Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T20:13:15.291Z Has data issue: false hasContentIssue false

Foundations

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ax, A. F. (1964). Goals and methods of psychophysiology. Psychophysiology, 1: 825.CrossRefGoogle ScholarPubMed
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (2003). Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 18: 21032109.Google Scholar
Cacioppo, J. T., Berntson, G. G., Lorig, T. S., Norris, C. J., Rickett, E., & Nusbaum, H. (2003). Just because you’re imaging the brain doesn’t mean you can stop using your head: a primer and set of first principles. Journal of Personality and Social Psychology, 85: 650661.Google Scholar
Cacioppo, J. T. & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.) (2007). Handbook of Psychophysiology, 3rd edn. Cambridge University Press.Google Scholar
Cinzia, D. D. & Vittorio, G. (2009). Neuroaesthetics: a review. Current Opinion in Neurobiology, 19: 682687.Google Scholar
Coles, M. G. H., Donchin, E., & Porges, S. W. (1986). Psychophysiology: Systems, Processes, and Applications. New York: Guilford Press.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.Google Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10: 5970.Google Scholar
Critchley, H. D. & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77: 624638.Google Scholar
Donchin, E. (1982). The relevance of dissociations and the irrelevance of dissociationism: a reply to Schwartz and Pritchard. Psychophysiology, 19: 457463.Google Scholar
Drake, S. (1967). Galileo Galilei. In Edwards, P. (ed.), The Encyclopedia of Philosophy. New York: Macmillan.Google Scholar
Field, D. T. & Inman, L. A. (2014). Weighing brain activity with the balance: a contemporary replication of Angelo Mosso’s historical experiment. Brain, 137: 634639.Google Scholar
Garbarini, F. & Adenzato, M. (2004). At the root of embodied cognition: cognitive science meets neurophysiology. Brain and Cognition, 56: 100106.Google Scholar
Gardiner, H. M., Metcalf, R. C., & Beebe-Center, J. G. (1937). Feeling and Emotion: A History of Theories. New York: American Book Company.Google Scholar
Greenfield, N. S. & Sternbach, R. A. (1972). Handbook of Psychophysiology. New York: Holt, Rinehart, & Winston.Google Scholar
Harrington, A. (1987). Medicine, Mind, and the Double Brain: Study in Nineteenth-Century Thought. Princeton University Press.Google Scholar
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.Google Scholar
Landis, C. (1930). Psychology and the psychogalvanic reflex. Psychological Review, 37: 381398.Google Scholar
Meaney, M. J., Bhatnagar, S., Larocque, S., McCormick, C. M., Shanks, N., Sharma, S., … & Plotsky, P. M. (1996). Early environment and the development of individual differences in the hypothalamic-pituitary-adrenal stress response. In Pfeffer, C. R. (ed.), Severe Stress and Mental Disturbance in Children (pp. 85127). Washington, DC: American Psychiatric Press.Google Scholar
Metalis, S. A. & Hess, E. H. (1982). Pupillary response/semantic differential scale relationships. Journal of Research in Personality, 16: 201216.Google Scholar
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36: 341349.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Tipper, S. P., & Downing, P. (2013). Crossmodal and action-specific: neuroimaging the human mirror neuron system. Trends in Cognitive Sciences, 17: 311318.Google Scholar
Partala, T. & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International Journal of Human–Computer Studies, 59: 185198.Google Scholar
Platt, J. R. (1964). Strong inference. Science, 146: 347353.Google Scholar
Sandrone, S., Bacigaluppi, M., Galloni, M. R., Cappa, S. F., Moro, A., Catani, M., … & Martino, G. (2014). Weighing brain activity with the balance: Angelo Mosso’s original manuscripts come to light. Brain, 137: 621633.Google Scholar
Sarter, M., Berntson, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: towards strong inference in attributing function to structure. American Psychologist, 51: 1321.Google Scholar
Shadish, W., Cook, T., & Campbell, D. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Boston, MA: Houghton Mifflin.Google Scholar
Stern, J. A. (1964). Toward a definition of psychophysiology. Psychophysiology, 1: 9091.CrossRefGoogle Scholar
Stevens, S. S. (1951). Handbook of Experimental Psychology. New York: John Wiley.Google Scholar
Townsend, J. T. & Ashby, F. G. (1983). Stochastic Modeling of Elementary Psychological Processes. Cambridge University Press.Google Scholar
Tranel, D. & Damasio, A. R. (1985). Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science, 228: 14531454.Google Scholar
Vanderhasselt, M., Remue, J., Kei Ng, K., & De Raedt, R. (2014). The interplay between the anticipation and subsequent online processing of emotional stimuli as measured by pupillary dilatation: the role of cognitive appraisal. Frontiers in Psychology, 5: 207.Google Scholar

References

Barnes, G. R. (2008). Cognitive processes involved in smooth pursuit eye movements. Brain and Cognition, 68: 309326.Google Scholar
Beauregard, M., Levesque, J., & Bourgouin, P. (2001). Neural correlates of conscious self-regulation of emotion. Journal of Neuroscience, 21: RC165.Google Scholar
Bell, I. R. & Schwartz, G. E. (1975). Voluntary control and reactivity of human heart rate. Psychophysiology, 12: 339348.Google Scholar
Blok, B. F., De Weerd, H., & Holstege, G. (1995). Ultrastructural evidence for a paucity of projections from the lumbosacral cord to the pontine micturition center or M-region in the cat: a new concept for the organization of the micturition reflex with the periaqueductal gray as central relay. Journal of Comparative Neurology, 359: 300309.Google Scholar
Cacioppo, J. T. (2013). Psychological science in the 21st century. Teaching of Psychology, 40: 304309.Google Scholar
Corfield, D. R., Roberts, C. A., Guz, A., Murphy, K., & Adams, L. (1999). Modulation of the corticospinal control of ventilation by changes in reflex respiratory drive. Journal of Applied Physiology, 87(5): 19231930.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.Google Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10: 5970.Google Scholar
Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30: 412431.Google Scholar
Fowler, C. J., Griffiths, D., & de Groat, W. C. (2008). The neural control of micturition. Nature Reviews Neuroscience, 9: 453466.Google Scholar
Fowler, W. S. (1954). Breaking point of breath-holding. Journal of Applied Physiology, 6: 539545.Google Scholar
Gazzaniga, M. (2011). Who’s in Charge?: Free Will and the Science of the Brain. New York: HarperCollins.Google Scholar
Haggard, P. (2005). Conscious intention and motor cognition. Trends in Cognitive Sciences, 9: 290295.Google Scholar
Haggard, P. & Clark, S. (2003). Intentional action: conscious experience and neural prediction. Consciousness and Cognition, 12: 695707.Google Scholar
Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5: 382385.Google Scholar
Holstege, G. (2005). Micturition and the soul. Journal of Comparative Neurology, 493: 1520.Google Scholar
Holzman, P. S. & Levy, D. L. (1977). Smooth pursuit eye movements and functional psychoses: a review. Schizophrenia Bulletin, 3: 1527.Google Scholar
Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 21: 642653.Google Scholar
James, W. (1890). The Principles of Psychology. New York: Henry Holt and Company.Google Scholar
Jänig, W. (1989). Autonomic nervous system. In Schmidt, R. F. & Thews, G. (eds.), Human Physiology (pp. 333370). Berlin: Springer.Google Scholar
Jennings, J. M., McIntosh, A. R., Kapur, S., Tulving, E., & Houle, S. (1997). Cognitive subtractions may not add up: the interaction between semantic processing and response mode. NeuroImage, 5: 229239.Google Scholar
Jenny, A. B. & Saper, C. B. (1987). Organization of the facial nucleus and corticofacial projection in the monkey: a reconsideration of the upper motor neuron facial palsy. Neurology, 37: 930939.Google Scholar
Joiner, W. M. & Shelhamer, M. (2006). Pursuit and saccadic tracking exhibit a similar dependence on movement preparation time. Experimental Brain Research, 173: 572586.Google Scholar
Jones, C. L., Minati, L., Nagai, Y., Medford, N., Harrison, N. A., Gray, M., … & Critchley, H. D. (2015). Neuroanatomical substrates for the volitional regulation of heart rate. Frontiers in Psychology, 6.Google Scholar
Keller, E. L. & Heinen, S. J. (1991). Generation of smooth-pursuit eye movements: neuronal mechanisms and pathways. Neuroscience Research, 11: 79107.Google Scholar
Kowler, E. (1989). The role of visual and cognitive processes in the control of eye movement. Reviews of Oculomotor Research, 4: 170.Google Scholar
Levinthal, D. J. & Strick, P. L. (2012). The motor cortex communicates with the kidney. Journal of Neuroscience, 32: 67266731.Google Scholar
Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). Brain, 106: 623642.Google Scholar
Morton, S. M. & Bastian, A. J. (2006). Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. Journal of Neuroscience, 26: 91079116.Google Scholar
Nisbett, R. E. & Wilson, T. D. (1977). Telling more than we can know: verbal reports on mental processes. Psychological Review, 84: 231259.Google Scholar
Penfield, W. & Rasmussen, T. (1950). The Cerebral Cortex of Man: A Clinical Study of Localization of Function. New York: Macmillan.Google Scholar
Provine, R. R. & Enoch, J. M. (1975). On voluntary ocular accommodation. Perception & Psychophysics, 17: 209212.Google Scholar
Rashbass, C. (1961). The relationship between saccadic and smooth tracking eye movements. Journal of Physiology, 159: 326338.Google Scholar
Robinson, D. K. (2001). Reaction-time experiments in Wundt’s institute and beyond. In Rieber, R. W. & Robinson, D. K. (eds.), Wilhelm Wundt in History: The Making of a Scientific Psychology (pp. 161204). New York: Kluwer.Google Scholar
Sirota, A. D., Schwartz, G. E., & Shapiro, D. (1974). Voluntary control of human heart rate: effect on reaction to aversive stimulation. Journal of Abnormal Psychology, 83: 261267.Google Scholar
Sugaya, K., Roppolo, J. R., Yoshimura, N., Card, J. P., & de Groat, W. C. (1997). The central neural pathways involved in micturition in the neonatal rat as revealed by the injection of pseudorabies virus into the urinary bladder. Neuroscience Letters, 223: 197200.Google Scholar
Victor, J. D. (2005). Analyzing receptive fields, classification images and functional images: challenges with opportunities for synergy. Nature Neuroscience, 8: 16511656.Google Scholar
Wulf, G. & Prinz, W. (2001). Directing attention to movement effects enhances learning: a review. Psychonomic Bulletin & Review, 8: 648660.Google Scholar

References

Carter, R. M. & Huettel, S. A. (2013). A nexus model of the temporal–parietal junction. Trends in Cognitive Sciences, 17: 328336.Google Scholar
Comeau, W., McDonald, R., & Kolb, B. (2010). Learning-induced alterations in prefrontal cortical circuitry. Behavioural Brain Research, 214: 91101.Google Scholar
Fedorenko, E. & Thompson-Schill, S. L. (2014). Reworking the language network. Trends in Cognitive Science, 18: 120126.Google Scholar
Felleman, D. J. & van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1: 147.Google Scholar
Fritsch, G. & Hitzig, E. (1960). On the electrical excitability of the cerebrum. In von Bonin, G. (ed.), The Cerebral Cortex. Springfield, IL: Charles C. Thomas.Google Scholar
Fuster, J. (2008). The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe, 4th edn. New York: Academic Press.Google Scholar
Goldman-Rakic, P. S. (1987) Circuitry of the primate prefrontal cortex and regulation of behavior by representational memory. In Plum, F. (ed.), Handbook of Physiology: The Nervous System, Vol 5, Part 1: Higher Functions of the Brain (pp. 373417). Bethesda, MD: American Physiological Society.Google Scholar
Graziano, M. S. A. & Afalo, T. N. (2007). Mapping the behavioral repertoire onto the cortex. Neuron, 56: 239251.Google Scholar
Hebb, D. O. (1949). The Organization of Behavior. New York: McGraw-Hill.Google Scholar
Hickok, G. (2014). The Myth of Mirror Neurons. New York: Norton.Google Scholar
Hyvarinen, J. (1982). The Parietal Cortex of Monkey and Man. Berlin: Springer-Verlag.Google Scholar
Jacobson, L. S., Archibald, Y. M., Carey, D. P., & Goodale, M. A. (1991). A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia, 29: 803809.Google Scholar
Jerison, H. J. (1991). Brain Size and the Evolution of the Mind. New York: American Museum of Natural History.Google Scholar
Kanan, C. (2013). Recognizing sights, smells, and sounds with gnostic fields. PLoS One, 8: e54088.Google Scholar
Kennedy, D. P. & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16: 559572.Google Scholar
Kolb, B. & Gibb, R. (2014). Searching for principles of brain plasticity and behavior. Cortex, 58: 251260.Google Scholar
Kolb, B. & Milner, B. (1981). Performance of complex arm and facial movements after focal brain lesions. Neuropsychologia, 19: 505514.Google Scholar
Kolb, B. & Whishaw, I. Q. (2003). Fundamentals of Human Neuropsychology, 5th edn. New York: Worth.Google Scholar
Kolb, B. & Whishaw, I. Q. (2015). Fundamentals of Human Neuropsychology, 7th edn. New York: Worth.Google Scholar
Kolb, B. & Whishaw, I. Q. (2016). An Introduction to Brain and Behavior, 5th edn. New York: Worth.Google Scholar
Konorski, J. (1967). Integrative Activity of the Brain. University of Chicago Press.Google Scholar
Kravitz, D. J., Dadharbatcha, S. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12: 217230.Google Scholar
Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends in Cognitive Sciences, 17: 2649.Google Scholar
Luria, A. R. (1962) Higher Cortical Functions in Man. Moscow University Press.Google Scholar
Luria, A. R. (1973). The Working Brain. New York: Basic Books.Google Scholar
MacLean, P. (1990). The Triune Brain in Evolution: Role in Paleocerebral Functions. New York: Plenum Press.Google Scholar
McFie, J. & Zangwill, O. L. (1960). Visual-constructive disabilities associated with lesions of the left cerebral hemispheres. Brain, 83: 243260.Google Scholar
Milner, D. A. & Goodale, M. A. (2006). The Visual Brain in Action. Oxford University Press.Google Scholar
Pincus, J. H. & Tucker, G. J. (1974). Behavioral Neurology. Oxford University Press.Google Scholar
Rizzolatti, G. & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27: 169192.Google Scholar
Robinson, T. E. & Kolb, B. (2004). Structural plasticity associated with drugs of abuse. Neuropharmacology, 47: 3346.Google Scholar
Scoville, W. B. & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neuropsychiatry and Clinical Neurosciences, 12: 103113.Google Scholar
Takesian, A. E. & Hensch, T. K. (2013). Balancing plasticity/stability across brain development. Progress in Brain Research, 207: 334.Google Scholar
Underleider, L. G. & Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. (eds.), Analysis of Visual Behavior (pp. 549586). Cambridge, MA: MIT Press.Google Scholar
Wiesel, T. N. & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26: 10031017.Google Scholar
Wise, S. P. (2008). Frontal forward fields: phylogeny and fundamental function. Trends in Neurosciences, 31: 599608.Google Scholar
Zatorre, R. J. (2007). There is more to auditory cortex than meets the eye. Hearing Research, 229: 2430.Google Scholar
Zeki, J. S. (1993). A Vision of the Brain. London: Blackwell Scientific.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×