Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T15:57:24.072Z Has data issue: false hasContentIssue false

Section 2 - Donor Selection for Allogeneic Hematopoietic Cell Transplants: A Moving Target

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 59 - 78
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alousi, AM, Le-Rademacher, J, Saliba, RM, et al. Who is the better donor for older hematopoietic transplant recipients: an older-aged sibling or a young, matched unrelated volunteer? Blood. 2013;121(13):25672773.CrossRefGoogle ScholarPubMed
Stem Cell Trialists’ Collaborative Group. Allogeneic peripheral blood stem-cell compared with bone marrow in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol. 2005;23(22):50745087.CrossRefGoogle Scholar
Schmitz, N, Eapen, M, Horowitz, MM, et al. Long-term outcome of patients transplanted with mobilized blood or bone marrow: a report from the International Bone Marrow Transplant Registry and the European Group for Blood and Marrow Transplantation. Blood. 2006;108:42884290.Google Scholar
Anasetti, C, Beatty, PG, Storb, R, et al. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol. 1990;29(2):7991.Google Scholar
Szydlo, R, Goldman, JM, Klein, JP, et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol. 1997;15(5):17671777.Google Scholar
Aversa, F, Tabilio, A, Velardi, A, et al. Treatment of high risk acute leukemia with T-cell depleted stem cells from related donors with one fully mismatched haplotype. N Eng J Med. 1998;339(17):11861193.Google Scholar
Ruggeri, L, Capanni, M, Urbani, E, Perruccio, K, Shlomchik, WD. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):20972100.CrossRefGoogle ScholarPubMed
Luznik, L, O’Donnell, PV, Symons, HJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641650.CrossRefGoogle ScholarPubMed
Bashey, A, Zhang, X, Sizemore, CA, et al. T-Cell replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31(10):13101316.CrossRefGoogle ScholarPubMed
Raiola, AM, Dominietto, A, Ghiso, A, et al. Unmanipulated haploidentical bone marrow transplantation and posttransplant cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant. 2013;19(1):117122.Google Scholar
Di Bartolomeo, P, Santarone, S, De Angelis, G, et al. Haploidentical unmanipulated GCSF primed bone marrow transplantation for patients with high-risk hematologic malignancies. Blood. 2013;121(5):849857.Google Scholar
Kasamon, YL, Luznik, L, Leffell, MS, et al. Nonmyeloablative HLA-haploidentical BMT with high-dose post-transplantation cyclophosphamide: effect of HLA disparity on outcome. Biol Blood Marrow Transplant. 2010;16(4):482489.Google Scholar
Huo, MR, Xu, L, Li, D, et al. The effect of HLA disparity on clinical outcome after HLA-haploidentical blood and marrow transplantation. Clin Transplant. 2012;26(2):284291.CrossRefGoogle ScholarPubMed
Morishima, Y, Sasazuki, T, Inoko, H, et al. The clinical significance of human leukocyte antigen (HLA) allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B and HLA-DR matched unrelated donors. Blood. 2002;99(11):42004206.Google Scholar
Flomenberg, N, Baxter-Lowe, LA, Confer, D, et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood. 2004;104(7):19231930.Google Scholar
Lee, SJ, Klein, J, Haagenson, M, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007;110(13):45764583.Google Scholar
Pidala, J, Lee, SJ, Ahn, KW, et al. Non-permissive HLA-DPB1 mismatch increases mortality after myeloablative unrelated allogeneic hematopoietic cell transplantation. Blood. 2014;124(16):25962606.Google Scholar
Woolfrey, A, Klein, JP, Haagenson, M, et al. HLA-C antigen mismatch is associated with worse outcome in unrelated donor peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 2011;17(6):885892.Google Scholar
Koreth, J, Ahn, KW, Pidala, J, et al. HLA-mismatch is associated with worse outcomes after unrelated donor reduced intensity hematopoietic cell transplantation: a CIBMTR analysis. Blood. 2013;122:547a.Google Scholar
Fleischhauer, K, Shaw, BE, Gooley, T, et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated donor haematopoietic cell transplantation: a retrospective study. Lancet Oncol. 2012;13(4):366374.CrossRefGoogle ScholarPubMed
Fernández-Viña, MA, Klein, JP, Haagenson, M, et al. Multiple mismatches at the low expression HLA loci DP, DQ, and DR3/4/5 associate with adverse outcomes in hematopoietic stem cell transplantation. Blood. 2013;121(22):46034610.Google Scholar
Beatty, PG, Mori, M, Milford, E. Impact of racial genetic polymorphism on the probability of finding an HLA-matched donor. Transplantation. 1995;60(8):778783.Google Scholar
Kollman, C, Maiers, M, Gragert, L, et al. Estimation of HLA-A, -B, -DRB1 haplotype frequencies using mixed resolution data from a national registry with selective retyping of volunteers. Hum Immunol. 2007;68(12):950958.Google Scholar
Garget, L, Eapen, M, Williams, E, et al. HLA match likelihoods for unrelated donor grafts in the U.S. registry. N Engl J Med. 2014;371(4):339348.Google Scholar
Eapen, M, Rocha, V, Sanz, G, et al. Effect of graft source on unrelated donor haematopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol. 2010;11(7):653660.Google Scholar
Brunstein, CG, Gutman, JA, Weisdorf, DJ, et al. Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risk and benefits of double umbilical cord blood. Blood. 2010;116(22):46934699.CrossRefGoogle ScholarPubMed
Brunstein, CG, Eapen, M, Ahn, KW, et al. Reduced-intensity conditioning transplantation in acute leukemia: the effect of source of unrelated donor stem cells on outcomes. Blood. 2012;119(23):55915598.Google Scholar
Weisdorf, D, Eapen, M, Ruggeri, A, et al. Alternative donor hematopoietic transplantation for older patients with AML in first complete remission: a center for international blood and marrow transplant research-eurocord analysis. Biol Blood Marrow Transplant. 2014;20(6):816822.Google Scholar
Brunstein, CG, Barker, JN, Weisdorf, DJ, et al. Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood. 2007;110(8):30643070.Google Scholar
Scaradavou, A, Brunstein, CG, Eapen, M, et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood. 2013;121(5):752758.Google Scholar
van Besien, K, Liu, H, Jain, N, Stock, W, Artz, A. Umbilical cord blood transplantation supported by third-party donor cells: rationale, results and applications. Biol Blood Marrow Transplant. 2013;19(5):682691.Google Scholar
Liu, H, Rich, ES, Godley, L, et al. Reduced-intensity conditioning with combined haploidentical and cord blood transplantation results in rapid engraftment, low GvHD and durable remission. Blood. 2011;118(24):64386445.CrossRefGoogle Scholar
Delaney, C, Heimfeld, S, Brashem-Stein, C, Voorhies, H, Manger, RL, Bernstein, ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 2010;16(20):232236.Google Scholar
de Lima, M, McNiece, I, Robinson, SN, et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med. 2012;367(24):23052315.Google Scholar
Eapen, M, Klein, JP, Sanz, GF, et al. Effect of donor-recipient HLA matching at HLAA, B, C and DRB1 on outcomes after umbilical-cord blood transplantation for leukaemia and myelodysplastic syndrome: a retrospective analysis. Lancet Oncol. 2011;12(13):12141221.Google Scholar
Eapen, M, Klein, JP, Ruggeri, A, et al. Impact of allele-level HLA matching on outcomes after myeloablative single unit umbilical cord blood transplantation for hematologic malignancy. Blood. 2014;123(1):133140.Google Scholar
Myaskovsky, L, Switzer, GE, Dew, MA, Goycoolea, JM, Confer, DL, Abress, L. The association of donor center characteristics with attrition from the National Marrow Donor Registry. Transplantation. 2004;77(6):874880.CrossRefGoogle ScholarPubMed
Switzer, GE, Dew, MA, Goycoolea, JM, Myaskovsky, L, Abress, L, Confer, DL. Attrition of potential bone marrow donors at two key decision points leading to donation. Transplantation. 2004;77(10):15291534.Google Scholar

References

Spellman, S, Setterholm, M, Maiers, M, Noreen, H, Oudshoorn, M, Fernandez-Viña, M et al. Advances in the selection of HLA-compatible donors: refinements in HLA typing and matching over the first 20 years of the National Marrow Donor Program Registry. Biol Blood Marrow Transplant. 2008;14(9 Suppl):3744. doi: 10.1016/j.bbmt.2008.05.001. Epub 2008 Jun 20 (Review).Google Scholar
Spellman, SR, Eapen, M, Logan, BR, Mueller, C, Rubinstein, P, Setterholm, MI et al.; National Marrow Donor Program; Center for International Blood and Marrow Transplant Research. A perspective on the selection of unrelated donors and cord blood units for transplantation. Blood. 2012;120(2):259–65. doi: 10.1182/blood-2012-03-379032. Epub 2012 May 17.Google Scholar
Nunes, E, Heslop, H, Fernandez-Vina, M, Taves, C, Wagenknecht, DR, Eisenbrey, AB et al. Definitions of histocompatibility typing terms. Blood. 2011;118(23):e180–3. doi:10.1182/blood-2011-05-353490. Epub 2011 Oct 14.Google Scholar
Howard, CA, Fernandez-Vina, MA, Appelbaum, FR, Confer, DL, Devine, SM, Horowitz, MM et al. Recommendations for donor human leukocyte antigen assessment and matching for allogeneic stem cell transplantation: consensus opinion of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN). Biol Blood Marrow Transplant. 2015;21(1):47. doi: 10.1016/j.bbmt.2014.09.017. Epub 2014 Sep 30.Google Scholar
Pidala, J, Lee, SJ, Ahn, KW, Spellman, S, Wang, HL, Aljurf, M et al. Nonpermissive HLA-DPB1 mismatch increases mortality after myeloablative unrelated allogeneic hematopoietic cell transplantation. Blood. 2014;124(16):2596–606. doi: 10.1182/blood-2014-05-576041. Epub 2014 Aug 26.Google Scholar
Lee, SJ, Klein, J, Haagenson, M, Baxter-Lowe, LA, Confer, DL, Eapen, M et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007;110(13):4576–83. Epub 2007 Sep 4.Google Scholar
Verneris, MR, Lee, SJ, Ahn, KW, Wang, HL, Battiwalla, M, Inamoto, Y et al. HLA mismatch is associated with worse outcomes after unrelated donor reduced-intensity conditioning hematopoietic cell transplantation: an analysis from the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2015 Jun 6. pii: S1083-8791(15)00389–4. doi: 10.1016/j.bbmt.2015.05.028 Epub ahead of print.CrossRefGoogle Scholar
Fürst, D, Müller, C, Vucinic, V, Bunjes, D, Herr, W, Gramatzki, M et al. High-resolution HLA matching in hematopoietic stem cell transplantation: a retrospective collaborative analysis. Blood. 2013;122(18):3220–9. doi: 10.1182/blood-2013-02-482547. Epub 2013 Sep 17. [Erratum in: Blood. 2014 Mar 13;123(11):1768.]Google Scholar
Spellman, S, Bray, R, Rosen-Bronson, S, Haagenson, M, Klein, J, Flesch, S et al. The detection of donor-directed, HLA-specific alloantibodies in recipients of unrelated hematopoietic cell transplantation is predictive of graft failure. Blood. 2010;115(13):2704–8. doi:10.1182/blood-2009-09-244525. Epub 2010 Jan 20.CrossRefGoogle ScholarPubMed
Ciurea, SO, Thall, PF, Wang, X, Wang, SA, Hu, Y, Cano, P et al. Donor-specific anti-HLA Abs and graft failure in matched unrelated donor hematopoietic stem cell transplantation. Blood. 2011;118(22):5957–64. doi: 10.1182/blood-2011-06-362111. Epub 2011 Oct 3.CrossRefGoogle ScholarPubMed
Gragert, L, Eapen, M, Williams, E, Freeman, J, Spellman, S, Baitty, R et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371(4):339–48. doi: 10.1056/NEJMsa1311707.Google Scholar
Wade, JA, Hurley, CK, Takemoto, SK, Thompson, J, Davies, SM, Fuller, TC et al. HLA mismatching within or outside of cross-reactive groups (CREGs) is associated with similar outcomes after unrelated hematopoietic stem cell transplantation. Blood. 2007;109(9):4064–70. Epub 2007 Jan 3.Google Scholar
Duquesnoy, RJ, Takemoto, S, de Lange, P, Doxiadis, II, Schreuder, GM, Persijn, GG et al. HLA matchmaker: a molecularly based algorithm for histocompatibility determination. III. Effect of matching at the HLA-A,B amino acid triplet level on kidney transplant survival. Transplantation. 2003;75(6):884–9.Google Scholar
Duquesnoy, R, Spellman, S, Haagenson, M, Wang, T, Horowitz, MM, Oudshoorn, M. HLA matchmaker-defined triplet matching is not associated with better survival rates of patients with class I HLA allele mismatched hematopoietic cell transplants from unrelated donors. Biol Blood Marrow Transplant. 2008;14(9):1064–71. doi: 10.1016/j.bbmt.2008.07.001.Google Scholar
Elsner, H, Blasczyk, R. Sequence similarity matching: proposal of a structure-based rating system for bone marrow transplantation. Eur J Immunogenet. 2002;29:229–36.Google Scholar
Risler, JL, Delorme, MO, Delacroix, H, Henaut, A. Amino acid substitutions in structurally related proteins: A pattern recognition approach. Determination of a new and efficient scoring matrix. J Mol Biol. 1988; 204(4):1019–29.Google Scholar
Shaw, BE, Barber, LD, Madrigal, JA, Cleaver, S, Marsh, SG. Scoring for HLA matching? A clinical test of HistoCheck. Bone Marrow Transplant. 2004; 34(4):367–8.Google Scholar
Askar, M, Sobecks, R, Morishima, Y, Kawase, T, Nowacki, A, Makishima, H et al. Predictions in the face of clinical reality: HistoCheck versus high-risk HLA allele mismatch combinations responsible for severe acute graft-versus-host disease. Biol Blood Marrow Transplant. 2011;17(9):1409–15.Google Scholar
Spellman, S, Klein, J, Haagenson, M, Askar, M, Baxter-Lowe, LA, He, J et al. Scoring HLA class I mismatches by HistoCheck does not predict clinical outcome in unrelated hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2012;18(5):739–46. doi: 10.1016/j.bbmt.2011.09.008. Epub 2011 Sep 29.Google Scholar
Ferrara, GB, Bacigalupo, A, Lamparelli, T, Lanino, E, Delfino, L, Morabito, A et al. Bone marrow transplantation from unrelated donors: the impact of mismatches with subsitutions at position 116 of the human leukocyte antigen class I heavy chain. Blood. 2001; 98(10):3150–5.Google Scholar
Pidala, J, Wang, T, Haagenson, M, Spellman, SR, Askar, M, Battiwalla, M et al. Amino acid substitution at peptide-binding pockets of HLA class I molecules increases risk of severe acute GVHD and mortality. Blood. 2013;122(22):3651–8. doi: 10.1182/blood-2013-05-501510. Epub 2013 Aug 27.Google Scholar
Kawase, T, Morishima, Y, Matsuo, K, Kashiwase, K, Inoko, H, Saji, H et al.; Japan Marrow Donor Program. High-risk HLA allele mismatch combinations responsible for severe acute graft-versus-host disease and implication for its molecular mechanism. Blood. 2007;110(7):2235–41. Epub 2007 Jun 6.Google Scholar
Kawase, T, Matsuo, K, Kashiwase, K, Inoko, H, Saji, H, Ogawa, S et al.; Japan Marrow Donor Program. HLA mismatch combinations associated with decreased risk of relapse: implications for the molecular mechanism. Blood. 2009;113(12):2851–8. doi: 10.1182/blood-2008-08-171934. Epub 2008 Nov 7.Google Scholar
Marino, SR, Lin, S, Maiers, M, Haagenson, M, Spellman, S, Klein, JP et al. Identification by random forest method of HLA class I amino acid substitutions associated with lower survival at day 100 in unrelated donor hematopoietic cell transplantation. Bone Marrow Transplant. 2012;47(2):217–26. doi: 10.1038/bmt.2011.56. Epub 2011 Mar 28.Google Scholar
Hurley, CK, Woolfrey, A, Wang, T, Haagenson, M, Umejiego, J, Aljurf, M et al. The impact of HLA unidirectional mismatches on the outcome of myeloablative hematopoietic stem cell transplantation with unrelated donors. Blood. 2013;121(23):4800–6. doi: 10.1182/blood-2013-01-480343. Epub 2013 May 1.Google Scholar
Kanda, J, Ichinohe, T, Fuji, S, Maeda, Y, Ohashi, K, Fukuda, T et al.; HLA Working Group of the Japan Society for Hematopoietic Cell Transplantation. Impact of HLA mismatch direction on the outcome of unrelated bone marrow transplantation: a retrospective analysis from the Japan Society for Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant. 2015;21(2):305–11. doi: 10.1016/j.bbmt.2014.10.015. Epub 2014 Oct 18.CrossRefGoogle Scholar
Thomas, R, Thio, CL, Apps, R, Qi, Y, Gao, X, Marti, D et al. A novel variant marking HLA-DP expression levels predicts recovery from hepatitis B virus infection. J Virol. 2012;86(12):6979–85. doi: 10.1128/JVI.00406-12. Epub 2012 Apr 11. PubMed PMID: 22496224; PubMed Central PMCID: PMC3393572.Google Scholar
Petersdorf, EW, Gooley, TA, Malkki, M, Bacigalupo, AP, Cesbron, A, Du Toit, E et al; International Histocompatibility Working Group in Hematopoietic Cell Transplantation. HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation. Blood. 2014;124(26):39964003. doi:10.1182/blood-2014-09-599969. Epub 2014 Oct 16.CrossRefGoogle ScholarPubMed
Petersdorf, EW, Malkki, M, O’hUigin, C, Carrington, M, Gooley, T, Haagenson, MD et al. High HLA-DP expression and graft-versus-host disease. N Engl J Med. 2015;373(7):599609. doi:10.1056/NEJMoa1500140. PubMed PMID: 26267621.Google Scholar
Fernández-Viña, MA, Klein, JP, Haagenson, M, Spellman, SR, Anasetti, C, Noreen, H et al. Multiple mismatches at the low expression HLA loci DP, DQ, and DRB3/4/5 associate with adverse outcomes in hematopoietic stem cell transplantation. Blood. 2013;121(22):4603–10. doi: 10.1182/blood-2013-02-481945. Epub 2013 Apr 17.Google Scholar
Oudshoorn, M, Doxiadis, II, van den Berg-Loonen, PM, Voorter, CE, Verduyn, W, Claas, FH. Functional versus structural matching: can the CTLp test be replaced by HLA allele typing? Hum Immunol. 2002;63(3):176–84.Google Scholar
Fernandez-Viña, MA, Wang, T, Lee, SJ, Haagenson, M, Aljurf, M, Askar, M et al. Identification of a permissible HLA mismatch in hematopoietic stem cell transplantation. Blood. 2014;123(8):1270–8. doi:10.1182/blood-2013-10-532671. Epub 2014 Jan 9.Google Scholar
Zino, E, Frumento, G, Marktel, S, Sormani, MP, Ficara, F, Di Terlizzi, S et al. A T-cell epitope encoded by a subset of HLA-DPB1 alleles determines nonpermissive mismatches for hematologic stem cell transplantation. Blood. 2004;103(4):1417–24. Epub 2003 Oct 23.Google Scholar
Fleischhauer, K, Shaw, BE, Gooley, T, Malkki, M, Bardy, P, Bignon, JD et al; International Histocompatibility Working Group in Hematopoietic Cell Transplantation. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13(4):366–74. doi:10.1016/S1470-2045(12)70004–9. Epub 2012 Feb 15. Erratum in: Lancet Oncol. 2012;13(4):e134-5.CrossRefGoogle ScholarPubMed
Fuchs, EJ. HLA-haploidentical blood or marrow transplantation with high-dose, post-transplantation cyclophosphamide. Bone Marrow Transplant. 2015;50(Suppl 2):S31–6. doi: 10.1038/bmt.2015.92.Google Scholar
Bashey, A, Solomon, SR. T-cell replete haploidentical donor transplantation using post-transplant CY: an emerging standard-of-care option for patients who lack an HLA-identical sibling donor. Bone Marrow Transplant. 2014;49(8):9991008. doi: 10.1038/bmt.2014.62. Epub 2014 May 19 (Review).Google Scholar

References

Beatty, PG, Clift, RA, Mickelson, EM, Nisperos, BB, Flournoy, N, Martin, PJ, et al. Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med. 1985;313(13):765–71.Google Scholar
Saber, W, Opie, S, Rizzo, JD, Zhang, MJ, Horowitz, MM, Schriber, J. Outcomes after matched unrelated donor versus identical sibling hematopoietic cell transplantation in adults with acute myelogenous leukemia. Blood. 2012;119(17):3908–16.Google Scholar
Arora, M, Weisdorf, DJ, Spellman, SR, Haagenson, MD, Klein, JP, Hurley, CK, et al. HLA-identical sibling compared with 8/8 matched and mismatched unrelated donor bone marrow transplant for chronic phase chronic myeloid leukemia. J Clin Oncol. 2009;27(10):1644–52.Google Scholar
Foeken, LM, Green, A, Hurley, CK, Marry, E, Wiegand, T, Oudshoorn, M. Donor Registries Working Group of the World Marrow Donor Association (WMDA). Monitoring the international use of unrelated donors for transplantation: the WMDA annual reports. Bone Marrow Transplant. 2010;45(5):811–8.Google Scholar
Petz, LD, Spellman, SS, Gragert, L. The underutilization of cord blood transplantation: extent of the problem, causes, and methods improvement. In Broxmeyer, HE, ed. Cord Blood: Biology, Transplantation, Banking, and Regulation. Bethesda, MD: AABB Press; 2011: 557–84.Google Scholar
Flomenberg, N, Baxter-Lowe, LA, Confer, D, Fernandez-Vina, M, Filipovich, A, Horowitz, M, et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood. 2004;104(7):1923–30.Google Scholar
Cutler, C, Kim, HT, Sun, L, Sese, D, Glotzbecker, B, Armand, P, et al. Donor-specific anti-HLA antibodies predict outcome in double umbilical cord blood transplantation. Blood. 2011;118(25):6691–7.Google Scholar
Takanashi, M, Atsuta, Y, Fujiwara, K, Kodo, H, Kai, S, Sato, H, et al. The impact of anti-HLA antibodies on unrelated cord blood transplantations. Blood. 2010;116(15):2839–46.Google Scholar
Ciurea, SO, de Lima, M, Cano, P, Korbling, M, Giralt, S, Shpall, EJ, et al. High risk of graft failure in patients with anti-HLA antibodies undergoing haploidentical stem-cell transplantation. Transplantation. 2009;88(8):1019–24.Google Scholar
Spellman, S, Bray, R, Rosen-Bronson, S, Haagenson, M, Klein, J, Flesch, S, et al. The detection of donor-directed, HLA-specific alloantibodies in recipients of unrelated hematopoietic cell transplantation is predictive of graft failure. Blood. 2010;115(13):2704–8.Google Scholar
Ciurea, SO, Thall, PF, Wang, X, Wang, SA, Hu, Y, Cano, P, et al. Donor-specific anti-HLA Abs and graft failure in matched unrelated donor hematopoietic stem cell transplantation. Blood. 2011;118(22):5957–64.Google Scholar
Patel, R, Terasaki, PI. Significance of the positive crossmatch test in kidney transplantation. N Engl J Med. 1969;280(14):735–9.Google Scholar
Held, PJ, Kahan, BD, Hunsicker, LG, Liska, D, Wolfe, RA, Port, FK, et al. The impact of HLA mismatches on the survival of first cadaveric kidney transplants. N Engl J Med. 1994;331(12):765–70.Google Scholar
Suciu-Foca, N, Reed, E, Marboe, C, Harris, P, Yu, PX, Sun, YK, et al. The role of anti-HLA antibodies in heart transplantation. Transplantation. 1991;51(3):716–24.Google Scholar
Terasaki, PI, Ozawa, M. Predicting kidney graft failure by HLA antibodies: a prospective trial. Am J Transplant. 2004;4(3):438–43.Google Scholar
Mao, Q, Terasaki, PI, Cai, J, Briley, K, Catrou, P, Haisch, C, Rebellato, L. Extremely high association between appearance of HLA antibodies and failure of kidney grafts in a five-year longitudinal study. Am J Transplant. 2007;7(4):864–71.Google Scholar
McKenna, RM, Takemoto, SK, Terasaki, PI. Anti-HLA antibodies after solid organ transplantation. Transplantation. 2000;69(3):319–26.Google Scholar
Bray, RA, Nolen, JD, Larsen, C, Pearson, T, Newell, KA, Kokko, K, et al. Transplanting the highly sensitized patient: The Emory algorithm. Am J Transplant. 2006;6(10):2307–15.CrossRefGoogle ScholarPubMed
Anasetti, C, Amos, D, Beatty, PG, Appelbaum, FR, Bensinger, W, Buckner, CD, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320(4):197204.Google Scholar
Ottinger, HD, Rebmann, V, Pfeiffer, KA, Beelen, DW, Kremens, B, Runde, V, et al. Positive serum crossmatch as predictor for graft failure in HLA-mismatched allogeneic blood stem cell transplantation. Transplantation. 2002;73(8):1280–5.Google Scholar
Pei, R, Lee, JH, Shih, NJ, Chen, M, Terasaki, PI. Single human leukocyte antigen flow cytometry beads for accurate identification of human leukocyte antigen antibody specificities. Transplantation. 2003;75(1):43–9.Google Scholar
Zachary, AA, Leffell, MS. Detecting and monitoring human leukocyte antigen-specific antibodies. Hum Immunol. 2008;69(10):591604.Google Scholar
Gebel, HM, Liwski, RS, Bray, RA. Technical aspects of HLA antibody testing. Curr Opin Organ Transplant. 2013;18(4):455–62.Google Scholar
Mignot, E, Thorsby, E. Narcolepsy and the HLA system. N Engl J Med. 2001;344(9):692.Google Scholar
Kwok, WW, Kovats, S, Thurtle, P, Nepom, GT. HLA-DQ allelic polymorphisms constrain patterns of class II heterodimer formation. J Immunol. 1993;150(6):2263–72.CrossRefGoogle ScholarPubMed
Bodmer, J, Bodmer, W, Heyes, J, So, A, Tonks, S, Trowsdale, J, Young, J. Identification of HLA-DP polymorphism with DP alpha and DP beta probes and monoclonal antibodies: correlation with primed lymphocyte typing. Proc Natl Acad Sci U S A. 1987;84(13):4596–600.Google Scholar
Klohe, E, Pistillo, MP, Ferrara, GB, Goeken, NE, Greazel, NS, Karr, RW. Critical role of HLA-DR beta 1 residue 58 in multiple polymorphic epitopes recognized by xenogeneic and allogeneic antibodies. Hum Immunol. 1992;35(1):1828.Google Scholar
Cano, P, Fernández-Viña, M. Two sequence dimorphisms of DPB1 define the immunodominant serologic epitopes of HLA-DP. Hum Immunol. 2009;70(10):836–43.Google Scholar
El-Awar, N, Lee, JH, Tarsitani, C, Terasaki, PI. HLA class I epitopes: recognition of binding sites by mAbs or eluted alloantibody confirmed with single recombinant antigens. Hum Immunol. 2007;68(3):170–80.CrossRefGoogle ScholarPubMed
Deeg, HJ, Storb, R, Weiden, PL, Shulman, HM, Graham, TC, Torok-Storb, BJ, Thomas, ED. Abrogation of resistance to and enhancement of DLA-nonidentical unrelated marrow grafts in lethally irradiated dogs by thoracic duct lymphocytes. Blood. 1979;53(4):552–7.Google Scholar
Ciurea, SO, Saliba, RM, Hamerschlak, N, Karduss Aurueta, AJ, Bassett, R, Fernandez-Vina, M, et al. Fludarabine, melphalan, thiotepa and anti-thymocyte globulin conditioning for unrelated cord blood transplant. Leuk Lymphoma. 2012;53(5):901–6.CrossRefGoogle ScholarPubMed
Chen, G, Tyan, DB. C1q assay for the detection of complement fixing antibody to HLA antigens. Methods Mol Biol. 2013;1034:305–11.Google Scholar
Loupy, A, Lefaucheur, C, Vernerey, D, Prugger, C, Duong van Huyen, JP, Mooney, N, et al. Complement-binding anti-HLA antibodies and kidney-allograft survival. N Engl J Med. 2013;369(13):1215–26.Google Scholar
Ciurea, SO, Thall, PF Milton, DR, et al. Complement-binding donor-specific anti-HLA antibodies and risk of primary graft failure in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21(8):1392–8.Google Scholar
Leffell, MS, Jones, RJ, Gladstone, DE. Donor HLA-specific Abs: to BMT or not to BMT? Bone Marrow Transplant. 2015 Feb 23. doi: 10.1038/bmt.2014.331. [Epub ahead of print].Google Scholar
Marfo, K, Lu, A, Ling, M, Akalin, E. Desensitization protocols and their outcome. Clin J Am Soc Nephrol. 2011;6(4):922–36.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×