Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T10:30:35.286Z Has data issue: false hasContentIssue false

4 - Chemotaxis of aggregating Dictyostelium cells

Published online by Cambridge University Press:  11 August 2009

G. Gerisch
Affiliation:
Max-Planck-Institut für Biochimie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
M. Ecke
Affiliation:
Max-Planck-Institut für Biochimie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
Manuel Marí-Beffa
Affiliation:
Universidad de Málaga, Spain
Jennifer Knight
Affiliation:
University of Colorado, Boulder
Get access

Summary

OBJECTIVE OF THE EXPERIMENT In the course of Dictyostelium development, a multicellular organism is established by the aggregation of single cells. In the following experiment, the chemoattractant that guides cell movement in an aggregation field is replaced by treating cells with cyclic AMP diffusing out of a micropipette. By the use of a micropipette that is easily moved by a micromanipulator, the direction of diffusion gradients can be changed fast enough to study the response of the cells within the first few seconds of reorientation.

DEGREE OF DIFFICULTY The cultivation of Dictyostelium and preparation of chemotactically responsive cells is easy. Manipulation of the micropipette requires some skill and endurance.

INTRODUCTION

Prokaryotic as well as eukaryotic cells are capable of responding to concentration radients of chemical compounds, but the mechanisms of their orientation within these gradients are different. The best studied examples are bacteria that swim by flagella rotation and eukaryotic cells that migrate by actin-based shape changes on a substrate surface. Bacteria such as Escherichia coli or Salmonella strains control the rotation of their flagella motors: counterclockwise rotation results in smooth swimming by bundled flagellae, whereas clockwise rotation leads to tumbling caused by separation of the flagellae. These small bacterial cells use temporal changes of chemoattractant to find the source of a gradient: when they swim toward the source, concentration will increase with time and tumbling is suppressed. The tumbling frequency is increased when bacteria swim in the opposite direction.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arndt, A. (1937). Rhizopodenstudien. III. Untersuchungen über Dictyostelium mucoroides Brefeld. Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen, 136, 681–747CrossRefGoogle Scholar
Bailly, M., Yan, L., Whitesides, G. M., Condeelis, J. S., and Segall, J. E. (1998). Regulation of protrusion shape and adhesion to the substratum during chemotaxis responses of mammalian carcinoma cells. Exp. Cell Res., 241, 285–99CrossRefGoogle ScholarPubMed
Bray, D. (2001). Cell Movements. From Molecules to Motility. 2nd ed. New York: Garland
Bretschneider, T., Siegert, F., and Weijer, C. J. (1995). Three-dimensional scroll waves of cAMP could direct cell movement and gene expression in Dictyostelium slugs. Proc. Natl. Acad. Sci. USA, 92, 4387–91CrossRefGoogle ScholarPubMed
Comer, F. I., and Parent, C. A. (2002). PI 3-kinases and PTEN: how opposites chemoattract. Cell, 109, 541–4CrossRefGoogle ScholarPubMed
Darmon, M., Barra, J., and Brachet, P. (1978). The role of phosphodiesterase in aggregation of Dictyostelium discoideum. J. Cell Sci., 31, 233–43Google ScholarPubMed
Dinauer, M. C., Steck, T. L., and Devreotes, P. N. (1980). Cyclic 3ʹ,5ʹ-AMP relay in Dictyostelium discoideum. V. Adaptation of the cAMP signaling response during cAMP stimulation. J. Cell Biol., 86, 554–61CrossRefGoogle ScholarPubMed
Fisher, P. R., Merkl, R., and Gerisch, G. (1989). Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients. J. Cell Biol., 108, 973–84CrossRefGoogle Scholar
Funamoto, S., Meili, R., Lee, S., Parry, L., and Firtel, R. A. (2002). Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–23CrossRefGoogle ScholarPubMed
Gerisch, G. (1964). E 673/1964 Dictyostelium minutum (Acrasina). Aggregation. IWF Wissen und Medien gGmbH, Nonnenstieg 72, D-37075 Göttingen, Germany. www.iwf.de
Gerisch, G. (1965). Stadienspezifische Aggregationsmuster bei Dictyostelium discoideum. Roux' Archiv für Entwicklungsmechanik, 156, 127–44CrossRefGoogle Scholar
Gerisch, G. (1971). Periodische Signale steuern die Musterbildung in Zellverbänden. Naturwissenschaften, 58, 430–8CrossRefGoogle Scholar
Gerisch, G., and Wick, U. (1975). Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. Biochem. Biophys. Res. Comm., 65, 364–70CrossRefGoogle ScholarPubMed
Gerisch, G., Hülser, D., Malchow, D., and Wick, U. (1975). Cell communication by periodic cyclic-AMP pulses. Phil. Trans. R. Soc. Lond. B, 272, 181–92CrossRefGoogle ScholarPubMed
Gerisch, G., and Keller, H. U. (1981). Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. J. Cell Sci., 52, 1–10Google ScholarPubMed
Gerisch, G., Albrecht, R., Heizer, C., Hodgkinson, S., and Maniak, M. (1995). Chemoattractant-controlled accumulation of coronin at the leading edge of Dictyostelium cells monitored using a green fluorescent protein-coronin fusion protein. Curr. Biol., 5, 1280–5CrossRefGoogle Scholar
Hess, B. (1997). Periodic patterns in biochemical reactions. Quart. Rev. Biophys., 30, 121–76CrossRefGoogle ScholarPubMed
Iijima, M., and Devreotes, P. (2002). Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell, 109, 599–610CrossRefGoogle ScholarPubMed
Insall, R., Müller-Taubenberger, A., Machesky, L., Köhler, J., Simmeth, E., Atkinson, S. J., Weber, I., and Gerisch, G. (2001). Dynamics of the Dictyostelium Arp 2/3 complex in endocytosis, cytokinesis, and chemotaxis. Cell Motility Cytoskeleton, 50, 115–28CrossRef
Kimmel, A. R., and Parent, C. A. (2003). The signal to move: D. discoideum go orienteering. Science, 300, 1525–26CrossRefGoogle ScholarPubMed
Klein, P. S., Sun, T. J., Saxe III, C. L., Kimmel, A. R., Johnson, R. L., and Devreotes, P. N. (1988). A chemoattractant receptor controls development in Dictyostelium discoideum. Science, 241, 1467–72CrossRefGoogle ScholarPubMed
Konijn, T. M., Meene, J. G. C., Bonner, J. T., and Barkley, D. S. (1967). The acrasin activity of adenosine-3ʹ,5ʹ-cyclic phosphate. Proc. Natl. Acad. Sci. USA, 58, 1152–4CrossRefGoogle Scholar
Laub, M. T., and Loomis, W. F. (1998). A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium. Mol. Biol. Cell, 9, 3521–32CrossRefGoogle ScholarPubMed
Levine, H., Aranson, I., Tsimring, L., and Truong, T. V. (1996). Positive genetic feedback governs cAMP spiral wave formation in Dictyostelium. Proc. Natl. Acad. Sci. USA, 93, 6382–6CrossRefGoogle ScholarPubMed
Maeda, M., Lu, S., Shaulsky, G., Miyazaki, Y., Kuwayama, H., Tanaka, Y., Kuspa, A., and Loomis, W. F. (2004). Periodic signaling controlled by an oscillatory circuit that includes protein Kinases ERKZ and PKA. Science, 304, 875–8CrossRef
Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G., and Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science, 298, 1209–13CrossRefGoogle ScholarPubMed
Meinhardt, H. (1999). Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci., 112, 2867–74Google ScholarPubMed
Pang, K. M., Lee, E., and Knecht, D. A. (1998). Use of a fusion protein between GFP and an anti-binding domain to visualize transient filamentous-actin structures. Curr. Biol., 8, 405–8CrossRefGoogle Scholar
Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B., and Devreotes, P. N. (1998). G protein signalling events are activated at the leading edge of chemotactic cells. Cell, 95, 81–91CrossRefGoogle Scholar
Parent, C. A., and Devreotes, P. N. (1999). A cell's sense of direction. Science, 284, 765–9CrossRefGoogle ScholarPubMed
Peracino, B., Borleis, J., Jin, T., Westphal, M., Schwartz, J.-M., Wu, L., Bracco, E., Gerisch, G., Devreotes, P., and Bozzaro, S. (1998). G protein ß subunit-null mutants are impaired in phagocytosis and chemotaxis due to inappropriate regulation of the actin cytoskeleton. J. Cell Biol., 141, 1529–37CrossRefGoogle Scholar
Pollard, T. D., and Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112, 453–65CrossRefGoogle ScholarPubMed
Roos, W., Scheidegger, C., and Gerisch, G. (1977). Adenylate cyclase activity oscillations as signals for cell aggregation in Dictyostelium discoideum. Nature, 266, 259–61CrossRefGoogle ScholarPubMed
Ross, F. M., and Newell, P. C. (1979). Genetics of aggregation pattern mutations in the cellular slime mold Dictyostelium discoideum. J. Gen. Microbiol., 115, 289–300CrossRefGoogle Scholar
Segall, J. E., and Gerisch, G. (1989). Genetic approaches to cytoskeleton function and the control of cell motility. Curr. Opin. Cell Biol., 1, 44–50CrossRefGoogle ScholarPubMed
Tomchik, K. J., and Devreotes, P. N. (1981). Adenosine 3ʹ,5ʹ-monophosphate waves in Dictyostelium discoideum: A demonstration by isotope dilution-fluorography. Science, 212, 443–6CrossRefGoogle Scholar
Vallier, L. G., Segall, J. E., and Snyder, M. (2002). The alpha-factor receptor C-terminus is important for mating projection formation and orientation in Saccharomyces cerevisiae. Cell Motil. Cytoskeleton, 53, 251–66CrossRefGoogle ScholarPubMed
Weber, I., Niewöhner, J., Du, A., Röhrig, U., and Gerisch, G. (2002). A talin fragment as an actin trap visualizing actin flow in chemotaxis, endocytosis, and cytokinesis. Cell Motil. Cytoskeleton, 53, 136–49CrossRefGoogle ScholarPubMed
Weijer, C. J. (2003). Visualizing signals moving in cells. Science, 300, 96–100CrossRefGoogle ScholarPubMed
Wessels, D., Murray, J., and Soll, D. R. (1992). Behavior of Dictyostelium amoebae is regulated primarily by the temporal dynamic of the natural cAMP wave. Cell Motil. Cytoskeleton, 23, 145–56CrossRefGoogle ScholarPubMed
Yin, H. L., and Janmey, P. A. (2003). Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol., 65, 761–89CrossRefGoogle ScholarPubMed
Zigmond, S. H. (1977). Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol., 75, 606–16CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Chemotaxis of aggregating Dictyostelium cells
    • By G. Gerisch, Max-Planck-Institut für Biochimie, Am Klopferspitz 18a, D-82152 Martinsried, Germany, M. Ecke, Max-Planck-Institut für Biochimie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
  • Edited by Manuel Marí-Beffa, Universidad de Málaga, Spain, Jennifer Knight, University of Colorado, Boulder
  • Book: Key Experiments in Practical Developmental Biology
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546204.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Chemotaxis of aggregating Dictyostelium cells
    • By G. Gerisch, Max-Planck-Institut für Biochimie, Am Klopferspitz 18a, D-82152 Martinsried, Germany, M. Ecke, Max-Planck-Institut für Biochimie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
  • Edited by Manuel Marí-Beffa, Universidad de Málaga, Spain, Jennifer Knight, University of Colorado, Boulder
  • Book: Key Experiments in Practical Developmental Biology
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546204.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Chemotaxis of aggregating Dictyostelium cells
    • By G. Gerisch, Max-Planck-Institut für Biochimie, Am Klopferspitz 18a, D-82152 Martinsried, Germany, M. Ecke, Max-Planck-Institut für Biochimie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
  • Edited by Manuel Marí-Beffa, Universidad de Málaga, Spain, Jennifer Knight, University of Colorado, Boulder
  • Book: Key Experiments in Practical Developmental Biology
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546204.006
Available formats
×