Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-23T20:22:03.595Z Has data issue: false hasContentIssue false

3 - Low-density parity-check codes: properties and constructions

Published online by Cambridge University Press:  05 June 2012

Sarah J. Johnson
Affiliation:
University of Newcastle, New South Wales
Get access

Summary

Introduction

The construction of binary low-density parity-check (LDPC) codes simply involves replacing a small number of the values in an all-zeros matrix by 1s in such a way that the rows and columns have the required degree distribution. In many cases, randomly allocating the entries in H will produce a reasonable LDPC code. However, the construction of H can affect the performance of the sum–product decoder, significantly so for some codes, and also the implementation complexity of the code.

While there is no one recipe for a “good” LDPC code, there are a number of principles that inform the code designer. The first obvious decisions are which degree distribution to choose and how to construct the matrix with the chosen degrees, i.e. pseudo-randomly or with some sort of structure. Whichever construction is chosen, the features to consider include the girth of the Tanner graph and the minimum distance of the code.

In this chapter we will discuss those properties of an LDPC code that affect its iterative decoding performance and then present the common construction methods used to produce codes with the preferred properties. Following common practice in the field we will call the selection of the degree distributions for an LDPC code code design and the methods to assign the locations in the parity-check matrix for the 1 entries code construction.

Type
Chapter
Information
Iterative Error Correction
Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes
, pp. 75 - 120
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×