Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-14T09:12:27.518Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2014

Marcelo Viana
Affiliation:
IMPA, Rio de Janeiro
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] P., Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109:1492–1505, 1958.Google Scholar
[2] D. V., Anosov. Geodesic flows on closed Riemannian manifolds of negative curvature. Proc. Steklov Math. Inst., 90:1–235, 1967.Google Scholar
[3] V., Araújo and M., Bessa. Dominated splitting and zero volume for incompressible three-flows. Nonlinearity, 21:1637–1653, 2008.Google Scholar
[4] A., Arbieto and J., Bochi. Lp-generic cocycles have one-point Lyapunov spectrum. Stoch. Dyn., 3:73–81, 2003.Google Scholar
[5] L., Arnold. Random Dynamical Systems. Springer-Verlag, 1998.Google Scholar
[6] L., Arnold and N. D., Cong. On the simplicity of the Lyapunov spectrum of products of random matrices. Ergod. Theory Dynam. Sys., 17:1005–1025, 1997.Google Scholar
[7] L., Arnold and V., Wishtutz (Eds.). Lyapunov Exponents (Bremen, 1984), volume 1186 of Lecture Notes in Math. Springer, 1986.
[8] A., Avila. Density of positive Lyapunov exponents for quasiperiodic SL(2, ℝ)- cocycles in arbitrary dimension. J. Mod. Dyn., 3:631–636, 2009.Google Scholar
[9] A., Avila and J., Bochi. Lyapunov exponents: parts I & II. Notes of mini-course given at the School on Dynamical Systems, ICTP, 2008.Google Scholar
[10] A., Avila and J., Bochi. Proof of the subadditive ergodic theorem. Preprint www.mat.puc-rio.br/~jairo/.
[11] A., Avila and J., Bochi. A formula with some applications to the theory of Lyapunov exponents. Israel J. Math., 131:125–137, 2002.Google Scholar
[12] A., Avila, A., Eskin and M., Viana. Continuity of Lyapunov exponents of random matrix products. In preparation.
[13] A., Avila, J., Santamaria, and M., Viana. Holonomy invariance: rough regularity and Lyapunov exponents. Astérisque, 358:13–74, 2013.Google Scholar
[14] A., Avila and M., Viana. Simplicity of Lyapunov spectra: a sufficient criterion. Port. Math., 64:311–376, 2007.Google Scholar
[15] A., Avila and M., Viana. Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture. Acta Math., 198:1–56, 2007.Google Scholar
[16] A., Avila and M., Viana. Extremal Lyapunov exponents: an invariance principle and applications. Inventiones Math., 181:115–178, 2010.Google Scholar
[17] A., Avila, M., Viana, and A., Wilkinson. Absolute continuity, Lyapunov exponents and rigidity I: geodesic flows. Preprint www.preprint.impa.br 2011.Google Scholar
[18] L., Barreira and Ya., Pesin. Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents. Cambridge University Press, 2007.Google Scholar
[19] L., Barreira, Ya., Pesin and J., Schmeling. Dimension and product structure of hyperbolic measures. Ann. of Math., 149:755–783, 1999.Google Scholar
[20] M., Bessa. Dynamics of generic 2-dimensional linear differential systems. J. Differential Equations, 228:685–706, 2006.Google Scholar
[21] M., Bessa. The Lyapunov exponents of generic zero divergence three-dimensional vector fields. Ergodic Theory Dynam. Systems, 27:1445–1472, 2007.Google Scholar
[22] M., Bessa. Dynamics of generic multidimensional linear differential systems. Adv. Nonlinear Stud., 8:191–211, 2008.Google Scholar
[23] M., Bessa and J. L., Dias. Generic dynamics of 4-dimensional C2 Hamiltonian systems. Comm. Math. Phys., 281:597–619, 2008.Google Scholar
[24] M., Bessa and J., Rocha. Contributions to the geometric and ergodic theory of conservative flows. Ergodic Theory Dynam. Sys., 33:1709–1731, 2013.Google Scholar
[25] M., Bessa and H., Vilarinho. Fine properties of lp-cocycles. J. Differential Equations, 256:2337–2367, 2014.Google Scholar
[26] G., Birkhoff. Lattice Theory, volume 25. A.M.S. Colloq. Publ., 1967.Google Scholar
[27] J., Bochi. Discontinuity of the Lyapunov exponents for non-hyperbolic cocycles. Preprint www.mat.puc-rio.br/~jairo/.
[28] J., Bochi. The multiplicative ergodic theorem of Oseledets. Preprint www.mat.puc-rio.br/~jairo/.
[29] J., Bochi. Proof of the Oseledets theorem in dimension 2 via hyperbolic geometry. Preprint www.mat.puc-rio.br/~jairo/.
[30] J., Bochi. Genericity of zero Lyapunov exponents. Ergod. Theory Dynam. Sys., 22:1667–1696, 2002.Google Scholar
[31] J., Bochi. C1-generic symplectic diffeomorphisms: partial hyperbolicity and zero centre Lyapunov exponents. J. Inst. Math. Jussieu, 8:49–93, 2009.Google Scholar
[32] J., Bochi and M., Viana. Pisa lectures on Lyapunov exponents. In Dynamical Systems. Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, pages 23–47. Scuola Norm. Sup., 2003.Google Scholar
[33] J., Bochi and M., Viana. Lyapunov exponents: how frequently are dynamical systems hyperbolic? In Modern Dynamical Systems and Applications, pages 271–297. Cambridge University Press, 2004.Google Scholar
[34] J., Bochi and M., Viana. The Lyapunov exponents of generic volume-preserving and symplectic maps. Ann. of Math., 161:1423–1485, 2005.Google Scholar
[35] C., Bocker and M., Viana. Continuity of Lyapunov exponents for 2D random matrices. Preprint www.impa.br/~viana/out/bernoulli.pdf.
[36] C., Bonatti, L. J., Diaz, and M., Viana. Dynamics Beyond Uniform Hyperbolicity, volume 102 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, 2005.Google Scholar
[37] C., Bonatti, X., Gomez-Mont, and M., Viana. Généricité d'exposants de Lyapunov non-nuls pour des produits deterministes de matrices. Ann. Inst. H. Poincare Anal. Non Lineaire, 20:579–624, 2003.Google Scholar
[38] C., Bonatti and M., Viana. SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math., 115:157–193, 2000.Google Scholar
[39] N., Bourbaki. Algebra. I. Chapters 1-3. Elements of Mathematics (Berlin). Springer-Verlag, 1989. Translated from the French, Reprint of the 1974 edition.Google Scholar
[40] J., Bourgain. Positivity and continuity of the Lyapounov exponent for shifts on Td with arbitrary frequency vector and real analytic potential. J. Anal. Math., 96:313–355, 2005.Google Scholar
[41] J., Bourgain and S., Jitomirskaya. Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J. Statist. Phys., 108:1203–1218, 2002.Google Scholar
[42] M., Cambrainha. Generic symplectic cocycles are hyperbolic. Ph D thesis, IMPA, 2013.Google Scholar
[43] C., Castaing and M., Valadier. Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, Vol. 580. Springer-Verlag, 1977.Google Scholar
[44] J. E., Cohen, H., Kesten, and C. M., Newman (Eds.). Random Matrices and their Applications (Brunswick, Maine, 1984), volume 50 of Contemp. Math. Amer. Math. Soc., 1986.
[45] J., Conway. Functions of One Complex Variable. II, volume 159 of Graduate Texts in Mathematics. Springer-Verlag, 1995.Google Scholar
[46] A., Crisanti, G., Paladin, and A., Vulpiani. Products of Random Matrices in Statistical Physics, volume 104 of Springer Series in Solid-State Sciences. Springer-Verlag, 1993. With a foreword by Giorgio Parisi.Google Scholar
[47] D., Damanik. Schrödinger operators with dynamically defined potentials. In preparation.
[48] David, Damanik. Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications. In Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon's 60th birthday, volume 76 of Proc. Sympos. Pure Math., pages 539–563. Amer. Math. Soc., 2007.Google Scholar
[49] L. J., Diaz and R., Ures. Persistent homoclinic tangencies at the unfolding of cycles. Ann. Inst. H. Poincare, Anal. Non-lineaire, 11:643–659, 1996.Google Scholar
[50] A., Douady and J. C., Earle. Conformally natural extension of homeomorphisms of the circle. Acta Math., 157:23–48, 1986.Google Scholar
[51] R., Dudley, H., Kunita, F., Ledrappier, and P., Hennequin (Eds.). Ecole d'etede probabilites de Saint-Flour, XII—1982, volume 1097 of Lecture Notes in Math.Springer, 1984.
[52] J., Franks. Anosov diffeomorphisms. In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 61–93. Amer. Math. Soc., 1970.Google Scholar
[53] N., Friedman. Introduction to Ergodic Theory. Van Nostrand, 1969.Google Scholar
[54] H., Furstenberg. Non-commuting random products. Trans. Amer. Math. Soc., 108:377–428, 1963.Google Scholar
[55] H., Furstenberg. Boundary theory and stochastic processes on homogeneous spaces. In Harmonic Analysis in Homogeneous Spaces, volume XXVI of Proc. Sympos. Pure Math. (Williamstown MA, 1972), pages 193–229. Amer. Math. Soc., 1973.Google Scholar
[56] H., Furstenberg and H., Kesten. Products of random matrices. Ann. Math. Statist., 31:457–469, 1960.Google Scholar
[57] H., Furstenberg and Yu., Kifer. Random matrix products and measures in projective spaces. Israel J. Math, 10:12–32, 1983.Google Scholar
[58] I. Ya., Gol'dsheid and G. A., Margulis. Lyapunov indices of a product of random matrices. UspekhiMat. Nauk., 44:13–60, 1989.Google Scholar
[59] Y., Guivarc'h. Marches aléatories a pas markovien. Comptes Rendus Acad. Sci. Paris, 289:211–213, 1979.Google Scholar
[60] Y., Guivarc'h and A., Raugi. Products of random matrices: convergence theorems. Contemp. Math., 50:31–54, 1986.Google Scholar
[61] H., Hennion. Loi des grands nombres et perturbations pour des produits réductibles de matrices aleatoires indépendantes. Z. Wahrsch. Verw. Gebiete, 67:265–278, 1984.Google Scholar
[62] M., Herman. Une meithode nouvelle pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d'un theoreme d'Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helvetici, 58:453–502, 1983.Google Scholar
[63] A., Herrera. Simplicity of the Lyapunov spectrum for multidimensional continued fraction algorithms. PhD thesis, IMPA, 2009.Google Scholar
[64] F., Rodriguez Hertz, M. A., Rodriguez Hertz, A., Tahzibi, and R., Ures. Maximizing measures for partially hyperbolic systems with compact center leaves. Ergodic Theory Dynam. Sys., 32:825–839, 2012.Google Scholar
[65] E., Hopf. Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Verh. Sächs. Akad. Wiss. Leipzig, 91:261–304, 1939.Google Scholar
[66] S., Jitomirskaya and C., Marx. Dynamics and spectral theory of quasi-periodic Schrodinger type operators. In preparation.
[67] R., Johnson. Lyapounov numbers for the almost periodic Schrödinger equation. Illinois J. Math., 28:397–419, 1984.Google Scholar
[68] A., Katok. Lyapunov exponents, entropy and periodic points of diffeomorphisms. Publ. Math. IHES, 51:137–173, 1980.Google Scholar
[69] Y., Katznelson and B., Weiss. A simple proof of some ergodic theorems. Israel J. Math., 42:291–296, 1982.Google Scholar
[70] Yu., Kifer. Perturbations of random matrix products. Z. Wahrsch. Verw. Gebiete, 61:83–95, 1982.Google Scholar
[71] Yu., Kifer. Ergodic Theory of Random Perturbations. Birkhauser, 1986.Google Scholar
[72] Yu., Kifer. General random perturbations of hyperbolic and expanding transformations. J. Analyse Math., 47:11–150, 1986.Google Scholar
[73] Yu., Kifer and E., Slud. Perturbations of random matrix products in a reducible case. Ergodic Theory Dynam. Sys., 2:367–382 (1983), 1982.Google Scholar
[74] J., Kingman. The ergodic theorem of subadditive stochastic processes. J. Royal Statist. Soc., 30:499–510, 1968.Google Scholar
[75] O., Knill. The upper Lyapunov exponent of SL(2, R) cocycles: discontinuity and the problem of positivity. In Lyapunov Exponents (Oberwolfach, 1990), volume 1486 of Lecture Notes in Math., pages 86–97. Springer-Verlag, 1991.Google Scholar
[76] O., Knill. Positive Lyapunov exponents for a dense set of bounded measurable SL(2, R)-cocycles. Ergod. Theory Dynam. Sys., 12:319–331, 1992.Google Scholar
[77] S., Kotani. Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. In Stochastic Analysis, pages 225–248. North Holland, 1984.Google Scholar
[78] H., Kunz and Bernard B., Souillard. Sur le spectre des opeirateurs aux diffeirences finies aleatoires. Comm. Math. Phys., 78:201–246, 1980/1981.Google Scholar
[79] F., Ledrappier. Proprietes ergodiques des mesures de SinaiPubl. Math. I.H.E.S., 59:163–188, 1984.Google Scholar
[80] F., Ledrappier. Quelques proprietes des exposants caracteristiques. volume 1097 of Lect. Notes in Math., pages 305–396, Springer-Verlag, 1984.Google Scholar
[81] F., Ledrappier. Positivity of the exponent for stationary sequences of matrices. In Lyapunov Exponents (Bremen, 1984), volume 1186 of Lect. Notes in Math., pages 56–73. Springer-Verlag, 1986.Google Scholar
[82] F., Ledrappier and G., Royer. Croissance exponentielle de certain produits aleiatorires de matrices. Comptes Rendus Acad. Sci. Paris, 290, 513–514, 1980.Google Scholar
[83] F., Ledrappier and L.-S., YoungThe metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula. Ann. ofMath., 122:509–539, 1985.Google Scholar
[84] F., Ledrappier and L.-S., YoungThe metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. ofMath., 122:540–574, 1985.Google Scholar
[85] A. M., Lyapunov. The General Problem of the Stability of Motion. Taylor & Francis Ltd., 1992. Translated from Edouard Davaux's French translation (1907) of the 1892 Russian original and edited by A.T. Fuller, with an introduction and preface by Fuller, a biography of Lyapunov by V.I. Smirnov, and a bibliography of Lyapunov's works compiled by J.F. Barrett, Lyapunov centenary issue, Reprint of Internat. J. Control 55 (1992), no. 3 [MR1154209 (93e:01035)], With a foreword by Ian Stewart.Google Scholar
[86] R., Mane. A proof of Pesin's formula. Ergod. Theory Dynam. Sys., 1:95–101, 1981.Google Scholar
[87] R., Mane. Lyapunov exponents and stable manifolds for compact transformations. In Geometric Dynamics, volume 1007 of Lect. Notes in Math., pages 522–577. Springer-Verlag, 1982.Google Scholar
[88] R., Mane. Oseledec's theorem from the generic viewpoint. In Procs. International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), pages 1269–1276, Warsaw, 1984. PWN Publ.Google Scholar
[89] R., Mane. Ergodic Theory and Differentiable Dynamics. Springer-Verlag, 1987.Google Scholar
[90] A., Manning. There are no new Anosov diffeomorphisms on tori. Amer.J.Math., 96:422–429, 1974.Google Scholar
[91] S., Newhouse. On codimension one Anosov diffeomorphisms. Amer. J. Math., 92:761–770, 1970.Google Scholar
[92] V. I., Oseledets. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., 19:197–231, 1968.Google Scholar
[93] J. C., Oxtoby and S. M., Ulam. Measure-preserving homeomorphisms and metrical transitivity. Ann. of Math., 42:874–920, 1941.Google Scholar
[94] E. Le, Page. Theoremes limites pour les produits de matrices aleatoires. In Probability Measures on Groups (Oberwolfach, 1981), volume 928 of Lecture Notes in Math., pages 258–303. Springer-Verlag, 1982.Google Scholar
[95] É. Le, Page. Reigularitei du plus grand exposant caracteiristique des produits de matrices aleatoires independantes et applications. Ann. Inst. H. Poincare Probab. Statist., 25:109–142, 1989.Google Scholar
[96] J., Palis and S., Smale. Structural stability theorems. In Global Analysis, volume XIV of Proc. Sympos. Pure Math. (Berkeley 1968), pages 223–232. Amer. Math. Soc., 1970.Google Scholar
[97] L., Pastur. Spectral properties of disordered systems in the one-body approximation. Comm. Math. Phys., 75:179–196, 1980.Google Scholar
[98] Y., Peres. Analytic dependence of Lyapunov exponents on transition probabilities. In Lyapunov Exponents (Oberwolfach, 1990), volume 1486 of Lecture Notes in Math., pages 64–80. Springer-Verlag, 1991.Google Scholar
[99] Ya. B., Pesin. Families of invariant manifolds corresponding to non-zero characteristic exponents. Math. USSR. Izv., 10:1261–1302, 1976.Google Scholar
[100] Ya. B., Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys, 324:55–114, 1977.Google Scholar
[101] M. S., Raghunathan. A proof of Oseledec's multiplicative ergodic theorem. Israel J. Math., 32:356–362, 1979.Google Scholar
[102] V. A., Rokhlin. On the fundamental ideas of measure theory. A. M. S. Transl., 10:1–54, 1962. Transl. from Mat. Sbornik 25 (1949), 107-150. First published by the A. M. S. in 1952 as Translation Number 71.Google Scholar
[103] G., Royer. Croissance exponentielle de produits markoviens de matrices. Ann. Inst. H. Poincare, 16:49–62, 1980.Google Scholar
[104] D., Ruelle. Analyticity properties of the characteristic exponents of random matrix products. Adv. in Math., 32:68–80, 1979.Google Scholar
[105] D., Ruelle. Ergodic theory of differentiable dynamical systems. Inst. Hautes Etudes Sci. Publ. Math., 50:27–58, 1979.Google Scholar
[106] D., Ruelle. Characteristic exponents and invariant manifolds in Hilbert space. Annals of Math., 115:243–290, 1982.Google Scholar
[107] M., Shub. Global Stability of Dynamical Systems. Springer-Verlag, 1987.Google Scholar
[108] B., Simon and M., Taylor. Harmonic analysis on SL(2, R) and smoothness of the density of states in the one-dimensional Anderson model. Comm. Math. Phys., 101:1–19, 1985.Google Scholar
[109] S., Smale. Differentiable dynamical systems. Bull. Am. Math. Soc., 73:747–817, 1967.Google Scholar
[110] A., Tahzibi. Stably ergodic diffeomorphisms which are not partially hyperbolic. Israel J. Math., 142:315–344, 2004.Google Scholar
[111] Ph., Thieullen. Ergodic reduction of random products of two-by-two matrices. J. Anal. Math., 73:19–64, 1997.Google Scholar
[112] M., Viana. Lyapunov exponents and strange attractors. In J.-P., Francoise, G. L., Naber, and S. T., Tsou, editors, Encyclopedia of Mathematical Physics. Elsevier, 2006.Google Scholar
[113] M., Viana. Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. Ann. of Math., 167:643–680, 2008.Google Scholar
[114] M., Viana and K., Oliveira. Fundamentos da Teoria Ergodica. Colecao Fronteiras da Matemaitica. Sociedade Brasileira de Matemaitica, 2014.Google Scholar
[115] M., Viana and J., Yang. Physical measures and absolute continuity for one-dimensional center directions. Ann. Inst. H. Poincare Anal. Non Lineaire, 30:845–877, 2013.Google Scholar
[116] A., Virtser. On products of random matrices and operators. Th. Prob. Appl., 34:367–377, 1979.Google Scholar
[117] P., Walters. A dynamical proof of the multiplicative ergodic theorem. Trans. Amer. Math. Soc., 335:245–257, 1993.Google Scholar
[118] L.-S., Young. Some open sets of nonuniformly hyperbolic cocycles. Ergod. Theory Dynam. Sys., 13(2):409–415, 1993.Google Scholar
[119] L.-S., Young. Ergodic theory of differentiable dynamical systems. In Real and Complex Dynamical Systems, volume NATO ASI Series, C-464, pages 293–336. Kluwer Acad. Publ., 1995.Google Scholar
[120] A. C., Zaanen. Integration. North-Holland Publishing Co., 1967. Completely revised edition of An Introduction to the Theory ofIntegration.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Marcelo Viana, IMPA, Rio de Janeiro
  • Book: Lectures on Lyapunov Exponents
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139976602.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Marcelo Viana, IMPA, Rio de Janeiro
  • Book: Lectures on Lyapunov Exponents
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139976602.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Marcelo Viana, IMPA, Rio de Janeiro
  • Book: Lectures on Lyapunov Exponents
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139976602.012
Available formats
×