGoogle Scholar
Arakawa, A. (2000). A personal perspective on the early years of general circulation modeling at UCLA. In General Circulation Model Development: Past, Present, and Future – Proceedings of a Symposium in Honor of Professor Akio Arakawa, ed. Randall, D. A.. New York: Elsevier, pp. 165.Google Scholar
Arfken, G. (1985). Mathematical Methods for Physicists, 3rd edn. Orlando: Academic Press.Google Scholar
Arking, A. and Grossman, K. (1972). The influence of line shape and band structure on temperatures in planetary atmospheres. J. Atmos. Sci., 29, 937–49.2.0.CO;2>CrossRefGoogle Scholar
Asano, S. and Sato, M. (1980). Light scattering by randomly oriented spheroidal particles. Appl. Opt., 19, 962–74.CrossRefGoogle ScholarPubMed
Asano, S. and Yamamoto, G. (1975). Light scattering by a spheroidal particle. Appl. Opt., 14, 2949.CrossRefGoogle ScholarPubMed
Auer, A. H. and Veal, D. L. (1970). The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919–26.2.0.CO;2>CrossRefGoogle Scholar
Auriol, F., Gayet, J.-F., Febvre, G., et al. (2001). In situ observation of cirrus scattering phase functions with 22° and 46° halos: Cloud field study on 19 February 1998. J. Atmos. Sci., 58, 3376–90.2.0.CO;2>CrossRefGoogle Scholar
Babinet, J. (1837). Mémoires d'optique météorologique. C. R. Acad. Sci., 4, 638–48.Google Scholar
Bailey, M. and Hallett, J. (2004). Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61, 514–44.2.0.CO;2>CrossRefGoogle Scholar
Bailey, M. and Hallett, J. (2009). A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888–99.CrossRefGoogle Scholar
Baran, A. J. (2003). Simulation of infrared scattering from ice aggregates by use of a size-shape distribution of circular ice cylinders. Appl. Opt., 42, 2811–18.CrossRefGoogle ScholarPubMed
Baran, A. J. (2012). From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 4569.CrossRefGoogle Scholar
Baran, A. J. and Francis, P. N. (2004). On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements. Quart. J. Roy. Meteorol. Soc., 130, 763–78.CrossRefGoogle Scholar
Barber, P. W. and Hill, S. C. (1990). Light Scattering by Particles: Computational Methods. Singapore: World Scientific.CrossRefGoogle Scholar
Barber, P. W. and Yeh, C. (1975). Scattering of Electromagnetic Waves by Arbitrarily Shaped Dielectric Bodies. Appl. Opt., 14, 2864–72.CrossRefGoogle ScholarPubMed
Barkey, B. and Liou, K. N. (2001). Polar nephelometer for light-scattering measurements of ice crystals. Opt. Lett., 26, 232–4.CrossRefGoogle ScholarPubMed
Barkey, B. and Liou, K. N. (2006). Laboratory measurements of spectral reflection from ice clouds of various habits. Appl. Opt., 45, 5716–24.CrossRefGoogle ScholarPubMed
Barkey, B. and Liou, K. N. (2008). Visible and near infrared reflectances measured from laboratory ice clouds. Appl. Opt., 47, 2533–40.CrossRefGoogle ScholarPubMed
Barkey, B., Liou, K. N., Takano, Y., Gellerman, W., and Sokolsky, P. (1999). An analog light scattering experiment of hexagonal icelike particles. Part II: Experimental and theoretical results. J. Atmos. Sci., 56, 613–25.Google Scholar
Barkey, B., Bailey, M., Liou, K. N., and Hallett, J. (2002). Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber. Appl. Opt., 41, 5792–6.CrossRefGoogle Scholar
Baum, B. A., Kratz, D. P., Yang, P., et al. (2000a). Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models. J. Geophys. Res., 105, 11767–80.Google Scholar
Baum, B. A., Soulen, P. F., Strabala, K. I., et al. (2000b). Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase. J. Geophys. Res., 105, 11781–92.Google Scholar
Baum, B. A., Heymsfield, A. J., Yang, P., and Bedka, S. T. (2005a). Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteorol., 44, 1885–95, doi:10.1175/JAM2308.1.Google Scholar
Baum, B. A., Yang, P., Heymsfield, A. J., et al. (2005b). Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteorol., 44, 1896–911, doi:10.1175/JAM2309.1.Google Scholar
Baum, B. A., Yang, P., Nasiri, S. L., et al. (2007). Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm−1. J. Appl. Meteorol. Clim., 46, 423–34.CrossRefGoogle Scholar
Bedka, S. T., Minnis, P., Duda, D. P., Chee, T. L., and Palikonda, R. (2013). Properties of linear contrails in the northern hemisphere derived from 2006 Aqua MODIS observations. Geophys. Res. Lett., 40, 772–7.CrossRefGoogle Scholar
Bentley, W. A. and Humphreys, W. J. (1931). Snow Crystals. New York: Dover Publi-cations.Google Scholar
Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114, 185200.CrossRefGoogle Scholar
Bergeron, T. (1935). On the physics of clouds and precipitation. Proc. Fifth Assembly U.G.G.I. Lisbon, 2, 156–78.Google Scholar
Bertie, J. E., Labbé, H. J., and Whalley, E. (1969). Absorptivity of ice I in the range of 4000–30 cm−1. J. Chem. Phys., 50, 4501–20.CrossRefGoogle Scholar
Bi, L. and Yang, P. (2014). Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 138, 1735.CrossRefGoogle Scholar
Bi, L. and Yang, P. (2015). Impact of calcification on the inherent optical properties of Emiliania huxleyi coccoliths and coccolithophores. J. Quant. Spectrosc. Radiat. Transfer, 155, 1021.CrossRefGoogle Scholar
Bi, L., Yang, P., Kattawar, G. W., Hu, Y., and Baum, B. A. (2011a). Diffraction and external reflection by dielectric faceted particles. J. Quant. Spectrosc. Radiat. Transfer, 112, 163–73.CrossRefGoogle Scholar
Bi, L., Yang, P., Kattawar, G. W., Hu, Y., and Baum, B. A. (2011b). Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method. J. Quant. Spectrosc. Radiat. Transfer, 112, 1492508.CrossRefGoogle Scholar
Bi, L., Yang, P., Kattawar, G. W., and Mishchenko, M. I. (2013). Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large non-spherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transfer, 116, 169–83.CrossRefGoogle Scholar
Bishop, S. E. (1884). The remarkable sunsets. Nature, 29, 259–60.CrossRefGoogle Scholar
Blaschak, J. G. and Kriegsmann, G. A. (1988). A comparative study of absorbing boundary conditions. J. Comput. Phys., 77, 109–39.CrossRefGoogle Scholar
Blau, H. H., Espinola, R. P., and Reifenstein, E. C. (1966). Near infrared scattering by sunlit terrestrial clouds. Appl. Opt., 5, 555–64.CrossRefGoogle ScholarPubMed
Böhm, H. P. (1989). A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 2419–27.2.0.CO;2>CrossRefGoogle Scholar
Bohren, C. F. and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons.Google Scholar
Born, M. and Wolf, M. (1975). Principles of Optics, 5th edn. Oxford: Pergamon Press.Google Scholar
Borovoi, A. G. and Grishin, I. A. (2003). Scattering matrices for large ice crystal particles. J. Opt. Soc. Am. A, 20, 2071–80.CrossRefGoogle ScholarPubMed
Borovoi, A., Grishin, I., Naats, E., and Oppel, U. (2002). Light backscattering by hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 72, 403–17.CrossRefGoogle Scholar
Boudala, F. S., Isaac, G. A., Fu, Q., and Cober, S. G. (2002). Parameterization of effective ice particle size for high-latitude clouds. Int. J. Climatol., 22, 1267–84.CrossRefGoogle Scholar
Braham, R. R. (1974). Cloud physics of urban weather modification: A preliminary report. Bull. Am. Meteorol. Soc., 55, 100–6.Google Scholar
Brasseur, G. P. and Gupta, M. (2010). Impact of aviation on climate: Research priorities. Bull. Am. Meteorol. Soc., 91, 461–3.CrossRefGoogle Scholar
Brasseur, G. P., Gupta, M., Anderson, B. E., et al. (2016). Impact of aviation on climate: FAA's Aviation Climate Change Research Initiative (ACCRI) Phase II. Bull. Amer. Meteorol. Soc., 97, 561–83.CrossRefGoogle Scholar
Bretherton, C. S. and Hartmann, D. L. (2009). Large-scale controls on cloudiness. In Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, ed. Heintzenberg, J. and Charlson, R. J.. Strüngmann Forum Reports, 2. Cambridge, MA: MIT Press, pp. 217–34.Google Scholar
Brewer, A. W. (1949). Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere. Quart. J. Roy. Meteorol. Soc., 75, 351–63.CrossRefGoogle Scholar
Britt, C. L. (1989). Solution of electromagnetic scattering problems using time domain techniques. IEEE Trans. Antennas Propag., 37, 1181–92.CrossRefGoogle Scholar
Burkhardt, U. and Kärcher, B. (2011). Global radiative forcing from contrail cirrus. Nature Clim. Change, 1, 54–8.CrossRefGoogle Scholar
Byers, H. R. (1965). Elements of Cloud Physics. Chicago: University of Chicago Press.Google Scholar
C.-Labonnote, L., Brogniez, G., Doutriaux-Boucher, M., et al. (2000). Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals: Comparison with in-situ and ADEOS-POLDER measurements. Geophys. Res. Lett., 27, 113–16.CrossRefGoogle Scholar
C.-Labonnote, L., Brogniez, G., Buriez, J.-C., and Doutriaux-Boucher, M. (2001). Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements. J. Geophys. Res., 106, 139–53.CrossRefGoogle Scholar
Cai, Q. and Liou, K. N. (1982). Polarized light scattering by hexagonal ice crystals: Theory. Appl. Opt., 21, 3569–80.CrossRefGoogle ScholarPubMed
Cairns, B., Russell, E. E., and Travis, L. D. (1999). The research scanning polarimeter: Calibration and ground-based measurements. Proc. SPIE, 3754, 186–96.CrossRefGoogle Scholar
Chamberlain, J. W. and Hunten, D. M. (1987). Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry. New York: Academic Press.Google Scholar
Chandrasekhar, S. (1950). Radiative Transfer. London: Oxford University Press.Google Scholar
Chang, F.-L. and Li, Z. (2002). Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements. J. Geophys. Res., 107, 4257.CrossRefGoogle Scholar
Chang, P. C., Walker, J. G., and Hopcraft, K. I. (2005). Ray tracing in absorbing media. J. Quant. Spectrosc. Radiat. Transfer, 96, 327–41.CrossRefGoogle Scholar
Changnon, S. A. (1981). Midwestern cloud, sunshine and temperature trends since 1901: Possible evidence of jet contrail effects. J. Appl. Meteorol., 20, 496508.2.0.CO;2>CrossRefGoogle Scholar
Charlock, T. P. (1982). Mid-latitude model analysis of solar radiation, the upper layers of the sea, and seasonal climate. J. Geophy. Res., 87, 8923–30.CrossRefGoogle Scholar
Charlock, T. P. and Alberta, T. L. (1996). The CERES/ARM/GEWEX Experiment (CAGEX) for the retrieval of radiative fluxes with satellite data. Bull. Am. Meteorol. Soc., 77, 2673–83.2.0.CO;2>CrossRefGoogle Scholar
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655–61.CrossRefGoogle Scholar
Chen, C.-C. and Gettelman, A. (2013). Simulated radiative forcing from contrails and contrail cirrus. Atmos. Chem. Phys., 13, 12525–36.CrossRefGoogle Scholar
Chen, C.-C., Gettelman, A., Craig, C., Minnis, P., and Duda, D. P. (2012). Global contrail coverage simulated by CAM5 with the inventory of 2006 global aircraft emissions. J. Adv. Model. Earth Syst., 4, M04003.CrossRefGoogle Scholar
Chen, G., Yang, P., and Kattawar, G. W. (2008). Application of the pseudospectral time-domain method to the scattering of light by non-spherical particles. J. Opt. Soc. Am. A, 25, 785–90.CrossRefGoogle Scholar
Chen, J. P. and Lamb, D. (1994). Simulation of cloud microphysics and chemical processes using a multicomponent framework. Part I: Description of the microphysical model. J. Atmos. Sci., 51, 2613–30.2.0.CO;2>CrossRefGoogle Scholar
Chen, J. P., McFarquhar, G. M., Heymsfield, A. J., and Ramanathan, V. (1997). A modeling and observational study of the detailed microphysical structure of tropical cirrus anvils. J. Geophys. Res., 102, 6637–53.CrossRefGoogle Scholar
Chepfer, H., Brogniez, G., and Fouquart, Y. (1998). Cirrus clouds' microphysical properties deduced from POLDER observations. J. Quant. Spectrosc. Radiat. Transfer, 60, 375–90.CrossRefGoogle Scholar
Chepfer, H., Brogniez, G., Goloub, P., Bréon, F. M., and Flamant, P. H. (1999). Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1. J. Quant. Spectrosc. Radiat. Transfer, 63, 521–43.CrossRefGoogle Scholar
Chepfer, H., Goloub, P., Riedi, J., et al. (2001). Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1. J. Geophys. Res., 106, 7955–66.CrossRefGoogle Scholar
Chou, M.-D. and Arking, A. (1980). Computation of infrared cooling rates in the water vapor bands. J. Atmos. Sci., 37, 855–67.2.0.CO;2>CrossRefGoogle Scholar
Chou, M.-D., Lee, K.-T., Tsay, S.-C., and Fu, Q. (1999). Parameterization for cloud longwave scattering for use in atmospheric models. J. Climate, 12, 159–69.CrossRefGoogle Scholar
Chowdhary, J., Cairns, B., Mishchenko, M. I., et al. (2005). Retrieval of aerosol scattering and absorption properties from photopolarimetric observations over the ocean during the CLAMS experiment. J. Atmos. Sci., 62, 1093–117, doi:10.1175/JAS3389.1.CrossRefGoogle Scholar
Christiansen, C. (1884). Untersuchungen über die optischen Eigenschaften von fein vertheilten Körpern. Ann. Physik, 259, 298306.CrossRefGoogle Scholar
Christiansen, C. (1885), Untersuchungen über die optischen Eigenschaften von fein vertheilten Körpern. Ann. Physik, 260, 439–46.CrossRefGoogle Scholar
Chung, S., Ackerman, S., van Delst, P. F., and Menzel, W. P. (2000). Model calculations and interferometer measurements of ice-cloud characteristics. J. Appl. Meteorol., 39, 634–44.CrossRefGoogle Scholar
Chýlek, P., Ramaswamy, V., and Cheng, R. J. (1984). Effect of graphitic carbon on the albedo of clouds. J. Atmos. Sci., 41, 3076–84.2.0.CO;2>CrossRefGoogle Scholar
Clapp, M. L., Miller, R. E., and Worsnop, D. R. (1995). Frequency-dependent optical constants of water ice obtained directly from aerosol extinction spectra. J. Phys. Chem., 99, 6317–26.CrossRefGoogle Scholar
Clarisse, L., Hurtmans, D., Prata, A. J., et al. (2010). Retrieving radius, concentration, optical depth, and mass of different types of aerosols from high-resolution infrared nadir spectra. Appl. Opt., 49, 3713–22.CrossRefGoogle ScholarPubMed
Coakley, J. A. and Bretherton, F. P. (1982). Cloud cover from high-resolution scanner data: Detecting and allowing for partially filled fields of view. J. Geophys. Res., 87, 4917–32.CrossRefGoogle Scholar
Coakley, J. A.., Bernstein, R. L., and Durkee, P. A. (1987). Effect of ship-stack effluents on cloud reflectivity. Science, 237, 1020–2.CrossRefGoogle ScholarPubMed
Coffeen, D. L. (1979). Polarization and scattering characteristics in the atmospheres of Earth, Venus, and Jupiter. J. Opt. Soc. Am., 69, 1051–64.CrossRefGoogle Scholar
Coleman, R. F. and Liou, K. N. (1981). Light scattering by hexagonal ice crystals. J. Atmos. Sci., 38, 1260–71.2.0.CO;2>CrossRefGoogle Scholar
Comstock, J. M., Ackerman, T. P., and Mace, G. G. (2002). Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107, 4714.CrossRefGoogle Scholar
Conrath, B. J., Hanel, R. A., Kunde, V. G., and Prabhakara, C. (1970). The infrared interferometer experiment on Nimbus 3. J. Geophys. Res., 75, 5831–57.CrossRefGoogle Scholar
Corti, T., Luo, B. P., Fu, Q., Vömel, H., and Peter, T. (2006). The impact of cirrus clouds on tropical troposphere-to-stratosphere transport. Atmos. Chem. Phys., 6, 2539–47.CrossRefGoogle Scholar
Coulson, K. L. (1988). Polarization and Intensity of Light in the Atmosphere. Hampton, VA: A. Deepak Publishing.Google Scholar
Courant, R., Friedrichs, K., and Lewy, H. (1928). On the partial difference equations of mathematical physics. In AEC Research and Development Report, NYO-7689. New York: AEC Computing and Applied Mathematics Center, Courant Institute of Mathematical Sciences, pp. 176.Google Scholar
Cowley, L. and Schroeder, M. (2009). HaloSim3 ray tracing simulator. http://www.atoptics.co.uk/halosim.htm.Google Scholar
Cox, C. and Munk, W. (1954). Measurement of the roughness of the sea surface from photographs of the Sun's glitter. J. Opt. Soc. Am., 44, 838–50.CrossRefGoogle Scholar
Cox, S. K. and Griffith, K. T. (1979). Estimates of radiative divergence during phase III of the GARP Atlantic tropical experiment. Part I: Methodology. J. Atmos. Sci., 36, 576–85.Google Scholar
Cross, J. D. (1968). Study of the surface of ice with a scanning electron microscope. In Proceedings of the International Symposium on Physics of Ice, ed. Riehl, N., Bullemer, B. and Engelhardt, H.. Plattsburgh, NY: Plenum Press, pp. 8194.Google Scholar
Cross, J. D. (1969). Scanning electron microscopy of evaporating ice. Science, 164, 174–5.CrossRefGoogle ScholarPubMed
Curtis, A. R. (1952). Contribution to a discussion of “A statistical model for water vapor absorption,” by R. M. Goody. Quart. J. Roy. Meteorol. Soc., 78, 638–40.Google Scholar
Curtis, D. B., Rajaram, B., Toon, O. B., and Tolbert, M. A. (2005). Measurement of the temperature-dependent optical constants of water ice in the 15–200 µm range. Appl. Opt., 44, 4102–18.CrossRefGoogle Scholar
d'Almeida, G. A., Koepke, P., and Shettle, E. P. (1991). Atmospheric Aerosols: Global Climatology and Radiative Characteristics. Hampton, VA: A. Deepak Pub-lishing.Google Scholar
Danielsen, E. F. (1982). A dehydration mechanism for the stratosphere. Geophys. Res. Lett., 9, 605–8.CrossRefGoogle Scholar
Danielsen, E. F. (1993). In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones. J. Geophys. Res., 98, 8665–81.CrossRefGoogle Scholar
Davy, J. G. and Branton, D. (1970). Subliming ice surfaces: Freeze-etch electron microscopy. Science, 168, 1216–18.CrossRefGoogle ScholarPubMed
Deardorff, J. W. (1972). Theoretical expression for the counter gradient vertical heat flux. J. Geophys. Res., 77, 5900–4.CrossRefGoogle Scholar
Debye, P. (1909). Der Lichtdruck auf Kugeln von beliebigem Material. Ann. Physik., 335, 57136.CrossRefGoogle Scholar
Debye, P. (1915). Zerstreuung von Röntgenstrahlen. Ann. Phys., 351, 809–23.CrossRefGoogle Scholar
Del Genio, A. D., Kovari, W., Yao, M.-S., and Jonas, J. (2005). Cumulus microphysics and climate sensitivity. J. Climate, 18, 2376–87.CrossRefGoogle Scholar
Descartes, R. (1637). Discours de la Méthode. Leiden (Discourse on Method, 3rd edn. (1998), trans. Cress, D. A.. Indianapolis: Hackett Publishing Company).Google Scholar
Deschamps, P.-Y., Breon, F.-M., Leroy, M., et al. (1994). The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32, 598615.CrossRefGoogle Scholar
Dessler, A. E. (1998). A reexamination of the “stratospheric fountain” hypothesis. Geophys. Res. Lett., 25, 4165–8.CrossRefGoogle Scholar
Detwiler, A. and Ramaswamy, V. (1990) Radiative heating profiles in simple cirrus cloud systems. J. Atmos. Sci., 47, 2167–76.2.0.CO;2>CrossRefGoogle Scholar
DeVoe, H. (1964). Optical properties of molecular aggregates. I: Classical model of electronic absorption and refraction. J. Chem. Phys., 41, 393400.CrossRefGoogle Scholar
Dickinson, R. E. (1977). Cloud radiative feedbacks and parameterizations in 3-D climate models. Trans., Am. Geophys. Union, 58, 796.Google Scholar
Doi, T. (1832). Sekka Zusetsu (Illustrations of Snow Blossoms). [Reproduced in Kagaku, Nihon Zenshu, Koten series, ed. Saigusa Hiroto, 6, Tokyo 1946.]Google Scholar
Doi, T. (1839). Zoku Sekka Zusetsu (Supplement to Illustrations of Snow Blossoms). [Reproduced in Kagaku, Nihon Zenshu, Koten series, ed. Saigusa Hiroto, 6, Tokyo 1946.]Google Scholar
Doicu, A., Wriedt, T., and Eremin, Y. A. (2006). Light Scattering by Systems of Particles – Null-Field Method with Discrete Sources: Theory and Programs. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Dominé, F., Lauzier, T., Cabanes, A., et al. (2003). Snow metamorphism as revealed by scanning electron microscopy. Micros. Res. Tech., 62, 3348.CrossRefGoogle ScholarPubMed
Donner, L., Seman, C. J., Hemler, R. S., et al. (2001). A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14, 3444–63.2.0.CO;2>CrossRefGoogle Scholar
Dorman, J. L. and Sellers, P. J. (1989). A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteorol., 28, 833–55.2.0.CO;2>CrossRefGoogle Scholar
Draine, B. T. (1988). The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J., 333, 848–72.CrossRefGoogle Scholar
Draine, B. T. and Flatau, P. J. (1994). Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11, 1491–9.CrossRefGoogle Scholar
Duda, D. P., Minnis, P., Khlopenkov, K., Chee, T. L., and Boeke, R. (2013). Estimation of 2006 northern hemisphere contrail coverage using MODIS data. Geophys. Res. Lett., 40, 612–7.CrossRefGoogle Scholar
Dugin, V. P. and Mirumyants, S. O. (1976). The light scattering matrices of artificial crystalline clouds. Izv., Acad. Sci., USSR, Atmos. Oceanic Phys., 12, 988–91.Google Scholar
Dupertuis, M. A., Proctor, M., and Acklin, B. (1994). Generalization of complex Snell–Descartes and Fresnel laws. J. Opt. Soc. Am. A, 11, 1159–66.CrossRefGoogle Scholar
Ebert, E. E. and Curry, J. A. (1992). A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97, 3831–6.CrossRefGoogle Scholar
Eddington, A. S. (1916). On the radiative equilibrium of the stars. Mon. Not. Roy. Astron. Soc., 77, 1635.CrossRefGoogle Scholar
Edwards, J. M., Havemann, S., Thelen, J.-C., and Baran, A. J. (2007). A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83, 1935.CrossRefGoogle Scholar
Elsasser, W. M. (1938). Mean absorption and equivalent absorption coefficient of a band spectrum. Phys. Rev., 54, 126–9.CrossRefGoogle Scholar
Elsasser, W. M. (1942). Heat Transfer by Infrared Radiation in the Atmosphere. Harvard Meteorological Studies, 6. Cambridge, MA: Harvard University Press.Google Scholar
Findeisen, W. (1938). Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung. Meteorol. Zeitschr., 55, 121–33.Google Scholar
Flammer, C. (1957). Spheroidal Wave Functions. Stanford: Stanford University Press.Google Scholar
Fletcher, N. H. (1962). The Physics of Rainclouds. New York: Cambridge University Press.Google Scholar
Foot, J. S. (1988). Some observations of the optical properties of clouds. II: Cirrus. Quart. J. Roy. Meteorol. Soc., 114, 145–64.Google Scholar
Forster, P. M. and Shine, K. P. (2002). Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 1086.CrossRefGoogle Scholar
Forster, P. M., Ramaswamy, V., Artaxo, P., et al. (2007). Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M. M. B., and Miller, H. L.. Cambridge, UK: Cambridge University Press, pp. 129234.Google Scholar
Francis, P. N., Jones, A., Saunders, R. W., et al. (1994). An observational and theoretical study of the radiative properties of cirrus: Some results from ICE'89. Quart. J. Roy. Meteorol. Soc., 120, 809–48.CrossRefGoogle Scholar
Fraunhofer, J. (1821). Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben (New modification of light by the mutual influence and the diffraction of rays, and the laws thereof). Denkschriften der Königlichen Akademie der Wissenschaften zu München (Memoirs of the Royal Academy of Science in Munich), 8, 176.Google Scholar
Freeman, K. P. and Liou, K. N. (1979). Climatic effects of cirrus clouds. Adv. Geophys., 21, 231–87.CrossRefGoogle Scholar
Fresnel, A. J. (1819). Mémoire sur la diffraction de la lumière. In Oeuvres Complétes d'Augustin Fresnel, ed. Senarmont, H., Verdet, E., and Fresnel, L.. Paris: Chrochard, pp. 247382.Google Scholar
Freudenthaler, V., Homburg, F., and Jäger, H. (1996). Optical parameters of contrails from lidar measurements: Linear depolarization. Geophys. Res. Lett., 23, 3715–8.CrossRefGoogle Scholar
Friedl, R. R., Baughcum, S. L., Anderson, B. E., et al. (1997). Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Subsonic Technology Program, NASA Reference Publication 1400. 19972005.Google Scholar
Friedlander, S. K. (2000). Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd edn. New York: Oxford University Press.Google Scholar
Fritsch, K. (1853). On snowflake forms and temperature of precipitation. Sber. Akad. Wiss. Wien (Math-Natur. Kl.), 11, 492504.Google Scholar
Fu, Q. (1996). An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 2058–82.2.0.CO;2>CrossRefGoogle Scholar
Fu, Q. (2007). A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci., 64, 4140–50.CrossRefGoogle Scholar
Fu, Q. (2013). Bottom up in the tropics. Nature Clim. Change, 3, 957–8.CrossRefGoogle Scholar
Fu, Q. and Liou, K. N. (1992a). On the correlated k-distribution method for radiative transfer in non-homogeneous atmospheres. J. Atmos. Sci., 49, 2139–56.2.0.CO;2>CrossRefGoogle Scholar
Fu, Q. and Liou, K. N. (1992b). A three-parameter approximation for radiative transfer in non-homogeneous atmospheres: Application to the O3 9.6-µm band. J. Geophy. Res., 97, 13051–8.CrossRefGoogle Scholar
Fu, Q. and Liou, K. N. (1993). Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–25.2.0.CO;2>CrossRefGoogle Scholar
Fu, Q., Liou, K. N., Cribb, M. C., Charlock, T. P., and Grossman, A. (1997). Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54, 2799–812.2.0.CO;2>CrossRefGoogle Scholar
Fu, Q., Yang, P., and Sun, W. B. (1998). An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11, 2223–37.2.0.CO;2>CrossRefGoogle Scholar
Gagin, A. (1972). The effects of supersaturation on the ice crystal production by natural aerosols. J. Rech. Atmos., 6, 175–85.Google Scholar
Gans, R. (1925). Strahlungsdiagramme ultramikroskopischer Teilchen. Ann. Phys., 381, 2938.CrossRefGoogle Scholar
Gao, B.-C. and Kaufman, Y. J. (1995). Selection of the 1.375-µm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J. Atmos. Sci., 52, 4231–7.2.0.CO;2>CrossRefGoogle Scholar
Gao, B.-C., Goetz, A. F. H., and Wiscombe, W. J. (1993). Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 µm water vapor band. Geophys. Res. Lett., 20, 301–4.CrossRefGoogle Scholar
Gao, B.-C., Kaufman, Y. J., Tanre, D., and Li, R.-R. (2002a). Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38-µm and 1.24-µm channels. Geophys. Res. Lett., 29, 1890.CrossRefGoogle Scholar
Gao, B.-C., Yang, P., Han, W., Li, R.-R., and Wiscombe, W. J. (2002b). An algorithm using visible and 1.38-µm channels to retrieve cirrus cloud reflectances from aircraft and satellite data. IEEE Trans. Geosci. Remote Sens., 40, 1659–68.Google Scholar
Gao, B.-C., Yang, P., and Li, R.-R. (2003). Detection of high clouds in polar regions during the daytime using the MODIS 1.375-µm channel. IEEE Trans. Geosci. Remote Sens., 41, 474–81.Google Scholar
Gao, R. S., Fahey, D. W., Popp, P. J., et al. (2006). Measurements of relative humidity in a persistent contrail. Atmos. Envir., 40, 1590600.CrossRefGoogle Scholar
Gedney, S. D. (1996). An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Trans. Antennas Propag., 44, 1630–9.CrossRefGoogle Scholar
Gehrels, T. (1974). Planets, Stars and Nebulae Studied with Photopolarimetry. Tucson, AZ: University of Arizona Press.Google Scholar
Gettelman, A. and Chen, C. (2013). The climate impact of aviation aerosols. Geophys. Res. Lett., 40, 2785–9.CrossRefGoogle Scholar
Gettelman, A., Holton, J. R., and Douglass, A. R. (2000). Simulations of water vapor in the lower stratosphere and upper troposphere. J. Geophys. Res. 105, 9003–23.CrossRefGoogle Scholar
Glaisher, J. (1855). Snow crystals. Rep. Council Brit. Meteorol. Soc., 17. Abridged in Q. J. Microsc. Sci., 3, 179–85.Google Scholar
Godson, W. L. (1953). The evaluation of infrared radiative fluxes due to atmospheric water vapor. Quart. J. Roy. Meteorol. Soc., 79, 367–79.CrossRefGoogle Scholar
Goody, R. M. (1952). A statistical model for water-vapour absorption. Quart. J. Roy. Meteorol. Soc., 78, 165–9.CrossRefGoogle Scholar
Goody, R. M. and Yung, Y. L. (1989). Atmospheric Radiation: Theoretical Basis, 2nd edn. New York: Oxford University Press.Google Scholar
Goody, R. M., West, R., Chen, L., and Crisp, D. (1989). The correlated-k method for radiation calculations in non-homogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 42, 539–50.CrossRefGoogle Scholar
Gosse, S., Labrie, D., and Chylek, P. (1995). Refractive index of ice in the 1.4–7.8-µm spectral range. Appl. Opt., 34, 6582–6.CrossRefGoogle ScholarPubMed
Graf, K., Schumann, U., Mannstein, H., and Mayer, B. (2012). Aviation induced diurnal north Atlantic cirrus cover cycle. Geophys. Res. Lett., 39, L16804.CrossRefGoogle Scholar
Greenberg, J. M., Lind, A. C., Wang, R. T., and Libelo, L. F. (1967). Scattering by non-spherical systems. In ICES II: Electromagnetic Scattering, ed. Rowell, R. L. and Stein, R. S.. New York: Gordon and Breach, pp. 354.Google Scholar
Greenler, R. (1980). Rainbows, Halos, and Glories. New York: Cambridge University Press.Google Scholar
Grenfell, T. C. and Warren, S. G. (1999). Representation of a non-spherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res., 104, 31697–709.Google Scholar
Grundy, W. M. and Schmitt, B. (1998). The temperature-dependent near-infrared absorption spectrum of hexagonal H2O-ice. J. Geophys. Res., 103, 25809–22.CrossRefGoogle Scholar
Grynko, Y. and Skhuratov, Y. (2003). Scattering matrix calculated in geometric optics approximation for semitransparent particles faceted with various shapes. J. Quant. Spectrosc. Radiat. Transfer, 78, 319–40.CrossRefGoogle Scholar
Gu, Y. and Liou, K. N. (1997a): Interactions of radiation, microphysics, and turbulence in a two dimensional cirrus cloud model. In IRS'96: Current Problems in Atmospheric Radiation, ed. Smith, W. L. and Stamnes, K.. Hampton, VA: A. Deepak Publishing, pp. 238–41.Google Scholar
Gu, Y. and Liou, K. N. (1997b): Numerical experiments on the interactions of radiation, turbulence, and microphysics in cirrus clouds. In Proceedings of the Ninth AMS Conference on Atmospheric Radiation, Long Beach, CA, February 2–7, pp. 97–101.Google Scholar
Gu, Y. and Liou, K. N. (2000). Interactions of radiation, microphysics, and turbulence in the evolution of cirrus clouds. J. Atmos. Sci. 57, 2463–79.2.0.CO;2>CrossRefGoogle Scholar
Gu, Y. and Liou, K. N. (2001). Radiation parameterization for three-dimensional inhomogeneous cirrus clouds: Application to climate models. J. Climate, 14, 2443–57.2.0.CO;2>CrossRefGoogle Scholar
Gu, Y. and Liou, K. N. (2006). Cirrus cloud horizontal and vertical inhomogeneity effects in a GCM. Meteorol. Atmos. Phys., 91, 223–35.CrossRefGoogle Scholar
Gu, Y., Farrara, J., Liou, K. N., and Mechoso, C. R. (2003). Parameterization of cloud–radiation processes in the UCLA general circulation model. J. Climate, 16, 3357–70.2.0.CO;2>CrossRefGoogle Scholar
Gu, Y., Liou, K. N., Xue, Y., et al. (2006). Climatic effects of different aerosol types in China simulated by the UCLA general circulation model. J. Geophys. Res., 111, D15201.CrossRefGoogle Scholar
Gu, Y., Liou, K. N., Chen, W., and Liao, H. (2010). Direct climate effect of black carbon in China and its impact on dust storms. J. Geophys. Res., 115, D00K14.CrossRefGoogle Scholar
Gu, Y., Liou, K. N., Ou, S. C. S., and Fovell, R. (2011). Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119.CrossRefGoogle Scholar
Gu, Y., Liou, K. N., Jiang, J. H., Su, H., and Liu, X. (2012). Dust aerosol impact on North Africa climate: A GCM investigation of aerosol–cloud–radiation interactions using A-Train satellite data. Atmos. Chem. Phys., 12, 1667–79.CrossRefGoogle Scholar
Guettard, M. (1762). Observations météorologiques, faites à Varsovie pendant les années 1760, 1761 & 1762. Mem. Acad. Sci. Paris, 402–30.Google Scholar
Gultepe, I. and Starr, D. O'C. (1995). Dynamical structure and turbulence in cirrus clouds: Aircraft observations during FIRE. J. Atmos. Sci., 52, 4159–82.Google Scholar
Hadley, O. L., Corrigan, C. E., Kirchstetter, T. W., Cliff, S. S., and Ramanathan, V. (2010). Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat. Atmos. Chem. Phys., 10, 7505–13.CrossRefGoogle Scholar
Hallett, J. and Mason, B. J. (1958). The influence of temperature and supersaturation on the habit of ice crystals grown from the vapour. Proc. Roy. Soc., A27, 440–53.Google Scholar
Hammer, C. U., Clausen, H. B., Dansgaard, W., et al. (1985). Continuous impurity analysis along the Dye 3 deep core. Geophys. Monogr. Ser., 33, 90–4.Google Scholar
Hansen, J. E. (1971). Multiple scattering of polarized light in planetary atmospheres. Part II: Sunlight reflected by terrestrial water clouds. J. Atmos. Sci., 28, 1400–26.Google Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. J. Atmos. Sci., 31, 1137–60.2.0.CO;2>CrossRefGoogle Scholar
Hansen, J. E. and Pollack, J. B. (1970). Near-infrared light scattering by terrestrial clouds. J. Atmos. Sci., 27, 265–81.2.0.CO;2>CrossRefGoogle Scholar
Hansen, J. E. and Travis, L. D. (1974). Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610.CrossRefGoogle Scholar
Harrison, E. F., Minnis, P., Barkstrom, B. R., et al. (1990). Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95, 18687–703.CrossRefGoogle Scholar
Hartmann, D. L. (1994). Global Physical Climatology. San Diego: Academic Press.Google Scholar
Hartmann, D. L., Ramanathan, V., Berroir, A., and Hunt, G. E. (1986). Earth radiation budget data and climate research. Rev. Geophys., 24, 439–68.CrossRefGoogle Scholar
Hartmann, D. L., Holton, J. R., and Fu, Q. (2001). The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett., 10, 1969–72.Google Scholar
Heidinger, A. K., Li, Y., Baum, B. A., et al. (2015). Retrieval of cirrus cloud optical depth under day and night conditions from MODIS Collection 6 cloud property data. Remote Sensing, 7, 7257–71.CrossRefGoogle Scholar
Hellman, G. (1893). Schneekristalle. Berlin: J. Mückenberger, p. 66.Google Scholar
Henyey, L. G. and Greenstein, J. L. (1941). Diffuse radiation in the galaxy. Astrophys. J., 93, 7083.CrossRefGoogle Scholar
Hess, M. and Wiegner, M. (1994). COP: A data library of optical properties of hexagonal ice crystals. Appl. Opt., 33, 7740–6.CrossRefGoogle Scholar
Hesse, E., Macke, A., Havemann, S., et al. (2012). Modelling diffraction by facetted particles. J. Quant. Spectrosc. Radiat. Transfer, 113, 342–7.CrossRefGoogle Scholar
Heymsfield, A. J. (1972). Ice crystal terminal velocities. J. Atmos. Sci., 29, 1348–57.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J. (1975). Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase. J. Atmos. Sci., 32, 799808.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J. (1997). Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci., 34, 367–81.Google Scholar
Heymsfield, A. J. and Iaquinta, J. (2000). Cirrus crystal terminal velocities. J. Atmos. Sci., 57, 916–38.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J. and McFarquhar, G. M. (1996). High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci., 53, 2424–51.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J. and Platt, C. M. R. (1984). A parameterization of the particle-size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41, 846–55.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J. and Sabin, R. M. (1989). Cirrus crystal nucleation by homogeneous freezing of solution droplets. J. Atmos. Sci., 46, 2252–64.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., Miller, K. M., and Spinhirne, J. D. (1990). The 27–28 October 1986 FIRE IFO cirrus case study: Cloud microstructure. Mon. Wea. Rev., 118, 2313–28.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., Lewis, S., Bansemer, A., et al. (2002). A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 329.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., Schmitt, C., Bansemer, A., et al. (2006). Effective radius of ice cloud particle populations derived from aircraft probes. J. Atmos. Ocean. Technol., 23, 361–80.CrossRefGoogle Scholar
Ho, P.-Y. and Needham, J. (1959). Ancient Chinese observations of solar haloes and parhelia. Weather, 14, 124–34.Google Scholar
Hobbs, P. V. (1974). Ice Physics. Oxford: Clarendon Press.Google Scholar
Hobbs, P. V., Harrison, H., and Robinson, E. (1974). Atmospheric effects of pollutants. Science, 183, 909–15.CrossRefGoogle ScholarPubMed
Hogan, R. J. (2010). The full-spectrum correlated-k method for longwave atmospheric radiative transfer using an effective Planck function. J. Atmos. Sci., 67, 2086–100.CrossRefGoogle Scholar
Holland, R. (1977). THREDE: A free-field EMP coupling and scattering code. IEEE Trans. Nucl. Sci., 24, 2416–21.CrossRefGoogle Scholar
Holton, J. R. and Gettelman, A. (2001). Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett., 28, 2799–802.CrossRefGoogle Scholar
Holton, J. R., Haynes, P. H., McIntyre, M. E., et al. (1995). Stratosphere–troposphere exchange. Rev. Geophys., 33, 403–39.CrossRefGoogle Scholar
Houze, R. A., Geotis, S. G., Marks, F. D., and West, A. K. (1981). Winter monsoon convection in the vicinity of North Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Wea. Rev., 109, 1595–614.2.0.CO;2>CrossRefGoogle Scholar
Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens., 42, 557–69.CrossRefGoogle Scholar
Hu, Y. (2007). Depolarization ratio–effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination. Geophys. Res. Lett., 34, L11812.CrossRefGoogle Scholar
Hu, Y., Vaughan, M., Liu, Z., et al. (2007). The depolarization–attenuated backscatter relation: CALIPSO lidar measurements vs. theory. Opt. Express, 15, 5327–32.Google Scholar
Hu, Y., Winker, D., Vaughan, M., et al. (2009). CALIPSO/CALIOP Cloud Phase Discrimination Algorithm. J. Atmos. Oceanic Technol., 26, 2293–309.CrossRefGoogle Scholar
Huang, H.-L., Yang, P., Wei, H., et al. (2004). Inference of ice cloud properties from high spectral resolution infrared observations. IEEE Trans. Geosci. Remote. Sens., 42, 842–53.Google Scholar
Hudson, J. G. (1983). Effects of CCN concentrations on stratus clouds. J. Atmos. Sci., 40, 480–6.2.0.CO;2>CrossRefGoogle Scholar
Huffman, P. J. (1970). Polarization of light scattered by ice crystals. J. Atmos. Sci., 27, 1207–8.2.0.CO;2>CrossRefGoogle Scholar
Huffman, P. J. (1973). Supersaturation spectra of AgI and natural ice nuclei. J. Appl. Meteorol., 12, 1080–2.2.0.CO;2>CrossRefGoogle Scholar
Huffman, P. J. and Thursby, W. R. (1969). Light scattering by ice crystals. J. Atmos. Sci., 26, 1073–7.2.0.CO;2>CrossRefGoogle Scholar
Hutchison, K. D. and Choe, N. J. (1996). Application of 1.38-µm imagery for thin cirrus detection in daytime imagery collected over land surfaces. Int. J. Remote Sens., 17, 3325–42.CrossRefGoogle Scholar
Hutchison, K. D., Wong, E., and Ou, S. C. S. (2006). Cloud base heights retrieved during night-time conditions with MODIS data. Int. J. Remote Sens., 27, 2847–62.CrossRefGoogle Scholar
Huygens, C. (1662). Oeuvres complètes de Christiaan Huygens. Vol. XVII. The Hague: Martinus Nijhoff, Société Hollandaise des Sciences.Google Scholar
Iaquinta, J., Isaka, H., and Personne, P. (1995). Scattering phase function of bullet rosette ice crystals. J. Atmos. Sci., 52, 1401–13.2.0.CO;2>CrossRefGoogle Scholar
IPCC Report (1999). Aviation and the Global Atmosphere: A Special Report of Working Groups I and III of the Intergovernmental Panel on Climate Change, ed. Penner, J. E., Lister, D. H., Griggs, D. J., Dokken, D. J., and McFarland, M.. Cambridge: Cambridge University Press.Google Scholar
IPCC Report (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Core Writing Team, Pachauri, R. K., and Reisinger, A.. Geneva: IPCC, 104 pp.Google Scholar
IPCC Report (2013). Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.. Cambridge: Cambridge University Press, 1535 pp.Google Scholar
Irvine, W. M. and Pollack, J. B. (1968). Infrared optical properties of water and ice spheres. Icarus, 8, 324–60.CrossRefGoogle Scholar
Ishimoto, H., Masuda, K., Mano, Y., Orikasa, N., and Uchiyama, A. (2012). Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds. J. Quant. Spectrosc. Radiat. Transfer, 113, 632–43.CrossRefGoogle Scholar
Iskander, M. F., Lakhtakia, A., and Durney, C. H. (1983). A new procedure for improving the solution stability and extending the frequency range of the EBCM. IEEE Trans. Antennas Propag. 31, 317–24.CrossRefGoogle Scholar
Iwabuchi, H. and Yang, P. (2011). Temperature dependence of ice optical constants: Implications for simulating the single-scattering properties of cold ice clouds. J. Quant. Spectrosc. Radiat. Transfer, 112, 2520–5.CrossRefGoogle Scholar
Iwabuchi, H., Yang, P., Liou, K. N., and Minnis, P. (2012). Physical and optical properties of persistent contrails: Climatology and interpretation. J. Geophys. Res., 117, D06215.CrossRefGoogle Scholar
Iwabuchi, H., Yamada, S., Katagiri, S., Yang, P., and Okamoto, H. (2014). Radiative and microphysical properties of cirrus cloud inferred from infrared measurements made by the moderate resolution imaging spectroradiometer (MODIS). Part I: Retrieval method. J. App. Meteorol. Clim., 53, 1297–316.Google Scholar
Jackson, J. D. (1975). Classical Electrodynamics. New York: John Wiley & Sons.Google Scholar
Jacobowitz, H. (1971). A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 11, 691–5.CrossRefGoogle Scholar
Jacobson, M. Z. (2005). A refined method of parameterizing absorption coefficients among multiple gases simultaneously from line-by-line data. J. Atmos. Sci., 62, 506–17.CrossRefGoogle Scholar
Jacobson, M. Z., Wilkerson, J. T., Naiman, A. D., and Lele, S. K. (2013). The effects of aircraft on climate and pollution. Part II: 20-year impacts of exhaust from all commercial aircraft worldwide treated individually at the subgrid scale. Faraday Discuss., 165, 369–82.CrossRefGoogle ScholarPubMed
Jayaweera, K. O. L. F. and Mason, B. J. (1965). The behavior of freely falling cylinders and cones in a viscous fluid. J. Fluid Mech., 22, 709–20.CrossRefGoogle Scholar
Jenk, T. M., Szidat, S., Schwikowski, M., et al. (2006). Radiocarbon analysis in an Alpine ice core: Record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940). Atmos. Chem. Phys., 6, 5381–90.CrossRefGoogle Scholar
Jensen, E. J., Toon, O. B., Westphal, D. L., Kinne, S., and Heymsfield, A. J. (1994a). Microphysical modeling of cirrus: 1. Comparison with 1986 FIRE IFO measurements. J. Geophys. Res., 99, 10421–42.Google Scholar
Jensen, E. J., Toon, O. B., Westphal, D. L., Kinne, S., and Heymsfield, A. J. (1994b). Microphysical modeling of cirrus: 2. Sensitivity studies. J. Geophys. Res., 99, 10443–54.Google Scholar
Jensen, E. J., Toon, O. B., Selkirk, H. B., Spinhirne, J. D., and Schoeberl, M. R. (1996a). On the formation and persistence of subvisible cirrus clouds near the tropical tropopause. J. Geophys. Res., 101, 21361–75.CrossRefGoogle Scholar
Jensen, E. J., Toon, O. B., Pfister, L., and Selkirk, H. B. (1996b). Dehydration of the upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical tropopause. Geophys. Res. Lett., 23, 825–8.CrossRefGoogle Scholar
Johnson, B. R. (1988). Invariant imbedding T matrix approach to electromagnetic scattering. Appl. Opt., 27, 4861–73.CrossRefGoogle ScholarPubMed
Johnson, B. R. and Secrest, D. (1968). Quantum-mechanical calculations of the inelastic cross sections for rotational excitation of para and ortho H2 upon collision with He. J. Chem. Phys., 48, 4682–93.CrossRefGoogle Scholar
Joos, H., Spichtinger, P., and Lohmann, U. (2010). Influence of a future climate on the microphysical and optical properties of orographic cirrus clouds in ECHAM5. J. Geophys. Res., 115, D19129.CrossRefGoogle Scholar
Joseph, J. H., Wiscombe, W. J., and Weinman, J. A. (1976). The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 2453–9.2.0.CO;2>CrossRefGoogle Scholar
Jourdan, O., Oshchepkov, S., Shcherbakov, V., Gayet, J.-F., and Isaka, H. (2003). Assessment of cloud optical parameters in the solar region: Retrievals from airborne measurements of scattering phase functions. J. Geophys. Res., 108, 4572–84.CrossRefGoogle Scholar
Kahn, B. H., Liou, K. N., Lee, S.-Y., et al. (2005). Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor. J. Geophy. Res., 110, D07203.CrossRefGoogle Scholar
Kahn, B. H., Liang, C. K., Eldering, A., et al. (2008). Tropical thin cirrus and relative humidity observed by the Atmospheric Infrared Sounder. Atmos. Chem. Phys., 8, 1501–18.CrossRefGoogle Scholar
Kahn, B. H., Irion, F. W., Dang, V. T., et al. (2014). The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426.CrossRefGoogle Scholar
Kahnert, M. 2003). Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transfer, 7980, 775824.CrossRefGoogle Scholar
Kang, S., Zhang, Y., Zhang, Y., et al. (2010). Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry. Atmos. Environ., 44, 2980–9.CrossRefGoogle Scholar
Kattawar, G. W., Yang, P., You, Y., et al. (2016). Polarization of light in the atmosphere and ocean. In Light Scattering Reviews 10, ed. Kokhanovsky, A. A., pp. 329. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Katz, D. S., Thiele, E. T., and Taflove, A. (1994). Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes. IEEE Microw. Guided W. Lett., 4, 268–70.Google Scholar
Kemp, J. C., Wolstencroft, R. D., and Swedlund, J. B. (1971). Circular polarization: Jupiter and other planets. Nature, 232, 165–8.CrossRefGoogle ScholarPubMed
Kepler, J. (1611). Strena seu de nive sexangula, ed. Tampach, G., Frankfurt (English translation by Hardie, C., The Six-Cornered Snowflake (2014). Oxford: Oxford University Press).Google Scholar
Kerker, M. (1969). The Scattering of Light and Other Electromagnetic Radiation. New York: Academic Press.Google Scholar
Khvorostyanov, V. I. and Sassen, K. (1998a). Cirrus cloud simulation using explicit microphysics and radiation. Part I: Model description. J. Atmos. Sci., 55, 1808–21.Google Scholar
Khvorostyanov, V. I. and Sassen, K. (1998b). Cirrus cloud simulation using explicit microphysics and radiation. Part II: Microphysics, vapor and ice mass budgets, and optical and radiative properties. J. Atmos. Sci., 55, 1822–45.Google Scholar
Kiehl, J. T. and Ramanathan, V. (1990). Comparison of cloud forcing derived from the Earth Radiation Budget Experiment with that simulated by the NCAR community climate model. J. Geophys. Res., 95, 11679–98.CrossRefGoogle Scholar
King, M. D., Menzel, W. P., Grant, P. S., et al. (1996). Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties. J. Atmos. Oceanic Technol., 13, 777–94.2.0.CO;2>CrossRefGoogle Scholar
King, M. D., Tsay, S. C., Platnick, S. E., Wang, M., and Liou, K. N. (1997). Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase. MODIS Algorithm Theoretical Basis Document ATBDMOD-05. Greenbelt, MD: NASA Goddard Space Flight Center, 1997-12-23.Google Scholar
King, M. D., Menzel, W. P., Kaufman, Y. J., et al. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442–58.CrossRefGoogle Scholar
King, M. D., Platnick, S., Yang, P., et al. (2004). Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21, 857–75.2.0.CO;2>CrossRefGoogle Scholar
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., and Hubanks, P. A. (2013). Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote Sens., 51, 3826–52.CrossRefGoogle Scholar
Kinne, S. and Liou, K. N. (1989). The effects of the nonsphericity and size distribution of ice crystals on the radiative properties of cirrus clouds. Atmos. Res., 24, 273–84.CrossRefGoogle Scholar
Kobayashi, T. (1961). The growth of snow crystals at low supersaturations. Phil. Mag., 6, 1363–70.CrossRefGoogle Scholar
Kokhanovsky, A. (1999). Optics of Light Scattering Media: Problems and Solutions. Chichester: John Wiley & Sons.Google Scholar
Kokhanovsky, A. A., Platnick, S., and King, M. D. (2011). Remote sensing of terrestrial clouds from space using backscattering and thermal emission techniques. In The Remote Sensing of Tropospheric Composition from Space, ed. Burrows, J. P., Platt, U., and Borrell, P.. Berlin, Heidelberg: Springer-Verlag, pp. 231–57.Google Scholar
Komrska, J. (1972). Fraunhofer diffraction at apertures in the form of regular polygons, I. Opt. Acta., 19, 807–16.CrossRefGoogle Scholar
Komrska, J. (1973). Fraunhofer diffraction at apertures in the form of regular polygons, II. Opt. Acta., 20, 549–63.CrossRefGoogle Scholar
Korolev, A. V., Isaac, G. A., and Hallett, J. (1999). Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 1299–302.CrossRefGoogle Scholar
Kou, L., Labrie, D., and Chylek, P. (1993). Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. Appl. Opt., 32, 3531–40.CrossRefGoogle Scholar
Kramers, H. A. (1927). La diffusion de la lumiere par les atomes. Atti. Congr. Intern. Fisica Como., 2, 545–57.Google Scholar
Kristjansson, J. E., Iversen, T., Kirkevag, A., Seland, O., and Debernard, J. (2005). Response of the climate system to aerosol direct and indirect forcing: Role of cloud feedbacks. J. Geophys. Res., 110, D24206.CrossRefGoogle Scholar
Kronig, R. d. L. (1926). On the theory of dispersion of X-rays. J. Opt. Soc. Am., 12, 547–57.Google Scholar
Kuhn, P. M. (1970). Airborne observations of contrail effects on the thermal radiation budget. J. Atmos. Sci., 27, 937–42.2.0.CO;2>CrossRefGoogle Scholar
Kuik, F., Stammes, P., and Hovenier, J. W. (1991). Experimental determination of scattering matrices of water droplets and quartz particles. Appl. Opt., 30, 4872–81.CrossRefGoogle ScholarPubMed
Kumai, M. (1977). Electron microscope analysis of aerosols in snow and deep ice cores from Greenland. In Isotopes and Impurities in Snow and Ice. International Association of Hydrological Sciences Publication No. 118, pp. 341–50.Google Scholar
Kunde, V. G., Conrath, B. J., Hanel, R. A., et al. (1974). The Nimbus 4 infrared spectroscopy experiment. 2: Comparison of observed and theoretical radiances from 425–1450 cm−1. J. Geophys. Res., 79, 777–84.CrossRefGoogle Scholar
Kunz, K. S. and Lee, K.-M. (1978). A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment. Part I: The method and its implementation. IEEE Trans. Electromagn. Compat., EMC-20, 328–33.Google Scholar
Kunz, K. S. and Simpson, L. (1981). A technique for increasing the resolution of finite-difference solutions of the Maxwell equation. IEEE Trans. Electromagn. Compat., EMC23, 419–22.Google Scholar
Kurucz, R. L. (1995). The solar irradiance by computation. In Proceedings of the 17th Annual Review Conference on Atmospheric Transmission Models, ed. Anderson, G. P., Picard, R. H., and Chetwynd, J. H., PL-TR-95-2060(II), Special Reports, No. 274, Hanscom AFB, MA: Phillips Laboratory, Directorate of Geophysics, 1995-05-24, pp. 333–4.Google Scholar
Lacis, A. A. and Oinas, V. (1991). A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 9027–63.CrossRefGoogle Scholar
Lacis, A. A., Wang, W. C., and Hansen, J. E. (1979). Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate, 4th NASA Weather and Climate Program Sci. Rev. 19790012513 Paper-51. Greenbelt, MD: NASA Goddard Space Flight Center, 1979-01-01.Google Scholar
Lakhtakia, A. (1992). Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields. Int. J. Mod. Phys. C, 3, 583603.CrossRefGoogle Scholar
Langleben, M. P. (1954). The terminal velocity of snowflakes. Quart. J. Roy. Meteorol. Soc., 80, 174–81.CrossRefGoogle Scholar
Laube, M. and Holler, H. (1988). Numerical data and functional relations in science and technology. Cloud Phys., 4, 1110.Google Scholar
Lawson, R. P., Baker, B. A., Zmarzly, P., et al. (2006). Microphysical and optical properties of atmospheric ice crystals at South Pole Station. J. Appl. Meteorol. Clim., 45, 1505–24.CrossRefGoogle Scholar
Lazzi, G. and Gandhi, O. P. (1997). On the optimal design of the PML absorbing boundary condition for the FDTD code. IEEE Trans. Antennas Propag., 45, 914–16.CrossRefGoogle Scholar
Leaitch, W. R., Isaac, G. A., Strapp, J. W., Banic, C. M., and Wiebe, H. A. (1992). The relationship between cloud droplet number concentrations and anthropogenic pollution: Observations and climatic implications. J. Geophys. Res., 97, 2463–74.CrossRefGoogle Scholar
Lee, D. S., Fahey, D. W., Forster, P. M., et al. (2009a). Aviation and global climate change in the 21st century. Atmos. Env., 43, 3520–37.CrossRefGoogle Scholar
Lee, J., Yang, P., Dessler, A. E., Gao, B.-C., and Platnick, S. (2009b). Distribution and radiative forcing of tropical thin cirrus clouds. J. Atmos. Sci., 66, 3721–31.CrossRefGoogle Scholar
Li, D.-M. and Shine, K. P. (1995). A 4-dimensional ozone climatology for UGAMP models. UGAMP Internal Rep., 35. Reading, UK: Center for Global and Atmospheric Modelling, Department of Meteorology, University of Reading.Google Scholar
Li, J. and Baker, H. W. (2005). A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci., 62, 286309.CrossRefGoogle Scholar
Li, J., Huang, H.-L., Liu, C.-Y., et al. (2005a). Retrieval of cloud microphysical properties from MODIS and AIRS. J. Appl. Meteorol., 44, 1526–43.CrossRefGoogle Scholar
Li, J.-L. F., Köhler, M., Farrara, J. D., and Mechoso, C. R. (2002). The impact of stratocumulus cloud radiative properties on surface heat fluxes simulated with a general circulation model. Mon. Wea. Rev., 130, 1433–41.2.0.CO;2>CrossRefGoogle Scholar
Li, J.-L. F., Waliser, D. E., Jiang, J. H., et al. (2005b). Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results. Geophys. Res. Lett., 32, L18710.CrossRefGoogle Scholar
Lilly, D. K. (1988). Cirrus outflow dynamics. J. Atmos. Sci., 45, 1594–605.2.0.CO;2>CrossRefGoogle Scholar
Lin, L., Fu, Q., Zhang, H., et al. (2013). Upward mass fluxes in tropical upper troposphere and lower stratosphere derived from radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transfer, 117, 114–22.CrossRefGoogle Scholar
Lin, R.-F. (1997). A numerical study of the evolution of nocturnal cirrus by a two-dimensional model with explicit microphysics. Ph.D. dissertation, The Pennsylvania State University, 198 pp.Google Scholar
Liou, K. N. (1972a). Electromagnetic scattering by arbitrarily oriented ice cylinders. Appl. Opt., 11, 667–74.CrossRefGoogle ScholarPubMed
Liou, K. N. (1972b). Light scattering by ice clouds in the visible and infrared: A theoretical study. J. Atmos. Sci., 29, 524–36.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N. (1972c). On depolarization of visible light from water clouds for a monostatic lidar. J. Atmos. Sci., 29, 1000–3.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N. (1973a). A numerical experiment on Chandrasekhar's discrete-ordinate method for radiative transfer: Applications to cloudy and hazy atmospheres. J. Atmos. Sci., 30, 1303–26.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N. (1973b). Transfer of solar irradiance through cirrus cloud layers. J. Geophys. Res., 78, 1409–18.CrossRefGoogle Scholar
Liou, K. N. (1974). Analytic two-stream and four-stream solutions for radiative transfer. J. Atmos. Sci., 31, 1473–5.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N. (1975a). Theory of the scattering-phase-matrix determination for ice crystals. J. Opt. Soc. Am. 65, 159–62.CrossRefGoogle Scholar
Liou, K. N. (1975b). Applications of the discrete-ordinate method for radiative transfer to inhomogeneous aerosol atmospheres. J. Geophys. Res., 80, 3434–40.CrossRefGoogle Scholar
Liou, K. N. (1977). A complementary theory of light scattering by homogeneous spheres. Appl. Math. Comp., 3, 331–58.CrossRefGoogle Scholar
Liou, K. N. (1986). Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 1167–99.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N. (1992). Radiation and Cloud Processes in the Atmosphere: Theory, Observation, and Modeling. New York: Oxford University Press.CrossRefGoogle Scholar
Liou, K. N. (2002). An Introduction to Atmospheric Radiation, 2nd edn. San Diego: Academic Press.Google Scholar
Liou, K. N. and Coleman, R. F. (1980). Light scattering by hexagonal columns and plates. In Light Scattering by Irregularly Shaped Particles, ed. Schuerman, D. W.. New York: Plenum Publishing Corporation, pp. 207–18.Google Scholar
Liou, K. N. and Gebhart, K. L. (1982). Numerical experiments on the thermal equilibrium temperature in cirrus cloudy atmospheres. J. Meteorol. Soc. Jpn., 60, 570–82.CrossRefGoogle Scholar
Liou, K. N. and Goody, R. M. (1996). CIRRUS: A low cost cloud/climate mission. A proposal submitted to the National Aeronautics and Space Administration in reference to AO-96-MTPE-01.Google Scholar
Liou, K. N. and Hansen, J. E. (1971). Intensity and polarization for single scattering by polydisperse spheres: A comparison of ray optics and Mie theory. J. Atmos. Sci., 28, 9951004.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N. and Lahore, H. (1974). Laser sensing of cloud composition: A backscattered depolarization technique. J. Appl. Meteorol., 13, 257–63.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N. and Ou, S. C. S. (1983). Theory of equilibrium temperatures in radiative-turbulent atmospheres. J. Atmos. Sci., 40, 214–29.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N. and Ou, S. C. S. (1989). The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective. J. Geophys. Res., 94, 8599–607.CrossRefGoogle Scholar
Liou, K. N. and Takano, Y. (1994). Light scattering by non-spherical particles: Remote sensing and climatic implications. Atmos. Res., 31, 271–98.CrossRefGoogle Scholar
Liou, K. N. and Takano, Y. (2002). Interpretation of cirrus cloud polarization measurements from radiative transfer theory. Geophys. Res. Lett., 29, 1313.CrossRefGoogle Scholar
Liou, K. N. and Wittman, G. D. (1979). Parameterization of the radiative properties of clouds. J. Atmos. Sci., 36, 1261–73.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N., Baldwin, R., and Kaser, T. (1976). Preliminary experiments on the scattering of polarized laser light by ice crystals. J. Atmos. Sci., 33, 553–7.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N., Cai, Q., Barber, P. W., and Hill, S. C. (1983a). Scattering phase matrix comparison for randomly hexagonal cylinders and spheroids. Appl. Opt., 22, 1684–7.CrossRefGoogle ScholarPubMed
Liou, K. N., Cai, Q., Pollack, J. B., and Cuzzi, J. N. (1983b). Light scattering by randomly oriented cubes and parallelepipeds. Appl. Opt., 22, 3001–8.CrossRefGoogle ScholarPubMed
Liou, K. N., Ou, S. C. S., and Lu, P. J. (1985). Interactive cloud formation and climatic temperature perturbations. J. Atmos. Sci., 42, 1969–81.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N., Fu, Q., and Ackerman, T. P. (1988). A simple formulation of the delta-four-stream approximation for radiative transfer parameterizations. J. Atmos. Sci., 45, 1940–8.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N., Ou, S. C. S., and Koenig, G. (1990). An investigation on the climatic effect of contrail cirrus. In Air Traffic and the Environment: Background, Tendencies and Potential Global Atmospheric Effects, ed. Schumann, U.. Lecture Notes in Engineering, 60. Berlin, Heidelberg: Springer-Verlag, pp. 154–69.Google Scholar
Liou, K. N., Yang, P., Takano, Y., et al. (1998). On the radiative properties of contrail cirrus. Geophys. Res. Lett., 25, 1161–4.CrossRefGoogle Scholar
Liou, K. N., Takano, Y., and Yang, P. (2000). Light scattering and radiative transfer in ice crystal clouds: Applications to climate research. In Light Scattering by Non-spherical Particles: Theory, Measurements, and Applications 2000, ed. Mishchenko, M. I., Hovenier, J. W., and Travis, L. D.. San Diego: Academic Press, pp. 417–49.Google Scholar
Liou, K. N., Takano, Y., Yang, P., and Gu, Y. (2002a). Radiative transfer in cirrus clouds: Light scattering and spectral information. In Cirrus, ed. Lynch, D. K., Sassen, K., Starr, D. O., and Stephens, G.. New York: Oxford University Press, pp. 265–96.Google Scholar
Liou, K. N., Ou, S. C. S., Takano, Y., et al. (2002b). Remote sensing of three-dimensional inhomogeneous cirrus clouds using satellite and mm-wave cloud radar data. Geophys. Res. Lett., 29, 1360.Google Scholar
Liou, K. N., Gu, Y., Yue, Q., and McFarguhar, G. (2008). On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models. Geophys. Res. Lett., 35, L13805.CrossRefGoogle Scholar
Liou, K. N., Takano, Y., and Yang, P. (2010). On geometric optics and surface waves for light scattering by spheres. J. Quant. Spectrosc. Radiat. Transfer, 111, 1980–9.CrossRefGoogle Scholar
Liou, K. N., Takano, Y., and Yang, P. (2011). Light absorption and scattering by aggregates: Application to black carbon and snow grains. J. Quant. Spectrosc. Radiat. Transfer, 112, 1581–94.CrossRefGoogle Scholar
Liou, K. N., Takano, Y., Yue, Q., and Yang, P. (2013). On the radiative forcing of contrail cirrus contaminated by black carbon. Geophys. Res. Lett., 40, 778–84.CrossRefGoogle Scholar
Liou, K. N., Takano, Y., He, C., et al. (2014). Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models. J. Geophys. Res. 119, 7616–32.CrossRefGoogle Scholar
Liu, C., Bi, L., Panetta, R. L., Yang, P., and Yurkin, M. A. (2012a). Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations. Opt. Express, 20, 16763–76.Google Scholar
Liu, C., Panetta, R. L., and Yang, P. (2012b) Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J. Quant. Spectrosc. Radiat. Transfer, 113, 1728–40.CrossRefGoogle Scholar
Liu, Q. H. (1997). The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett., 15, 158–65.3.0.CO;2-3>CrossRefGoogle Scholar
Liu, S. and Krueger, S. K. (1998). Numerical simulations of altocumulus using a cloud resolving model and a mixed layer model. Atmos. Res., 47–48, 461–74.Google Scholar
Liu, Y. and Daum, P. H. (2004). Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 1539–48.2.0.CO;2>CrossRefGoogle Scholar
Liu, Y., Daum, P. H., and McGraw, R. (2004). An analytical expression for predicting the critical radius in the autoconversion parameterization. Geophys. Res. Lett., 31, L06121.CrossRefGoogle Scholar
Livesey, N. J., Read, W. G., Lambert, A., et al. (2007). Earth Observing System (EOS), Aura Microwave Limb Sounder (MLS). Version 2.2 Level 2 data quality and description document, JPL D-33509. Pasadena: Jet Propulsion Laboratory, 2007-05-22.Google Scholar
London, J. (1957). A Study of the Atmospheric Heat Balance, New York University College of Engineering AF19(122)-165, AFCRCTR-57-287.Google Scholar
Lorentz, H. A. (1880). Üeber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Ann. Phys., 245, 641–65.CrossRefGoogle Scholar
Lorentz, H. A. (1906). The absorption and emission lines of gaseous bodies. In KNAW, Proceedings, 8 II, 1905–1906. Amsterdam: Royal Netherlands Academy of Arts and Sciences, pp. 591611.Google Scholar
Lorenz, L. V. (1880). Üeber die Refractionsconstante. Ann. Phys., 247, 70103.CrossRefGoogle Scholar
Lorenz, L. V. (1890). Lysbevaegelsen i og uden for en af plane Lysbølger belyst Kugle. Vidensk. Selk. Skr., 6, 162.Google Scholar
Lu, J. Q., Yang, P., and Hu, X.-H. (2005). Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method. J. Biomed. Opt., 10, 024022.CrossRefGoogle ScholarPubMed
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Ann. Observ. Paris (Meudon), 8, 1161; available in English as NASA TT F-187, Washington DC: NASA. 1964-07, pp. 1–145.Google Scholar
Mace, G. G., Heymsfield, A. J., and Poellot, M. R. (2002). On retrieving the microphysical properties of cirrus clouds using the moments of the millimeter-wavelength Doppler spectrum. J. Geophys. Res., 107, 4815.CrossRefGoogle Scholar
Machta, L. and Carpenter, T. (1971). Trends in high cloudiness at Denver and Salt Lake City. In Man's Impact on the Climate, ed. Matthews, W. H., Kellogg, W. W., and Robinson, G. D.. Cambridge, MA: MIT Press.Google Scholar
Macke, A. (1993). Scattering of light by polyhedral ice crystals. Appl. Opt., 32, 2780–8.CrossRefGoogle ScholarPubMed
Macke, A. (2000). Monte Carlo calculations of light scattering by large particles with multiple internal inclusions. In Light Scattering by Non-spherical Particles: Theory, Measurements, and Applications, ed. Mishchenko, M. I., Hovenier, J. W., and Travis, L. D.. San Diego: Academic Press, pp. 309–22.Google Scholar
Macke, A., Mischchenko, M. I., and Cairns, B. (1996). The influence of inclusions on light scattering by large ice particles. J. Geophys. Res., 101, 23311–16.CrossRefGoogle Scholar
Magono, C. and Lee, C. W. (1966). Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ., 2, 321–55.Google Scholar
Manabe, S. (1975). Cloudiness and the radiative, convective equilibrium. In The Changing Global Environment, ed. Singer, S. F.. Dordrecht: Springer Netherlands, pp. 175–6.Google Scholar
Manabe, S. and Wetherald, R. T. (1967). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241–59.2.0.CO;2>CrossRefGoogle Scholar
Manabe, S. and Wetherald, R. T. (1980). On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. J. Atmos. Sci., 37, 99118.2.0.CO;2>CrossRefGoogle Scholar
Marchuk, G. I. and Mikhailov, G. A. (1967). The solution of problems of atmospheric optics by a Monte-Carlo method. Izv., Acad. Sci., USSR, Atmos. Oceanic Phys., 3, 147–55.Google Scholar
Mariotte, E. (1681). De la Nature des Couleurs. Paris: Chez Estienne Michallet.Google Scholar
Martens, F. (1675). Spitzbergische oder froenlandische Reise Beschreibung gethan im Jahr 1671. Hamburg: Schultzens, p. 235.Google Scholar
Martin, P. G. (1974). Interstellar polarization from a medium with changing grain alignment. Astrophys. J., 187, 461–72.CrossRefGoogle Scholar
Martins, J. V., Tanré, D., Remer, L., et al. (2002). MODIS cloud screening for remote sensing of aerosols over oceans using spatial variability. Geophys. Res. Lett., 29, 1619.CrossRefGoogle Scholar
Mason, B. J. (1971). The Physics of Clouds. Oxford: Clarendon Press.Google Scholar
Matthews, W. H., Kellogg, W. W., and Robinson, G. D. (1971). Man's Impact on the Climate. Cambridge, MA: MIT Press.Google Scholar
Mätzler, C. (2006). Microwave dielectric properties of ice. In Thermal Microwave Radiation: Applications for Remote Sensing, ed. Mätzler, C., Rosenkranz, P. W., Battaglia, A., and Wigneron, J. P.. IET Electromagnetic Waves Series, 52. Stevenage, UK: Institution of Engineering and Technology, pp. 455–62.CrossRefGoogle Scholar
Maxwell, J. C. (1865). A dynamical theory of the electromagnetic field, Philos. Trans. R. Soc. London, 155, 459512.Google Scholar
Maxwell-Garnett, J. C. (1904). Colours in metal glasses and in metallic films. Philos. Trans. R. Soc., A, 203, 385420.Google Scholar
McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Volz, F. E., and Garing, J. S. (1972). Optical Properties of the Atmosphere, AFCRL Environment Research Paper ERP No. 411, 3rd edn. Hanscom AFB, MA: Air Force Cambridge Research Laboratories, 1972-08-24.Google Scholar
McFarquhar, G. M. and Heymsfield, A. J. (1997). Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX. J. Atmos. Sci., 54, 2187–200.2.0.CO;2>CrossRefGoogle Scholar
McFarquhar, G. M., Yang, P., Macke, A., and Baran, A. J. (2002). A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 2458–78.2.0.CO;2>CrossRefGoogle Scholar
McFarquhar, G. M., Iacobellis, S., and Sommerville, R. (2003). SCM simulations of tropical ice clouds using observationally based parameterizations of microphysics. J. Climate, 16, 1643–64.2.0.CO;2>CrossRefGoogle Scholar
McMillin, L. M., Crone, L. J., Goldberg, M. D., and Kleespies, T. J. (1995). Atmospheric transmittance of an absorbing gas, 4. OPTRAN: A computationally fast and accurate transmittance model for absorbing gases and with variable mixing ratios at variable viewing angles. Appl. Opt., 34, 6269–74.CrossRefGoogle ScholarPubMed
Meador, W. E. and Weaver, W. R. (1980). Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630–43.2.0.CO;2>CrossRefGoogle Scholar
Mechoso, C. R., Yu, J.-Y., and Arakawa, A. (2000). A coupled GCM pilgrimage: From climate catastrophe to ENSO simulations. In General Circulation Model Development: Past, Present, and Future – Proceedings of a Symposium in Honor of Professor Akio Arakawa, ed. Randall, D. A.. New York: Elsevier, pp. 539–75.Google Scholar
Menzel, D. H. (1966). Selected Papers on the Transfer of Radiation. New York: Dover Publications.Google Scholar
Menzel, W. P., Frey, R. A., Baum, B. A., and Zhang, H. (2006). Cloud Top Properties and Cloud Phase, Algorithm Theoretical Basis Document ATBDMOD-04. 2006–10. Washington: National Aeronautics and Space Administration.Google Scholar
Menzel, W. P., Frey, R. A., Zhang, H., et al. (2008). MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteorol. Clim., 47, 1175–98.CrossRefGoogle Scholar
Merewether, D. E., Fisher, R., and Smith, F. W. (1980). On implementing a numeric Huygen's source scheme in a finite difference program to illuminate scattering bodies. IEEE Trans. Nucl. Sci., NS–27, 1829–33.CrossRefGoogle Scholar
Merwin, H. E. (1930). Refractivity of birefringent crystals. In International Critical Tables of Numerical Data Physics, Chemistry and Technology, Vol. 7, ed. Washburn, E. W., West, C. J., Dorsey, N. E., and Ring, M. D.. New York: McGraw-Hill, pp. 1633.Google Scholar
Meyers, M. P., DeMott, P. J., and Cotton, W. R. (1992). New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteorol., 31, 708–21.2.0.CO;2>CrossRefGoogle Scholar
Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Physik., 330, 377445.CrossRefGoogle Scholar
Miloshevich, L. M. and Heymsfield, A. J. (1997). A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis. J. Atmos. Ocean. Technol., 14, 753–68.2.0.CO;2>CrossRefGoogle Scholar
Ming, J., Cachier, H., Xiao, C., et al. (2008). Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos. Chem. Phys., 8, 1343–52.CrossRefGoogle Scholar
Ming, J., Xiao, C., Cachier, H., et al. (2009). Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmos. Res., 92, 114–23.CrossRefGoogle Scholar
Minnis, P., Heck, P. W., and Young, D. F. (1993). Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part II: Verification of theoretical cirrus radiative properties. J. Atmos. Sci., 50, 1305–22.Google Scholar
Minnis, P., Smith, W. L., Garber, D. P., Ayers, J. K., and Doelling, D. R. (1995). Cloud Properties Derived from GOES-7 for Spring 1994 ARM Intensive Observing Period Using Version 1.0.0 of ARM Satellite Data Analysis Program. NASA Reference Publication 1366, 58 pp. Washington: National Aeronautics and Space Administration.Google Scholar
Minnis, P., Young, D. F., Garber, D. P., et al. (1998a). Transformation of contrails into cirrus during SUCCESS. Geophys. Res. Lett., 25, 1157–60.CrossRefGoogle Scholar
Minnis, P., Garber, D. P., Young, D. F., Arduini, R. F., and Takano, Y. (1998b). Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci., 55, 3313–39.2.0.CO;2>CrossRefGoogle Scholar
Minnis, P., Sun-Mack, S., Young, D. F., et al. (2011a). CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data. Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 4374–400.Google Scholar
Minnis, P., Sun-Mack, S., Chen, Y., et al. (2011b). CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data. Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens., 49, 4401–30.Google Scholar
Minnis, P., Bedka, S. T., Duda, D. P., et al. (2013). Linear contrail and contrail cirrus properties determined from satellite data. Geophys. Res. Lett., 40, 3220–6.CrossRefGoogle Scholar
Mishchenko, M. I. (1990). Extinction of light by randomly-oriented non-spherical grains. Astrophys. Space Sci., 164, 1–13.CrossRefGoogle Scholar
Mishchenko, M. I. (1991). Extinction and polarization of transmitted light by partially aligned non-spherical grains. Astrophys. J., 367, 561–74.CrossRefGoogle Scholar
Mishchenko, M. I. and Macke, A. (1998). Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission. J. Geophys. Res., 103, 1799–805.CrossRefGoogle Scholar
Mishchenko, M. I. and Travis, L. D. (1998). Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309–24.CrossRefGoogle Scholar
Mishchenko, M. I., Rossow, W. B., Macke, A., and Lacis, A. A. (1996). Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape. J. Geophys. Res., 101, 16973–85.CrossRefGoogle Scholar
Mishchenko, M. I., Geogdzhayev, I. V., Cairns, B., Rossow, W. B., and Lacis, A. A. (1999). Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: Sensitivity analysis and preliminary results. Appl. Opt., 38, 7325–41.CrossRefGoogle ScholarPubMed
Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., eds. (2000a). Light Scattering by Non-spherical Particles: Theory, Measurements, and Applications. San Diego: Academic Press.Google Scholar
Mishchenko, M. I., Wiscombe, W., Hovenier, J. W., and Travis, L. D. (2000b). Overview of scattering by non-spherical particles. In Light Scattering by Non-spherical Particles: Theory, Measurements, and Applications, ed. Mishchenko, M. I., Hovenier, J. W., and Travis, L. D.. San Diego: Academic Press, pp. 2960.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2002). Scattering, Absorption, and Emission of Light by Small Particles. Cambridge: Cambridge University Press.Google Scholar
Mishchenko, M. I., Cairns, B., Kopp, G., et al. (2007). Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission. Bull. Am. Meteorol. Soc., 88, 677–91.CrossRefGoogle Scholar
Mishchenko, M. I., Zakharova, N. T., Videen, G., Khlebtsov, N. G., and Wriedt, T. (2010a). Comprehensive T-matrix reference database: A 2007–2009 update. J. Quant. Spectrosc. Radiat. Transfer, 111, 650–8.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N., et al. (2010b). Polarimetric Remote Sensing of Solar System Objects. Kiev, Ukraine: Akademperiodyka.CrossRefGoogle Scholar
Mitchell, D. L. and Arnott, W. P. (1994). A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51, 817–32.Google Scholar
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–82.CrossRefGoogle Scholar
Mlynczak, M. G., Harries, J. E. Rizzi, R., et al. (2002). Far-infrared: A frontier in remote sensing of Earth's climate and energy balance. Proc. SPIE, 4485, 150–8.CrossRefGoogle Scholar
Moeng, C.-H. (1986). Large-eddy simulation of a stratus-topped boundary layer. Part I: Structure and budgets. J. Atmos. Sci., 43, 2886–900.2.0.CO;2>CrossRefGoogle Scholar
Möller, F. (1943). Das Strahlungdiagramm. Berlin: Reichsamt für Wetterdienst (Luftwaffe).Google Scholar
Moore, T. G., Blaschak, J. G., Taflove, A., and Kriegsmann, G. A. (1988). Theory and application of radiation boundary operators. IEEE Trans. Antennas Propag., 36, 1797–812.CrossRefGoogle Scholar
Moorthi, S. and Suarez, M. J. (1992). Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002.2.0.CO;2>CrossRefGoogle Scholar
Mugnai, A. and Wiscombe, W. J. (1986). Scattering from non-spherical Chebyshev particles. 1: Cross sections, single-scattering albedo, asymmetry factor, and backscattered fraction. Appl. Opt., 25, 1235–44.CrossRefGoogle Scholar
Mugnai, A. and Wiscombe, W. J. (1989). Scattering from non-spherical Chebyshev particles. 3: Variability in angular scattering patterns. Appl. Opt., 28, 3061–73.CrossRefGoogle Scholar
Muinonen, K. (1989). Scattering of light by crystals: A modified Kirchhoff approximation. Appl. Opt., 28, 3044–50.Google ScholarPubMed
Muinonen, K., Lamberg, L., Fast, P., and Lumme, K. (1997). Ray optics regime for Gaussian random spheres. J. Quant. Spectrosc. Radiat. Transfer, 57, 197205.CrossRefGoogle Scholar
Mur, G. (1981). Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans. Electromagn. Compat., EMC-23, 377–82.Google Scholar
Nakajima, T. and King, M. D. (1990). Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 1878–93.2.0.CO;2>CrossRefGoogle Scholar
Nakajima, T. Y. and Nakajima, T. (1995). Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 52, 4043–59.2.0.CO;2>CrossRefGoogle Scholar
Nakajima, T., King, M. D., Spinhirne, J. D., and Radke, L. F. (1991). Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: Marine stratocumulus observations. J. Atmos. Sci., 48, 728–50.2.0.CO;2>CrossRefGoogle Scholar
Nakaya, U. (1954). Snow Crystals: Natural and Artificial. Cambridge: Harvard University Press.CrossRefGoogle Scholar
NASA (National Aeronautics and Space Administration) (2012). A-Train: The Afternoon Constellation. http://atrain.nasa.gov/ (June 12, 2012).Google Scholar
Needham, J. and Lu, G.-D. (1961). The earliest snow crystal observations. Weather, 16, 319–27.CrossRefGoogle Scholar
Newton, I. (1704). Opticks: Or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light. London: Royal Society.Google Scholar
Noel, V., Ledanois, G., Chepfer, H., and Flamant, P. H. (2001). Computation of a single-scattering matrix for non-spherical particles randomly or horizontally oriented in space. Appl. Opt., 40, 4365–75.CrossRefGoogle ScholarPubMed
Nousiainen, T., Muinonen, K., and Räisänen, P. (2003). Scattering of light by large Saharan dust particles in a modified ray optics approximation. J. Geophys. Res., 108, 4025–41.CrossRefGoogle Scholar
Nussenzveig, H. M. (1992). Diffraction Effects in Semiclassical Scattering. New York: Cambridge University Press.CrossRefGoogle Scholar
Nussenzveig, H. M. (2002). Does the glory have a simple explanation? Opt. Lett., 27, 1379–81.CrossRefGoogle ScholarPubMed
Nussenzveig, H. M. and Wiscombe, W. J. (1980). Forward optical glory. Opt. Lett., 5, 455–7.CrossRefGoogle ScholarPubMed
Ono, A. (1969). The shape and riming properties of ice crystals in natural clouds. J. Atmos. Sci., 26, 138–47.2.0.CO;2>CrossRefGoogle Scholar
Ono, A. (1970). Growth mode of ice crystals in natural clouds. J. Atmos. Sci., 27, 649–58.2.0.CO;2>CrossRefGoogle Scholar
Oort, A. H. (1983). Global Atmospheric Circulation Statistics, 1958–1973, NOAA Professional Paper No. 14. Washington, DC: National Oceanic and Atmospheric Administration.Google Scholar
Oshchepkov, S., Isaka, H., Gayet, J.-F., et al. (2000). Microphysical properties of mixed-phase & ice clouds retrieved from in situ airborne “polar nephelometer” measurements. Geophys. Res. Lett., 27, 209–12.CrossRefGoogle Scholar
Ou, S. C. S. and Liou, K. N. (1984). A two-dimensional radiation-turbulence climate model. I: Sensitivity to cirrus radiative properties. J. Atmos. Sci., 41, 2289–309.2.0.CO;2>CrossRefGoogle Scholar
Ou, S. C. S. and Liou, K. N. (1995). Ice microphysics and climatic temperature feedback. Atmos. Res., 35, 127–38.CrossRefGoogle Scholar
Ou, S. C. S., Liou, K. N., Gooch, W. M., and Takano, Y. (1993). Remote sensing of cirrus cloud parameters using advanced very-high-resolution radiometer 3.7- and 10.9-µm channels. Appl. Opt., 32, 2171–80.CrossRefGoogle Scholar
Ou, S. C. S., Liou, K. N., Takano, Y., et al. (1995). Remote sounding of cirrus cloud optical depths and ice crystal sizes from AVHRR data: Verification using FIRE II IFO measurements. J. Atmos. Sci., 52, 4143–58.2.0.CO;2>CrossRefGoogle Scholar
Ou, S. C., Liou, K. N., King, M. D., and Tsay, S. C. (1999). Remote sensing of cirrus cloud parameters based on a 0.63–3.7 µm radiance correlation technique applied to AVHRR data. Geophys. Res. Lett., 26, 2437–40.CrossRefGoogle Scholar
Ou, S. C. S., Liou, K. N., Takano, Y., et al. (2002). Cloud Effective Particle Size and Cloud Optical Thickness, Visible/Infrared Imager/Radiometer Suite, Algorithm Theoretical Basis Document #Y2393. 2002–03. Waltham, MA: Raytheon.Google Scholar
Ou, S. C. S., Takano, Y., Liou, K. N., et al. (2003). Remote sensing of cirrus cloud optical thickness and effective particle size for the national polar-orbiting operational environmental satellite system visible/infrared imager radiometer suite: Sensitivity to instrument noise and uncertainties in environmental parameters. Appl. Opt., 42, 7202–14.CrossRefGoogle ScholarPubMed
Ou, S. C. S., Liou, K. N., Takano, Y., and Slonaker, R. L. (2005a). Remote sensing of cirrus cloud particle size and optical depth using polarimetric sensor measurements. J. Atmos. Sci., 62, 4371–83.CrossRefGoogle Scholar
Ou, S. C. S., Liou, K. N., Takano, Y., et al. (2005b). Comparison of the University of California at Los Angeles line-by-line equivalent radiative transfer model and the moderate-resolution transmission model for accuracy assessment of the National Polar-Orbiting Operational Environmental Satellite System's Visible–Infrared Imager-Radiometer Suite cloud algorithms. Appl. Opt., 44, 6274–84.CrossRefGoogle ScholarPubMed
Ou, S. C. S., Liou, K. N., Hsu, N. C., and Tsay, S. C. (2012). Satellite remote sensing of dust aerosol indirect effects on cloud formation over Eastern Asia. Int. J. Remote Sens., 33, 7257–72.CrossRefGoogle Scholar
Ou, S. C. S., Kahn, B. H., Liou, K. N., et al. (2013). Retrieval of cirrus cloud properties from the Atmospheric Infrared Sounder: The k-coefficient approach using cloud-cleared radiances as input. IEEE Trans. Geosci. Remote Sens., 51, 1010–24.CrossRefGoogle Scholar
Paltridge, G. W. and Platt, C. M. R. (1981). Aircraft measurements of solar and infrared radiation and the microphysics of cirrus cloud. Quart. J. Roy. Meteorol. Soc., 107, 367–80.CrossRefGoogle Scholar
Pan, D.-M. and Randall, D. A. (1998). A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteorol. Soc., 124, 949–81.Google Scholar
Panetta, R. L., Liu, C., and Yang, P. (2013). A pseudo-spectral time domain method for light scattering computation. In Light Scattering Reviews 8, ed. Kokhanovsky, A. A., Berlin, Heidelberg: Springer-Verlag.Google Scholar
Parviainen, P., Bohren, C. F., and Mäkelä, V. (1994). Vertical elliptical coronas caused by pollen. Appl. Opt., 33, 4548–51.CrossRefGoogle ScholarPubMed
Pauling, L. (1935). The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc., 57, 2680–4.CrossRefGoogle Scholar
Peltoniemi, J. I., Lumme, K., Muinonen, K., and Irvine, W. M. (1989). Scattering of light by stochastically rough particles. Appl. Opt., 28, 4088–95.CrossRefGoogle ScholarPubMed
Penner, J. E., Chen, Y., Wang, M., and Liu, X. (2009). Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing. Atmos. Chem. Phys., 9, 879–96.CrossRefGoogle Scholar
Perrin, F. (1942). Polarization of light scattered by isotropic opalescent media. J. Chem. Phys., 10, 415–27.CrossRefGoogle Scholar
Petrenko, V. F. and Whitworth, R. W. (1999). The Physics of Ice. Oxford: Oxford University Press.Google Scholar
Petzold, A., Ström, J., Ohlsson, S., and Schröder, F. P. (1998). Elemental composition and morphology of ice crystal residual particles in cirrus clouds and contrails. Atmos. Res., 49, 2134.CrossRefGoogle Scholar
Petzold, A., Döpelheuer, A., Brock, C. A., and Schröder, F. (1999). In situ observations and model calculations of black carbon emission by aircraft at cruise altitude. J. Geophys. Res., 104, 22171–81.Google Scholar
Platnick, S. (2000). Vertical photon transport in cloud remote sensing problems. J. Geophys. Res., 105, 22919–35.CrossRefGoogle Scholar
Platnick, S., King, M. D., Ackerman, S. A., et al. (2003). The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459–73, doi:10.1109/TGRS.2002.808301.CrossRefGoogle Scholar
Platnick, S., King, M. D., Meyer, K. G., et al. (2014). MODIS Cloud Optical Properties: User Guide for the Collection 6 Level-2 MOD06/MYD06 Product and Associated Level-3 Datasets, NASA GSFC MODIS. 2014-09-17. Washington: National Aeronautics and Space Administration.Google Scholar
Platt, C. M. R., Abshire, N. L., and McNice, G. T. (1978). Some microphysical properties of an ice cloud from lidar observation of horizontally orientated crystals. J. Appl. Meteorol., 17, 1220–4.2.0.CO;2>CrossRefGoogle Scholar
Platt, C. M. R., Scott, J. C., and Dilley, A. C. (1987). Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus. J. Atmos. Sci., 44, 729–47.2.0.CO;2>CrossRefGoogle Scholar
Platt, C. M. R., Young, S. A., Manson, P. J., et al. (1998). The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment. J. Atmos. Sci., 55, 1977–96.2.0.CO;2>CrossRefGoogle Scholar
Poincaré, H. (1892). Théorie Mathénmatique de la Lumiere. Vol. II, Chap. XII. Paris: G. Carré.Google Scholar
Prabhakara, C., Fraser, R. S., Dalu, G., et al. (1988). Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 IRIS. J. Appl. Meteorol., 27, 379–99.2.0.CO;2>CrossRefGoogle Scholar
Prabhakara, C., Kratz, D. P., Yoo, J.-M., Dalu, G., and Vernekar, A. (1993). Optically thin cirrus clouds: Radiative impact on the warm pool. J. Quant. Spectrosc. Radiat. Transfer, 49, 467–83.CrossRefGoogle Scholar
Prospero, J. M., Charlson, R. J., Mohnen, V., et al. (1983). The atmospheric aerosol system: An overview. Rev. Geophys. Space Phys., 21, 1607–29.CrossRefGoogle Scholar
Protat, A., Delanoë, J., May, P. T., et al. (2011). The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia. Atmos. Chem. Phys., 11, 8363–84.CrossRefGoogle Scholar
Pruppacher, H. R. and Klett, J. D. (1996). Microphysics of Clouds and Precipitation, 2nd edn. Dordrecht: Kluwer Academic Publishers.Google Scholar
Purcell, E. M. and Pennypacker, C. R. (1973). Scattering and absorption of light by non-spherical dielectric grains. Astrophys. J., 186, 705–14.CrossRefGoogle Scholar
Radke, L. F., Coakley, J. A., and King, M. D. (1989). Direct and remote sensing observations of the effects of ships on clouds. Science, 246, 1146–9.CrossRefGoogle ScholarPubMed
Rajaram, B., Glandorf, D. L., Curtis, D. B., et al. (2001). Temperature-dependent optical constants of water ice in the near infrared: New results and critical review of the available measurements. Appl. Opt., 40, 4449–62.CrossRefGoogle ScholarPubMed
Ramanathan, V. (1987). The role of earth radiation budget studies in climate and general circulation research. J. Geophys. Res., 92, 4075–95.CrossRefGoogle Scholar
Ramaswamy, V. and Detwiler, A. (1986). Interdependence of radiation and microphysics in cirrus clouds. J. Atmos. Sci., 43, 2289–301.2.0.CO;2>CrossRefGoogle Scholar
Randall, D. A., ed. (2000). General Circulation Model Development: Past, Present, and Future – Proceedings of a Symposium in Honor of Professor Akio Arakawa. New York: Elsevier.Google Scholar
Randel, W. J. and Jensen, E. J. (2013). Physical processes in the tropical tropopause layer and their roles in a changing climate. Nature Geosci., 6, 169–76.CrossRefGoogle Scholar
Rap, A., Forster, P. M., Jones, A., et al. (2010). Parameterization of contrails in the UK Met Office climate model. J. Geophys. Res., 115, D10205.CrossRefGoogle Scholar
Rashed, R. (1993). Géométrie et dioptrique au Xesiècle: Ibn Sahl, al-Quhi et Ibn al-Haytham. Paris: Les Belles Lettres.Google Scholar
Rayleigh, Lord (1871). On the light from the sky, its polarization and colour. Phil. Mag., 41, 107–20, 274–9.Google Scholar
Rayleigh, Lord (1918). The dispersal of light by a dielectric cylinder. Phil. Mag., 36, 365–76.CrossRefGoogle Scholar
Rayner, N. A., Folland, C. K., Horton, B., and Parker, D. E. (1995). A New Global Sea Ice and Sea Surface Temperature (GISST) Data Set for 1903–1994 for Forcing Climate Models. Internal Note 69. Bracknell, UK: Hadley Centre, Met Office, 14 pp.Google Scholar
Reinking, R. F. (1968). Insolation reduction by contrails. Weather, 23, 171–3.CrossRefGoogle Scholar
Riédi, J., Marchant, B., Platnick, S., et al. (2010). Cloud thermodynamic phase inferred from merged POLDER and MODIS data. Atmos. Chem. Phys., 10, 11851–65.CrossRefGoogle Scholar
Robinson, G. D. (1980). The transport of minor atmospheric constituents between the troposphere and stratosphere. Quart. J. Roy. Meteorol. Soc., 106, 227–53.CrossRefGoogle Scholar
Rockwitz, K.-D. (1989). Scattering properties of horizontally oriented ice crystal columns in cirrus clouds: Part 1. Appl. Opt., 28, 4103–10.CrossRefGoogle ScholarPubMed
Roden, J. A. and Gedney, S. (2000). An efficient FDTD implementation of the PML with CFS in general media. Antennas and Propagation Society International Symposium, 2000. IEEE. Salt Lake City, UT, Vol. 3, pp. 1362–5.Google Scholar
Rogers, R. R. and Yau, M. K. (1989). A Short Course in Cloud Physics. Oxford: Pergamon Press.Google Scholar
Rolland, P. and Liou, K. N. (2001). Surface variability effects on the remote sensing of thin cirrus optical and microphysical properties. J. Geophys. Res., 106, 22965–77.CrossRefGoogle Scholar
Rolland, P., Liou, K. N., King, M. D., Tsay, S. C., and McFarquhar, G. M. (2000). Remote sensing of optical and microphysical properties of cirrus clouds using Moderate-Resolution Imaging Spectroradiometer channels: Methodology and sensitivity to physical assumptions. J. Geophys. Res., 105, 11721–38.CrossRefGoogle Scholar
Roskovensky, J. K. and Liou, K. N. (2003a). Detection of thin cirrus from 1.38 µm/0.65 µm reflectance ratio combined with 8.6–11 µm brightness temperature difference. Geophys. Res. Lett., 30, 1985.Google Scholar
Roskovensky, J. K. and Liou, K. N. (2003b). Detection of thin cirrus using a combination of 1.38-µm reflectance and window brightness temperature difference. J. Geophys. Res., 108, 4570.CrossRefGoogle Scholar
Roskovensky, J. K. and Liou, K. N. (2005). Differentiating airborne dust from cirrus clouds using MODIS data. Geophys. Res. Lett., 32, L12809.CrossRefGoogle Scholar
Roskovensky, J. K. and Liou, K. N. (2006). Simultaneous determination of aerosol and thin cirrus optical depths over oceans from MODIS data: Some case studies. J. Atmos. Sci., 63, 2307–23.CrossRefGoogle Scholar
Roskovensky, J. K., Liou, K. N., Garrett, T. J., and Baumgardner, D. (2004). Simultaneous retrieval of aerosol and thin cirrus optical depths using MODIS airborne simulator data during CRYSTAL-FACE and CLAMS. Geophys. Res. Lett., 31, L18110.CrossRefGoogle Scholar
Rossow, W. B. and Schiffer, R. A. (1999). Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc., 80, 2261–87.2.0.CO;2>CrossRefGoogle Scholar
Rothman, L. S., Rinsland, C. P., Goldman, A., et al. (1998). The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transfer, 60, 665710.CrossRefGoogle Scholar
Rothman, L. S., Barbe, A., Benner, D. C., et al. (2003). The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001. J. Quant. Spectrosc. Radiat. Transfer, 82, 544.CrossRefGoogle Scholar
Rothman, L. S., Gordon, I. E., Babikov, Y., et al. (2013). The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 130, 450.CrossRefGoogle Scholar
Russell, P. B., Pfister, L., and Selkirk, H. B. (1993). The tropical experiment of the stratosphere-troposphere exchange project (STEP): Science objectives, operations, and summary findings. J. Geophy. Res., 98, 8563–89.CrossRefGoogle Scholar
Sassen, K. (1976). An evaluation of polarization diversity lidar for cloud physics research. Ph.D. dissertation, University of Wyoming, Laramie, WY, pp. 409.Google Scholar
Sassen, K. (1991). The polarization lidar technique for cloud research: A review and current assessment. Bull. Am. Meteorol. Soc., 72, 1848–66.2.0.CO;2>CrossRefGoogle Scholar
Sassen, K. and Benson, S. (2001). A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical properties derived from lidar depolarization. J. Atmos. Sci., 58, 2103–12.Google Scholar
Sassen, K. and Hsueh, C.-Y. (1998). Contrail properties derived from high-resolution polarization lidar studies during SUCCESS. Geophys. Res. Lett., 25, 1165–8.CrossRefGoogle Scholar
Sassen, K. and Liou, K. N. (1979a). Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: Angular scattering patterns. J. Atmos. Sci., 36, 838–51.Google Scholar
Sassen, K. and Liou, K. N. (1979b). Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part II: Angular depolarizing and multiple-scattering behavior. J. Atmos. Sci., 36, 852–61.Google Scholar
Sausen, R., Isaksen, I., Grewe, V., et al. (2005). Aviation radiative forcing in 2000: An update on IPCC (1999). Met. Zeitschr. 14, 555–61.Google Scholar
Schaaf, J. W. and Williams, D. (1973). Optical constants of ice in the infrared. J. Opt. Soc. Am., 63, 726–32.CrossRefGoogle Scholar
Schelkunoff, S. A. (1943). Electromagnetic Waves. New York: D. Van Nostrand.Google Scholar
Schiffer, R. A. and Rossow, W. B. (1983). The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Am. Meteorol. Soc., 64, 779–84.CrossRefGoogle Scholar
Schumann, U., ed. (1990). Air Traffic and the Environment: Background, Tendencies and Potential Global Atmospheric Effects. Lecture Notes in Engineering, 60. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Schumann, U. (2002). Contrail cirrus. In Cirrus, ed. Lynch, D. K., Sassen, K., Starr, D. O'C., and Stephens, G.. New York: Oxford University Press, pp. 231–55.Google Scholar
Schumann, U. (2005). Formation, properties and climatic effects of contrails. Comptes Rendus Physique, 6, 549–65.CrossRefGoogle Scholar
Schumann, U. (2012). A contrail cirrus prediction model, Geosci. Model Dev., 5, 543–80.CrossRefGoogle Scholar
Schumann, U. and Graf, K. (2013). Aviation-induced cirrus and radiation changes at diurnal timescales. J. Geophys. Res., 118, 2404–21.CrossRefGoogle Scholar
Schumann, U. and Wendling, P. (1990). Determination of contrails from satellite data and observational results. In Air Traffic and the Environment: Background, Tendencies and Potential Global Atmospheric Effects, ed. Schumann, U.. Lecture Notes in Engineering, 60. Berlin, Heidelberg: Springer-Verlag, pp. 138–53.Google Scholar
Schuster, A. (1905). Radiation through a foggy atmosphere. Astrophys. J., 21, 122.CrossRefGoogle Scholar
Schwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R., and Fahey, D. W. (2013). Black carbon aerosol size in snow. Sci. Rep., 3, 1356.CrossRefGoogle ScholarPubMed
Schwarzschild, K. (1906). On the equilibrium of the sun's atmosphere. Nach. K. Gesell, Wiss. Göttingen. Math-Phys. Klasse, 195, 4153.Google Scholar
Scoresby, W. (1820). The Arctic. Vol. I of An Account of the Arctic Regions with a History and Description of the Northern Whale Fishery. Edinburgh: Archibald Constable and Co., p. 551.Google Scholar
Seki, M., Kobayashi, K., and Nakahara, J. (1981). Optical spectra of hexagonal ice. J. Phys. Soc. Japan, 50, 2643–8.CrossRefGoogle Scholar
Selkirk, H. B. (1993). The tropopause cold trap in the Australian monsoon during STEP/AMEX 1987. J. Geophys. Res., 98, 8591–610.CrossRefGoogle Scholar
Shcherbakov, V., Gayet, J.-F., Jourdan, O., Ström, J., and Minikin, A. (2006). Light scattering by single ice crystals of cirrus clouds. Geophys. Res. Lett., 33, L15809.CrossRefGoogle Scholar
Sherwood, S. C. (2000). A stratospheric “drain” over the maritime continent. Geophys. Res. Lett., 27, 677–80.CrossRefGoogle Scholar
Shurcliff, W. A. (1962). Polarized Light: Production and Use. Cambridge: Harvard University Press.CrossRefGoogle Scholar
Slingo, A. and Slingo, J. M. (1988). The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart. J. Roy. Meteorol. Soc., 114, 1027–62.CrossRefGoogle Scholar
SMIC (1971). Inadvertent Climate Modification: Report of the Study of Man's Impact on Climate. Cambridge: MIT Press.Google Scholar
Smith, R. C. and Marsh, J. S. (1974). Diffraction patterns of simple apertures. J. Opt. Soc. Am., 64, 798803.CrossRefGoogle Scholar
Smith, W. L., Revercomb, H. E., Knuteson, R. O., et al. (1995). Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part I: The High Resolution Interferometer Sounder (HIS) systems. J. Atmos. Sci., 52, 4238–45.2.0.CO;2>CrossRefGoogle Scholar
Smith, W. L., Ackerman, S., Revercomb, H., et al. (1998). Infrared spectral absorption of nearly invisible cirrus clouds. Geophys. Res. Lett., 25, 1137–40.CrossRefGoogle Scholar
Smith, W. L.., Hein, P. F., and Cox, S. K. (1990). The 27–28 October 1986 FIRE IFO cirrus case study: In situ observations of radiation and dynamic properties of a cirrus cloud layer. Mon. Wea. Rev., 118, 2389–401.2.0.CO;2>CrossRefGoogle Scholar
Sobolev, V. V. (1975). Light Scattering in Planetary Atmospheres, trans. Irvine, W. M.. Oxford: Pergamon Press.Google Scholar
Solomon, S., Qin, D., Manning, M., et al., eds. (2007). Climate Change 2007: The Physical Science Basis. Cambridge, UK: Cambridge University Press, 996 pp.Google Scholar
Solomon, S., Rosenlof, K. H., Portmann, R. W., et al. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 1219–23.CrossRefGoogle ScholarPubMed
Somerville, R. C. J. and Remer, L. A. (1984). Cloud optical thickness feedbacks in the CO2 climate problem. J. Geophys. Res., 89, 9668–72.CrossRefGoogle Scholar
Spangenberg, D. A., Minnis, P., Bedka, S. T., et al. (2013). Contrail radiative forcing over the northern hemisphere from 2006 Aqua MODIS data. Geophys. Res. Lett., 40, 595600.CrossRefGoogle Scholar
Spänkuch, D. and Döhler, W. (1985). Radiative properties of cirrus clouds in the middle IR derived from Fourier spectrometer measurements from space. Z. Meteorol., 35, 314–24.Google Scholar
Spinhirne, J. D. and Hart, W. D. (1990). Cirrus structure and radiative parameters from airborne lidar and spectral radiometer observations: The 28 October 1986 FIRE study. Mon. Wea. Rev., 118, 2329–43.2.0.CO;2>CrossRefGoogle Scholar
Spinhirne, J. D., Hart, W. D., and Hlavka, D. L. (1996). Cirrus infrared parameters and shortwave reflectance relations from observations. J. Atmos. Sci., 53, 1438–58.2.0.CO;2>CrossRefGoogle Scholar
Stackhouse, P. W. and Stephens, G. L. (1991). A theoretical and observational study of the radiative properties of cirrus: Results from FIRE 1986. J. Atmos. Sci., 48, 2044–59.2.0.CO;2>CrossRefGoogle Scholar
Starr, D. O'C. (1987). A cirrus-cloud experiment: Intensive field observations planned for FIRE. Bull. Am. Meteorol. Soc., 68, 119–24.2.0.CO;2>CrossRefGoogle Scholar
Starr, D. O'C. and Cox, S. K. (1985a). Cirrus clouds. Part I: A cirrus cloud model. J. Atmos. Sci., 42, 2663–81.2.0.CO;2>CrossRefGoogle Scholar
Starr, D. O'C. and Cox, S. K. (1985b). Cirrus clouds. Part II: Numerical experiments on the formation and maintenance of cirrus. J. Atmos. Sci., 42, 2682–94.2.0.CO;2>CrossRefGoogle Scholar
Stephens, G. L, Paltridge, G. W., and Platt, C. M. R. (1978). Radiation profiles in extended water clouds. III: Observations. J. Atmos. Sci., 35, 2133–41.Google Scholar
Stephens, G. L., Campbell, G. G., and Haar, Vonder, , T. H. (1981). Earth radiation budgets. J. Geophys. Res., 86, 9739–60.CrossRefGoogle Scholar
Stephens, G. L., Tsay, S.-C., Stackhouse, P. W., and Flatau, P. J. (1990). The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Atmos. Sci., 47, 1742–53.2.0.CO;2>CrossRefGoogle Scholar
Stephens, G. L., Vane, D. G., Boain, R. J., et al. (2002). The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc., 83, 1771–90.CrossRefGoogle Scholar
Sterle, K. M., McConnell, J. R., Dozier, J., Edwards, R., and Flanner, M. G. (2013). Retention and radiative forcing of black carbon in eastern Sierra Nevada snow. The Cryosphere, 7, 365–74.CrossRefGoogle Scholar
Stokes, G. G. (1852). On the composition and resolution of streams of polarized light from different sources. Trans. Cambridge Philos. Soc., 9, 399423.Google Scholar
Stowe, L. L. (1977). Polarization of reflected sunlight as measured from a high-altitude balloon. Proc. SPIE, 112, 176–83.CrossRefGoogle Scholar
Stratton, J. A. (1941). Electromagnetic Theory. New York: McGraw-Hill.Google Scholar
Strow, L. L., Hannon, S. E., De Souza-Machado, S., Motteler, H. E., and Tobin, D. (2003a). An overview of the AIRS radiative transfer model. IEEE Trans. Geosci. Remote Sens., 41, 303–13.CrossRefGoogle Scholar
Strow, L. L., Hannon, S. E., Weiler, M., et al. (2003b). Prelaunch spectral calibration of the Atmospheric Infrared Sounder (AIRS). IEEE Trans. Geosci. Remote Sens., 41, 274–86.CrossRefGoogle Scholar
Sun, W., Fu, Q., and Chen, Z. (1999). Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition. Appl. Opt., 38, 3141–51.CrossRefGoogle ScholarPubMed
Suomi, V. E. (1958). The radiation balance of the Earth from a satellite. Ann. Int. Geophys. Year, 6, 331–40.Google Scholar
Taflove, A. (1980). Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems. IEEE Trans. Electromagn. Compat., EMC22, 191202.CrossRefGoogle Scholar
Taflove, A. (1995). Computational Electrodynamics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House.Google Scholar
Taflove, A. and Brodwin, M. E. (1975). Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations. IEEE Trans. Microw. Theory Tech., MTT23, 623–30.CrossRefGoogle Scholar
Taflove, A. and Umashankar, K. R. (1990). The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures. Progress in Electromagnetics Research (PIER), 2, 287373.CrossRefGoogle Scholar
Takano, Y. and Asano, S. (1983). Fraunhofer diffraction by ice crystals suspended in the atmosphere. J. Meteorol. Soc. Jpn., 61, 289300.CrossRefGoogle Scholar
Takano, Y. and Jayaweera, K. (1985). Scattering phase matrix for hexagonal ice crystals computed from ray optics. Appl. Opt., 24, 3254–63.CrossRefGoogle ScholarPubMed
Takano, Y. and Liou, K. N. (1989a). Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319.2.0.CO;2>CrossRefGoogle Scholar
Takano, Y. and Liou, K. N. (1989b). Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium. J. Atmos. Sci., 46, 2036.2.0.CO;2>CrossRefGoogle Scholar
Takano, Y. and Liou, K. N. (1993). Transfer of polarized infrared radiation in optically anisotropic media: Application to horizontally oriented ice crystals. J. Opt. Soc. Am. A., 10, 1243–56.CrossRefGoogle Scholar
Takano, Y. and Liou, K. N. (1995). Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals. J. Atmos. Sci., 52, 818–37.2.0.CO;2>CrossRefGoogle Scholar
Takano, Y., Liou, K. N., and Yang, P. (2012). Diffraction by rectangular parallelepiped, hexagonal cylinder, and three-axis ellipsoid: Some analytic solutions and numerical results. J. Quant. Spectrosc. Radiat. Transfer, 113, 1836–43.CrossRefGoogle Scholar
Takano, Y., Liou, K. N., Kahnert, M., and Yang, P. (2013). The single scattering properties of black carbon aggregates determined from the geometric-optics surface-wave approach and the T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 125, 51–6.CrossRefGoogle Scholar
Tao, W.-K. and Moncrieff, M. W. (2009). Multiscale cloud system modeling. Rev. Geophys., 47, 141.CrossRefGoogle Scholar
Thevenon, F., Anselmetti, F. S., Bernasconi, S. M., and Schwikowski, M. (2009). Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J. Geophys. Res., 114, D17102.CrossRefGoogle Scholar
Toon, O. B., Tolbert, M. A., Koehler, B. G., Middlebrook, A. M., and Jordan, J. (1994). The infrared optical constants of H2O ice, amorphous acid solutions, and nitric acid hydrates. J. Geophys. Res., 99, 25631–54.Google Scholar
Tränkle, E. and Mielke, B. (1994). Simulation and analysis of pollen coronas. Appl. Opt., 33, 4552–62.CrossRefGoogle ScholarPubMed
Travis, L. D., Coffeen, D. L., Hansen, J. E., et al. (1979). Orbiter cloud photopolarimeter investigation. Science, 203, 781–5.CrossRefGoogle ScholarPubMed
Twomey, S. and Cocks, T. C. (1982). Spectral reflectance of clouds in the near-infrared: Comparison of measurements and calculations. J. Meteorol. Soc. Jpn., 60, 583–92.CrossRefGoogle Scholar
Twomey, S. and Cocks, T. C. (1989). Remote sensing of cloud parameters from spectral reflectance in the near-infrared. Beitr. Phys. Atmos., 62, 172–9.Google Scholar
Twomey, S. and Seton, K. J. (1980). Inferences of gross microphysical properties of clouds from spectral reflectance measurements. J. Atmos. Sci., 37, 1065–9.2.0.CO;2>CrossRefGoogle Scholar
Twomey, S., Piepgrass, M., and Wolfe, T. (1984). An assessment of the impact of pollution on global cloud albedo. Tellus, 36B, 356–66.Google Scholar
Ulanowski, Z., Hesse, E., Kaye, P. H., and Baran, A. J. (2006). Light scattering by complex ice-analogue crystals. J. Quant. Spectrosc. Radiat. Transfer, 100, 382–92.CrossRefGoogle Scholar
Ulanowski, Z., Kaye, P. H., Hirst, E., and Greenaway, R. S. (2010). Light scattering by ice particles in the Earth's atmosphere and related laboratory measurements. In Proceedings of the 12th International Conference on Electromagnetic and Light Scattering. Helsinki, FI, pp. 294–7.Google Scholar
Umashankar, K. and Taflove, A. (1982). A novel method to analyze electromagnetic scattering of complex objects. IEEE Trans. Electromagn. Compat., EMC24, 397405.CrossRefGoogle Scholar
van de Hulst, H. C. (1945). Theory of absorption lines in the atmosphere of the earth. Ann. Astrophys., 8, 111.Google Scholar
van de Hulst, H. C. (1947). A theory of the anti-coronae. J. Opt. Soc. Am., 37, 1622.CrossRefGoogle Scholar
van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York: John Wiley & Sons.CrossRefGoogle Scholar
van de Hulst, H. C. (1980). Multiple Light Scattering: Tables, Formulas, and Applications, Vols. 1 and 2. New York: Academic Press.Google Scholar
van Diedenhoven, B., Cairns, B., Fridlind, A. M., Ackerman, A. S., and Garrett, T. J. (2013). Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements. Part 2: Application to the Research Scanning Polarimeter. Atmos. Chem. Phys., 13, 3185–203.CrossRefGoogle Scholar
Volkovitskiy, O. A., Pavlova, L. N., and Petrushin, A. G. (1980). Scattering of light by ice crystals. Izv., Acad. Sci., USSR, Atmos. Ocean. Phys., 16, 98102.Google Scholar
Vonder Haar, T. H. and Suomi, V. E. (1971). Measurements of the earth's radiation budget from satellites during a five-year period. Part I: Extended time and space means. J. Atmos. Sci., 28, 305–14.2.0.CO;2>CrossRefGoogle Scholar
von Koch, H. (1904). Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire. Arkiv foer Matematik, 1, 681704.Google Scholar
Vonnegut, B. (1947). The nucleation of ice formation by silver iodide. J. Appl. Phys., 18, 593–5.CrossRefGoogle Scholar
Vouk, V. (1948). Projected area of convex bodies. Nature, 162, 330–1.CrossRefGoogle ScholarPubMed
Wait, J. R. (1955). Scattering of a plane wave from a circular dielectric cylinder at oblique incidence. Can. J. Phys., 33, 189–95.CrossRefGoogle Scholar
Walden, V. P., Warren, S. G., and Tuttle, E. (2003). Atmospheric ice crystals over the Antarctic Plateau in winter. J. Appl. Meteorol., 42, 1391–405.2.0.CO;2>CrossRefGoogle Scholar
Waliser, D. E., Li, J.-L. F., Woods, C. P., et al. (2009). Cloud ice: A climate model challenge with signs, and expectations of progress. J. Geophys. Res., 114, D00A21.CrossRefGoogle Scholar
Wallace, J. M. and Hobbs, P. V. (2006). Atmospheric Science: An Introductory Survey. Amsterdam: Elsevier Academic Press.Google Scholar
Wang, C., Yang, P., Baum, B. A., et al. (2011). Retrieval of ice cloud optical thickness and effective particle size using a fast infrared radiative transfer model. J. Appl. Meteorol. Clim., 50, 2283–97.CrossRefGoogle Scholar
Wang, M. and King, M. D. (1997). Correction of Rayleigh scattering effects in cloud optical thickness retrievals. J. Geophys. Res., 102, 25915–26.CrossRefGoogle Scholar
Wang, P.-H., McCormick, M. P., Poole, L. R., et al. (1994). Tropical high cloud characteristics derived from SAGE II extinction measurements. Atmos. Res., 34, 5383.CrossRefGoogle Scholar
Wang, P. K. (2013). Physics and Dynamics of Clouds and Precipitation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wang, X., Liou, K. N., Ou, S. C. S., Mace, G. G., and Deng, M. (2009). Remote sensing of cirrus cloud vertical size profile using MODIS data. J. Geophys. Res., 114, D09205.Google Scholar
Warner, J. and Twomey, S. (1967). The production of cloud nuclei by cane fires and the effect on cloud droplet concentration. J. Atmos. Sci., 24, 704–6.2.0.CO;2>CrossRefGoogle Scholar
Warren, S. G. (1984). Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23, 1206–25.CrossRefGoogle Scholar
Warren, S. G. and Brandt, R. E. (2008). Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220.CrossRefGoogle Scholar
Washington, W. M. and Meehl, G. A. (1984). Seasonal cycle experiment on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model. J. Geophys. Res., 89, 9475–503.CrossRefGoogle Scholar
Waterman, P. C. (1971). Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D, 3, 825–39.CrossRefGoogle Scholar
Waters, J. W., Read, W. G., Froidevaux, L., et al. (1999). The UARS and EOS Microwave Limb Sounder (MLS) experiments. J. Atmos. Sci., 56, 194218.2.0.CO;2>CrossRefGoogle Scholar
Wegener, A. (1911). Thermodynamik der Atmosphäre. Leipzig: Verlag Von Johann Ambrosius Barth.Google Scholar
Wei, H., Yang, P., Li, J., et al. (2004). Retrieval of semitransparent ice cloud optical thickness from Atmospheric Infrared Sounder (AIRS) measurements. IEEE Trans. Geosci. Remote Sens., 42, 2254–67.Google Scholar
Weickmann, H. (1948). The Ice Phase in the Atmosphere, trans. Sutton, M. G.. London: Ministry of Supply.Google Scholar
Wendling, P., Wendling, R., and Weickmann, H. K. (1979). Scattering of solar radiation by hexagonal ice crystals. Appl. Opt., 18, 2663–71.CrossRefGoogle ScholarPubMed
West, R. A., Strobel, D. F., and Tomasko, M. G. (1986). Clouds, aerosols, and photochemistry in the Jovian atmosphere. Icarus, 65, 161217.CrossRefGoogle Scholar
Whitlock, C. H., Charlock, T. P., Staylor, W. F., et al. (1995). First global WCRP shortwave surface radiation budget dataset. Bull. Am. Meteorol. Soc., 76, 905–22.2.0.CO;2>CrossRefGoogle Scholar
Wielicki, B. A., Suttles, J. T., Heymsfield, A. J., et al. (1990). The 27–28 October 1986 FIRE IFO cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft. Mon. Wea. Rev., 118, 2356–76.2.0.CO;2>CrossRefGoogle Scholar
Wielicki, B. A., Cess, R. D., King, M. D., Randall, D. A., and Harrison, E. F. (1995). Mission to planet Earth: Role of clouds and radiation in climate. Bull. Am. Meteorol. Soc., 76, 2125–53.2.0.CO;2>CrossRefGoogle Scholar
Wilcke, J. C. (1761). Rön och tankar om snö-figures skiljaktighet. K. Svenska. Vetenska-Akad. Handl., 22, 17.Google Scholar
Wild, M., Ohmura, A., Gilgen, H., Roeckner, E. (1995). Validation of GCM simulated radiative fluxes using surface observations. J. Climate, 8, 1309–24.2.0.CO;2>CrossRefGoogle Scholar
Wiscombe, W. J. (1977). The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34, 1408–22.2.0.CO;2>CrossRefGoogle Scholar
Wiscombe, W. J. and Mugnai, A. (1988). Scattering from non-spherical Chebyshev particles. 2: Means of angular scattering patterns. Appl. Opt., 27, 2405–21.CrossRefGoogle Scholar
Wolff, G. A. (1957). The growth of ice crystals. In Artificial Stimulation of Rain, ed. Weickmann, H. and Smith, W.. London: Pergamon Press, pp. 332–9.Google Scholar
Wong, E., Hutchison, K. D., Ou, S. C. S., and Liou, K. N. (2007). Cirrus cloud top temperatures retrieved from radiances in the National Polar-Orbiting Operational Environmental Satellite System: Visible Infrared Imager Radiometer Suite 8.55 and 12.0 µm bandpasses. Appl. Opt., 46, 1316–25.CrossRefGoogle ScholarPubMed
Wriedt, T. (1998). A review of elastic light scattering theories. Part. Part. Syst. Charact., 15, 6774.3.0.CO;2-F>CrossRefGoogle Scholar
Wu, D. L., Austin, R. T., Deng, M., et al. (2009). Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets. J. Geophys. Res., 114, D00A24.CrossRefGoogle Scholar
Wylie, D. P., Menzel, W. P., Woolf, H. M., and Strabala, K. I. (1994). Four years of global cirrus cloud statistics using HIRS. J. Climate, 7, 1972–86.2.0.CO;2>CrossRefGoogle Scholar
Wylie, D. P., Jackson, D. L., Menzel, W. P., and Bates, J. J. (2005). Trends in global cloud cover in two decades of HIRS observations. J. Climate, 18, 3021–31.CrossRefGoogle Scholar
Wyser, K. and Yang, P. (1998). Average ice crystal size, and bulk short-wave single-scattering properties of cirrus clouds. Atmos. Res., 49, 315–35.CrossRefGoogle Scholar
Xie, Y., Yang, P., Liou, K. N., Minnis, P., and Duda, D. P. (2012). Parameterization of contrail radiative properties for climate studies. Geophys. Res. Lett., 39, L00F02.CrossRefGoogle Scholar
Xu, B., Cao, J., Hansen, J. E., et al. (2009). Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci. U.S.A., 106, 114–18.CrossRefGoogle ScholarPubMed
Yaghjian, A. D. (1980). Electric dyadic Green's functions in the source region. Proc. IEEE, 68, 248–63.CrossRefGoogle Scholar
Yamamoto, G. (1952). On a radiation chart. Sci. Rep. Tohoku Univ. Ser. 5 Geophys., 4, 923.Google Scholar
Yang, P. and Liou, K. N. (1995). Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics models. J. Opt. Soc. Am. A, 12, 162–76.CrossRefGoogle Scholar
Yang, P. and Liou, K. N. (1996a). Geometric-optics-integral-equation method for light scattering by non-spherical ice crystals. Appl. Opt., 35, 6568–84.CrossRefGoogle Scholar
Yang, P. and Liou, K. N. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Am. A, 13, 2072–85.Google Scholar
Yang, P. and Liou, K. N. (1997). Light scattering by hexagonal ice crystals: Solutions by a ray-by-ray integration algorithm. J. Opt. Soc. Am. A, 14, 2278–89.CrossRefGoogle Scholar
Yang, P. and Liou, K. N. (1998a). Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contr. Atmos. Phys., 71, 223–48.Google Scholar
Yang, P. and Liou, K. N. (1998b). An efficient algorithm for truncating spatial domain in modeling light scattering by finite-difference technique. J. Compt. Phys., 140, 346–69.CrossRefGoogle Scholar
Yang, P. and Liou, K. N. (2000). Finite difference time domain method for light scattering by non-spherical and inhomogeneous particles. In Light Scattering by Non-spherical Particles: Theory, Measurements, and Applications, ed. Mishchenko, M. I., Hovenier, J. W., and Travis, L. D.. San Diego: Academic Press, pp. 173221.CrossRefGoogle Scholar
Yang, P. and Liou, K. N. (2006). Light scattering and absorption by non-spherical ice crystals. In Light Scattering Reviews: Single and Multiple Light Scattering, ed. Kokhanovsky, A.. Berlin, Heidelberg: Springer-Verlag, pp. 3171.CrossRefGoogle Scholar
Yang, P. and Liou, K. N. (2009). Effective refractive index for determining ray propagation in an absorbing dielectric particle. J. Quant. Spectrosc. Radiat. Transfer, 110, 300–6.CrossRefGoogle Scholar
Yang, P., Liou, K. N., and Arnott, W. P. (1997). Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds. J. Geophys. Res., 102, 21825–35.CrossRefGoogle Scholar
Yang, P., Liou, K. N., Wyser, K., and Mitchell, D. (2000a). Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105, 4699–718.CrossRefGoogle Scholar
Yang, P., Liou, K. N., Mishchenko, M. I., and Gao, B.-C. (2000b). Efficient finite-difference time-domain scheme for light scattering by dielectric particles: Application to aerosols. Appl. Opt., 39, 3727–37.CrossRefGoogle ScholarPubMed
Yang, P., Gao, B.-C., Baum, B. A., et al. (2001). Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands. J. Geophys. Res., 106, 17267–91.CrossRefGoogle Scholar
Yang, P., Baum, B. A., Heymsfield, A. J., et al. (2003a). Single-scattering properties of droxtals. J. Quant. Spectrosc. Radiat. Transfer, 7980, 1159–69.Google Scholar
Yang, P., Mlynczak, M. G., Wei, H., et al. (2003b). Spectral signature of ice clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study. J. Geophys. Res., 108, 4569.CrossRefGoogle Scholar
Yang, P., Kattawar, G. W., Liou, K. N., and Lu, J. Q. (2004). Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles. Appl. Opt., 43, 4611–24.CrossRefGoogle ScholarPubMed
Yang, P., Wei, H., Huang, H. L., et al. (2005). Scattering and absorption property database for non-spherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 5512–23.CrossRefGoogle Scholar
Yang, P., Hong, G., Kattawar, G. W., Minnis, P., and Hu, Y. (2008). Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds. Part II: Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sens., 46, 1948–57.Google Scholar
Yang, P., Bi, L., Baum, B. A., et al. (2013). Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 µm. J. Atmos. Sci., 70, 330–47.CrossRefGoogle Scholar
Yang, P., Liou, K. N., Bi, L., et al. (2015). On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization. Adv. Atmos. Sci., 32, 3263.CrossRefGoogle Scholar
Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag., AP-14, 302–7.Google Scholar
Yi, B., Yang, P., Liou, K. N., Minnis, P., and Penner, J. E. (2012). Simulation of the global contrail radiative forcing: A sensitivity analysis. Geophys. Res. Lett., 39, L00F03.CrossRefGoogle Scholar
Yi, B., Yang, P., Baum, B. A., et al. (2013). Influence of ice particle surface roughening on the global cloud radiative effect. J. Atmos. Sci., 70, 2794–807.CrossRefGoogle Scholar
You, Y., Kattawar, G. W., Yang, P., Hu, Y. X., and Baum, B. A. (2006). Sensitivity of depolarized lidar signals to cloud and aerosol particle properties. J. Quant. Spectrosc. Radiat. Transfer, 100, 470–82.CrossRefGoogle Scholar
Yuan, T. and Li, Z. (2010). General macro- and microphysical properties of deep convective clouds as observed by MODIS. J. Climate, 23, 3457–73.CrossRefGoogle Scholar
Yue, Q. and Liou, K. N. (2009). Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra. Geophys. Res. Lett., 36, L05810.CrossRefGoogle Scholar
Yue, Q., Liou, K. N., Ou, S. C. S., et al. (2007). Interpretation of AIRS data in thin cirrus atmospheres based on a fast radiative transfer model. J. Atmos. Sci., 64, 3827–42.CrossRefGoogle Scholar
Yurkin, M. A. and Hoekstra, A. G. (2011). The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 2234–47.CrossRefGoogle Scholar
Yurkin, M. A., Hoekstra, A. G., Brock, R. S., and Lu, J. Q. (2007). Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers. Opt. Express, 15, 17902–11.CrossRefGoogle ScholarPubMed
Yurkin, M. A., Min, M., and Hoekstra, A. G. (2010). Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived. Phys. Rev. E, 82, 036703.CrossRefGoogle ScholarPubMed
Zakharova, N. T., Videen, G., and Khlebtsov, N. G. (2012). Comprehensive T-matrix reference database: A 2009–2011 update. J. Quant. Spectrosc. Radiat. Transfer, 113, 1844–52.CrossRefGoogle Scholar
Zdanowicz, C. M., Zielinski, G. A., and Wake, C. P. (1998). Characteristics of modern atmospheric dust deposition in snow on the Penny Ice Cap, Baffin Island, Arctic Canada. Tellus, 50B, 506–20.Google Scholar
Zdanowicz, C. M., Hall, G., Vaive, J., et al. (2006). Asian dustfall in the St. Elias Mountains, Yukon, Canada. Geochim. Cosmochim. Acta., 70, 3493–507.CrossRefGoogle Scholar
Zhai, P.-W., Li, C., Kattawar, G. W., and Yang, P. (2007). FDTD far-field scattering amplitudes: Comparison of surface and volume integration methods. J. Quant. Spectrosc. Radiat. Transfer, 106, 590–4.CrossRefGoogle Scholar
Zhang, C., Lee, K.-S., Zhang, X.-C., Wei, X., and Shen, Y. R. (2001). Optical constants of ice Ih crystal at terahertz frequencies. Appl. Phys. Lett., 79, 491–3.CrossRefGoogle Scholar
Zhang, F., Zeng, Q., Gu, Y., and Liou, K. N. (2005). Parameterization of the absorption of the H2O continuum, CO2, O2, and other trace gases in the Fu–Liou solar radiation program. Adv. Atmos. Sci., 22, 545–58.Google Scholar
Zhang, Z., Yang, P., Kattawar, G. W., et al. (2004). Geometrical-optics solution to light scattering by droxtal ice crystals. Appl. Opt., 43, 2490–9.CrossRefGoogle ScholarPubMed
Zhang, Z., Yang, P., Kattawar, G., et al. (2009). Influence of ice particle model on retrieving cloud optical thickness from satellite measurements: Model comparison and implication for climate study. Atmos. Chem. Phys. Discuss., 9, 1757–96.Google Scholar
Zhou, X.-L., Geller, M. A., and Zhang, M. (2001). Cooling trend of the tropical cold point tropopause temperatures and its implications. J. Geophys. Res., 106, 1511–22.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kuo-Nan Liou, University of California, Los Angeles, Ping Yang, Texas A & M University
  • Book: Light Scattering by Ice Crystals
  • Online publication: 14 November 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139030052.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kuo-Nan Liou, University of California, Los Angeles, Ping Yang, Texas A & M University
  • Book: Light Scattering by Ice Crystals
  • Online publication: 14 November 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139030052.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kuo-Nan Liou, University of California, Los Angeles, Ping Yang, Texas A & M University
  • Book: Light Scattering by Ice Crystals
  • Online publication: 14 November 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139030052.008
Available formats
×