Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-31T14:24:13.219Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2014

Ram Zamir
Affiliation:
Tel-Aviv University
Bobak Nazer
Affiliation:
Boston University
Yuval Kochman
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Lattice Coding for Signals and Networks
A Structured Coding Approach to Quantization, Modulation and Multiuser Information Theory
, pp. 408 - 424
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] J., Abrahams. Variable-rate unequal cost parsing and coding for shaping. IEEE Transactions on Information Theory, 44:1648-1650, July 1998.Google Scholar
[2] Stella Achtenberg and Dan Raphaeli. Theoretic shaping bounds for single letter constraints and mismatched decoding. arXiv:1308.5938 [cs.IT], August 2013.
[3] E., Agrell, T., Eriksson, A., Vardy, and K., Zeger. Closet point search in lattices. IEEE Transactions on Information Theory, 48:2201-2214, August 2002.Google Scholar
[4] R., Ahlswede, N., Cai, S.-Y. R., Li, and R. W., Yeung. Network information flow. IEEE Transactions on Information Theory, 46(4):1204-1216, July 2000.Google Scholar
[5] Rudolf, Ahlswede and Te Sun, Han. On source coding with side information via a multiple-access channel and related problems in multi-user information theory. IEEE Transactions on Information Theory, 29(3):396-412, May 1983.Google Scholar
[6] M., Ajtai. The shortest vector problem in l2 is np-hard for randomized reductions. In Proc. 30th ACM Symposium on the Theory of Computing (STOC), pages 10-19, ACM, 1998.Google Scholar
[7] E., Akyol and K., Rose. Nonuniform dithered quantization. In Proc. Data Compression Conference, pages 435-445, 2009.Google Scholar
[8] N., Alon and A., Orlitsky. Source coding and graph entropies. IEEE Transactions on Information Theory, 42:1329-1339, 1996.Google Scholar
[9] V, Anantharam and F., Baccelli. A palm theory approach to error exponents. Proc. IEEE Int. Symposium on Information Theory (ISIT), pages 1768-1772, July 2008.Google Scholar
[10] S., Arimoto. Analgorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Transactions on Information Theory, 18:14-20, January 1972.Google Scholar
[11] N. W., Ashcroft and N. D., Mermin. Solid State Physics. Cengage Learning, 1976.Google Scholar
[12] A., Barg. On the asymptotic accuracy of the union bound. Available at: http://arxiv.org/abs/cs/0412111, 2004.Google Scholar
[13] A., Barg and G. D., Forney Jr.Random codes: minimum distances and error exponents. IEEETransactionson Information Theory, 48:2568-2573, September 2002.Google Scholar
[14] E. S., Barnes and N. J. A., Sloane. The optimal lattice quantizer in three dimensions. SIAM Journal on Algebraic Discrete Methods, 4:30-41, March 1983.Google Scholar
[15] R., Barron, B., Chen, and G., Wornell. The duality between information embedding and source coding with side information, and some applications. IEEE Transactions on Information Theory, 49:1159-1180, May 2003.Google Scholar
[16] J.-C., Belfiore. Lattice codes for the compute-and-forward protocol: the flatness factor. In Proc. IEEE Information Theory Workshop, pages 1-4, 2011.Google Scholar
[17] W. R., Bennett. Spectra of quantized signals. Bell System Technical Journal, 27:446-472, July 1948.Google Scholar
[18] T., Berger. Rate Distortion Theory: A Mathematical Basis for Data Compression. Prentice-Hall, Englewood Cliffs, NJ, 1971.
[19] T., Berger. Multiterminal Source Coding. In G., Longo, editor, The Information Theory Approach to Communications, Springer-Verlag, New York, 1977.Google Scholar
[20] T., Berger and S. Y., Tung. Encoding of correlated analog sources. In Proc. IEEE-USSR Joint Workshop on Information Theory, pages 7-10, 1975.Google Scholar
[21] E., Berlekamp. Key Papers in the Development of Coding Theory. IEEE Press, New York, 1974.Google Scholar
[22] R. E., Blahut. Computation of channel capacity and rate-distortion functions. IEEE Transactions on Information Theory, 18:460-473, 1972.Google Scholar
[23] R. E., Blahut. Theory and Practice of Error Control Codes.Addison Wesley, Reading, MA, 1983.
[24] S., Borade and L., Zheng. Writing on fading paper, dirty tape with little ink: wideband limits for causal transmitter csi. IEEE Transactions on Information Theory, 58:5388-5397, August 2012.Google Scholar
[25] Guy, Bresler, Abhay, Parekh, and David, Tse. The approximate capacity of the many-to-one and one-to-many Gaussianinterference channels. IEEE Transactionson Information Theory, 56(9):4566-4592, September 2010.Google Scholar
[26] Viveck R., Cadambe and Syed A., Jafar. Interference alignment and the degrees of freedom for the K-user interference channel. IEEE Transactions on Information Theory, 54(8):3425-3441, August 2008.Google Scholar
[27] G., Caire and S., Shamai. On the achievable throughput of a multi-antenna Gaussian broadcast channel. IEEE Transactions on Information Theory, 49:1649-1706, July 2003.Google Scholar
[28] A. R., Calderbank. Class notes.
[29] A. R., Calderbank. Multilevel codes and multistage decoding. IEEE Transactions on Communications, 37:222-229, March 1989.Google Scholar
[30] A. R., Calderbank. The art of signaling: fifty years of coding theory. IEEE Transactions on Information Theory, 44:2561-2595, October 1998.Google Scholar
[31] A. R., Calderbank and P. C., Fishburn. The normalized second moment of the binary lattice determined by a convolutional code. IEEE Transactionson Information Theory, 40:166-174, January 1994.Google Scholar
[32] A. R., Calderbank, P. C., Fishburn, and A., Rabinovich. Covering properties of convolutional codes and associated lattices. IEEE Transactions on Information Theory, 41:732-746, May 1995.Google Scholar
[33] A. R., Calderbank and L. H., Ozarow. Nonequiprobable signaling on the Gaussian channel. IEEE Transactionson Information Theory, 36:726-740, July 1990.Google Scholar
[34] A. R., Calderbank and N. J., ASloane. New trellis codes based on lattices and cosets. IEEE Transactionson Information Theory, 33:726-740, March 1987.Google Scholar
[35] J. C., Candy and G. C., Temes. Oversampling Delta-Sigma Data Converters.IEEE Press, New York, 1992.Google Scholar
[36] J. W. H., Cassels. An Introduction to the Geometry of Numbers.Springer, 1971, 1991.Google Scholar
[37] B., Chen and G., Wornell. Analog error-correcting codes based on chaotic dynamical systems. IEEE Transactionson Communications, 46:881-890, July 1998.Google Scholar
[38] B., Chen and G. W., Wornell. Quantization index modulation: a class of provably good methods fordigital watermarking and information embedding. IEEE Transactionson Information Theory, 47:1423-1443, May 2001.Google Scholar
[39] J., Chen, C., Tian, T., Berger, and S., Hemami. Multiple description quantization via Gram–Schmidt orthogonalization. IEEE Transactions on Information Theory, 52:5197-5217, December 2006.Google Scholar
[40] P. A., Chou, T., Lookabaugh, and R. M., Gray. Entropy constrained vector quantization. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37:31-42, January 1989.Google Scholar
[41] J. M., Cioffi, G. P., Dudevoir, M. V, Eyuboglu, and G. D., Forney Jr.MMSE decision-feedback equalizers and coding – Part I: Equalization results. IEEE Transactions on Communications, 43:2582-2594, October 1995.Google Scholar
[42] M., Cioffi and G. D., Forney Jr.Generalized decision-feedback equalization for packet transmission with ISI and Gaussian noise. In A., Paulraj, V., Roychowdhury, and C. D., Schaper, editors, Communications, Computation, Control and Signal Processing, a tribute to Thomas Kailath, pages 79-129, Kluwer Academic Publishers, Boston, MA, 1997.Google Scholar
[43] A. S., Cohen and A., Lapidoth. The Gaussian watermarking game. IEEE Transactions on Information Theory, 48:1639-1667, June, 2002. See also, On the Gaussian Watermarking Game, Proc. IEEE Int. Symposium on Information Theory (ISIT), Sorrento, Italy, page 48, June 2000.Google Scholar
[44] P. M., Cohn. Classic Algebra.Wiley, 2000.Google Scholar
[45] J. H., Conway and N. J. A., Sloane. Voronoi regions of lattices, second moments of polytops, and quantization. IEEE Transactions on Information Theory, 28:211-226, March 1982.Google Scholar
[46] J. H., Conway and N. J. A., Sloane. Fast quantizing and decoding algorithms for lattice quantizers and codes. IEEE Transactionson Information Theory, 28:227-231, March 1982.Google Scholar
[47] J. H., Conway and N. J. A., Sloane. A fast encoding method for lattice codes and quantizers. IEEE Transactions on Information Theory, 29:820-824, November 1983.Google Scholar
[48] J. H., Conway and N.J.A., Sloane. On the Voronoi region of certain lattices. SIAM Journal on Algebraic Discrete Methods, 5:294-305, September 1984.Google Scholar
[49] J. H., Conway and N. J. A., Sloane. Sphere Packings, Lattices and Groups.Springer Verlag, New York, 1988.Google Scholar
[50] M. H. M., Costa. Writing on dirty paper. IEEE Transactions on Information Theory, 29:439-441, May 1983.Google Scholar
[51] T. M., Cover. A proof of the data compression theorem of Slepian and Wolf for ergodic sources. IEEE Transactionson Information Theory, 21:226-228, March 1975.Google Scholar
[52] T. M., Cover and M., Chiang. Duality of channel capacity and rate distortion with two sided state information. IEEE Transactions on Information Theory, 48:1629-1638, June 2002.Google Scholar
[53] T. M., Cover and J. A., Thomas. Elements of Information Theory.Wiley, New York, 1991.Google Scholar
[54] I., Csiszar. Generalized cutoff rates and Renyi's information measures. IEEE Transactions on Information Theory, 41:26-34, January 1995.Google Scholar
[55] I., Csiszar and P., Narayan. Channel capacity for a given decoding metric. IEEE Transactions on Information Theory, 41:35-43, January 1995.Google Scholar
[56] J. S., Davidovic, B. I., Korenbljum, and B. I., Hacet. A certain property of logarithmically concave functions. Doklady Akademii Nauk SSSR, 185:1215-1218, 1969. English translation: Sov. Math. Dokl.,10:477-480, 1969.Google Scholar
[57] R., de Buda. The upper error bound of a new near-optimal code. IEEE Transactions on Information Theory, 21:441-445, July 1975.Google Scholar
[58] R., de Buda. Some optimal codes have structure. IEEE Journal on Selected Areas in Communications, 7:893-899, August 1989.Google Scholar
[59] D., Divsalar. Asimple tight bound on error probability of block codes with application to turbo codes. JPL, TMO Progress Report, pp. 42139, November 1999.Google Scholar
[60] Y., Domb, R., Zamir, and M., Feder. The random coding bound is tight for the average linear code or lattice. arXiv:1307.5524, 2013.Google Scholar
[61] J. J., Duistermaat and J. A. C., Kolk. Multidimensional Real Analysis II: Integration.Cambridge University Press, 2004.Google Scholar
[62] R., Durrett. Probability Theory and Examples.Wadsworth and Brooks, Pacific Grove, CA, 1989.Google Scholar
[63] J. J., Eggers, R., Bauml, R., Tzschoppe, and B., Girod. Scalar Costa scheme for information embedding. IEEE Transactions on Signal Processing, 51:1003-1019, April 2002.Google Scholar
[64] A., El Gamal and T.-H., Kim. Network Information Theory.Cambridge University Press, 2011.Google Scholar
[65] P., Elias. Coding for noisy channels. IREConvention Record, Part4, pp. 37-46, 1955. Also appears in D. Slepian, editor, Key Papers in the Development of Information Theory, pages 102-111, IEEE Press, 1974.Google Scholar
[66] U., Erez, S., Litsyn, and R., Zamir. Lattices which are good for (almost) everything. IEEE Transactionson Information Theory, 51:3401-3416, October 2005.Google Scholar
[67] U., Erez, S., Shamai, and R., Zamir. Additive noise channels with side information at the transmitter. In Proc. IEEE 21st Convention of Electrical and Electronics Engineers in Israel (IEEEI), pages 373-376, April 2000.Google Scholar
[68] U., Erez, S., Shamai (Shitz), and R., Zamir. Capacity and lattice strategies for cancelling known interference. IEEE Transactionson Information Theory, 51:3820-3833, November 2005.Google Scholar
[69] U., Erez and S., ten Brink. A close-to-capacity dirty paper coding scheme. IEEE Transactions on Information Theory, 51:3417-3432, October 2005.Google Scholar
[70] U., Erez and R., Zamir. Error exponents of modulo-additive noise channels with side-informationatthetransmitter. IEEE Transactionson Information Theory, 47:210-218, January 2001.Google Scholar
[71] U., Erez and R., Zamir. Achieving 1/2 log(1+SNR) on the AWGN channel with lattice encoding and decoding. IEEE Transactions on Information Theory, 50:2293-2314, October 2004.Google Scholar
[72] U., Erez and R., Zamir. A modulo-lattice transformation for multiple-access channels. In Proc. IEEE 25th Convention of Electrical and Electronics Engineers in Israel (IEEEI), pages 836-840, December 2008 (presented also at ITA 2009, UCSD).
[73] Raul, Etkin and Erik, Ordentlich. The degrees-of-freedom of the K-user Gaussian interference channel is discontinuous at rational channel coefficients. IEEE Transactions on Information Theory, 55(11):4932-4946, November 2009.Google Scholar
[74] Raul H., Etkin, David N. C., Tse, and Hua, Wang. Gaussian interference channel capacity to within one bit. IEEE Transactions on Information Theory, 54(12):5534-5562, December 2008.Google Scholar
[75] M. V., Eyuboglu and G. D., Forney Jr., Trellis precoding: combined coding, precoding and shaping forintersymbol interference channels. IEEE Transactionson Information Theory, 38:301-314, March 1992.Google Scholar
[76] M. V., Eyuboglu and G. D., Forney Jr.Lattice and trellis quantization with lattice- and trellis-bounded codebooks: high-rate theory for memoryless sources. IEEE Transactions on Information Theory, 39:46-59, January 1993.Google Scholar
[77] A., Feinstein. A new basic theorem of information theory. IRE Transactions on Information Theory, 4:2-22, 1954.Google Scholar
[78] Chen, Feng, Danilo, Silva, and Frank, Kschischang. An algebraic approach to physical-layer network coding. IEEE Transactions on Information Theory, 59:7576-7596, November 2013.Google Scholar
[79] W. A., Finamore and W. A., Pearlman. Optimal encoding of discrete-time continuous-amplitude memoryless sources with finite output alphabets. IEEE Transactions on Information Theory, 26:144-155, March 1980.Google Scholar
[80] Robert F. H., Fischer. The modulo-lattice channel: the key feature in precoding schemes. International Journal of Electronics and Communications, 59:244-253, June 2005.Google Scholar
[81] G. D., Forney Jr.Class notes at MIT.
[82] G. D., Forney. The Viterbi algorithm. Proceedings of the IEEE, 61:268-278, 1973.Google Scholar
[83] G. D., Forney Jr., Coset codes I: introduction and geometrical classification. IEEE Transactions on Information Theory, 34:1123-1151, September 1988.Google Scholar
[84] G. D., Forney Jr., Coset codes II: binary lattices and related codes. IEEE Transactions on Information Theory, 34:1152-1187, September 1988.Google Scholar
[85] G. D., Forney Jr., Multidimensional constellations – part II: Voronoi constellations. IEEE Journal of Selected Areasin Communications, 7:941-958, August 1989.Google Scholar
[86] G. D., Forney Jr., Geometrically uniform codes. IEEE Transactions on Information Theory, 37:1241-1260, September 1991.Google Scholar
[87] G. D., Forney Jr., Trellis shaping. IEEE Transactions on Information Theory, 38:281-300, March 1992.Google Scholar
[88] G. D., Forney. On the duality of coding and quantizing. In DIMACS Series on Discrete Mathematics and Theoretical Computer Science, Vol. 14, 1993.Google Scholar
[89] G. D., Forney. On the role of MMSE estimation in approaching the information-theoretic limits of linear gaussian channels: Shannon meets Wiener. In Allerton Conference, Allerton House, Urbana, Illinois, October 2003.Google Scholar
[90] G. D., Forney Jr., Shannon meets Wiener II: on MMSE estimation in successive decoding schemes. In 42nd Annual Allerton Conference on Communication, Control, and Computing, Allerton House, Monticello, Illinois, October 2004.
[91] G. D., Forney, R. G., Gallager, O. R., Lang, F. M., Longstaff, and S. U., Quereshi. Efficient modulation for band-limited channels. IEEE Journal on Selected Areas in Communications, 2:632-647, September 1984.Google Scholar
[92] G. D., Forney, M. D., Trott, and S.-Y., Chung. Sphere-bound-achieving coset codes and multilevel coset codes. IEEE Transactions on Information Theory, 46:820-850, May 2000.Google Scholar
[93] G. D., ForneyandG., Ungerboeck. Modulationand coding for linear Gaussian channels. IEEE Transactionson Information Theory, 44:2384-2415, October 1998.Google Scholar
[94] G. D., Forney and L.-F., Wei. Multidimensional constellations – part I: introduction, figures of merit, and generalized cross constellations. IEEE Journal on Selected Areas in Communications, 7:877-892, August 1989.Google Scholar
[95] Y., Frank-Dayan and R., Zamir. Dithered lattice-based quantizers for multiple descriptions. IEEE Transactions on Information Theory, 48:192-204, January 2002.Google Scholar
[96] R. G., Gallager. A simple derivation of the coding theorem and some applications. IEEE Transactionson Information Theory, 11:3-18, 1965.Google Scholar
[97] R. G., Gallager. Information Theory and Reliable Communication.Wiley, New York, 1968.Google Scholar
[98] T., Gariby and U., Erez. On general lattice quantization noise. In IEEE International Symposium on Information Theory, pages 2717-2721, July 2008.
[99] M., Gastpar, B., Rimoldi, and M., Vetterli. To code, or not to code: lossy source-channel communication revisited. IEEE Transactions on Information Theory, 49(5):1147-1158, 2003.Google Scholar
[100] S. I., Gelfand and M. S., Pinsker. Coding for channels with random parameters. Problemy Peredachi Informatsii (Probl. Inform. Trans.), 9(1):19-31, 1980.Google Scholar
[101] S. I., Gel'fand and M. S., Pinsker. On Gaussian channels with random parameters. In IEEE International Symposium on Information Theory, pages 247-250, Tashkent, USSR, September 1984.Google Scholar
[102] A., Gersho. Asymptotically optimal block quantization. IEEE Transactions on Information Theory, 25:373-380, July 1979.Google Scholar
[103] A., Gersho and R. M., Gray. Vector Quantization and Signal Compression.Kluwer Academic, Boston, MA, 1992.Google Scholar
[104] G. D., Gibson, T., Berger, T., Lookabaugh, D., Lindbergh, and R. L., Baker. Digital Compression for Multimedia: Principles and Standards.Morgan Kaufmann, San Fansisco, CA, 1998.
[105] G., Ginis and J. M., Cioffi. Vectored-DMT: a FEXT canceling modulation scheme for coordinating users. In ICC2001, Helsinki, Finland, volume 1, pages 305-309, June 2001.Google Scholar
[106] H., Gish and N. J., Pierce. Asymptotically efficient quantization. IEEE Transactions on Information Theory, 14:676-683, September 1968.Google Scholar
[107] T. J., Goblick. Theoretical limitations onthe transmission of data from analog sources. IEEE Transactionson Information Theory, 11:558-567, 1965.Google Scholar
[108] O., Goldreich, S., Goldwasser, and S., Halevi. Eliminating decryption errors in the Ajtai–Dwork cryptosystem. In Advances in Cryptology, volume 1294 of Lecture Notes in Computer Science, pages 105-111, Springer, 1997.Google Scholar
[109] R. M., Gray. Quantization noise spectra. IEEE Transactions on Information Theory, 36:1220-1244, November 1990.Google Scholar
[110] R. M., Gray, T., Linder, and J., Li. A Lagrangian formulation of Zador's entropy-constrained quantization theorem. IEEE Transactionson Information Theory, 48:695-707, March 2002.Google Scholar
[111] R. M., Gray and D. L., Neuhoff. Quantization. IEEE Transactions on Information Theory, 44:2325-2383, October 1998.Google Scholar
[112] R. M., Gray and T. J., Stockham Jr., Dithered quantizers. IEEE Transactions on Information Theory, 39:805-812, May 1993.Google Scholar
[113] P. M., Gruber and C. G., Lekkerkerker. Geometry of Numbers.North-Holland Mathematical Library, Vol. 37, 1987.Google Scholar
[114] M., Gutman. On uniform quantization with various distortion measures. IEEE Transactions on Information Theory, 33:169-171, January 1987.Google Scholar
[115] E., Haim, Y., Kochman, and U., Erez. Distributed structure: joint expurgation for the multiple-access channel. IEEE Transactions on Information Theory, submitted 2012. Available at: http://arxiv.org/abs/1207.1345.Google Scholar
[116] Te Sun, Han and Kingo, Kobayashi. A new achievable rate region for the interference channel. IEEE Transactionson Information Theory, 27(1):49-60, January 1981.Google Scholar
[117] H., Harashima and H., Miyakawa. Matched-transmission technique for channels with intersymbol interference. IEEE Transactions on Communications, 20:774-780, August 1972.Google Scholar
[118] X., He and A., Yener. Providing secrecy with structured codes: tools and applications to two-user Gaussian channels. IEEE Transactions on Information Theory, 60:2121-2138, April 2014.Google Scholar
[119] C., Heegard. Partitioned linear block codes for computer memory with “stuck-at” defects. IEEE Transactionson Information Theory, 29:831-842, November 1983.Google Scholar
[120] C., Heegard and A., El Gamal. On the capacity of computer memory with defects. IEEE Transactionson Information Theory, 29:731-739, September 1983.Google Scholar
[121] J., Hoffstein, J., Pipher, and J. H., Silverman. NTRU: a ring based public key cryptosystem. In Proceedings of ANTS-III, volume 1423 of LNCS, pages 267-288, Springer, June 1998.Google Scholar
[122] S. N., Hong and G., Caire. Compute-and-forward strategies for cooperative distributed antenna systems. IEEE Transactions on Information Theory, 59:5227-5243, September 2013.Google Scholar
[123] Hideki, Imai and Shuji, Hirakawa. A new multilevel coding method using error-correcting codes. IEEE Transactionson Information Theory, 23:371-377, May 1977.Google Scholar
[124] Amir, Ingber and Ram, Zamir. Expurgated infinite constellations at finite dimensions. Proc. IEEE Int. Symposium on Information Theory, pages 130-134, July 2012.Google Scholar
[125] A., Ingber, R., Zamir, and M., Feder. Finite-dimensional infinite constellations. IEEE Transactions on Information Theory, 59:1630-1656, March 2013.Google Scholar
[126] S. A., Jafar. Capacity with causal and noncausal side information: a unified view. IEEE Transactions on Information Theory, 52(12):5468-5474, December 2006.Google Scholar
[127] Syed A., Jafar. Interference alignment – a new look at signal dimensions in a communication network. In Foundations and Trends in Communications and Information Theory, volume 7, NOW Publishers, 2011.Google Scholar
[128] S. A., Jafar and Shlomo, Shamai (Shitz). Degrees of freedom region for the MIMO X channel. IEEE Transactionson Information Theory, 54(1):151-170, January 2008.Google Scholar
[129] Syed A., JafarandSriram, Vishwanath. Generalized degrees of freedom of the symmetric Gaussian K-user interference channel. IEEE Transactions on Information Theory, 56(7):3297-3303, July 2010.Google Scholar
[130] N. S., JayantandP., Noll. Digital Coding of Wave form.Prentice-Hall, Englewood Cliffs, NJ, 1984.Google Scholar
[131] N. S., JayantandL. R., Rabiner. The application of ditherto the quantization of speech signals. Bell System Technical Journal, 51:1293-1304, July/August 1972.Google Scholar
[132] G. A., KabatianskyandV. I., Levenshtein. Bounds forpackings on a sphereand inspace (in Russian). Problemy Peredachi Informatsii, 14(1):3-25, 1978. English translation: Probl. Inform. Trans.,14(1):1-17, 1978.Google Scholar
[133] A. K., KhandaniandP., Kabal. Shaping multidimensional signal spaces, part I: optimum shaping, shell mapping. IEEE Transactions on Information Theory, 39:1799-1808, November 1993.Google Scholar
[134] Y.-H., Kim, A., Sutivong, and S., Sigurjónsson. Multiple user writing on dirty paper. In IEEE International Symposium on Information Theory, page 534, June 2004.Google Scholar
[135] Y., Kochman, A., Khina, U., Erez, and R., Zamir. Rematch-and-forward: joint source/channel coding for parallel relaying with spectral mismatch. IEEE Transactions on Information Theory, accepted for publication.
[136] Y., Kochman and R., Zamir. Joint Wyner-Ziv/dirty-paper coding by modulo-lattice modulation. IEEE Transactionson Information Theory, 55(11):4878-4889, 2009.Google Scholar
[137] Y., Kochman and R., Zamir. Analog matching of colored sources to colored channels. IEEE Transactionson Information Theory, 57(6):3180-3195, 2011.Google Scholar
[138] Ralf, Koetter and Muriel, Medard. An algebraic approach to network coding. IEEE/ACM Transactions on Networking, 11:782-795, October 2003.Google Scholar
[139] J., Körner and K., Marton. How to encode the modulo-two sum of binary sources. IEEE Transactions on Information Theory, 25:219-221, 1979.Google Scholar
[140] V A., Kotel'nikov. The Theory of Optimum Noise Immunity.McGraw-Hill, 1959.Google Scholar
[141] P., Koulgi, E., Tuncel, S. L., Regunathan, and K., Rose. Onzero-errorsource coding with decoder side information. IEEE Transactions on Information Theory, 49:99-111, January 2003.Google Scholar
[142] D., Krithivasan and S. S., Pradhan. Lattices for distributed source coding: Jointly Gaus-siansources and reconstruction of a linear function. IEEE Transactionson Information Theory, 55:5628-5651, December 2009.Google Scholar
[143] Dinesh, Krithivasan and Sandeep, Pradhan. Distributed source coding using Abelian group codes. IEEE Transactions on Information Theory, 57(3):1495-1519, March 2011.Google Scholar
[144] H., Kruuger, B., Geiser, P., Vary, H. T., Li, and D., Zhang. Gosset lattice spherical vector quantization with low complexity. Proc. IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 485-488, 2011.Google Scholar
[145] F. R., Kschischang and S., Pasupathy. Optimal nonuniform signaling for Gaussian channels. IEEE Transactionson Information Theory, 39:913-929, May 1993.Google Scholar
[146] B., Kudryashov and K., Yurkov. Random quantization bounds for lattices over q -ary linear codes. In Proc. IEEE Int. Symposium on Information Theory (ISIT), Nice, France, June 2007.Google Scholar
[147] A. V., Kuznetsov and B. S., Tsybakov. Coding in a memory with defective cells. Problemy Peredachi Informatsii, 10:52-60, April-June 1974.Google Scholar
[148] A., Lapidoth, N., Merhav, G., Kaplan, and S., Shamai. On information rates for mismatched decoders. IEEE Transactions on Information Theory, 40:1953-1967, November 1994.Google Scholar
[149] R., Laroia. Coding for intersymbol interference channels, combined coding and pre-coding. IEEE Transactions on Information Theory, 42:1053-1061, July 1996.Google Scholar
[150] R., Laroia, N., Farvardin, and S., Tretter. On optimal shaping of multidimensional constellations. IEEE Transactions on Information Theory, 40:1044-1056, July 1994.Google Scholar
[151] R., Laroia, S., Tretter, and N., Farvardin. A simple and effective precoding scheme for noise whitening onintersymbol interference channels. IEEE Transactionson Communications, 41:1460-1463, October 1993.Google Scholar
[152] L., Lastras and T., Berger. All sources are nearly successively refinable. IEEE Transactions on Information Theory, 47:918-926, March 2001.Google Scholar
[153] J., Leech and N.J.A., Sloane. Sphere packing and error-correcting codes. Canadian Journal of Mathematics, 23:718-745, 1971.Google Scholar
[154] A. K., Lenstra, H. W., Lenstra, and L., Lovasz. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4):515-534, 1982.Google Scholar
[155] S.-Y. R., Li, R. W., Yeung, and N., Cai. Linear network coding. IEEE Transactions on Information Theory, 49(2):371-381, February 2003.Google Scholar
[156] Y., Liang, H. V., Poor, and S., Shamai. Information Theoretic Security. Foundations and Trends in Communications and NOW Publishers, Hanover, MA, 2009.Google Scholar
[157] Soung Chang, Liew, Shengli, Zhang, and Lu, Lu. Physical-layernetworkcoding: tutorial, survey, and beyond. Physical Communication, 6:4-42, 2013.Google Scholar
[158] R., Lifshitz. What is a crystal?Zeitschrift fur Kristallographie, 222:313-317, 2007.Google Scholar
[159] Sung Hoon, Lim, Young-Han, Kim, Abbas El, Gamal, and Sae-Young, Chung. Noisy network coding. IEEE Transactions on Information Theory, 57(5):3132-3152, May 2011.Google Scholar
[160] J. O., Limb. Design of dithered waveforms for quantized visual signals. Bell System Technical Journal, 48:2555-2582, September 1968.Google Scholar
[161] Y., Linde, A., Buzo, and R. M., Gray. An algorithm for vector quantizer design. IEEE Transactions on Communications, 28:84-95, January 1980.Google Scholar
[162] T., Linder. Private communication.
[163] T., Linder, Ch., Schlegel, and K., Zeger. Corrected proof of de Buda's theorem. IEEE Transactions on Information Theory, 39:1735-1737, September 1993.Google Scholar
[164] T., Linder and R., Zamir. On the asymptotic tightness of the Shannon lower bound. IEEE Transactionson Information Theory, 40:2026-2031, November 1994.Google Scholar
[165] T., Linder and K., Zeger. Asymptotic entropy constrained performance of tesselating and universal randomized lattice quantization. IEEE Transactions on Information Theory, 40:575-579, March 1994.Google Scholar
[166] C., Ling and J. C., Belfiore. Achieving the AWGN channel capacity with lattice Gaussian distribution. In Proc. Int. Symposium on Information Theory, July 2013.Google Scholar
[167] C., Ling, L., Luzzi, and J. C., Belfiore. Lattice codes achieving strong secrecy over the mod-λGaussian channel. In Proc. Int. Symposium on Information Thwory, Cambridge, MA, June 2012.Google Scholar
[168] C., Ling, L., Luzzi, J. C., Belfiore, and D., Stehlé. Semantically secure lattice codes for the Gaussian wiretap channel. arXiv:1210.6673v3[cs.IT], October 2013.Google Scholar
[169] Yu. N., Linkov. Evaluation of epsilon entropy of random variables for small epsilon. Problemy Peredachi Informatsii, 1:18-28, 1965. English translation: Probl. Inform. Trans., 1:12-18, 1965.Google Scholar
[170] Stanley P., Lipshitz, Robert A., Wannamaker, and John, Vanderkooy. Quantization and dither: a theoretical survey. Journal of the Audio Engineering Society, 5:355-375, May 1992.Google Scholar
[171] T., Liu, P., Moulin, and R., Koetter. On error exponents of nested lattice codes for the AWGN channel. IEEE Transactions on Information Theory, 52:454-471, February 2006.Google Scholar
[172] T., Liu and P., Viswanath. Opportunistic orthogonal writing on dirty paper. IEEETrans-actions on Information Theory, 52:1828-1846, May 2006.Google Scholar
[173] Z., Liu, S., Cheng, A., Liveris, and Z., Xiong. Slepian-Wolfcoded nested lattice quantization for Wyner-Ziv coding: high-rate performance analysis and code design. IEEE Transactions on Information Theory, 52:4358-4379, October 2006.Google Scholar
[174] S. P., Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28:129-137, March 1982 (originally presented at the Institute of Mathematical Statistics Meeting 1957).
[175] H. A., Loeliger. Averaging bounds forlattices and linear codes. IEEE Transactionson Information Theory, 43:1767-1773, November 1997.Google Scholar
[176] T., Lookabaugh and R. M., Gray. High resolution quantization theory and the vector quantizer advantage. IEEE Transactions on Information Theory, 35:1020-1033, September 1989.Google Scholar
[177] Mohammad Ali, Maddah-Ali, Abolfazl Seyed, Motahari, and Amir Keyvan, Khandani. Communication over MIMO X channels: interference alignment, decomposition, and performance analysis. IEEE Transactions on Information Theory, 54(8):3457-3470, August 2008.Google Scholar
[178] M. W., Marcellin and T. R., Fischer. Trellis coded quantization of memoryless and Gauss-Markov sources. IEEE Transactions on Communications, 38:82-93, January 1990.Google Scholar
[179] E., Martinian, G. W., Wornell, and R., Zamir. Source coding with distortion sideinformation. IEEE Transactions on Information Theory, 54:4638-4665, October 2008.Google Scholar
[180] K., Marton. A coding theorem for the discrete memoryless broadcast channel. IEEE Transactions on Information Theory, 22:374-377, May 1979.Google Scholar
[181] A., Mashiach, J., Østergaard, and R., Zamir. Multiple description delta-sigma quantization with individual and central receivers. In Proc. IEEE 26th Convention of Electrical and Electronics Engineers in Israel (IEEEI), Eilat, Israel, pages 942-946, November 2010.Google Scholar
[182] A., Mashiach and R., Zamir. Noise-shaped quantization for nonuniform sampling. In Proc. IEEEInt. Symposium on Information Theory (ISIT) Istanbul, Turkey, July 2013.Google Scholar
[183] J., Massey. Causality, feedback and directed information. In Proc. IEEE Int. Symp. Information Theory and Its Applicatios, pages 303-305.
[184] R. J., McAulay and D. J., Sakrison. A PPM/PM hybrid modulation system. IEEE Transactions on Communication Technology, 17(4):458-469, 1969.Google Scholar
[185] N., Merhav and S., Shamai. On joint source-channel coding for the Wyner-Ziv source and the Gel'fand-Pinsker channel. IEEE Transactions on Information Theory, 49(11):2844-2855, 2003.Google Scholar
[186] D., Micciancio and S., Goldwasser. Complexity of Lattice Problems. Kluwer, 2002.Google Scholar
[187] D., Micciancio and O., Regev. Worst-case to average-case reductions based on Gaussian measures. In Proc. 45th Annual IEEE Symposium on Foundations of Computer Science, 2004, pages 372-381, October 2004.Google Scholar
[188] D., Micciancio and O., Regev. Lattice-based cryptography. In D. J., Bernstein and J., Buchmann, editors, Post-Quantum Cryptography, Springer, 2008.Google Scholar
[189] U., Mittal and N., Phamdo. Hybrid digital-analog (HDA) joint source-channel codes for broadcasting and robustcommunications. IEEE Transactionson Information Theory, 48(5):1082-1102, 2002.Google Scholar
[190] A. S., Motahari, S. O., Gharan, Mohammad-Ali Maddah-Ali, and Amir Keyvan Khandani. Real interference alignment: exploiting the potential of single antenna systems. IEEE Transactions on Information Theory, submitted 2009. Available at: http://arxiv.org/abs/0908.2282.Google Scholar
[191] P., MoulinJ. A., O'Sullivan and J. M., Ettinger. Information-theoretic analysis of steganography. In Proc. IEEE Symposium on Information Theory, Boston, MA, page 297, August 1998.Google Scholar
[192] W., Nam, S. Y., Chung, and Y. H., Lee. Nested lattice codes for Gaussian relay networks with interference. IEEE Transactions on Information Theory, 57(12):7733–7745, December 2011.Google Scholar
[193] B., Nazer and M., Gastpar. Computation over multiple-access channels. IEEE Transactions on Information Theory, 53(10):3498-3516, 2007.Google Scholar
[194] Bobak, Nazer and Michael, Gastpar. Lattice coding increases multicast rates for Gaussian multiple-access networks. In Allerton Conference on Communications, Control, and Computing, Monticello, IL, September 2007.Google Scholar
[195] B., Nazer and M., Gastpar. Reliable physical layer network coding. Proceedings of the IEEE, 99(3):438-460, March 2011.Google Scholar
[196] Bobak, Nazer and Michael, Gastpar. Compute-and-forward: harnessing interference through structured codes. IEEE Transactions on Information Theory, 57(10):6463- 6486, October 2011.Google Scholar
[197] Bobak, Nazer, Michael, Gastpar, Syed A., Jafar, and Sriram, Vishwanath. Ergodic interference alignment. IEEE Transactions on Information Theory, 58(10):6355-6371, October 2012.Google Scholar
[198] D. L., Neuhoff. Source coding strategies: simple quantizers vs. simple noisless codes. Proc. 1986 Conference on Information Sciences and Systems, Vol. 20, pages 267-271, Princeton, NJ, March 1986.Google Scholar
[199] D. L., Neuhoff, R. M., Gray, and L. D., Davisson. Fixed rate universal block source coding with a fidelity criterion. IEEE Transactions on Information Theory, 21:511-523, September 1975.Google Scholar
[200] Urs, Niesen and M. A., Maddah-Ali. Interference alignment: from degrees of freedom to constant-gap capacity approximations. IEEE Transactions on Information Theory, 59(8):4855-4888, August 2013.Google Scholar
[201] Urs Niesenand Phil, Whiting. The degrees-of-freedom of compute-and-forward. IEEE Transactions on Information Theory, 58(8):5214-5232, August 2012.Google Scholar
[202] M., Nokleby and B., Aazhang. Cooperative compute-and-forward. IEEE Transactions on Information Theory, submitted 2012. Available at: http://arxiv.org/abs/1203.0695.Google Scholar
[203] Vasileios, Ntranos, Viveck R., Cadambe, Bobak, Nazer, and Giuseppe, Caire. Asymmetric compute-and-forward. In Allerton Conference on Communication, Control, and Computing, Monticello, IL, October 2013.Google Scholar
[204] T. J., Oechtering, C., Schnurr, I., Bjelakovic, and H., Boche. Broadcast capacity region of two-phase bidirectional relaying. IEEE Transactionson Information Theory, 54(1):454-458, January 2008.Google Scholar
[205] B. M., Oliver, J. R., Pierce, and C. E., Shannon. The philosophy of PCM. Proceedings of the IRE, 36:1324-1331, November 1948.Google Scholar
[206] O., Ordentlich and U., Erez. A simple proof for the existence of good pairs of nested lattices. In Proc. 27 th IEEE Convention of Electrical and Electronics Engineers in Israel (IEEEI), 2012.Google Scholar
[207] Or Ordentlich and Uri Erez. Precoded integer-forcing equalization universally achieves the MIMO capacityup to a constantgap. IEEE Transactionson Information Theory, submitted 2013.
[208] Or, Ordentlich and Uri, Erez. On the robustness of lattice interference alignment. IEEE Transactions on Information Theory, 59(5):2735-2759, May 2013.Google Scholar
[209] Or, Ordentlich, Uri, Erez, and Bobak, Nazer. The approximate sum capacity of the symmetric K-user Gaussian interference channel. IEEE Transactions on Information Theory, to appear 2014.Google Scholar
[210] Or, Ordentlich, Uri, Erez, and Bobak, Nazer. Successive integer-forcing and its sum rate optimality. In Allerton Conference on Communication, Control, and Computing, Monticello, IL, October 2013.Google Scholar
[211] J., èstergaard and R., Zamir. Multiple descriptions by dithered delta-sigma quantization. IEEE Transactionson Information Theory, 55:4661-4675, October 2009.Google Scholar
[212] M., Palgy, J., èstergaard, and R., Zamir. Multiple description image/video compression using oversampling and noise shaping in the dct-domain. In Proc. 26th IEEE Convention of Electrical and Electronics Engineers in Israel (IEEEI), pages 965-969, November 2010.
[213] N., Palgy and R., Zamir. Dithered probabilistic shaping. In Proc. 27th IEEE Convention of Electrical and Electronics Engineersin Israel(IEEEI), pages 1-5, November 2012.Google Scholar
[214] T., Philosof, U., Erez, and R., Zamir. Combined shaping and precoding for interference cancellation at low snr. In Proc. IEEE Int. Symposium on Information Theory (ISIT), Yokohama, Japan, page 68, July 2003.Google Scholar
[215] T., Philosof and R., Zamir. On the loss of single-letter characterization: the dirty multiple access channel. IEEE Transactions on Information Theory, 55:2442-2454, June 2009.Google Scholar
[216] T., Philosof, R., Zamir, and U., Erez. The capacity region of the binary dirty MAC. In IEEE Information Theory Workshop, Taormina, Italy, pages 273-277, October 2009.Google Scholar
[217] T., Philosof, R., Zamir, U., Erez, and A. J., Khisti. Lattice strategies for the dirtymultiple-access channel. IEEE Transactionson Information Theory, 57:5006-5035, Aug. 2011.Google Scholar
[218] J. T., Pinkston. Encoding Independent Sample Information Sources. PhD Thesis, Massachusetts Institute of Technology, September 1967.Google Scholar
[219] M. S., Pinsker. Information and Information Stability of Random Variables and Processes, Holden Day, San Francisco, CA, 1964.Google Scholar
[220] M. S., Pinsker. Capacity of noiseless broadcastchannels. Problemy Peredachi Informatsii, 14:28-34, 1978. Englishtranslation: Probl. Inform. Trans.,14:97-102. April-June 1978.Google Scholar
[221] G., Poltyrev. Oncoding withoutrestrictions forthe AWGNchannel. IEEE Transactions on Information Theory, 40:409-417, March 94.
[222] Y., Polyanskiy, H. V, Poor, and S., Verdú. Channel coding rate in the finite blocklength regime. IEEE Transactionson Information Theory, 56(5):2307-2359, May 2010.Google Scholar
[223] Petar, Popovski and Hiroyuki, Yomo. The anti-packets can increase the achievable throughput of a wireless multi-hop network. In IEEE International Conference on Communications, Istanbul, Turkey, June 2006.Google Scholar
[224] S. S., PradhanandK., Ramchandran. Distributed source coding using syndromes (DISCUS): design and constructions. In Proc. Snowbird, UT, 1999 IEEE Data Compression Conference, pages 158-167, March 1999.Google Scholar
[225] A., Prékopa. On logarithmic concave measures and functions. Acta Scientiarum Math-ematicarum, 34:335-343, 1973.Google Scholar
[226] R., Puri, A., Majumdar, and K., Ramchandran. Prism: a video coding paradigm with motion estimation at the decoder. IEEE Transactionson Image Processing, 16:2436-2448, October 2007.Google Scholar
[227] Z., Reznic, M., Feder, and R., Zamir. Distortion bounds for broadcasting with band width expansion. IEEE Transactionson Information Theory, 52(8):3778-3788, 2006.Google Scholar
[228] L. G., Roberts. Picture coding using pseudo-randomnoise. IRE Transactionson Information Theory, 8:145-154, 1962.Google Scholar
[229] C. A., Rogers. Anote oncoverings. Mathematica, 4:1-6, 1957.Google Scholar
[230] C. A., Rogers. Lattice coverings of space. Mathematica, 6:33-39, 1959.Google Scholar
[231] C. A., Rogers. Packing and Covering. Cambridge University Press, Cambridge, 1964.Google Scholar
[232] K., Rose. A mapping approach to rate-distortion computation and analysis. IEEE Transactions on Information Theory, 40:1939-1952, November 1994.Google Scholar
[233] H., Sato. The capacity of the Gaussian interference channel understrong interference. IEEE Transactionson Information Theory, 27(6):786-788, November 1981.Google Scholar
[234] L., Schuchman. Dither signals and their effects on quantization noise. IEEE Transac-tions on Communications, 12:162-165, 1964.Google Scholar
[235] S., Servetto. Lattice quantization with side information. In Proc. 2000 IEEE Data Compression Conference, Snowbird, UT, pages 510-519, March 2000.Google Scholar
[236] O., Shalvi, N., Sommer, and M., Feder. Signal codes: convolutional lattice codes. IEEE Transactions on Information Theory, 57:5203-5226, August 2011.Google Scholar
[237] S., Shamai and R., Laroia. The intersymbol interference channel: lower bounds on capacity and channel precoding loss. IEEE Transactions on Information Theory, 42:1388-1404, September 1996.Google Scholar
[238] S., Shamai, S., Verdu, and R., Zamir. Digital broadcasting back-compatible with analog broadcasting: information theoretic limits. In Proc. Int. Workshop on Digital Signal Processing Techniques Applied to Space Communication, Sitges, Barcelona, Spain, pages 8.25–8.39, September 1996.Google Scholar
[239] S., Shamai, S., Verduu, and R., Zamir. Systematic lossy source/channel coding. IEEE Transactions on Information Theory, 44:564-579, March 1998.Google Scholar
[240] C. E., Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379-423, July 1948.Google Scholar
[241] C. E., Shannon. Communication in the presence of noise. Proceedings of the IRE, 37:10-21, January 1949.Google Scholar
[242] C. E., Shannon. The lattice theory of information. IRE Transactions on Information Theory, 1:105-107, February 1953.Google Scholar
[243] C. E., Shannon. Channels with side information at the transmitter. IBM Journal of Research and Development, 2:289-293, October 1958.Google Scholar
[244] C. E., Shannon. Probability of error for optimal codes in a Gaussian channel. Bell System Technical Journal, 38:611-656, 1959.Google Scholar
[245] V., Shashank and Naveen, Kashyap. Lattice coding for strongly secure compute-and-forward in a bidirectional relay. In Proc. IEEE Int. Symposium on Information Theory, Istanbul, Turkey (ISIT), pages 2775-2779, July 2013.Google Scholar
[246] M., Shemer. A Korner Marton Approach to Low Complexity Video Encoding. Master's Thesis, Tel Aviv University, February 2009.Google Scholar
[247] D., Slepian and J. K., Wolf. Noiseless coding of correlated information sources. IEEE Transactions on Information Theory, 19:471-480, July 1973.Google Scholar
[248] N. J. A., Sloane. Shannon lecture, Proc. IEEEInt. Symposium on Information Theory (ISIT), 1998.Google Scholar
[249] A., Somech-Baruch and N., Merhav. On the capacity game of public watermarking systems. IEEE Transactionson Information Theory, 50(3):511-524, March 2004.Google Scholar
[250] Y., Song and N., Devroye. Lattice codes for the Gaussian relay channel: decode-and-forward and compress-and-forward. IEEE Transactions on Information Theory, 59(8):4927-4948, August 2013.Google Scholar
[251] S., Sridharan, A., Jafarian, S., Vishwanath, and S. A., Jafar. Capacity of symmetric K-user Gaussian very strong interference channels. In IEEE Global Communications Conference, New Orleans, LA, December 2008.Google Scholar
[252] C., Swannack, U., Erez, and G. W., Wornell. Reflecting on the AWGN error exponent. In 43rd Annual Allerton Conference on Communication, Control, and Competing, Allerton House, Monticello, IL, September 2005.Google Scholar
[253] S., Tavildar, P., Viswanath, and A. B., Wagner. The Gaussianmany-help-one distributed source coding problem. IEEE Transactions on Information Theory, 56(1):564-571, January 2010.Google Scholar
[254] M., Tomlinson. New automatic equalizer employing modulo arithmetic. Electronics Letters, 7:138-139, March 1971.Google Scholar
[255] G., FejesToth. Sur la representation d'une population infinie par un nombre fini d'elements. Acta Mathematica Academiae Scientiarum Hungaricae, 10:299-304, 1959.Google Scholar
[256] S., Tretter. Constellation Shaping, Non-linear Precoding, and Trellis Coding for Voice- band Telephone Channel Modems. Kluwer Academic Publishers, 2002.Google Scholar
[257] S., Tridenski. Private communication.
[258] D. N. C., Tse and Mohammad Ali, Maddah-Ali. Interference neutralization in distributed lossy source coding. In Proc. IEEE Int. Symposium on Information Theory (ISIT), Austin, TX, pages 166-170, June 2010.Google Scholar
[259] G., Ungerboeck. Channel coding withmultilevel/phase signals. IEEE Transactionson Information Theory, 28:55-67, 1982.Google Scholar
[260] G., Ungerboeck. Huffman shaping. In Codes, Graphs, and Systems: A Celebration of the Life and Career of G. David Forney, Jr. on the Occasion of his Sixtieth Birthday, Kluwer Academic Publishers, 2002.Google Scholar
[261] R., Urbanke and B., Rimoldi. Latticecodes canachieve capacityonthe AWGNchannel. IEEE Transactionson Information Theory, 44:273-278, January 1998.Google Scholar
[262] S., Verdú. On channel capacity per unit cost. IEEE Transactions on Information Theory, 36:1019-1030, September 1990.Google Scholar
[263] Aaron B., Wagner. Ondistributed compressionof linear functions. IEEE Transactions on Information Theory, 57(1):79-94, January 2011.Google Scholar
[264] A. B., Wagner, S., Tavildar, and P., Viswanath. Rateregion of the quadratic Gaussian two-encoder source-coding problem. IEEE Transactions on Information Theory, 54:1938-1961, May 2008.Google Scholar
[265] I.-Hsiang, Wang. Approximate capacity of the dirty multiple-access channel with partial state information at the encoders. IEEE Transactions on Information Theory, 58(5):2781-2787, May 2012.Google Scholar
[266] F. M. J., Willems. Computation of the Wyner-Ziv rate-distortion function. Technical Report 83-E-140, Eindhoven University, July 1983.Google Scholar
[267] F. M. J., Willems. On Gaussian channels with side information at the transmitter. In Proc. 9th Symposium on Information Theory in the Benelux, Enschede, The Netherlands, 1988.Google Scholar
[268] F. M. J., Willems. Signalling for the Gaussian channel with side information at the transmitter. In Proc. IEEE Int. Symposium on Information Theory (ISIT), Sorrento, Italy, page 348, June 2000.Google Scholar
[269] M. P., Wilson, K., Narayanan, and G., Caire. Joint source channel coding with side information using hybrid digital analog codes. IEEE Transactions on Information Theory, 56(10):4922-4940, 2010.Google Scholar
[270] Makesh Pravin, Wilson, Krishna, Narayanan, Henry, Pfister, and Alex Sprintson. Joint physical layer coding and network coding for bidirectional relaying. IEEE Transactions on Information Thwory, 11(56):5641-5654, November 2010.
[271] H. S., Witsenhausen and A. D., Wyner. Interframe coder for video, signals. US Patent 4191970, March 1980.
[272] J. M., Wozencraft and I. M., Jacobs. Principles of Communication Engineering.Wiley, New York, 1967.Google Scholar
[273] Yihong, Wu, Shlomo, Shamai (Shitz), and Sergio, Verduu. Degrees of freedom of the interference channel: a general formula. In Proc. IEEEInt. Symposium on Information Theory (ISIT), St. Petersburg, Russia, pages 1362-1366, August 2011.Google Scholar
[274] A. D., Wyner. Recent results in Shannon theory. IEEE Transactions on Information Theory, 20:2-10, January 1974.Google Scholar
[275] A. D., Wyner. The rate-distortion function for source coding with side information at the decoder II: general sources. Information and Control, 38:60-80, 1978.Google Scholar
[276] A. D., Wyner and J., Ziv. The rate-distortion function for source coding with side information at the decoder. IEEE Transactions on Information Theory, 22:1-10, January 1976.Google Scholar
[277] Y., Yamada, S., Tazaki, and R. M., Gray. Asymptotic performance of block quantizers withdifference distortionmeasures. IEEE Transactionson Information Theory, 26:6-14, January 1980.Google Scholar
[278] Y., Yang and Z., Xiong. Distributed compression of linear functions: partial sum-rate tightness and gap to optimal sum-rate. IEEE Transactions on Information Theory,to appear 2013.Google Scholar
[279] A., Yeredor. Private communication.
[280] Y., Yona and E., Haim. Private communication.
[281] W., Yu and J. M., Cioffi. Trellis precoding for the broadcast channel. In Proc. IEEE Global Telecommunications Conference, San Antonio, TX, Vol. 2, pages 1344-1348, November 2001.Google Scholar
[282] P., Zador. Development and Evaluation of Procedures for Quantizing Multivariate Distributions. PhD Thesis, Stanford University, 1964.Google Scholar
[283] P., Zador. Asymptotic quantization error of continuous signals and their quantiza- tiondimension. IEEE Transactionson Information Theory, 28:139-149, March1982 (previously an unpublished Bell Laboraties memo, 1966).
[284] R., Zamir. The rate loss in the Wyner-Ziv problem. IEEE Transactions on Information Theory, 43:2073-2084, November 1996.Google Scholar
[285] R., Zamir and T., Berger. Multiterminal source coding with high resolution. IEEE Transactions on Information Theory, 45:106-117, January 1999.Google Scholar
[286] R., Zamir and U., Erez. A Gaussian input is not too bad. IEEE Transactions on Information Theorry, 50:1362-1367, June 2004.Google Scholar
[287] R., Zamir and M., Feder. On universal quantization by randomized uniform/lattice quantizer. IEEE Transactionson Information Theory, 38:428-436, March 1992.Google Scholar
[288] R., Zamir and M., Feder. Rate distortion performance in coding band-limited sources by sampling and dithered quantization. IEEE Transactions on Information Theory, 41:141-154, January 1995.Google Scholar
[289] R., Zamir and M., Feder. On lattice quantization noise. IEEE Transactions on Information Theory, 42:1152-1159, July 1996.Google Scholar
[290] R., Zamir and M., Feder. Information rates of pre/post-filtered dithered quantizers. IEEE Transactionson Information Theory, 42:1340-1353, September 1996.Google Scholar
[291] R., Zamir, Y., Kochman, and U., Erez. Achieving the Gaussian rate-distortion function by prediction. IEEE Transactionson Information Theory, 54:3354-3364, July 2008.Google Scholar
[292] R., ZamirandS., Shamai. Nested linear/lattice codes for Wyner-Zivencoding. In Proc. Information Theory Workshop, Killarney, Ireland, pages 92-93, June 1998.Google Scholar
[293] R., Zamir, S., Shamai, and U., Erez. Nested linear/lattice codes for structured multiterminal binning. IEEE Transactions on Information Theory, 48:1250-1276, June 2002.Google Scholar
[294] Jiening, Zhan, Bobak, Nazer, Uri, Erez, and Michael, Gastpar. Integer-forcing linear receivers. IEEE Transactions on Information Theory, to appear 2014.Google Scholar
[295] S., Zhang, S.-C., Liew, and P., Lam. Hot topic: physical-layer network coding. In ACM Int. Conference on Mobile Computing and Networking, Los Angeles, CA, September 2006.Google Scholar
[296] Q., Zhao and M., Effros. Lossless and near-lossless source coding for multiple access networks. IEEE Transactions on Information Theory, 49:112-128, January 2003.Google Scholar
[297] Q., Zhao, H., Feng, and M., Effros. Multiresolution source coding using entropy constrained dithered scalar quantization. In Proc. 2004 IEEEData Compression Conference, Snowbird, UT, pages 22-31, March 2004.Google Scholar
[298] J., Ziv. The behavior of analog communication systems. IEEE Transactions on Information Theory, 16:587-594, 1970.Google Scholar
[299] J., Ziv. Coding of sources with unknown statistics – part II: distortion relative to a fidelity criterion. IEEE Transactions on Information Theory, 18:389-394, 1972.Google Scholar
[300] J., Ziv. On universal quantization. IEEE Transactionson Information Theory, 31:344-347, May 1985.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ram Zamir, Tel-Aviv University
  • Illustrated by Ilai Bistritz
  • Book: Lattice Coding for Signals and Networks
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045520.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ram Zamir, Tel-Aviv University
  • Illustrated by Ilai Bistritz
  • Book: Lattice Coding for Signals and Networks
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045520.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ram Zamir, Tel-Aviv University
  • Illustrated by Ilai Bistritz
  • Book: Lattice Coding for Signals and Networks
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045520.016
Available formats
×