Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-w45k2 Total loading time: 4.319 Render date: 2023-01-29T13:51:10.786Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true
Hematopoietic Cell Transplants Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
Buy print or eBook[Opens in a new window]

Book contents

Section 17 - Novel Cell Therapies and Manipulations: Ready for Prime-Time?

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 591 - 705
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Sadelain, M, Brentjens, R, Riviere, I. The basic principles of chimeric antigen receptor design. Cancer Discovery. 2013;3(4):388–98. PubMed PMID: 23550147. Pubmed Central PMCID: PMC3667586.CrossRefGoogle ScholarPubMed
Dao, T, Yan, S, Veomett, N, Pankov, D, Zhou, L, Korontsvit, T, et al. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Science Translational Medicine. 2013;5(176):176ra33. PubMed PMID: 23486779. Pubmed Central PMCID: PMC3963696.CrossRefGoogle ScholarPubMed
Hudecek, M, Lupo-Stanghellini, MT, Kosasih, PL, Sommermeyer, D, Jensen, MC, Rader, C, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2013;19(12):3153–64. PubMed PMID: 23620405. Pubmed Central PMCID: PMC3804130.CrossRefGoogle ScholarPubMed
Eshhar, Z, Waks, T, Gross, G, Schindler, DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(2):720–4. PubMed PMID: 8421711. Pubmed Central PMCID: PMC45737.CrossRefGoogle ScholarPubMed
Brocker, T, Karjalainen, K. Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. The Journal of Experimental Medicine. 1995;181(5):1653–9. PubMed PMID: 7722445. Pubmed Central PMCID: PMC2192006.CrossRefGoogle ScholarPubMed
Gong, MC, Latouche, JB, Krause, A, Heston, WD, Bander, NH, Sadelain, M. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia. 1999;1(2):123–7. PubMed PMID: 10933046. Pubmed Central PMCID: PMC1508130.CrossRefGoogle ScholarPubMed
Maher, J, Brentjens, RJ, Gunset, G, Riviere, I, Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nature Biotechnology. 2002;20(1):70–5. PubMed PMID: 11753365.CrossRefGoogle ScholarPubMed
Brentjens, RJ, Latouche, JB, Santos, E, Marti, F, Gong, MC, Lyddane, C, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nature Medicine. 2003;9(3):279–86. PubMed PMID: 12579196.CrossRefGoogle Scholar
Kowolik, CM, Topp, MS, Gonzalez, S, Pfeiffer, T, Olivares, S, Gonzalez, N, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Research. 2006;66(22):10995–1004. PubMed PMID: 17108138.CrossRefGoogle ScholarPubMed
Finney, HM, Akbar, AN, Lawson, AD. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. Journal of Immunology. 2004;172(1):104–13. PubMed PMID: 14688315.CrossRefGoogle ScholarPubMed
Hombach, A, Sent, D, Schneider, C, Heuser, C, Koch, D, Pohl, C, et al. T-cell activation by recombinant receptors: CD28 costimulation is required for interleukin 2 secretion and receptor-mediated T-cell proliferation but does not affect receptor-mediated target cell lysis. Cancer Research. 2001;61(5):1976–82. PubMed PMID: 11280755.Google Scholar
Savoldo, B, Ramos, CA, Liu, E, Mims, MP, Keating, MJ, Carrum, G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. The Journal of Clinical Investigation. 2011;121(5):1822–6. PubMed PMID: 21540550. Pubmed Central PMCID: PMC3083795.CrossRefGoogle ScholarPubMed
Carpenito, C, Milone, MC, Hassan, R, Simonet, JC, Lakhal, M, Suhoski, MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(9):3360–5. PubMed PMID: 19211796. Pubmed Central PMCID: PMC2651342.CrossRefGoogle Scholar
Davila, ML, Riviere, I, Wang, X, Bartido, S, Park, J, Curran, K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Science Translational Medicine. 2014;6(224):224ra25. PubMed PMID: 24553386.CrossRefGoogle Scholar
Grupp, SA, Kalos, M, Barrett, D, Aplenc, R, Porter, DL, Rheingold, SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine. 2013;368(16):1509–18. PubMed PMID: 23527958. Pubmed Central PMCID: PMC4058440.CrossRefGoogle ScholarPubMed
Jackson, HJ, Rafiq, S, Brentjens, RJ. Driving CAR T cells forward. Nature Reviews Clinical Oncology. 2016;13:370–83.CrossRefGoogle Scholar
Zhong, XS, Matsushita, M, Plotkin, J, Riviere, I, Sadelain, M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Molecular Therapy: The Journal of the American Society of Gene Therapy. 2010;18(2):413–20. PubMed PMID: 19773745. Pubmed Central PMCID: PMC2839303.CrossRefGoogle Scholar
Tammana, S, Huang, X, Wong, M, Milone, MC, Ma, L, Levine, BL, et al. 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Human Gene Therapy. 2010;21(1):7586. PubMed PMID: 19719389. Pubmed Central PMCID: PMC2861957.CrossRefGoogle Scholar
Wang, J, Jensen, M, Lin, Y, Sui, X, Chen, E, Lindgren, CG, et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Human Gene Therapy. 2007;18(8):712–25. PubMed PMID: 17685852.CrossRefGoogle ScholarPubMed
Brentjens, RJ, Riviere, I, Park, JH, Davila, ML, Wang, X, Stefanski, J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817–28. PubMed PMID: 21849486. Pubmed Central PMCID: PMC3208293.CrossRefGoogle ScholarPubMed
Brentjens, RJ, Davila, ML, Riviere, I, Park, J, Wang, X, Cowell, LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Science Translational Medicine. 2013;5(177):177ra38. PubMed PMID: 23515080. Pubmed Central PMCID: PMC3742551.CrossRefGoogle ScholarPubMed
Lee, DW, Kochenderfer, JN, Stetler-Stevenson, M, Cui, YK, Delbrook, C, Feldman, SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967): 517–28.CrossRefGoogle Scholar
Turtle, CJ, Hanafi, LA, Berger, C, Gooley, TA, Cherian, S, Hudecek, M, et al. CD19 CAR–T cells of defined CD4+ : CD8+ composition in adult B cell ALL patients. Journal of Clinical Investigation. 2016;126(6).CrossRefGoogle ScholarPubMed
Porter, DL, Levine, BL, Kalos, M, Bagg, A, June, CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. The New England Journal of Medicine. 2011;365(8):725–33. PubMed PMID: 21830940. Pubmed Central PMCID: PMC3387277.CrossRefGoogle ScholarPubMed
Porter, DL, Hwang, WT, Frey, NV, Lacey, SF, Shaw, PA, Loren, AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science Translational Medicine. 2015;7(303):303–39.CrossRefGoogle ScholarPubMed
Kochenderfer, JN, Wilson, WH, Janik, JE, Dudley, ME, Stetler-Stevenson, M, Feldman, SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T-cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102. PubMed PMID: 20668228. Pubmed Central PMCID: PMC2993617.CrossRefGoogle Scholar
Kochenderfer, JN, Dudley, ME, Feldman, SA, Wilson, WH, Spaner, DE, Maric, I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20. PubMed PMID: 22160384. Pubmed Central PMCID: PMC3327450.CrossRefGoogle Scholar
Kochenderfer, JN, Dudley, ME, Kassim, SH, Somerville, RP, Carpenter, RO, Stetler-Stevenson, M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T-cells expressing an anti-CD19 chimeric antigen receptor. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2015;33(6): 540–9. PubMed PMID: 25154820.CrossRefGoogle ScholarPubMed
Turtle, , et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor–modified T cells. Science Translational Medicine. 2016;8(355).CrossRefGoogle ScholarPubMed
Till, BG, Jensen, MC, Wang, J, Chen, EY, Wood, BL, Greisman, HA, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T-cells. Blood. 2008;112(6):2261–71. PubMed PMID: 18509084. Pubmed Central PMCID: PMC2532803.CrossRefGoogle ScholarPubMed
Till, BG, Jensen, MC, Wang, J, Qian, X, Gopal, AK, Maloney, DG, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood. 2012;119(17):3940–50. PubMed PMID: 22308288. Pubmed Central PMCID: PMC3350361.CrossRefGoogle ScholarPubMed
Burger, JA, Ghia, P, Rosenwald, A, Caligaris-Cappio, F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood. 2009;114(16):3367–75. PubMed PMID: 19636060.CrossRefGoogle ScholarPubMed
Herishanu, Y, Perez-Galan, P, Liu, D, Biancotto, A, Pittaluga, S, Vire, B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563–74. PubMed PMID: 20940416. Pubmed Central PMCID: PMC3031480.CrossRefGoogle ScholarPubMed
Christopoulos, P, Pfeifer, D, Bartholome, K, Follo, M, Timmer, J, Fisch, P, et al. Definition and characterization of the systemic T-cell dysregulation in untreated indolent B-cell lymphoma and very early CLL. Blood. 2011;117(14):3836–46. PubMed PMID: 21270444.CrossRefGoogle ScholarPubMed
Riches, JC, Davies, JK, McClanahan, F, Fatah, R, Iqbal, S, Agrawal, S, et al. T-cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013;121(9):1612–21. PubMed PMID: 23247726. Pubmed Central PMCID: PMC3587324.CrossRefGoogle ScholarPubMed
Davila, ML, Bouhassira, DC, Park, JH, Curran, KJ, Smith, EL, Pegram, HJ, et al. Chimeric antigen receptors for the adoptive T cell therapy of hematologic malignancies. International Journal of Hematology. 2014;99(4):361–71. PubMed PMID: 24311149.CrossRefGoogle ScholarPubMed
Neeson, P, Shin, A, Tainton, KM, Guru, P, Prince, HM, Harrison, SJ, et al. Ex vivo culture of chimeric antigen receptor T cells generates functional CD8+ T-cells with effector and central memory-like phenotype. Gene Therapy. 2010;17(9):1105–16. PubMed PMID: 20428216.CrossRefGoogle Scholar
Ali, SA, Shi, V, Maric, I, Wang, M, Stroncek, DF, Rose, JJ, et al. T cells expressing an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128:1688–700.CrossRefGoogle Scholar
Ritchie, DS, Neeson, PJ, Khot, A, Peinert, S, Tai, T, Tainton, K, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Molecular Therapy: The Journal of the American Society of Gene Therapy. 2013;21(11):2122–9. PubMed PMID: 23831595. Pubmed Central PMCID: PMC3831035.CrossRefGoogle Scholar
Gajewski, TF, Schreiber, H, Fu, YX. Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology. 2013;14(10):1014–22. PubMed PMID: 24048123. Pubmed Central PMCID: PMC4118725.CrossRefGoogle ScholarPubMed
Lee, JC, Hayman, E, Pegram, HJ, Santos, E, Heller, G, Sadelain, M, et al. In vivo inhibition of human CD19-targeted effector T-cells by natural T regulatory cells in a xenotransplant murine model of B cell malignancy. Cancer Research. 2011;71(8):2871–81. PubMed PMID: 21487038. Pubmed Central PMCID: PMC3094720.Google Scholar
Kershaw, MH, Westwood, JA, Parker, LL, Wang, G, Eshhar, Z, Mavroukakis, SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2006;12(20 Pt 1):6106–15. PubMed PMID: 17062687. Pubmed Central PMCID: PMC2154351.CrossRefGoogle ScholarPubMed
Louis, CU, Savoldo, B, Dotti, G, Pule, M, Yvon, E, Myers, GD, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T-cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6. PubMed PMID: 21984804. Pubmed Central PMCID: PMC3234664.CrossRefGoogle ScholarPubMed
Maus, MV, Haas, AR, Beatty, GL, Albelda, SM, Levine, BL, Liu, X, et al. T-cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunology Research. 2013;1(1):2631. PubMed PMID: 24777247.CrossRefGoogle Scholar
Hegde, M, Corder, A, Chow, KK, Mukherjee, M, Ashoori, A, Kew, Y, et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Molecular Therapy: The Journal of the American Society of Gene Therapy. 2013;21(11):2087–101. PubMed PMID: 23939024. Pubmed Central PMCID: PMC3831041.CrossRefGoogle Scholar
Duong, CP, Westwood, JA, Berry, LJ, Darcy, PK, Kershaw, MH. Enhancing the specificity of T-cell cultures for adoptive immunotherapy of cancer. Immunotherapy. 2011;3(1):3348. PubMed PMID: 21174556.CrossRefGoogle ScholarPubMed
Kloss, CC, Condomines, M, Cartellieri, M, Bachmann, M, Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T-cells. Nature Biotechnology. 2013;31(1):71–5. PubMed PMID: 23242161.Google ScholarPubMed
Kakarla, S, Chow, K, Mata, M, Shaffer, DR, Song, XT, Wu, MF, et al. Antitumor effects of chimeric receptor engineered human T-cells directed to tumor stroma. Molecular Therapy: The Journal of the American Society of Gene Therapy. 2013;21(8):1611–20. PubMed PMID: 23732988. Pubmed Central PMCID: PMC3734659.CrossRefGoogle ScholarPubMed
Chmielewski, M, Hombach, AA, Abken, H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunological Reviews. 2014;257(1):8390. PubMed PMID: 24329791.CrossRefGoogle ScholarPubMed
Pegram, HJ, Lee, JC, Hayman, EG, Imperato, GH, Tedder, TF, Sadelain, M, et al. Tumor-targeted T-cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012;119(18):4133–41. PubMed PMID: 22354001. Pubmed Central PMCID: PMC3359735.CrossRefGoogle Scholar
Leonard, JP, Sherman, ML, Fisher, GL, Buchanan, LJ, Larsen, G, Atkins, MB, et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood. 1997;90(7):2541–8. PubMed PMID: 9326219.Google Scholar
Koneru, M, O’Cearbhaill, R, Pendharkar, S, Spriggs, DR, Brentjens, RJ. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16ecto directed chimeric antigen receptors for recurrent ovarian cancer. Journal of Translational Medicine. 2015;13:102.CrossRefGoogle ScholarPubMed
Stephan, MT, Ponomarev, V, Brentjens, RJ, Chang, AH, Dobrenkov, KV, Heller, G, et al. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nature Medicine. 2007;13(12):1440–9. PubMed PMID: 18026115.CrossRefGoogle Scholar
Davila, ML, Kloss, CC, Gunset, G, Sadelain, M. CD19 CAR-targeted T-cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. PLoS one. 2013;8(4):e61338. PubMed PMID: 23585892. Pubmed Central PMCID: PMC3621858.CrossRefGoogle Scholar
Morgan, RA, Yang, JC, Kitano, M, Dudley, ME, Laurencot, CM, Rosenberg, SA. Case report of a serious adverse event following the administration of T-cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular Therapy: The Journal of the American Society of Gene Therapy. 2010;18(4):843–51. PubMed PMID: 20179677. Pubmed Central PMCID: PMC2862534.CrossRefGoogle ScholarPubMed
Di Stasi, A, Tey, SK, Dotti, G, Fujita, Y, Kennedy-Nasser, A, Martinez, C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. The New England Journal of Medicine. 2011;365(18):1673–83. PubMed PMID: 22047558. Pubmed Central PMCID: PMC3236370.CrossRefGoogle ScholarPubMed
Kalos, M, Levine, BL, Porter, DL, Katz, S, Grupp, SA, Bagg, A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Science Translational Medicine. 2011;3(95):95ra73. PubMed PMID: 21832238. Pubmed Central PMCID: PMC3393096.CrossRefGoogle ScholarPubMed
Teachey, DT, Lacey, SF, Shaw, PA, Melenhorst, J, Maude, SL, Frey, N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discovery. 2016; 10.1158/2159–8290.CD-16-0040.Google Scholar
Bonifant, CL, Jackson, HJ, Brentjens, RJ, Curran, KJ. Toxicity and management in CAR T-cell therapy. Molecular Therapy: Oncolytics. 2016;3:16011; doi:10.1038/mto.2016.11.Google ScholarPubMed

References

Raulet, DH, Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol. 2009;9(8):568–80. Epub 2009/07/25.CrossRefGoogle ScholarPubMed
Almeida-Oliveira, A, Smith-Carvalho, M, Porto, LC, Cardoso-Oliveira, J, Ribeiro Ados, S, Falcao, RR, et al. Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol. 2011;72(4):319–29. Epub 2011/01/26.CrossRefGoogle ScholarPubMed
Kiessling, R, Klein, E, Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5(2):112–7. Epub 1975/02/01.Google ScholarPubMed
Herberman, RB, Nunn, ME, Lavrin, DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975;16(2):216–29. Epub 1975/08/15.Google ScholarPubMed
Murphy, WJ, Koh, CY, Raziuddin, A, Bennett, M, Longo, DL. Immunobiology of natural killer cells and bone marrow transplantation: merging of basic and preclinical studies. Immunol Rev. 2001;181:279–89. Epub 2001/08/22.CrossRefGoogle ScholarPubMed
Ljunggren, HG, Karre, K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today. 1990;11(7):237–44.CrossRefGoogle ScholarPubMed
Raulet, DH, Correa, I, Corral, L, Dorfman, J, Wu, MF. Inhibitory effects of class I molecules on murine NK cells: speculations on function, specificity and self-tolerance. Semi Immunol. 1995;7(2):103–7. Epub 1995/04/01.Google Scholar
Farag, SS, Caligiuri, MA. Human natural killer cell development and biology. Blood Rev. 2006;20(3):123–37. Epub 2005/12/21.CrossRefGoogle ScholarPubMed
Uhrberg, M, Valiante, NM, Shum, BP, Shilling, HG, Lienert-Weidenbach, K, Corliss, B, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7(6):753–63. Epub 1998/01/16.CrossRefGoogle ScholarPubMed
Zhao, XY, Chang, YJ, Xu, LP, Zhang, XH, Liu, KY, Li, D, et al. HLA and KIR genotyping correlates with relapse after T-cell-replete haploidentical transplantation in chronic myeloid leukaemia patients. Br J Cancer. 2014;111(6):1080–8. Epub 2014/08/01.CrossRefGoogle Scholar
Shilling, HG, McQueen, KL, Cheng, NW, Shizuru, JA, Negrin, RS, Parham, P. Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood. 2003;101(9):3730–40. Epub 2003/01/04.CrossRefGoogle ScholarPubMed
Giebel, S, Dziaczkowska, J, Czerw, T, Wojnar, J, Krawczyk-Kulis, M, Nowak, I, et al. Sequential recovery of NK cell receptor repertoire after allogeneic hematopoietic SCT. Bone Marrow Transplant. 2010;45(6):1022–30. Epub 2010/02/02.CrossRefGoogle ScholarPubMed
Beziat, V, Liu, LL, Malmberg, JA, Ivarsson, MA, Sohlberg, E, Bjorklund, AT, et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood. 2013;121(14):2678–88. Epub 2013/01/18.CrossRefGoogle ScholarPubMed
Foley, B, Cooley, S, Verneris, MR, Pitt, M, Curtsinger, J, Luo, X, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. 2012;119(11):2665–74. Epub 2011/12/20.CrossRefGoogle ScholarPubMed
Foley, B, Cooley, S, Verneris, MR, Curtsinger, J, Luo, X, Waller, EK, et al. Human cytomegalovirus (CMV)-induced memory-like NKG2C(+) NK cells are transplantable and expand in vivo in response to recipient CMV antigen. J Immunol. 2012;189(10):5082–8. Epub 2012/10/19.CrossRefGoogle Scholar
Ruggeri, L, Mancusi, A, Capanni, M, Urbani, E, Carotti, A, Aloisi, T, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110(1):433–40. Epub 2007/03/21.CrossRefGoogle Scholar
Symons, HJ, Leffell, MS, Rossiter, ND, Zahurak, M, Jones, RJ, Fuchs, EJ. Improved survival with inhibitory killer immunoglobulin receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant. 2010;16(4):533–42. Epub 2009/12/08.CrossRefGoogle ScholarPubMed
Brunstein, CG, Wagner, JE, Weisdorf, DJ, Cooley, S, Noreen, H, Barker, JN, et al. Negative effect of KIR alloreactivity in recipients of umbilical cord blood transplant depends on transplantation conditioning intensity. Blood. 2009;113(22):5628–34. Epub 2009/03/31.CrossRefGoogle ScholarPubMed
Miller, JS, Cooley, S, Parham, P, Farag, SS, Verneris, MR, McQueen, KL, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood. 2007;109(11):5058–61.CrossRefGoogle ScholarPubMed
Horowitz, A, Strauss-Albee, DM, Leipold, M, Kubo, J, Nemat-Gorgani, N, Dogan, OC, et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med. 2013;5(208):208ra145. Epub 2013/10/25.CrossRefGoogle ScholarPubMed
Bertaina, A, Merli, P, Rutella, S, Pagliara, D, Bernardo, ME, Masetti, R, et al. HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood. 2014;124(5):822–6. Epub 2014/05/30.CrossRefGoogle Scholar
Kanakry, CG, O’Donnell, PV, Furlong, T, de Lima, MJ, Wei, W, Medeot, M, et al. Multi-institutional study of post-transplantation cyclophosphamide as single-agent graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation using myeloablative busulfan and fludarabine conditioning. J Clin Oncol. 2014;32(31):3497–505. Epub 2014/10/01.CrossRefGoogle ScholarPubMed
Derniame, S, Perazzo, J, Lee, F, Domogala, A, Escobedo-Cousin, M, Alnabhan, R, et al. Differential effects of mycophenolate mofetil and cyclosporine A on peripheral blood and cord blood natural killer cells activated with interleukin-2. Cytotherapy. 2014;16(10):1409–18.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Inaba, H, Ribeiro, RC, Pounds, S, Rooney, B, Bell, T, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28(6):955–9. Epub 2010/01/21.CrossRefGoogle ScholarPubMed
Choi, I, Yoon, SR, Park, SY, Kim, H, Jung, SJ, Jang, YJ, et al. Donor-derived natural killer cells infused after human leukocyte antigen-haploidentical hematopoietic cell transplantation: a dose-escalation study. Biol Blood Marrow Transplant. 2014;20(5):696704. Epub 2014/02/15.CrossRefGoogle ScholarPubMed
Shah, NN, Baird, K, Delbrook, CP, Fleisher, TA, Kohler, ME, Rampertaap, S, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T cell depleted stem cell transplantation. Blood. 2015;125(5):784–92.CrossRefGoogle ScholarPubMed
Fujisaki, H, Kakuda, H, Shimasaki, N, Imai, C, Ma, J, Lockey, T, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009;69(9):4010–7. Epub 2009/04/23.CrossRefGoogle Scholar
Denman, CJ, Senyukov, VV, Somanchi, SS, Phatarpekar, PV, Kopp, LM, Johnson, JL, et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One. 2012;7(1):e30264. Epub 2012/01/27.CrossRefGoogle ScholarPubMed
Spanholtz, J, Preijers, F, Tordoir, M, Trilsbeek, C, Paardekooper, J, de Witte, T, et al. Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. PLoS One. 2011;6(6):e20740. Epub 2011/06/24.CrossRefGoogle ScholarPubMed
Berg, M, Lundqvist, A, McCoy, P Jr., Samsel, L, Fan, Y, Tawab, A, et al. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy. 2009;11(3):341–55. Epub 2009/03/25.CrossRefGoogle ScholarPubMed
Ruggeri, L, Capanni, M, Urbani, E, Perruccio, K, Shlomchik, WD, Tosti, A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–100.CrossRefGoogle ScholarPubMed
Giebel, S, Locatelli, F, Lamparelli, T, Velardi, A, Davies, S, Frumento, G, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood. 2003;102(3):814–9.CrossRefGoogle ScholarPubMed
Beelen, DW, Ottinger, HD, Ferencik, S, Elmaagacli, AH, Peceny, R, Trenschel, R, et al. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood. 2005;105(6):2594–600. Epub 2004/11/13.CrossRefGoogle ScholarPubMed
Elmaagacli, AH, Ottinger, H, Koldehoff, M, Peceny, R, Steckel, NK, Trenschel, R, et al. Reduced risk for molecular disease in patients with chronic myeloid leukemia after transplantation from a KIR-mismatched donor. Transplantation. 2005;79(12):1741–7. Epub 2005/06/24.CrossRefGoogle ScholarPubMed
Lang, P, Pfeiffer, M, Teltschik, HM, Schlegel, P, Feuchtinger, T, Ebinger, M, et al. Natural killer cell activity influences outcome after T cell depleted stem cell transplantation from matched unrelated and haploidentical donors. Best Pract Res Clin Haematol. 2011;24(3):403–11. Epub 2011/09/20.CrossRefGoogle Scholar
Oevermann, L, Michaelis, SU, Mezger, M, Lang, P, Toporski, J, Bertaina, A, et al. KIR B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with ALL. Blood. 2014;124(17):2744–7. Epub 2014/08/15.CrossRefGoogle Scholar
Michaelis, SU, Mezger, M, Bornhauser, M, Trenschel, R, Stuhler, G, Federmann, B, et al. KIR haplotype B donors but not KIR-ligand mismatch result in a reduced incidence of relapse after haploidentical transplantation using reduced intensity conditioning and CD3/CD19-depleted grafts. Ann Hematol. 2014;93(9):1579–86. Epub 2014/04/29.CrossRefGoogle ScholarPubMed
Yamasaki, S, Henzan, H, Ohno, Y, Yamanaka, T, Iino, T, Itou, Y, et al. Influence of transplanted dose of CD56+ cells on development of graft-versus-host disease in patients receiving G-CSF-mobilized peripheral blood progenitor cells from HLA-identical sibling donors. Bone Marrow Transplant. 2003;32(5):505–10. Epub 2003/08/28.CrossRefGoogle ScholarPubMed
Verheyden, S, Schots, R, Duquet, W, Demanet, C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia. 2005;19(8):1446–51. Epub 2005/06/24.Google ScholarPubMed
Hsu, KC, Keever-Taylor, CA, Wilton, A, Pinto, C, Heller, G, Arkun, K, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood. 2005;105(12):4878–84.CrossRefGoogle ScholarPubMed
Kim, DH, Sohn, SK, Lee, NY, Baek, JH, Kim, JG, Won, DI, et al. Transplantation with higher dose of natural killer cells associated with better outcomes in terms of non-relapse mortality and infectious events after allogeneic peripheral blood stem cell transplantation from HLA-matched sibling donors. Eur J Haematol. 2005;75(4):299308. Epub 2005/09/09.CrossRefGoogle ScholarPubMed
Hsu, KC, Gooley, T, Malkki, M, Pinto-Agnello, C, Dupont, B, Bignon, JD, et al. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant. 2006;12(8):828–36. Epub 2006/07/26.CrossRefGoogle Scholar
Savani, BN, Mielke, S, Adams, S, Uribe, M, Rezvani, K, Yong, AS, et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia. 2007;21(10):2145–52. Epub 2007/08/04.Google Scholar
Willemze, R, Rodrigues, CA, Labopin, M, Sanz, G, Michel, G, Socie, G, et al. KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia. 2009;23(3):492500. Epub 2009/01/20.CrossRefGoogle ScholarPubMed
Cooley, S, Trachtenberg, E, Bergemann, TL, Saeteurn, K, Klein, J, Le, CT, et al. Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood. 2009;113(3):726–32. Epub 2008/10/24.CrossRefGoogle Scholar
Cooley, S, Weisdorf, DJ, Guethlein, LA, Klein, JP, Wang, T, Le, CT, et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood. 2010;116(14):2411–9. Epub 2010/06/29.CrossRefGoogle ScholarPubMed
Tomblyn, M, Young, JA, Haagenson, MD, Klein, JP, Trachtenberg, EA, Storek, J, et al. Decreased infections in recipients of unrelated donor hematopoietic cell transplantation from donors with an activating KIR genotype. Biol Blood Marrow Transplant. 2010;16(8):1155–61. Epub 2010/03/04.CrossRefGoogle ScholarPubMed
Yamamoto, W, Ogusa, E, Matsumoto, K, Maruta, A, Ishigatsubo, Y, Kanamori, H. Recovery of natural killer cells and prognosis after cord blood transplantation. Leuk Res. 2013;37(11):1522–6. Epub 2013/10/08.CrossRefGoogle ScholarPubMed
Leung, W, Handgretinger, R, Iyengar, R, Turner, V, Holladay, MS, Hale, GA. Inhibitory KIR-HLA receptor-ligand mismatch in autologous haematopoietic stem cell transplantation for solid tumour and lymphoma. Br J Cancer. 2007;97(4):539–42. Epub 2007/08/02.CrossRefGoogle Scholar
Venstrom, JM, Zheng, J, Noor, N, Danis, KE, Yeh, AW, Cheung, IY, et al. KIR and HLA genotypes are associated with disease progression and survival following autologous hematopoietic stem cell transplantation for high-risk neuroblastoma. Clin Cancer Res. 2009;15(23):7330–4. Epub 2009/11/26.CrossRefGoogle ScholarPubMed

References

Boeckh, M, Leisenring, W, Riddell, SR, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T cell immunity. Blood. 2003;101(2):407414.CrossRefGoogle ScholarPubMed
Brunstein, CG, Weisdorf, DJ, DeFor, T, et al. Marked increased risk of Epstein–Barr virus-related complications with the addition of antithymocyte globulin to a nonmyeloablative conditioning prior to unrelated umbilical cord blood transplantation. Blood. 2006;108(8):28742880.CrossRefGoogle ScholarPubMed
Myers, GD, Krance, RA, Weiss, H, et al. Adenovirus infection rates in pediatric recipients of alternate donor allogeneic bone marrow transplants receiving either antithymocyte globulin (ATG) or alemtuzumab (Campath). Bone Marrow Transplant. 2005;36(11):10011008.CrossRefGoogle Scholar
Neofytos, D, Horn, D, Anaissie, E, et al. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance registry. Clin Infect Dis. 2009;48(3):265273.CrossRefGoogle ScholarPubMed
Avery, R. Update in management of Ganciclovir-resistant cytomegalovirus infection. Curr Opin Infect Dis. 2008;21:433437.CrossRefGoogle ScholarPubMed
Biron, KK. Antiviral drugs for cytomegalovirus diseases. Antiviral Res. 2006;71(2–3):154163.CrossRefGoogle ScholarPubMed
Nichols, WG, Corey, L, Gooley, T, et al. Rising pp65 antigenemia during preemptive anticytomegalovirus therapy after allogeneic hematopoietic stem cell transplantation: risk factors, correlation with DNA load, and outcomes. Blood. 2001;97(4):867874.CrossRefGoogle ScholarPubMed
Ljungman, P, Deliliers, GL, Platzbecker, U, et al. Cidofovir for cytomegalovirus infection and disease in allogeneic stem cell transplant recipients. The Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2001;97(2):388392.CrossRefGoogle ScholarPubMed
Kuehnle, I, Huls, MH, Liu, Z, et al. CD20 monoclonal antibody (rituximab) for therapy of Epstein–Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood. 2000;95(4):15021505.Google ScholarPubMed
Papadopoulos, EB, Ladanyi, M, Emanuel, D, et al. Infusions of donor leukocytes to treat Epstein–Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330(17):11851191.CrossRefGoogle ScholarPubMed
Slezak, SL, Bettinotti, M, Selleri, S, Adams, S, Marincola, FM, Stroncek, DF. CMV pp65 and IE-1 T cell epitopes recognized by healthy subjects. J Transl Med. 2007;5:17.CrossRefGoogle ScholarPubMed
Leen, AM, Christin, A, Khalil, M, et al. Identification of hexon-specific CD4 and CD8 T cell epitopes for vaccine and immunotherapy. J Virol. 2008;82(1):546554.CrossRefGoogle ScholarPubMed
Bollard, CM, Rooney, CM, Heslop, HE. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol. 2012;9(9):510519.CrossRefGoogle Scholar
Hanley, PJ, Cruz, CR, Savoldo, B, et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood. 2009;114(9):19581967.CrossRefGoogle Scholar
Leen, AM, Myers, GD, Sili, U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12(10):11601166.CrossRefGoogle ScholarPubMed
Sili, U, Huls, MH, Davis, AR, et al. Large-scale expansion of dendritic cell-primed polyclonal human cytotoxic T-lymphocyte lines using lymphoblastoid cell lines for adoptive immunotherapy. J Immunother. 2003;26(3):241256.CrossRefGoogle Scholar
Kern, F, Faulhaber, N, Frommel, C, et al. Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping pentadecapeptides. Eur J Immunol. 2000;30(6):16761682.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Hanley, PJ, Shaffer, DR, Cruz, CR, et al. Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein–Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation. Cytotherapy. 2011;13(8):976986.CrossRefGoogle ScholarPubMed
Kalos, M, June, CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39(1):4960.CrossRefGoogle ScholarPubMed
Sellar, RS, Peggs, KS. The role of virus-specific adoptive T-cell therapy in hematopoietic transplantation. Cytotherapy. 2012;14(4):391400.CrossRefGoogle ScholarPubMed
Hansen, SG, Powers, CJ, Richards, R, et al. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science. 2010;328(5974):102106.CrossRefGoogle ScholarPubMed
Neudorfer, J, Schmidt, B, Huster, KM, et al. Reversible HLA multimers (Streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J Immunol Methods. 2007;320(1–2):119131.CrossRefGoogle Scholar
Schmitt, A, Tonn, T, Busch, DH, et al. Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion. 2011;51(3):591599.CrossRefGoogle ScholarPubMed
Bollard, CM, Kuehnle, I, Leen, A, Rooney, CM, Heslop, HE. Adoptive immunotherapy for posttransplantation viral infections. Biol Blood Marrow Transplant. 2004;10(3):143155.CrossRefGoogle ScholarPubMed
Gattinoni, L, Klebanoff, CA, Palmer, DC, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T-cells. J Clin Invest. 2005;115(6):16161626.CrossRefGoogle ScholarPubMed
Heslop, HE, Slobod, KS, Pule, MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925935.CrossRefGoogle ScholarPubMed
Melenhorst, JJ, Leen, AM, Bollard, CM, et al. Allogeneic virus-specific T-cells with HLA alloreactivity do not produce GVHD in human subjects. Blood. 2010;116(22):47004702.CrossRefGoogle Scholar
Peggs, KS, Verfuerth, S, Pizzey, A, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. The Lancet. 2003;362(9393):13751377.CrossRefGoogle ScholarPubMed
Rooney, CM, Smith, CA, Ng, CY, et al. Infusion of cytotoxic T-cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92(5):15491555.Google ScholarPubMed
Walter, EA, Greenberg, PD, Gilbert, MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333(16):10381044.CrossRefGoogle Scholar
Trivedi, D, Williams, RY, O’Reilly, RJ, Koehne, G. Generation of CMV-specific T lymphocytes using protein-spanning pools of pp65-derived overlapping pentadecapeptides for adoptive immunotherapy. Blood. 2005;105(7):27932801.CrossRefGoogle ScholarPubMed
Gerdemann, U, Keirnan, JM, Katari, UL, et al. Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther. 2012;20(8):16221632.CrossRefGoogle ScholarPubMed
Hanley, PJC, Melenhorst, J, Scheinberg, P, et al. Naïve T-cell-derived CTL recognize atypical epitopes of CMVpp65 with higher avidity than CMV-seropositive donor-derived CTL – a basis for treatment of post-transplant viral infection by adoptive transfer of T-cells from virus-naïve donors. ISCT 2013 Annual Meeting (Abstract); 2013.
Berger, C, Jensen, MC, Lansdorp, PM, Gough, M, Elliott, C, Riddell, SR. Adoptive transfer of effector CD8+ T-cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008;118(1):294305.CrossRefGoogle ScholarPubMed
Willinger, T, Freeman, T, Hasegawa, H, McMichael, AJ, Callan, MF. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J Immunol. 2005;175(9):58955903.CrossRefGoogle ScholarPubMed
Janeway, C. Immunobiology: The Immune System in Health and Disease. 6th ed. New York: Garland Science; 2005.Google Scholar
Leen, AM, Rooney, CM, Foster, AE. Improving T cell therapy for cancer. Ann Rev Immunol. 2007;25:243265.CrossRefGoogle ScholarPubMed
Eshhar, Z. Tumor-specific T-bodies: towards clinical application. Cancer Immunol Immunother. 1997;45(3–4):131136.CrossRefGoogle ScholarPubMed
Schub, A, Schuster, IG, Hammerschmidt, W, Moosmann, A. CMV-specific TCR-transgenic T cells for immunotherapy. J Immunol. 2009;183(10):68196830.CrossRefGoogle ScholarPubMed
Scholten, KB, Turksma, AW, Ruizendaal, JJ, et al. Generating HPV specific T helper cells for the treatment of HPV induced malignancies using TCR gene transfer. J Transl Med. 2011;9:147.CrossRefGoogle ScholarPubMed
Gehring, AJ, Xue, SA, Ho, ZZ, et al. Engineering virus-specific T-cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J Hepatol. 2011;55(1):103110.CrossRefGoogle ScholarPubMed
Zhang, Y, Liu, Y, Moxley, KM, et al. Transduction of human T-cells with a novel T-cell receptor confers anti-HCV reactivity. PLoS Pathogens. 2010;6(7):e1001018.CrossRefGoogle ScholarPubMed
Luo, W, Zhang, XB, Huang, YT, et al. Development of genetically engineered CD4+ and CD8+ T cells expressing TCRs specific for a M. tuberculosis 38-kDa antigen. J Mol Med (Berl). 2011;89(9):903913.CrossRefGoogle ScholarPubMed
Oh, HL, Chia, A, Chang, CX, et al. Engineering T-cells specific for a dominant severe acute respiratory syndrome coronavirus CD8 T cell epitope. J Virol. 2011;85(20):1046410471.CrossRefGoogle ScholarPubMed
Roan, NR, Starnbach, MN. Antigen-specific CD8+ T cells respond to Chlamydia trachomatis in the genital mucosa. J Immunol. 2006;177(11):79747979.CrossRefGoogle ScholarPubMed
Ueno, T, Fujiwara, M, Tomiyama, H, Onodera, M, Takiguchi, M. Reconstitution of anti-HIV effector functions of primary human CD8 T lymphocytes by transfer of HIV-specific alphabeta TCR genes. Eur J Immunol. 2004;34(12):33793388.CrossRefGoogle ScholarPubMed
Masiero, S, Del Vecchio, C, Gavioli, R, et al. T-cell engineering by a chimeric T-cell receptor with antibody-type specificity for the HIV-1 gp120. Gene Ther. 2005;12(4):299310.CrossRefGoogle ScholarPubMed
Sahu, GK, Sango, K, Selliah, N, Ma, Q, Skowron, G, Junghans, RP. Anti-HIV designer T-cells progressively eradicate a latently infected cell line by sequentially inducing HIV reactivation then killing the newly gp120-positive cells. Virology. 2013;446(1–2):268275.CrossRefGoogle ScholarPubMed
Bitton, N, Verrier, F, Debre, P, Gorochov, G. Characterization of T cell-expressed chimeric receptors with antibody-type specificity for the CD4 binding site of HIV-1 gp120. Eur J immunol. 1998;28(12):41774187.3.0.CO;2-J>CrossRefGoogle Scholar
Joseph, A, Zheng, JH, Follenzi, A, et al. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in-vitro and in vivo HIV-1-specific inhibitory activity. J Virol. 2008;82(6):30783089.CrossRefGoogle ScholarPubMed
Kumaresan, PR, Manuri, PR, Albert, ND, et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci USA. 2014;111(29):1066010665.CrossRefGoogle ScholarPubMed
Cobbold, M, Khan, N, Pourgheysari, B, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202(3):379386.CrossRefGoogle ScholarPubMed
Feuchtinger, T, Opherk, K, Bethge, WA, et al. Adoptive transfer of pp65-specific T-cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116(20):43604367.CrossRefGoogle ScholarPubMed
Peggs, KS, Thomson, K, Samuel, E, et al. Directly selected cytomegalovirus-reactive donor T-cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis. 2011;52(1):4957.CrossRefGoogle ScholarPubMed
Uhlin, M, Okas, M, Gertow, J, Uzunel, M, Brismar, TB, Mattsson, J. A novel haplo-identical adoptive CTL therapy as a treatment for EBV-associated lymphoma after stem cell transplantation. Cancer Immunol Immunother. 2010;59(3):473477.CrossRefGoogle ScholarPubMed
Moosmann, A, Bigalke, I, Tischer, J, et al. Effective and long-term control of EBV PTLD after transfer of peptide-selected T cells. Blood. 2010;115(14):29602970.CrossRefGoogle ScholarPubMed
Uhlin, M, Gertow, J, Uzunel, M, et al. Rapid salvage treatment with virus-specific T-cells for therapy-resistant disease. Clin Infect Dis. 2012;55(8):10641073.CrossRefGoogle ScholarPubMed
Leen, AM, Christin, A, Myers, GD, et al. Cytotoxic T lymphocyte therapy with donor T-cells prevents and treats adenovirus and Epstein–Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood. 2009;114(19):42834292.CrossRefGoogle ScholarPubMed
Micklethwaite, KP, Clancy, L, Sandher, U, et al. Prophylactic infusion of cytomegalovirus-specific cytotoxic T lymphocytes stimulated with Ad5f35pp65 gene-modified dendritic cells after allogeneic hemopoietic stem cell transplantation. Blood. 2008;112(10):39743981.CrossRefGoogle ScholarPubMed
Feuchtinger, T, Matthes-Martin, S, Richard, C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):6476.CrossRefGoogle ScholarPubMed
Qasim, W, Derniame, S, Gilmour, K, et al. Third-party virus-specific T-cells eradicate adenoviraemia but trigger bystander graft-versus-host disease. Br J Haematol. 2011;154(1):150153.CrossRefGoogle ScholarPubMed
Blyth, E, Clancy, L, Simms, R, et al. Donor-derived CMV-specific T cells reduce the requirement for CMV-directed pharmacotherapy after allogeneic stem cell transplantation. Blood. 2013;121(18):37453758.CrossRefGoogle ScholarPubMed
Vera, JF, Brenner, LJ, Gerdemann, U, et al. Accelerated production of antigen-specific T-cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother. 2010;33(3):305315.CrossRefGoogle Scholar
Papadopoulou, A, Gerdemann, U, Katari, UL, et al. Activity of broad-spectrum T cells as treatment for Adv, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med. 2014;6(242):242ra283.CrossRefGoogle ScholarPubMed
Lam, S, Bollard, C. T-cell therapies for HIV. Immunotherapy. 2013;5(4):407414.CrossRefGoogle Scholar
Lieberman, J, Skolnik, PR, Parkerson, GR, 3rd, et al. Safety of autologous, ex vivo-expanded human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte infusion in HIV-infected patients. Blood. 1997;90(6):21962206.Google ScholarPubMed
Deeks, SG, Wagner, B, Anton, PA, et al. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther. 2002;5(6):788797.CrossRefGoogle ScholarPubMed
Mitsuyasu, RT, Anton, PA, Deeks, SG, et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T-cells in human immunodeficiency virus-infected subjects. Blood. 2000;96(3):785793.Google ScholarPubMed
Tebas, P, Stein, D, Binder-Scholl, G, et al. Antiviral effects of autologous CD4 T-cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV. Blood. 2013;121(9):15241533.CrossRefGoogle Scholar
Tebas, P, Stein, D, Tang, WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. New Engl J Med. 2014;370(10):901910.CrossRefGoogle Scholar
Didigu, CA, Wilen, CB, Wang, J, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T-cells from HIV-1 infection. Blood. 2014;123(1):6169.CrossRefGoogle ScholarPubMed
Balduzzi, A, Lucchini, G, Hirsch, HH, et al. Polyomavirus JC-targeted T-cell therapy for progressive multiple leukoencephalopathy in a hematopoietic cell transplantation recipient. Bone Marrow Transplant. 2011;46(7):987992.CrossRefGoogle Scholar
Ramos, CA, Narala, N, Vyas, GM, et al. Human papillomavirus type 16 E6/E7-specific cytotoxic T lymphocytes for adoptive immunotherapy of HPV-associated malignancies. J Immunother. 2013;36(1):6676.CrossRefGoogle ScholarPubMed
Cruz, CR, Hanley, PJ, Liu, H, et al. Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience. Cytotherapy. 2010;12(6):743749.CrossRefGoogle ScholarPubMed
Haque, T, Taylor, C, Wilkie, GM, et al. Complete regression of posttransplant lymphoproliferative disease using partially HLA-matched Epstein Barr virus-specific cytotoxic T-cells. Transplantation. 2001;72(8):13991402.CrossRefGoogle Scholar
Haque, T, Wilkie, GM, Taylor, C, et al. Treatment of Epstein–Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T-cells. Lancet. 2002;360(9331):436442.CrossRefGoogle ScholarPubMed
Haque, T, Wilkie, GM, Jones, MM, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110(4):11231131.CrossRefGoogle Scholar
Barker, JN, Doubrovina, E, Sauter, C, et al. Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes. Blood. 2010;116(23):50455049.CrossRefGoogle ScholarPubMed
Leen, AM, Bollard, CM, Mendizabal, AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):51135123.CrossRefGoogle ScholarPubMed
Wy Ip, W, Qasim, W. Management of adenovirus in children after allogeneic hematopoietic stem cell transplantation. Adv Hematol. 2013;2013:176418.CrossRefGoogle ScholarPubMed
Schub, A, Schuster, IG, Hammerschmidt, W, Moosmann, A. CMV-specific TCR-transgenic T-cells for immunotherapy. J Immunol. 2009;183(10):68196830.CrossRefGoogle ScholarPubMed
Xue, SA, Gao, L, Ahmadi, M, et al. Human MHC Class I-restricted high avidity CD4 T-cells generated by co-transfer of TCR and CD8 mediate efficient tumor rejection in vivo. Oncoimmunology. 2013;2(1):e22590.CrossRefGoogle ScholarPubMed
Frumento, G, Zheng, Y, Aubert, G, et al. Cord blood T cells retain early differentiation phenotype suitable for immunotherapy after TCR gene transfer to confer EBV specificity. Am J Transplant. 2013;13(1):4555.CrossRefGoogle ScholarPubMed
Basso, S, Zecca, M, Calafiore, L, et al. Successful treatment of a classic Hodgkin lymphoma-type post-transplant lymphoproliferative disorder with tailored chemotherapy and Epstein–Barr virus-specific cytotoxic T lymphocytes in a pediatric heart transplant recipient. Pediatr Transplant. 2013;17(7):E168–173.Google Scholar
Haque, T, Amlot, PL, Helling, N, et al. Reconstitution of EBV-specific T cell immunity in solid organ transplant recipients. J Immunol. 1998;160(12):62046209.Google ScholarPubMed
Savoldo, B, Goss, J, Liu, Z, et al. Generation of autologous Epstein–Barr virus-specific cytotoxic T-cells for adoptive immunotherapy in solid organ transplant recipients. Transplantation. 2001;72(6):10781086.CrossRefGoogle ScholarPubMed
Romani, L. Immunity to fungal infections. Nat Rev Immunol. 2004;4(1):123.CrossRefGoogle ScholarPubMed
Groll, AH, McNeil, Grist L. Current challenges in the diagnosis and management of invasive fungal infections: report from the 15th International Symposium on Infections in the Immunocompromised Host: Thessaloniki, Greece, 22–25 June 2008. Int J Antimicrob Agents. 2009;33(2):101104.CrossRefGoogle ScholarPubMed
Milner, JD, Holland, SM. The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nat Rev Immunol. 2013;13(9):635648.CrossRefGoogle ScholarPubMed
Kim, CJ, McKinnon, LR, Kovacs, C, et al. Mucosal Th17 cell function is altered during HIV infection and is an independent predictor of systemic immune activation. J Immunol. 2013;191(5):21642173.CrossRefGoogle Scholar
Cruz, CR, Lam, S, Hanley, PJ, et al. Robust T cell responses to aspergillosis in chronic granulomatous disease: implications for immunotherapy. Clin Exp Immunol. 2013;174(1):8996.CrossRefGoogle ScholarPubMed
Beck, O, Topp, MS, Koehl, U, et al. Generation of highly purified and functionally active human TH1 cells against Aspergillus fumigatus. Blood. 2006;107(6):25622569.CrossRefGoogle ScholarPubMed
Tramsen, L, Schmidt, S, Boenig, H, et al. Clinical-scale generation of multi-specific anti-fungal T cells targeting Candida, Aspergillus and mucormycetes. Cytotherapy. 2013;15(3):344351.CrossRefGoogle ScholarPubMed
Khanna, N, Stuehler, C, Conrad, B, et al. Generation of a multipathogen-specific T-cell product for adoptive immunotherapy based on activation-dependent expression of CD154. Blood. 2011;118(4):11211131.CrossRefGoogle ScholarPubMed
Gomez, MJ, Maras, B, Barca, A, La Valle, R, Barra, D, Cassone, A. Biochemical and immunological characterization of MP65, a major mannoprotein antigen of the opportunistic human pathogen Candida albicans. Infect Immun. 2000;68(2):694701.CrossRefGoogle Scholar
Jolink, H, Meijssen, IC, Hagedoorn, RS, et al. Characterization of the T-cell-mediated immune response against the Aspergillus fumigatus proteins Crf1 and catalase 1 in healthy individuals. J Infect Dis. 2013;208(5):847856.CrossRefGoogle ScholarPubMed
Schmidt, S, Tramsen, L, Perkhofer, S, et al. Characterization of the cellular immune responses to Rhizopus oryzae with potential impact on immunotherapeutic strategies in hematopoietic stem cell transplantation. J Infect Dis. 2012;206(1):135139.CrossRefGoogle ScholarPubMed
Tramsen, L, Beck, O, Schuster, FR, et al. Generation and characterization of anti-Candida T-cells as potential immunotherapy in patients with Candida infection after allogeneic hematopoietic stem-cell transplant. J Infect Dis. 2007;196(3):485492.CrossRefGoogle ScholarPubMed
Goodridge, HS, Wolf, AJ, Underhill, DM. Beta-glucan recognition by the innate immune system. Immunol Rev. 2009;230(1):3850.CrossRefGoogle ScholarPubMed
Perruccio, K, Tosti, A, Burchielli, E, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106(13):43974406.CrossRefGoogle ScholarPubMed
De Angelis, B, Dotti, G, Quintarelli, C, et al. Generation of Epstein–Barr virus-specific cytotoxic T lymphocytes resistant to the immunosuppressive drug tacrolimus (FK506). Blood. 2009;114(23):47844791.CrossRefGoogle Scholar
Brewin, J, Mancao, C, Straathof, K, et al. Generation of EBV-specific cytotoxic T cells that are resistant to calcineurin inhibitors for the treatment of posttransplantation lymphoproliferative disease. Blood. 2009;114(23):47924803.CrossRefGoogle ScholarPubMed
Vera, JF, Brenner, LJ, Gerdemann, U, et al. Accelerated production of antigen-specific T-cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother. 2010;33(3):305315.CrossRefGoogle Scholar
Gattinoni, L, Lugli, E, Ji, Y, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):12901297.CrossRefGoogle ScholarPubMed
Williams, DM, Weiner, MH, Drutz, DJ. Immunologic studies of disseminated infection with Aspergillus fumigatus in the nude mouse. J Infect Dis. 1981;143(5):726733.CrossRefGoogle ScholarPubMed
Holding, KJ, Dworkin, MS, Wan, PC, et al. Aspergillosis among people infected with human immunodeficiency virus: incidence and survival. Adult and Adolescent Spectrum of HIV Disease Project. Clin Infect Dis. 2000;31(5):12531257.CrossRefGoogle ScholarPubMed
Zelante, T, De Luca, A, Bonifazi, P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol. 2007;37(10):26952706.CrossRefGoogle ScholarPubMed
Werner, JL, Gessner, MA, Lilly, LM, et al. Neutrophils produce interleukin 17A (IL-17A) in a dectin-1- and IL-23-dependent manner during invasive fungal infection. Infect Immun. 2011;79(10):39663977.CrossRefGoogle Scholar
Marr, KA, Carter, RA, Boeckh, M, Martin, P, Corey, L. Invasive aspergillosis in allogeneic stem cell transplant recipients: changes in epidemiology and risk factors. Blood. 2002;100(13):43584366.CrossRefGoogle ScholarPubMed
Zimmerli, W, Zarth, A, Gratwohl, A, Speck, B. Neutrophil function and pyogenic infections in bone marrow transplant recipients. Blood. 1991;77(2):393399.Google ScholarPubMed
Cobbold, M, Khan, N, Pourgheysari, B, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202(3):379386.CrossRefGoogle ScholarPubMed
Peggs, KS, Thomson, K, Samuel, E, et al. Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis. 2011;52(1):4957.CrossRefGoogle ScholarPubMed
Uhlin, M, Okas, M, Gertow, J, Uzunel, M, Brismar, TB, Mattsson, J. A novel haplo-identical adoptive CTL therapy as a treatment for EBV-associated lymphoma after stem cell transplantation. Cancer Immunol Immunother. 2010;59(3):473477.CrossRefGoogle Scholar
Qasim, W, Derniame, S, Gilmour, K, et al. Third-party virus-specific T-cells eradicate adenoviraemia but trigger bystander graft-versus-host disease. Br J Haematol. 2011;154(1):150153.CrossRefGoogle ScholarPubMed
Feuchtinger, T, Matthes-Martin, S, Richard, C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):6476.CrossRefGoogle ScholarPubMed
Balduzzi, A, Lucchini, G, Hirsch, HH, et al. Polyomavirus JC-targeted T-cell therapy for progressive multiple leukoencephalopathy in a hematopoietic cell transplantation recipient. Bone Marrow Transplant. 2011;46(7):987992.CrossRefGoogle Scholar
Uhlin, M, Gertow, J, Uzunel, M, et al. Rapid salvage treatment with virus-specific T cells for therapy-resistant disease. Clin Infect Dis. 2012;55(8):10641073.CrossRefGoogle ScholarPubMed
Leen, AM, Myers, GD, Sili, U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12(10):11601166.CrossRefGoogle ScholarPubMed
Gerdemann, U, Katari, UL, Papadopoulou, A, et al. Safety and clinical efficacy of rapidly-generated trivirus-directed T-cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Mol Ther. 2013;21(11):21132121.CrossRefGoogle ScholarPubMed
Tramsen, L, Koehl, U, Tonn, T, et al. Clinical-scale generation of human anti-Aspergillus T-cells for adoptive immunotherapy. Bone Marrow Transplant. 2009;43(1):1319.CrossRefGoogle ScholarPubMed
Gaundar, SS, Clancy, L, Blyth, E, Meyer, W, Gottlieb, DJ. Robust polyfunctional T-helper 1 responses to multiple fungal antigens from a cell population generated using an environmental strain of Aspergillus fumigatus. Cytotherapy. 2012;14(9):11191130.CrossRefGoogle ScholarPubMed
Stuehler, C, Khanna, N, Bozza, S, et al. Cross-protective TH1 immunity against Aspergillus fumigatus and Candida albicans. Blood. 2011;117(22):58815891.CrossRefGoogle ScholarPubMed
Jolink, H, Meijssen, IC, Hagedoorn, RS, et al. Characterization of the T-cell-mediated immune response against the Aspergillus fumigatus proteins Crf1 and catalase 1 in healthy individuals. J Infect Dis. 2013;208(5):847856.CrossRefGoogle ScholarPubMed
Feng, CG, Britton, WJ. CD4+ and CD8+ T cells mediate adoptive immunity to aerosol infection of Mycobacterium bovis bacillus Calmette-Guerin. J Infect Dis. 2000;181(5):18461849.CrossRefGoogle ScholarPubMed
Stemberger, C, Graef, P, Odendahl, M, et al. Lowest numbers of primary CD8(+) T cells can reconstitute protective immunity upon adoptive immunotherapy. Blood. 2014;124(4):628637.CrossRefGoogle ScholarPubMed
Bhadra, R, Cobb, DA, Khan, IA. Donor CD8+ T cells prevent Toxoplasma gondii de-encystation but fail to rescue the exhausted endogenous CD8+ T cell population. Infect Immun. 2013;81(9):34143425.CrossRefGoogle ScholarPubMed
Polley, R, Stager, S, Prickett, S, et al. Adoptive immunotherapy against experimental visceral leishmaniasis with CD8+ T cells requires the presence of cognate antigen. Infect Immun. 2006;74(1):773776.CrossRefGoogle ScholarPubMed
Naik, S, Nicholas, SK, Martinez, CA, et al., Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. J Allergy Clin Immunol. 2016;137(5):1498–505.CrossRefGoogle ScholarPubMed
Henrickson, KJ. Parainfluenza viruses. Clin Microbiol Rev. 2003;16(2):242–64.CrossRefGoogle ScholarPubMed
Nichols, WG, Corey, L, Gooley, T, et al. Parainfluenza virus infections after hematopoietic stem cell transplantation: risk factors, response to antiviral therapy, and effect on transplant outcome. Blood. 2001;98(3):573–8.CrossRefGoogle ScholarPubMed
McLaughlin, L, Lang, H, Williams, E, et al. Human parainfluenza virus-3 can be targeted by rapidly ex vivo expanded T lymphocytes. Cytotherapy. 2016;18(12):1515–24.CrossRefGoogle ScholarPubMed

References

Barrett, AJ. Understanding and harnessing the graft-versus-leukaemia effect. Br J Haematol. 2008;142(6):877–88.CrossRefGoogle ScholarPubMed
Gale, RP, Horowitz, MM, Ash, RC, Champlin, RE, Goldman, JM, Rimm, AA, Ringdén, O, Stone, JA, Bortin, MM.Identical-twin bone marrow transplants for leukemia. Ann Intern Med. 1994;120(8):646–52.CrossRefGoogle ScholarPubMed
Barrett, AJ, Ringdén, O, Zhang, MJ, Bashey, A, Cahn, JY, Cairo, MS, Gale, RP, Gratwohl, A, Locatelli, F, Martino, R, Schultz, KR, Tiberghien, P. Effect of nucleated marrow cell dose on relapse and survival in identical twin bone marrow transplants for leukemia. Blood. 2000;95(11):3323–7.Google ScholarPubMed
Ringdén, O, Pavletic, SZ, Anasetti, C, Barrett, AJ, Wang, T, Wang, D, Antin, JH, Di Bartolomeo, P, Bolwell, BJ, Bredeson, C, Cairo, MS, Gale, RP, Gupta, V, Hahn, T, Hale, GA, Halter, J, Jagasia, M, Litzow, MR, Locatelli, F, Marks, DI, McCarthy, PL, Cowan, MJ, Petersdorf, EW, Russell, JA, Schiller, GJ, Schouten, H, Spellman, S.The graft-versus-leukemia effect using matched unrelated donors is not superior to HLA-identical siblings for hematopoietic stem cell transplantation. Blood. 2009;113(13):3110–8.CrossRefGoogle Scholar
Vago, L, Toffalori, C, Ciceri, F, Fleischhauer, K. Genomic loss of mismatched human leukocyte antigen and leukemia immune escape from haploidentical graft-versus-leukemia. Semin Oncol. 2012;39(6):707–15.CrossRefGoogle ScholarPubMed
Weisdorf, D, Which donor or graft source should you choose for the strongest GVL? Is there really any difference. Best Pract Res Clin Haematol 2013; 26: 293–6.CrossRefGoogle ScholarPubMed
Pegram, HJ, Ritchie, DS, Smyth, MJ, Wiernik, A, Prince, HM, Darcy, PK, Kershaw, MH. Alloreactive natural killer cells in hematopoietic stem cell transplantation. Leuk Res. 2011;35(1):1421.CrossRefGoogle ScholarPubMed
Moretta, L, Locatelli, F, Pende, D, Marcenaro, E, Mingari, MC, Moretta, A. Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood. 2011;117(3):764–71.CrossRefGoogle ScholarPubMed
Davies, JO, Stringaris, K, Barrett, JA, Rezvani, K. Opportunities and limitations of natural killer cells as adoptive therapy for malignant disease. Cytotherapy. 2014;May 20. [Epub ahead of print]
Reshef, R, Hexner, EO, Frey, NV, Stadtmauer, EA, Luger, SM, Mangan, JK, Gill, SI, Vassilev, P, Lafferty, KA, Smith, J, Van Deerlin, VM, Mick, R4, Porter, DL. Early donor chimerism levels predict relapse and survival after allogeneic stem-cell transplantation with reduced intensity conditioning. Biol Blood Marrow Transplant. 2014; Jul 9. [Epub ahead of print]
Reisner, Y, Gur, H, Reich-Zeliger, S, Martelli, MF, Bachar-Lustig, E. Hematopoietic stem cell transplantation across major genetic barriers: tolerance induction by megadose CD34 cells and other veto cells. Ann N Y Acad Sci. 2005;1044:7083.CrossRefGoogle ScholarPubMed
Singh, AK, Savani, BN, Albert, PS, Barrett, AJ. Efficacy of CD34+ stem cell dose in patients undergoing allogeneic peripheral blood stem cell transplantation after total body irradiation.Biol Blood Marrow Transplant. 2007;13(3):339–44.CrossRefGoogle ScholarPubMed
Ringdén, O, Barrett, AJ, Zhang, MJ, Loberiza, FR, Bolwell, BJ, Cairo, MS, Gale, RP, Hale, GA, Litzow, MR, Martino, R, Russell, JA, Tiberghien, P, Urbano-Ispizua, A, Horowitz, MM. Decreased treatment failure in recipients of HLA-identical bone marrow or peripheral blood stem cell transplants with high CD34 cell doses. Br J Haematol. 2003;121(6):874–85.CrossRefGoogle ScholarPubMed
Chang, YJ, Weng, CL, Sun, LX, Zhao, YT. Allogeneic bone marrow transplantation compared to peripheral blood stem cell transplantation for the treatment of hematologic malignancies: a meta-analysis based on time-to-event data from randomized controlled trials. Ann Hematol. 2012;91(3):427–37.CrossRefGoogle ScholarPubMed
Norkin, M, Uberti, JP, Schiffer, CA. Very late recurrences of leukemia: why does leukemia awake after many years of dormancy? Leuk Res. 2011;35(2):139–44.CrossRefGoogle ScholarPubMed
Bacigalupo, A, Vitale, V, Corvo, R, Barra, S, Lamparelli, T, Gualandi, F, Mordini, N, Berisso, G, Bregante, S, Raiola, AM, Van Lint, MT, Frassoni, F. The combined effect of total body irradiation (TBI) and cyclosporin A (CyA) on the risk of relapse in patients with acute myeloid leukaemia undergoing allogeneic bone marrow transplantation. Br J Haematol. 2000;108:99104.CrossRefGoogle ScholarPubMed
Locatelli, F, Zecca, M, Rondelli, R, Bonetti, F, Dini, G, Prete, A, Messina, C, Uderzo, C, Ripaldi, M, Porta, F, Giorgiani, G, Giraldi, E, Pession, A. Graft versus host disease prophylaxis with low-dose cyclosporine-A reduces the risk of relapse in children with acute leukemia given HLA-identical sibling bone marrow transplantation: results of a randomized trial. Blood. 2000;95:1572–9.Google ScholarPubMed
Pulsipher, MA, Langholz, B, Wall, DA, Schultz, KR, Bunin, N, Carroll, WL, Raetz, E, Gardner, S, Gastier-Foster, JM, Howrie, D, Goyal, RK, Douglas, JG, Borowitz, M, Barnes, Y, Teachey, DT, Taylor, C, Grupp, SA. The addition of sirolimus to tacrolimus/methotrexate GVHD prophylaxis in children with ALL: a phase 3 Children’s Oncology Group/Pediatric Blood and Marrow Transplant Consortium trial. Blood. 2014;123(13):2017–25.CrossRefGoogle ScholarPubMed
Khouri, IF, Lee, MS, Saliba, RM, Andersson, B, Anderlini, P, Couriel, D, Hosing, C, Giralt, S, Korbling, M, McMannis, J, Keating, MJ, Champlin, RE. Nonablative allogeneic stem cell transplantation for chronic lymphocytic leukemia: impact of rituximab on immunomodulation and survival. Exp Hematol. 2004;32(1):2835.CrossRefGoogle Scholar
Champlin, RE, Passweg, JR, Zhang, MJ, Rowlings, PA, Pelz, CJ, Atkinson, KA, Barrett, AJ, Cahn, JY, Drobyski, WR, Gale, RP, Goldman, JM, Gratwohl, A, Gordon-Smith, EC, Henslee-Downey, PJ, Herzig, RH, Klein, JP, Marmont, AM, O’Reilly, RJ, Ringdén, O, Slavin, S, Sobocinski, KA, Speck, B, Weiner, RS, Horowitz, MM.T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood. 2000;95(12):39964003.Google ScholarPubMed
Sheng, Z, Ma, H, Pang, W, Niu, S, Xu, J. In vivo T-cell depletion with antithymocyte globulins improves overall survival after myeloablative allogeneic stem cell transplantation in patients with hematologic disorders. Acta Haematol. 2013;129(3):146–53. doi: 10.1159/000343604. Epub 2012 Nov 30.CrossRefGoogle ScholarPubMed
Devine, SM, Carter, S, Soiffer, RJ, Pasquini, MC, Hari, PM, Stein, A, Lazarus, HM, Linker, C, Stadtmauer, EA, Alyea, EP, Keever-Taylor, CA, O'Reilly, RJ. Low-risk of chronic graft versus host disease and relapse associated with T-cell depleted peripheral blood stem cell transplantation for acute myeloid leukemia in first remission: results of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN) Protocol 0303. Biol Blood Marrow Transplant. 2011;17:13431351.CrossRefGoogle Scholar
Bayraktar, UD, de Lima, M, Saliba, RM, Maloy, M, Castro-Malaspina, HR, Chen, J, Rondon, G, Chiattone, A, Jakubowski, AA, Boulad, F, Kernan, NA, O’Reilly, RJ, Champlin, RE, Giralt, S, Andersson, BS, Papadopoulos, EB.Ex vivo T cell-depleted versus unmodified allografts in patients with acute myeloid leukemia in first complete remission. Biol Blood Marrow Transplant. 2013;19(6):898903.CrossRefGoogle Scholar
Aversa, F, Martelli, MF, Velardi, A. Haploidentical hematopoietic stem cell transplantation with a megadose T-cell-depleted graft: harnessing natural and adaptive immunity. Semin Oncol. 2012;39(6):643–52.CrossRefGoogle ScholarPubMed
Bleakley, M, Heimfeld, S, Jones, LA, Turtle, C, Krause, D, Riddell, SR, Shlomchik, W. Engineering human peripheral blood stem cell grafts that are depleted of naïve T cells and retain functional pathogen-specific memory T cells. Biol Blood Marrow Transplant. 2014;20(5):705–16.CrossRefGoogle Scholar
Mielke, S, Solomon, SR, Barrett, AJ. Selective depletion strategies in allogeneic stem cell transplantation. Cytotherapy. 2005;7(2):109–15.CrossRefGoogle ScholarPubMed
Bastien, JP, Roy, J, Roy, DC.Donor selective T-cell depletion for haplotype-mismatched allogeneic stem cell transplantation. Semin Oncol. 2012;39(6):674–82.CrossRefGoogle ScholarPubMed
Amrolia, PJ, Muccioli-Casadei, G, Huls, H, Adams, S, Durett, A, Gee, A, Yvon, E, Weiss, H, Cobbold, M, Gaspar, HB, Rooney, C, Kuehnle, I, Ghetie, V, Schindler, J, Krance, R, Heslop, HE, Veys, P, Vitetta, E, Brenner, MK. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood. 2006;108(6):1797–808.CrossRefGoogle ScholarPubMed
Fuchs, EJ. Human leukocyte antigen-haploidentical stem cell transplantation using T-cell-replete bone marrow grafts. Curr Opin Hematol. 2012;19:440–7.CrossRefGoogle Scholar
Kanakry, CG, Ganguly, S, Zahurak, M, Bolaños-Meade, J, Thoburn, C, Perkins, B, Fuchs, EJ, Jones, RJ, Hess, AD, Luznik, L. Aldehyde dehydrogenase expression drives human regulatory T cell resistance toposttransplantation cyclophosphamide. Sci Transl Med. 2013;5(211):211ra157.CrossRefGoogle ScholarPubMed
Baron, F, Beguin, Y. Preemptive cellular immunotherapy after T-cell-depleted allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2002;8:351–9.CrossRefGoogle ScholarPubMed
Chang, YJ, Huang, XJ.Donor lymphocyte infusions for relapse after allogeneic transplantation: when, if and for whom? Blood Rev. 2013;27:5562.CrossRefGoogle Scholar
Kolb, HJ, Rank, A, Chen, X, Woiciechowsky, A, Roskrow, M, Schmid, C, Tischer, J, Ledderose, G.In-vivo generation of leukaemia-derived dendritic cells. Best Pract Res Clin Haematol. 2004;17:439–51.CrossRefGoogle ScholarPubMed
Martino, M, Fedele, R, Moscato, T, Ronco, F.Optimizing outcomes following allogeneic hematopoietic progenitor cell transplantation in AML: the role of hypomethylating agents. Curr Cancer Drug Targets. 2013;13:661–9.CrossRefGoogle ScholarPubMed
Joks, M, Jurczyszyn, A, Machaczka, M, Skotnicki, AB, Komarnicki, M. The roles of consolidation and maintenance therapy with novel agents after autologous stem cell transplantation in patients with multiple myeloma. Eur J Haematol. 2015;94(2):109–14.CrossRefGoogle ScholarPubMed
Neelapu, SS, Munshi, NC, Jagannath, S, Watson, TM, Pennington, R, Reynolds, C, Barlogie, B, Kwak, LW.Tumor antigen immunization of sibling stem cell transplant donors in multiple myeloma. Bone Marrow Transplant. 2005;36:315–23.CrossRefGoogle ScholarPubMed
Weng, J, Cha, SC, Matsueda, S, Alatrash, G, Popescu, MS, Yi, Q, Molldrem, JJ, Wang, M, Neelapu, SS, Kwak, LW. Targeting human B-cell malignancies through Ig light chain-specific cytotoxic T lymphocytes. Clin Cancer Res. 2011;17(18):5945–52.CrossRefGoogle ScholarPubMed
Rezvani, K, Barrett, AJ. Characterizing and optimizing immune responses to leukaemia antigens after allogeneic stem cell transplantation. Best Pract Res Clin Haematol. 2008;21:437–53.CrossRefGoogle ScholarPubMed
Falkenburg, JH, Willemze, R.Minor histocompatibility antigens as targets of cellular immunotherapy in leukaemia. Best Pract Res Clin Haematol. 2004;17:415–25.CrossRefGoogle ScholarPubMed
Riddell, SR, Bleakley, M, Nishida, T, Berger, C, Warren, EH. Adoptive transfer of allogeneic antigen-specific T cells. Biol Blood Marrow Transplant. 2006;12 (Suppl 1):912CrossRefGoogle ScholarPubMed
Bleakley, M, Otterud, BE, Richardt, JL, Mollerup, AD, Hudecek, M, Nishida, T, Chaney, CN, Warren, EH, Leppert, MF, Riddell, SR. Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood. 2010;115(23):4923–33.CrossRefGoogle ScholarPubMed
Warren, EH, Fujii, N, Akatsuka, Y, Chaney, CN, Mito, JK, Loeb, KR, Gooley, TA, Brown, ML, Koo, KK, Rosinski, KV, Ogawa, S, Matsubara, A, Appelbaum, FR, Riddell, SR. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood. 2010;115(19):3869–78.CrossRefGoogle Scholar
Nagai, K, Ochi, T, Fujiwara, H, An, J, Shirakata, T, Mineno, J, Kuzushima, K, Shiku, H, Melenhorst, JJ, Gostick, E, Price, DA, Ishii, E, Yasukawa, M. Aurora kinase A-specific T-cell receptor gene transfer redirects T lymphocytes to display effective antileukemia reactivity. Blood. 2012;119:368–76.CrossRefGoogle ScholarPubMed
Linette, GP, Stadtmauer, EA, Maus, MV, Rapoport, AP, Levine, BL, Emery, L, Litzky, L, Bagg, A, Carreno, BM, Cimino, PJ, Binder-Scholl, GK, Smethurst, DP, Gerry, AB, Pumphrey, NJ, Bennett, AD, Brewer, JE, Dukes, J, Harper, J, Tayton-Martin, HK, Jakobsen, BK, Hassan, NJ, Kalos, M, June, CH. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71.CrossRefGoogle ScholarPubMed
Weber, G, Gerdemann, U, Caruana, I, Savoldo, B, Hensel, NF, Rabin, KR, Shpall, EJ, Melenhorst, JJ, Leen, AM, Barrett, AJ, Bollard, CM. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia. 2013;27:1538–47.CrossRefGoogle ScholarPubMed
Weber, G, Caruana, I, Rouce, RH, Barrett, AJ, Gerdemann, U, Leen, AM, Rabin, KR, Bollard, CM.Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia–implications for immunotherapy. Clin Cancer Res. 2013;19:5079–91.CrossRefGoogle Scholar
Duong, CP, Yong, CS, Kershaw, MH, Slaney, CY, Darcy, PK. Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic.Mol Immunol. 2015;67(2 Pt A):4657.CrossRefGoogle ScholarPubMed
Hoffman, LM, Gore, L. Blinatumomab, a bi-specific anti-CD19/CD3 BiTE(®) antibody for the treatment of acute lymphoblastic leukemia: perspectives and current pediatric applications. Front Oncol. 2014; 4:63.CrossRefGoogle ScholarPubMed
Oliveira, G, Greco, R, Lupo-Stanghellini, MT, Vago, L, Bonini, C. Use of TK-cells in haploidentical hematopoietic stem cell transplantation. Curr Opin Hematol. 2012;19:427–33.CrossRefGoogle ScholarPubMed
Tey, SK, Dotti, G, Rooney, CM, Heslop, HE, Brenner, MK. Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant. 2007;13:913–24.CrossRefGoogle ScholarPubMed
Karadimitris, A, Chaidos, A. The role of invariant NKT cells in allogeneic hematopoietic stem cell transplantation. Crit Rev Immunol. 2012;32:157–71.CrossRefGoogle ScholarPubMed
Locatelli, F, Merli, P, Rutella, S. At the bedside: innate immunity as an immunotherapy tool for hematological malignancies. J Leuk Biol. 2013;94:1141–57.CrossRefGoogle ScholarPubMed

References

Pasquini, M, Wang, Z. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR Summary Slides, 2013. Available at: http://www.cibmtr.org.
Gluckman, E, Broxmeyer, HA, Auerbach, AD, Friedman, HS, Douglas, GW, Devergie, A, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. The New England Journal of Medicine. 1989;321(17):1174–8.CrossRefGoogle Scholar
Gluckman, E, Rocha, V, Boyer-Chammard, A, Locatelli, F, Arcese, W, Pasquini, R, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. The New England Journal of Medicine. 1997;337(6):373–81.CrossRefGoogle ScholarPubMed
Kurtzberg, J, Laughlin, M, Graham, ML, Smith, C, Olson, JF, Halperin, EC, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. The New England Journal of Medicine. 1996;335(3):157–66.CrossRefGoogle Scholar
Kurtzberg, J, Prasad, VK, Carter, SL, Wagner, JE, Baxter-Lowe, LA, Wall, D, et al. Results of the Cord Blood Transplantation Study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood. 2008;112(10):4318–27.CrossRefGoogle ScholarPubMed
Rubinstein, P, Carrier, C, Scaradavou, A, Kurtzberg, J, Adamson, J, Migliaccio, AR, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. The New England Journal of Medicine. 1998;339(22):1565–77.CrossRefGoogle ScholarPubMed
Wagner, JE, Barker, JN, DeFor, TE, Baker, KS, Blazar, BR, Eide, C, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002;100(5):1611–8.Google Scholar
Wagner, JE, Rosenthal, J, Sweetman, R, Shu, XO, Davies, SM, Ramsay, NK, et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood. 1996;88(3):795802.Google ScholarPubMed
Eapen, M, Rocha, V, Sanz, G, Scaradavou, A, Zhang, MJ, Arcese, W, et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. The Lancet Oncology. 2010;11(7):653–60.CrossRefGoogle ScholarPubMed
Jacobson, CA, Turki, AT, McDonough, SM, Stevenson, KE, Kim, HT, Kao, G, et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(4):565–74.CrossRefGoogle ScholarPubMed
Laughlin, MJ, Barker, J, Bambach, B, Koc, ON, Rizzieri, DA, Wagner, JE, et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. The New England Journal of Medicine. 2001;344(24):1815–22.CrossRefGoogle ScholarPubMed
Ooi, J, Takahashi, S, Tomonari, A, Tsukada, N, Konuma, T, Kato, S, et al. Unrelated cord blood transplantation after myeloablative conditioning in adults with acute myelogenous leukemia. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2008;14(12):1341–7.Google ScholarPubMed
Arcese, W, Rocha, V, Labopin, M, Sanz, G, Iori, AP, de Lima, M, et al. Unrelated cord blood transplants in adults with hematologic malignancies. Haematologica. 2006;91(2):223–30.Google ScholarPubMed
van Heeckeren, WJ, Fanning, LR, Meyerson, HJ, Fu, P, Lazarus, HM, Cooper, BW, et al. Influence of human leucocyte antigen disparity and graft lymphocytes on allogeneic engraftment and survival after umbilical cord blood transplant in adults. British Journal of Haematology. 2007;139(3):464–74.CrossRefGoogle ScholarPubMed
Sato, A, Ooi, J, Takahashi, S, Tsukada, N, Kato, S, Kawakita, T, et al. Unrelated cord blood transplantation after myeloablative conditioning in adults with advanced myelodysplastic syndromes. Bone Marrow Transplantation. 2011;46(2):257–61.CrossRefGoogle ScholarPubMed
Barker, JN, Weisdorf, DJ, DeFor, TE, Blazar, BR, McGlave, PB, Miller, JS, et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood. 2005;105(3):1343–7.Google ScholarPubMed
Broxmeyer, HE, Douglas, GW, Hangoc, G, Cooper, S, Bard, J, English, D, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proceedings of the National Academy of Sciences of the United States of America. 1989;86(10):3828–32.CrossRefGoogle ScholarPubMed
Broxmeyer, HE, Gluckman, E, Auerbach, A, Douglas, GW, Friedman, H, Cooper, S, et al. Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/progenitor cells. International Journal of Cell Cloning. 1990;8 Suppl 1:7689; discussion 91.CrossRefGoogle ScholarPubMed
Hao, QL, Shah, AJ, Thiemann, FT, Smogorzewska, EM, Crooks, GM. A functional comparison of CD34 + CD38- cells in cord blood and bone marrow. Blood. 1995;86(10):3745–53.Google ScholarPubMed
Cardoso, AA, Li, ML, Batard, P, Hatzfeld, A, Brown, EL, Levesque, JP, et al. Release from quiescence of CD34+ CD38- human umbilical cord blood cells reveals their potentiality to engraft adults. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(18):8707–11.CrossRefGoogle ScholarPubMed
Doubrovina, E, Oflaz-Sozmen, B, Prockop, SE, Kernan, NA, Abramson, S, Teruya-Feldstein, J, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119(11):2644–56.CrossRefGoogle ScholarPubMed
Leen, AM, Myers, GD, Sili, U, Huls, MH, Weiss, H, Leung, KS, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nature Medicine. 2006;12(10):1160–6.CrossRefGoogle ScholarPubMed
Heslop, HE, Slobod, KS, Pule, MA, Hale, GA, Rousseau, A, Smith, CA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35.CrossRefGoogle ScholarPubMed
Peggs, KS, Thomson, K, Samuel, E, Dyer, G, Armoogum, J, Chakraverty, R, et al. Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2011;52(1):4957.CrossRefGoogle ScholarPubMed
Lazzari, L, Lucchi, S, Porretti, L, Montemurro, T, Giordano, R, Lopa, R, et al. Comparison of different serum-free media for ex vivo expansion of HPCs from cord blood using thrombopoietin, Flt-3 ligand, IL-6, and IL-11. Transfusion. 2001;41(5):718–9.CrossRefGoogle ScholarPubMed
Lazzari, L, Lucchi, S, Rebulla, P, Porretti, L, Puglisi, G, Lecchi, L, et al. Long-term expansion and maintenance of cord blood haematopoietic stem cells using thrombopoietin, Flt3-ligand, interleukin (IL)-6 and IL-11 in a serum-free and stroma-free culture system. British Journal of Haematology. 2001;112(2):397404.CrossRefGoogle Scholar
McNiece, I, Jones, R, Cagnoni, P, Bearman, S, Nieto, Y, Shpall, EJ. Ex-vivo expansion of hematopoietic progenitor cells: preliminary results in breast cancer. Hematology and Cell Therapy. 1999;41(2):82–6.CrossRefGoogle ScholarPubMed
McNiece, I, Kubegov, D, Kerzic, P, Shpall, EJ, Gross, S. Increased expansion and differentiation of cord blood products using a two-step expansion culture. Experimental Hematology. 2000;28(10):1181–6.CrossRefGoogle Scholar
Mohamed, AA, Ibrahim, AM, El-Masry, MW, Mansour, IM, Khroshied, MA, Gouda, HM, et al. Ex vivo expansion of stem cells: defining optimum conditions using various cytokines. Laboratory Hematology: Official Publication of the International Society for Laboratory Hematology. 2006;12(2):8693.CrossRefGoogle ScholarPubMed
Piacibello, W, Sanavio, F, Garetto, L, Severino, A, Dane, A, Gammaitoni, L, et al. Differential growth factor requirement of primitive cord blood hematopoietic stem cell for self-renewal and amplification vs proliferation and differentiation. Leukemia. 1998;12(5):718–27.Google ScholarPubMed
Purdy, MH, Hogan, CJ, Hami, L, McNiece, I, Franklin, W, Jones, RB, et al. Large volume ex vivo expansion of CD34-positive hematopoietic progenitor cells for transplantation. Journal of Hematotherapy. 1995;4(6):515–25.CrossRefGoogle ScholarPubMed
Yao, CL, Chu, IM, Hsieh, TB, Hwang, SM. A systematic strategy to optimize ex vivo expansion medium for human hematopoietic stem cells derived from umbilical cord blood mononuclear cells. Experimental Hematology. 2004;32(8):720–7.CrossRefGoogle ScholarPubMed
Yao, CL, Feng, YH, Lin, XZ, Chu, IM, Hsieh, TB, Hwang, SM. Characterization of serum-free ex vivo-expanded hematopoietic stem cells derived from human umbilical cord blood CD133(+) cells. Stem Cells and Development. 2006;15(1):70–8.CrossRefGoogle ScholarPubMed
Shpall, EJ, Quinones, R, Giller, R, Zeng, C, Baron, AE, Jones, RB, et al. Transplantation of ex vivo expanded cord blood. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2002;8(7):368–76.CrossRefGoogle ScholarPubMed
Jaroscak, J, Goltry, K, Smith, A, Waters-Pick, B, Martin, PL, Driscoll, TA, et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a phase 1 trial using the AastromReplicell System. Blood. 2003;101(12):5061–7.CrossRefGoogle ScholarPubMed
Koller, MR, Palsson, MA, Manchel, I, Palsson, BO. Long-term culture-initiating cell expansion is dependent on frequent medium exchange combined with stromal and other accessory cell effects. Blood. 1995;86(5):1784–93.Google ScholarPubMed
Peled, T, Landau, E, Mandel, J, Glukhman, E, Goudsmid, NR, Nagler, A, et al. Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Experimental Hematology. 2004;32(6):547–55.CrossRefGoogle ScholarPubMed
Peled, T, Mandel, J, Goudsmid, RN, Landor, C, Hasson, N, Harati, D, et al. Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy. 2004;6(4):344–55.CrossRefGoogle ScholarPubMed
de Lima, M, McMannis, J, Gee, A, Komanduri, K, Couriel, D, Andersson, BS, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplantation. 2008;41(9):771–8.CrossRefGoogle ScholarPubMed
Stiff, PJ, Montesinos, P, Peled, T, Landau, E, Rosenheimer, N, Mandel, J, et al. StemEx®(copper chelation based) ex vivo expanded umbilical cord blood stem cell transplantation (UCBT) accelerates engraftment and improves 100 day survival in myeloablated patients compared to a registry cohort undergoing double unit UCBT: results of a multicenter study of 101 patients with hematologic malignancies. Blood 2013;122(21):295.Google Scholar
Peled, T, Shoham, H, Aschengrau, D, Yackoubov, D, Frei, G, Rosenheimer, GN, et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Experimental Hematology. 2012;40(4):342–55 e1.CrossRefGoogle ScholarPubMed
Peled, T, Adi, S, Peleg, I, Rosenheimer, NG, Daniely, Y, Nagler, A, et al. Nicotinamide modulates ex-vivo expansion of cord blood derived CD34+ cells cultured with cytokines and promotes their homing and engraftment in SCID mice. Blood. 2006;108(Abstract 725):Oral Session, ASH December 12, 2006.Google Scholar
Horwitz, ME, Chao, NJ, Rizzieri, DA, Long, GD, Sullivan, KM, Gasparetto, C, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. The Journal of Clinical Investigation. 2014;124(7):3121–8.CrossRefGoogle Scholar
Milner, LA, Kopan, R, Martin, DI, Bernstein, ID. A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood. 1994;83(8):2057–62.Google ScholarPubMed
Varnum-Finney, B, Xu, L, Brashem-Stein, C, Nourigat, C, Flowers, D, Bakkour, S, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Medicine. 2000;6(11):1278–81.CrossRefGoogle ScholarPubMed
Delaney, C, Heimfeld, S, Brashem-Stein, C, Voorhies, H, Manger, RL, Bernstein, ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nature Medicine. 2010;16(2):232–6.CrossRefGoogle ScholarPubMed
Deans, RJ, Moseley, AB. Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology. 2000;28(8):875–84.CrossRefGoogle ScholarPubMed
Robinson, SN, Simmons, PJ, Yang, H, Alousi, AM, Marcos de Lima, J, Shpall, EJ. Mesenchymal stem cells in ex vivo cord blood expansion. Best Practice & Research Clinical Haematology. 2011;24(1):8392.CrossRefGoogle ScholarPubMed
Simmons, PJ, Torok-Storb, B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78(1):5562.Google ScholarPubMed
de Lima, M, McNiece, I, Robinson, SN, Munsell, M, Eapen, M, Horowitz, M, et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. The New England Journal of Medicine. 2012;367(24):2305–15.CrossRefGoogle ScholarPubMed
Ruggeri, A, Peffault de Latour, R, Carmagnat, M, Clave, E, Douay, C, Larghero, J, et al. Outcomes, infections, and immune reconstitution after double cord blood transplantation in patients with high-risk hematological diseases. Transplant Infectious Disease: An Official Journal of the Transplantation Society. 2011;13(5):456–65.CrossRefGoogle Scholar
Hanley, PJ, Cruz, CR, Savoldo, B, Leen, AM, Stanojevic, M, Khalil, M, et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood. 2009;114(9):1958–67.CrossRefGoogle Scholar
Park, KD, Marti, L, Kurtzberg, J, Szabolcs, P. In vitro priming and expansion of cytomegalovirus-specific Th1 and Tc1 T cells from naive cord blood lymphocytes. Blood. 2006;108(5):1770–3.CrossRefGoogle ScholarPubMed
Sun, Q, Burton, RL, Pollok, KE, Emanuel, DJ, Lucas, KG. CD4(+) Epstein–Barr virus-specific cytotoxic T-lymphocytes from human umbilical cord blood. Cellular Immunology. 1999;195(2):81–8.CrossRefGoogle ScholarPubMed
Hanley, P, Leen, A, Gee, AP, Leung, K, Martinez, C, Krance, RA, et al. Multi-virus-specific T-cell therapy for patients after hematopoietic stem cell and cord blood transplantation. Blood. 2013;122(21):140.Google Scholar
Chang, YJ, Huang, XJ. Donor lymphocyte infusions for relapse after allogeneic transplantation: when, if and for whom? Blood Reviews. 2013;27(1):5562.CrossRefGoogle Scholar
Parmar, S, Robinson, SN, Komanduri, K, St John, L, Decker, W, Xing, D, et al. Ex vivo expanded umbilical cord blood T cells maintain naive phenotype and TCR diversity. Cytotherapy. 2006;8(2):149–57.CrossRefGoogle Scholar
Ramsay, AG, Xing, D, Decker, WK, Burks, JK, Wierda, WG, Gribben, JG, et al. Compared to adult peripheral blood t cells, cord blood T cells show enhanced immunological recognition of chronic lymphocytic leukemia tumor cells. Blood. 2008;112(Abstract 2333).Google Scholar
Decker, WK, Shah, N, Xing, D, Lapushin, R, Li, S, Robinson, SN, et al. Generation of functional CLL-specific cord blood CTL using CD40-ligated CLL APC. PLoS One. 2012;7(12):e51390.CrossRefGoogle ScholarPubMed
Anguille, S, Van Tendeloo, VF, Berneman, ZN. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia. 2012;26(10):2186–96.Google ScholarPubMed
Weber, G, Gerdemann, U, Caruana, I, Savoldo, B, Hensel, NF, Rabin, KR, et al. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia. 2013;27(7):1538–47.CrossRefGoogle ScholarPubMed
Rosenberg, SA, Aebersold, P, Cornetta, K, Kasid, A, Morgan, RA, Moen, R, et al. Gene transfer into human – immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. The New England Journal of Medicine. 1990;323(9):570–8.CrossRefGoogle ScholarPubMed
Till, BG, Jensen, MC, Wang, J, Chen, EY, Wood, BL, Greisman, HA, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112(6):2261–71.CrossRefGoogle ScholarPubMed
Birkholz, K, Hombach, A, Krug, C, Reuter, S, Kershaw, M, Kampgen, E, et al. Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Therapy. 2009;16(5):596604.CrossRefGoogle ScholarPubMed
Savoldo, B, Ramos, CA, Liu, E, Mims, MP, Keating, MJ, Carrum, G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. The Journal of Clinical Investigation. 2011;121(5):1822–6.CrossRefGoogle ScholarPubMed
Hosing, C, Kebriaei, P, Wierda, W, Jena, B, Cooper, LJ, Shpall, E. CARs in chronic lymphocytic leukemia – ready to drive. Current Hematologic Malignancy Reports. 2013;8(1):6070.CrossRefGoogle Scholar
Kohn, DB, Sadelain, M, Glorioso, JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nature Reviews Cancer. 2003;3(7):477–88.CrossRefGoogle ScholarPubMed
Scholler, J, Brady, TL, Binder-Scholl, G, Hwang, WT, Plesa, G, Hege, KM, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Science Translational Medicine. 2012;4(132):132ra53.CrossRefGoogle ScholarPubMed
Kebriaei, P, Huls, H, Singh, H, Olivares, S, Figliola, M, Kumar, PR, et al. First clinical trials employing Sleeping Beauty gene transfer system and artificial antigen presenting cells to generate and infuse T cells expressing CD19-specific chimeric antigen receptor. Blood. 2013;122(21):166.Google Scholar
Huls, MH, Figliola, MJ, Dawson, MJ, Olivares, S, Kebriaei, P, Shpall, EJ, et al. Clinical application of Sleeping Beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. Journal of Visualized Experiments. 2013(72):e50070.Google Scholar
Micklethwaite, KP, Savoldo, B, Hanley, PJ, Leen, AM, Demmler-Harrison, GJ, Cooper, LJ, et al. Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood. 2010;115(13):2695–703.CrossRefGoogle Scholar
Baron, F, Petersdorf, EW, Gooley, T, Sandmaier, BM, Malkki, M, Chauncey, TR, et al. What is the role for donor natural killer cells after nonmyeloablative conditioning? Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2009;15(5):580–8.CrossRefGoogle ScholarPubMed
Ruggeri, L, Capanni, M, Urbani, E, Perruccio, K, Shlomchik, WD, Tosti, A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–100.CrossRefGoogle ScholarPubMed
Spanholtz, J, Tordoir, M, Eissens, D, Preijers, F, van der Meer, A, Joosten, I, et al. High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS One. 2010;5(2):e9221.CrossRefGoogle ScholarPubMed
Xing, D, Ramsay, AG, Gribben, JG, Decker, WK, Burks, JK, Munsell, M, et al. Cord blood natural killer cells exhibit impaired lytic immunological synapse formation that is reversed with IL-2 exvivo expansion. Journal of Immunotherapy. 2010;33(7):684–96.CrossRefGoogle ScholarPubMed
Shah, N, Martin-Antonio, B, Yang, H, Ku, S, Lee, DA, Cooper, LJ, et al. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One. 2013;8(10):e76781.CrossRefGoogle ScholarPubMed
Di Ianni, M, Falzetti, F, Carotti, A, Terenzi, A, Castellino, F, Bonifacio, E, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–8.CrossRefGoogle ScholarPubMed
Godfrey, WR, Spoden, DJ, Ge, YG, Baker, SR, Liu, B, Levine, BL, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2005;105(2):750–8.CrossRefGoogle Scholar
Hippen, KL, Harker-Murray, P, Porter, SB, Merkel, SC, Londer, A, Taylor, DK, et al. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells. Blood. 2008;112(7):2847–57.CrossRefGoogle ScholarPubMed
Parmar, S, Liu, X, Tung, SS, Robinson, SN, Rodriguez, G, Cooper, LJ, et al. Third-party umbilical cord blood-derived regulatory T cells prevent xenogenic graft-versus-host disease. Cytotherapy. 2014;16(1):90100.CrossRefGoogle ScholarPubMed
Brunstein, CG, Miller, JS, Cao, Q, McKenna, DH, Hippen, KL, Curtsinger, J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70.CrossRefGoogle Scholar
Brunstein, CG, Blazar, BR, Miller, JS, Cao, Q, Hippen, KL, McKenna, DH, et al. Adoptive transfer of umbilical cord blood-derived regulatory T cells and early viral reactivation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2013;19(8):1271–3.CrossRefGoogle ScholarPubMed
Xia, L, McDaniel, JM, Yago, T, Doeden, A, McEver, RP. Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood. 2004;104(10):3091–6.CrossRefGoogle ScholarPubMed
Robinson, SN, Simmons, PJ, Thomas, MW, Brouard, N, Javni, JA, Trilok, S, et al. Ex vivo fucosylation improves human cord blood engraftment in NOD-SCID IL-2Rgamma(null) mice. Experimental Hematology. 2012;40(6):445–56.CrossRefGoogle ScholarPubMed
Robinson, SN, Thomas, MW, Simmons, PJ, Lu, J, Yang, H, Parmar, S, et al. Fucosylation with fucosyltransferase VI or fucosyltransferase VII improves cord blood engraftment. Cytotherapy. 2014;16(1):84–9.CrossRefGoogle ScholarPubMed
Hoggatt, J, Singh, P, Sampath, J, Pelus, LM. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood. 2009;113(22):5444–55.CrossRefGoogle ScholarPubMed
Cutler, C, Multani, P, Robbins, D, Kim, HT, Le, T, Hoggatt, J, et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood. 2013;122(17):3074–81.CrossRefGoogle ScholarPubMed
Christopherson, KW 2nd, Hangoc, G, Broxmeyer, HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. Journal of Immunology. 2002;169(12):7000–8.CrossRefGoogle ScholarPubMed
Christopherson, KW 2nd, Hangoc, G, Mantel, CR, Broxmeyer, HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science. 2004;305(5686):1000–3.CrossRefGoogle ScholarPubMed

References

Hacein-Bey-Abina, S, Hauer, J, Lim, A, Picard, C, Wang, GP, Berry, CC, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2010;363(4):355–64.CrossRefGoogle ScholarPubMed
Zhang, L, Thrasher, AJ, Gaspar, HB. Current progress on gene therapy for primary immunodeficiencies. Gene Ther. 2013;20(10):963–9.CrossRefGoogle ScholarPubMed
Candotti, F, Shaw, KL, Muul, L, Carbonaro, D, Sokolic, R, Choi, C, et al. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood. 2012;120(18):3635–46.CrossRefGoogle ScholarPubMed
Vollweiler, JL, Zielske, SP, Reese, JS, Gerson, SL. Hematopoietic stem cell gene therapy: progress toward therapeutic targets. Bone Marrow Transplant. 2003;32(1):17.CrossRefGoogle ScholarPubMed
Howe, SJ, Mansour, MR, Schwarzwaelder, K, Bartholomae, C, Hubank, M, Kempski, H, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008;118(9):3143–50.CrossRefGoogle ScholarPubMed
Aiuti, A, Biasco, L, Scaramuzza, S, Ferrua, F, Cicalese, MP, Baricordi, C, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013;341(6148):1233151.CrossRefGoogle ScholarPubMed
Biffi, A, Montini, E, Lorioli, L, Cesani, M, Fumagalli, F, Plati, T, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013;341(6148):1233158.CrossRefGoogle Scholar
Grez, M, Reichenbach, J, Schwable, J, Seger, R, Dinauer, MC, Thrasher, AJ. Gene therapy of chronic granulomatous disease: the engraftment dilemma. Mol Ther. 2011;19(1):2835.CrossRefGoogle ScholarPubMed
Cartier, N, Hacein-Bey-Abina, S, Bartholomae, CC, Veres, G, Schmidt, M, Kutschera, I, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326(5954):818–23.CrossRefGoogle ScholarPubMed
Gattinoni, L, Restifo, NP. Moving T memory stem cells to the clinic. Blood. 2013;121(4):567–8.CrossRefGoogle Scholar
Porter, DL, Levine, BL, Kalos, M, Bagg, A, June, CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33.CrossRefGoogle ScholarPubMed
Kalos, M, Levine, BL, Porter, DL, Katz, S, Grupp, SA, Bagg, A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.CrossRefGoogle ScholarPubMed
Cooray, S, Howe, SJ, Thrasher, AJ. Retrovirus and lentivirus vector design and methods of cell conditioning. Methods Enzymol. 2012;507:2957.CrossRefGoogle ScholarPubMed
Naldini, L, Blomer, U, Gage, FH, Trono, D, Verma, IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A. 1996;93(21):11382–8.CrossRefGoogle ScholarPubMed
Cattoglio, C, Pellin, D, Rizzi, E, Maruggi, G, Corti, G, Miselli, F, et al. High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood. 2010;116(25):5507–17.CrossRefGoogle ScholarPubMed
Gyurkocza, B, Sandmaier, BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood. 2014;124(3):344–53.CrossRefGoogle Scholar
Barrett, DM, Singh, N, Porter, DL, Grupp, SA, June, CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med. 2014;65:333–47.CrossRefGoogle ScholarPubMed
Kenyon, J, Fu, P, Lingas, K, Thomas, E, Saurastri, A, Santos Guasch, G, et al. Humans accumulate microsatellite instability with acquired loss of MLH1 protein in hematopoietic stem and progenitor cells as a function of age. Blood. 2012;120(16):3229–36.CrossRefGoogle ScholarPubMed
Abkowitz, JL, Catlin, SN, McCallie, MT, Guttorp, P. Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood. 2002;100(7):2665–7.CrossRefGoogle Scholar
Hinrichs, CS, Borman, ZA, Cassard, L, Gattinoni, L, Spolski, R, Yu, Z, et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc Natl Acad Sci U S A. 2009;106(41):17469–74.CrossRefGoogle ScholarPubMed
Berger, C, Jensen, MC, Lansdorp, PM, Gough, M, Elliott, C, Riddell, SR. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008;118(1):294305.CrossRefGoogle ScholarPubMed
Paulos, CM, Carpenito, C, Plesa, G, Suhoski, MM, Varela-Rohena, A, Golovina, TN, et al. The inducible costimulator (ICOS) is critical for the development of human T(H)17 cells. Sci Transl Med. 2010;2(55):55ra78.CrossRefGoogle Scholar
Gattinoni, L, Lugli, E, Ji, Y, Pos, Z, Paulos, CM, Quigley, MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290–7.CrossRefGoogle ScholarPubMed
Lee, JC, Hayman, E, Pegram, HJ, Santos, E, Heller, G, Sadelain, M, et al. In vivo inhibition of human CD19-targeted effector T cells by natural T regulatory cells in a xenotransplant murine model of B cell malignancy. Cancer Res. 2011;71(8):2871–81.Google Scholar
Cavazzana-Calvo, M, Fischer, A, Hacein-Bey-Abina, S, Aiuti, A. Gene therapy for primary immunodeficiencies: Part 1. Curr Opin Immunol. 2012;24(5):580–4.CrossRefGoogle ScholarPubMed