Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-z5d2w Total loading time: 0.24 Render date: 2021-12-08T02:03:23.430Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

12 - Nutrients, elemental accumulation, and mineral cycling

Published online by Cambridge University Press:  05 September 2012

T. H. Nash
Affiliation:
School of Life Sciences Arizona State University Box 874501 Tempe, AZ 85287–4501USA
Thomas H. Nash, III
Affiliation:
Arizona State University
Get access

Summary

As with any organisms the accumulation and processing of both macronutrients and micronutrients essential for life's physiological functions are critical to the growth and development of lichens. The fact that lichens do not possess roots, the efficient nutrient absorption system of vascular plants, has led to major dependence on atmospheric sources of nutrients instead of the soil pool exploited by vascular plants (Nieboer et al. 1978), although some soil uptake by terricolous Peltigera species has been demonstrated (Goyal and Seaward 1982). Because atmospheric sources of nutrients are relatively meager compared with soil nutrient pools, nutrient concentrating mechanisms are critical for lichen survival. The fact that such mechanisms exist has led to more general scientific interest in lichens as surrogate receptors for atmospheric deposition. For example, the extremely high body burdens of radionuclides in indigenous human populations of arctic regions in the 1950s and 1960s resulted from their high consumption of caribou and reindeer, which in turn ate mostly lichens for 6–8 months of the year (Palmer et al. 1963; Lidén and Gustafsson 1967). Although most areas were remote from areas of surface nuclear testing, the lichens of these areas were efficient accumulators of radionuclides in this food chain. In more recent years, interest in such phenomena has led to using lichens for studies of regional atmospheric deposition of metals and other atmospheric contaminants (Puckett 1988).

Type
Chapter
Information
Lichen Biology , pp. 234 - 251
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
10
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×