Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-rn2sj Total loading time: 0.4 Render date: 2022-08-10T08:41:56.557Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Introduction

Published online by Cambridge University Press:  05 August 2013

Henk Barendregt
Affiliation:
Radboud Universiteit Nijmegen
Wil Dekkers
Affiliation:
Radboud Universiteit Nijmegen
Richard Statman
Affiliation:
Carnegie Mellon University, Pittsburgh, Pennsylvania
Get access

Summary

The rise of lambda calculus

Lambda calculus is a formalism introduced by Church in 1932 that was intended to be used as a foundation for mathematics, including its computational aspects. Supported by his students Kleene and Rosser – who showed that the prototype system was inconsistent – Church distilled a consistent computational part and ventured in 1936 the Thesis that exactly the intuitively computable functions could be captured by it. He also presented a function that could not be captured by the λ-calculus. In that same year Turing introduced another formalism, describing what are now called Turing Machines, and formulated the related Thesis that exactly the mechanically computable functions are able to be captured by these machines. Turing also showed in the same paper that the question of whether a given statement could be proved(from a given setofaxioms) using the rules of any reasonable system of logic is not computable in this mechanical way. Finally Turing showed that the formalism of λ-calculus and Turing Machines define the same class of functions.

Together Church's Thesis, concerning computability by homo sapiens, and Turing's Thesis, concerning computability by mechanical devices, using formalisms that are equally powerful and that have their computational limitations, made a deep impact on the 20th century philosophy of the power and limitations of the human mind. So far, cognitive neuropsychology has not been able to refute the combined Church-Turing Thesis. On the contrary, that discipline also shows the limitation of human capacities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×