Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T10:38:54.225Z Has data issue: false hasContentIssue false

17 - Color in camouflage, mimicry, and warning signals

from Part V - Color symbolism and association

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, J. (1971). Interspecific differences in avian feeding behavior and the evolution of Batesian mimicry. Behaviour, 40, 19.CrossRefGoogle Scholar
Ammermüller, J., Itzhaki, A., Weiler, R., and Perlman, I. (1998). UV-sensitive input to horizontal cells in the turtle retina. European Journal of Neuroscience, 10, 1544–52.CrossRefGoogle ScholarPubMed
Aronsson, M., and Gamberale-Stille, G. (2008). Domestic chicks primarily attend to colour, not pattern, when learning an aposematic coloration. Animal Behaviour, 75, 417–23.CrossRefGoogle Scholar
Bagnara, J. T., and Hadley, M. E. (1973). Chromatophores and Color Change: The Comparative Physiology of Animal Pigmentation. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Barber, J. R., and Conner, W. E. (2007). Acoustic mimicry in a predator–prey interaction. Proceedings of the National Academy of Sciences of the United States of America, 104, 9331–4.Google Scholar
Barnett, C. A., Skelhorn, J., Bateson, M., and Rowe, C. (2012). Educated predators make strategic decisions to eat defended prey according to their toxin content. Behavioral Ecology, 23, 418–24.CrossRefGoogle Scholar
Bates, H. W. (1862). Contributions to an insect fauna of the Amazon valley: Lepidoptera: Heliconidae. Transactions of the Linnean Society of London, 23, 495566.CrossRefGoogle Scholar
Blount, J. D., Rowland, H. M., Drijfhout, F. P., Endler, J. A., Inger, R., Sloggett, J. J., Hurts, G. D. D., et al. (2012). How the ladybird got its spots: effects of resource limitation on the honesty of aposematic signals. Functional Ecology, 26, 334–42.CrossRefGoogle Scholar
Blount, J. D., Speed, M. P., Ruxton, G. D., and Stephens, P. A. (2009). Warning displays may function as honest signals of toxicity. Proceedings of the Royal Society of London. Series B, Biological Sciences, 276, 871–7.Google ScholarPubMed
Bond, A. B. (2007). The evolution of color polymorphism: crypticity, searching images and apostatic selection. Annual Review of Ecology, Evolution, and Systematics, 38, 125.CrossRefGoogle Scholar
Bond, A. B., and Kamil, A. C. (2002). Visual predators select for crypticity and polymorphism in virtual prey. Nature, 415, 609–13.CrossRefGoogle ScholarPubMed
Bowmaker, J. K. (1998). Evolution of colour vision in vertebrates. Eye (London, England), 12, 541–7.CrossRefGoogle ScholarPubMed
Boyden, T. C. (1976). Butterfly palatability and mimicry: experiments with Ameiva lizards. Evolution, 30, 7381.CrossRefGoogle ScholarPubMed
Brahman, M. A., and Wenzel, J. W. (2001). The evolution of bioluminiscence in cantharoids (Coleoptera: Elateroidea). Florida Entomologist, 84, 565–86.Google Scholar
Brakefield, P. M. (1985). Polymorphic Müllerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biological Journal of the Linnean Society, 26, 243–67.CrossRefGoogle Scholar
Caley, J. M., and Schluter, D. (2003). Predators favour mimicry in a tropical reef fish. Proceedings of the Royal Society of London. Series B, Biological Sciences, 270, 667–72.Google Scholar
Chesemore, D. L. (1970). Notes on the pelage and priming sequence of Arctic foxes in northern Alaska. American Society of Mammalogists, 51, 156–9.Google Scholar
Chittka, L., and Raine, N. E. (2006). Recognition of flowers by pollinators. Current Opinion in Plant Biology, 9, 428–35.CrossRefGoogle ScholarPubMed
Chittka, L., Shmida, A., Troje, N., and Menzel, R. (1994). Ultraviolet as a component of flower reflections, and the color perception of Hymenoptera. Vision Research, 34, 14891508.CrossRefGoogle ScholarPubMed
Chung, S. T., Levi, D. M., and Legge, G. E. (2001). Spatial-frequency and contrast properties of crowding. Vision Research, 41, 1833–50.CrossRefGoogle ScholarPubMed
Claes, J. M., Aksnes, D. L., and Mallefet, J. (2010). Phantom hunter of the fjords: camouflage by counterillumination in a shark (Etmopterus spinax). Journal of Experimental Marine Biology and Ecology, 388, 2832.CrossRefGoogle Scholar
Cook, L. M., Grant, B. S., Saccheri, I. J., and Mallet, J. (2012). Selective bird predation on the peppered moth: the last experiment of Michael Majerus. Biology Letters, 8, 13.CrossRefGoogle ScholarPubMed
Cortesi, F., and Cheney, K. L. (2010). Conspicuousness is correlated with toxicity in marine opisthobranchs. Journal of Evolutionary Biology, 23, 1509–18.CrossRefGoogle ScholarPubMed
Cott, H. B. (1940). Adaptive Coloration in Animals. London: Methuen.Google Scholar
Cuthill, I. C. (2006). Color perception. In Hill, G. E. and McGraw, K. J. (eds.), Bird Coloration, vol. I: Mechanisms and Measurements (pp. 340). London: Harvard University Press.CrossRefGoogle Scholar
Cuthill, I. C., Stevens, M., Sheppard, J., and Maddocks, T. (2005). Disruptive coloration and background pattern matching. Nature, 434, 72–4.CrossRefGoogle ScholarPubMed
Darwin, C. (1887). The Life and Letters of Charles Darwin: Including an Autobiographical Chapter, Edited by His Son Francis Darwin. London: John Murray.Google Scholar
Darwin, E. (1794). Zoonomia or The Laws of Organic Life. London: Johnson.Google Scholar
Dimitrova, M., and Merilaita, S. (2009). Prey concealment: visual background complexity and prey contrast distribution. Behavioral Ecology, 21, 176–81.Google Scholar
Dimitrova, M., Stobbe, N., Schaefer, M. H., and Merilaita, S. (2009). Concealed by conspicuousness – distractive prey markings and backgrounds. Proceedings of the Royal Society of London. Series B, Biological Sciences, 276, 1905–10.Google ScholarPubMed
Dittrich, W., Gilbert, F., Green, P., McGregor, P., and Grewcock, D. (1993). Imperfect mimicry: a pigeon’s perspective. Proceedings of the Royal Society of London. Series B, Biological Sciences, 251, 195200.Google Scholar
Dumbacher, J. P., Deiner, K., Thompson, L., and Fleischer, R. C. (2008). Phylogeny of the avian genus Pitohui and the evolution of toxicity in birds. Molecular Phylogenetics and Evolution, 49, 8491.CrossRefGoogle ScholarPubMed
Duncan, C. J., and Sheppard, P. M. (1965). Sensory discrimination and its role in the evolution of Batesian mimicry. Behaviour, 24, 270–82.CrossRefGoogle ScholarPubMed
Edmunds, M., and Dewhirst, R. A. (1994). The survival value of countershading with wild birds as predators. Biological Journal of the Linnean Society, 51, 447–52.CrossRefGoogle Scholar
Edmunds, M., and Reader, T. (2014). Evidence for Batesian mimicry in a polymorphic hoverfly. Evolution, 68, 827–39.CrossRefGoogle Scholar
Elgar, M. A., and Allan, R. A. (2004). Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey. Naturwissenschaften, 91, 143–7.CrossRefGoogle ScholarPubMed
Ellingson, J. M., Fleishman, L. J., and Loew, E. R. (1995). Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis. Journal of Comparative Physiology A, 177, 559–67.CrossRefGoogle ScholarPubMed
Endler, J. A. (1984). Progressive background matching in moths, and a quantitative measure of crypsis. Biological Journal of the Linnean Society, 22, 187231.CrossRefGoogle Scholar
Endler, J. A. (1987). Predation, light intensity and courtship behavior in Poecilia reticulata (Pisces: Poeciliidae). Animal Behaviour, 35, 1376–85.CrossRefGoogle Scholar
Endler, J. A. (1991). Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vision Research, 31, 587608.CrossRefGoogle ScholarPubMed
Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution. American Naturalist, 139, 125–53.CrossRefGoogle Scholar
Endler, J. A., and Greenwood, J. J. D. (1988). Frequency-dependent predation, crypsis and aposematic coloration. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 319, 505–23.Google ScholarPubMed
Exnerova, A., Svadova, K. H., Fucikova, E., Drent, P., and Stys, P. (2010). Personality matters: individual variation in reactions of naive bird predators to aposematic prey. Proceedings of the Royal Society of London. Series B, Biological Sciences, 277, 723–8.Google ScholarPubMed
Fleishman, L. J., Bowman, M., Saunders, D., Miller, W. E., Rury, M. J., and Loew, E. R. (1997). The visual ecology of Puerto Rican anoline lizards: habitat light and spectral sensitivity. Journal of Comparative Physiology A, 181, 446–60.CrossRefGoogle Scholar
Fleishman, L. J., Loew, E. R., and Whiting, M. J. (2011). High sensitivity to short wavelengths in a lizard and implications for understanding the evolution of visual systems in lizards. Proceedings of the Royal Society of London. Series B, Biological Sciences, 278, 2891–9.Google Scholar
Fraser, S., Callahan, A., Klassen, D., and Sherratt, T. N. (2007). Empirical tests of the role of disruptive coloration in reducing detectability. Proceedings of the Royal Society of London. Series B, Biological Sciences, 274, 1325–31.Google ScholarPubMed
Golding, Y. C., and Edmunds, M. (2000). Behavioral mimicry of honeybees (Apis mellifera) by droneflies (Diptera: Syrphidae: Eristalis spp.). Proceedings of the Royal Society of London. Series B, Biological Sciences, 267, 903–9.Google ScholarPubMed
Hanlon, R. T., Chiao, C.-C., Mäthger, L. M., Barbosa, A, Buresch, K. C., and Chubb, C. (2009). Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 429–37.Google ScholarPubMed
Heal, J. R. (1981). Color patterns of Syrphidae. III. Sexual dimorphism in Eristalis arbustorum. Ecological Entomology, 6, 119–27.CrossRefGoogle Scholar
Hearing, V. J., and Tsukamoto, K. (1991). Enzymatic control of pigmentation in mammals. FASEB Journal, 5, 2902–9.CrossRefGoogle ScholarPubMed
Hill, G. E. (2006). Environmental regulation of ormamental coloration. In Hill, G. E. and McGraw, K. J. (eds.), Bird Coloration, vol. I: Mechanisms and Measurements (pp. 507–60). London: Harvard University Press.Google Scholar
Hoekstra, H. E., and Nachman, M. W. (2003). Different genes underlie adaptive melanism in different populations of pocket mice. Molecular Ecology, 12, 1185–94.CrossRefGoogle ScholarPubMed
Hossie, T. J., and Sherratt, T. N. (2013). Defensive posture and eyespots deter avian predators from attacking caterpillar models. Animal Behaviour, 86, 383–9.CrossRefGoogle Scholar
Houston, A. I., Stevens, M., and Cuthill, I. C. (2007). Animal camouflage: compromise or specialise in a two patch-type environment? Behavioral Ecology, 18, 769–75.CrossRefGoogle Scholar
How, M. J., and Zanker, J. M. (2014). Motion camouflage induced by zebra stripes. Zoology, 117, 163–70.CrossRefGoogle ScholarPubMed
Howarth, B., Edmunds, M., and Gilbert, F. (2004). Does the abundance of hoverfly (Syrphidae) mimics depend on the numbers of their hymenopteran models? Evolution, 58, 367–75.Google ScholarPubMed
Ihalainen, E., Rowland, H. M., Speed, M. P., Ruxton, G. D., and Mappes, J. (2012). Prey community structure affects how predators select for Müllerian mimicry. Proceedings of the Royal Society of London. Series B, Biological Sciences, 279, 20992105.Google ScholarPubMed
Jackson, J. F., Ingram, W., and Campbell, H. W. (1976). The dorsal pigmentation pattern of snakes as an antipredator strategy: a multivariate approach. American Naturalist, 110, 1029–53.CrossRefGoogle Scholar
Jacobs, G. H., and Deegan, J. F. II (1992). Cone photopigments in nocturnal and diurnal procyonids. Journal of Comparative Physiology A, 171, 351–8.CrossRefGoogle ScholarPubMed
Jacobs, G. H., Deegan, J. F. II, Neitz, J., Crognale, M. A., and Neitz, M. (1993). Photopigments and color vision in the nocturnal monkey, Aotus. Vision Research, 33, 1773–83.Google ScholarPubMed
Jones, B. W., and Nishiguchi, M. K. (2004). Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Marine Biology, 144, 1151–5.CrossRefGoogle Scholar
Kang, C. K., Moon, J. Y., Lee, S. I., and Jablonski, P. G. (2012). Camouflage through an active choice of a resting spot and body orientation in moths. Journal of Evolutionary Biology, 25, 16951702.CrossRefGoogle ScholarPubMed
Kang, C. K., Moon, J. Y., Lee, S. I., and Jablonski, P. G. (2013). Cryptically patterned moths perceive bark structure when choosing body orientations that match wing color pattern to the bark pattern. PLoS ONE, 8, e78117.CrossRefGoogle Scholar
Kapan, D. D. (2001). Three-butterfly system provides a field test of Müllerian mimicry. Nature, 409, 338–40.CrossRefGoogle ScholarPubMed
Kelley, L. A., Coe, R. L., Madden, J. R., and Healy, S. D. (2008). Vocal mimicry in songbirds. Animal Behaviour, 76, 521–8.CrossRefGoogle Scholar
Kettlewell, H. B. D. (1955). Recognition of appropriate backgrounds by the pale and black phases of Lepidoptera. Nature, 175, 943–4.CrossRefGoogle ScholarPubMed
Kettlewell, H. B. D. (1956). Further selection experiments on industrial melanism in the Lepidoptera. Heredity, 10, 287301.CrossRefGoogle Scholar
Kiltie, R. A. (1988). Countershading: universally deceptive or deceptively universal? Trends in Ecology and Evolution, 3, 21–3.CrossRefGoogle ScholarPubMed
Land, M. F., and Nillson, D. E. (2012). Animal Eyes. Oxford University Press.CrossRefGoogle Scholar
Lartviere, S., and Messier, F. (1996). Aposematic behavior in the striped skunk Mephitis mephitis. Ethology, 102, 986–92.CrossRefGoogle Scholar
Lindström, L., Alatalo, R. V., Lyytinen, A., and Mappes, J. (2001). Strong antiapostatic selection against novel rare aposematic prey. Proceedings of the National Academy of Sciences of the United States of America, 98, 9181–4.Google ScholarPubMed
Lindström, L., Alatalo, R. V., and Mappes, J. (1997). Imperfect Batesian mimicry – the effects of the frequency and the distastefulness of the model. Proceedings of the Royal Society of London. Series B, Biological Sciences, 264, 149–53.Google Scholar
Lovell, G. P., Ruxton, G. D., Langridge, K. V., and Spencer, K. A. (2013). Egg-laying substrate selection for optimal camouflage by quail. Current Biology, 23, 260–4.CrossRefGoogle ScholarPubMed
Lynn, S. K. (2005). Learning to avoid aposematic prey. Animal Behaviour, 70, 1221–6.CrossRefGoogle Scholar
Maan, M. E., and Cummings, M. E. (2012). Poison frog colors are honest signals of toxicity, particularly for bird predators. American Naturalist, 179, E114.CrossRefGoogle ScholarPubMed
Mappes, J., Marples, N., and Endler, J. (2005). The complex business of survival by aposematism. Trends in Ecology and Evolution, 20, 598603.CrossRefGoogle ScholarPubMed
Marples, N. M., van Veelen, W., and Brakefield, P. M. (1994). The relative importance of colour, taste and smell in the protection of an aposematic insect Coccinella septempunctata. Animal Behaviour, 48, 967–74.CrossRefGoogle Scholar
Melin, A. D., Fedigan, L. M., Hiramatsu, C., Sendall, C. L., and Kawamura, S. (2007). Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus. Animal Behaviour, 73, 205–14.CrossRefGoogle Scholar
Merilaita, S., and Lind, J. (2005). Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proceedings of the Royal Society of London. Series B, Biological Sciences, 272, 665–70.Google ScholarPubMed
Merilaita, S., Lyytinen, A., and Mappes, J. (2001). Selection for cryptic coloration in a visually heterogeneous habitat. Proceedings of the Royal Society of London, Series B, Biological Sciences, 268, 1925–9.Google Scholar
Merilaita, S., Schaefer, H. M., and Dimitrova, M. (2013). What is camouflage through distractive markings? Behavioral Ecology, 24, e1271–2.CrossRefGoogle Scholar
Merilaita, S., and Stevens, M. (2011). Crypsis through background matching. In Stevens, M. and Merilaita, S. (eds.), Animal Camouflage: Mechanisms and Function (pp. 1733). Cambridge University Press.CrossRefGoogle Scholar
Merilaita, S., Tuomi, J., and Jormalainen, V. (1999). Optimisation of cryptic colorations in heterogeneous habitats. Biological Journal of the Linnean Society, 67, 151–61.CrossRefGoogle Scholar
Mills, S. L., Zimova, M., Oyler, J., Running, S., Abatzoglou, J. T., and Lukacs, P. M. (2013). Camouflage mismatch in seasonal coat color due to decreased snow duration. Proceedings of the National Academy of Sciences of the United States of America, 110, 7360–5.Google ScholarPubMed
Müller, F. (1879). Ituna and Thyridia; a remarkable case of mimicry in butterflies. Transactions of the Entomological Society of London, 1879, 20–9.Google Scholar
Myers, C. W., and Daly, J. W. (1976). Preliminary evaluation of skin toxins and vocalizations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). Bulletin of the American Museum of Natural History, 157, 177262.Google Scholar
Nishida, R. (1994). Sequestration of plant secondary compounds by butterflies and moths. Chemoecology, 5, 127–38.Google Scholar
Oliveira, P. S., and Sazima, I. (1984). The adaptive bases of ant-mimicry in a neotropical aphantochilid spider (Araneae, Aphantochilidae). Biological Journal of the Linnean Society, 22, 145–55.Google Scholar
Olofsson, M., Dimitrova, M., and Wiklund, C. (2013). The white ‘comma’ as a distractive mark on the wings of comma butterflies. Animal Behaviour, 86, 1325–31.CrossRefGoogle Scholar
Osorio, D., Jones, C. D., and Vorobyev, M. (1999b). Accurate memory for color but not pattern contrast in chicks. Current Biology, 9, 199202.CrossRefGoogle Scholar
Osorio, D., Miklósi, A., and Gonda, Z. (1999a). Visual ecology and perception of coloration patterns by domestic chicks. Evolutionary Ecology, 13, 673–89.CrossRefGoogle Scholar
Osorio, D., and Srinivasan, M. V. (1991). Camouflage by edge enhancement in animal coloration patterns and its implications for visual mechanisms. Proceedings of the Royal Society of London. Series B, Biological Sciences, 244, 81–5.Google ScholarPubMed
Osorio, D., and Vorobyev, M. (2008). A review of the evolution of animal color vision and visual communication signals. Vision Research, 48, 2042–51.CrossRefGoogle ScholarPubMed
Peichl, L., Behrmann, G., and Kroèger, R. H. (2001). For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. European Journal of Neuroscience, 13, 1520–8.CrossRefGoogle ScholarPubMed
Pietrewicz, A. T., and Kamil, A. C. (1977). Visual detection of cryptic prey by blue jays (Cyanocitta cristata). Science, 195, 580–2.CrossRefGoogle ScholarPubMed
Plowright, R. C., and Owen, R. E. (1980). The evolutionary significance of bumblebee color patterns: a mimetic interpretation. Evolution, 34, 622–37.CrossRefGoogle Scholar
Poulton, E. B. (1890). The Colors of Animals, Their Meaning and Use, Especially Considered in the Case of Insects. New York: D. Appleton and Company.Google Scholar
Prum, R. O. (2006). Anatomy, physics, and evolution of structural colors. In Hill, G. E. and McGraw, K. J. (eds..), Bird Coloration, vol. I1: Mechanisms and Measurements (pp. 340). London: Harvard University Press.Google Scholar
Riipi, M., Alatalo, R. V., Lindstrom, L., and Mappes, J. (2001). Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature, 413, 512–14.CrossRefGoogle ScholarPubMed
Roper, T. J., and Redston, S. (1987). Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning. Animal Behaviour, 35, 739–47.CrossRefGoogle Scholar
Roper, T. J., and Wistow, R. (1986). Aposematic coloration and avoidance learning in chicks. Quarterly Journal of Experimental Psychology, B, 38, 141–9.Google Scholar
Rosenblum, E. B., and Harmon, L. J. (2011). “Same but different”: replicated ecological speciation at White Sands. Evolution, 65, 946–60.CrossRefGoogle ScholarPubMed
Rowland, H. M. (2009). From Abbott Thayer to the present day: what have we learned about the function of countershading? Proceedings of the Royal Society of London. Series B, Biological Sciences, 364, 519–27.Google Scholar
Rowland, H. M., Cuthill, I. C., Harvey, I. F., Speed, M. P., and Ruxton, G. D. (2008). Can’t tell the caterpillars from the trees: countershading enhances survival in a woodland. Proceedings of the Royal Society of London. Series B, Biological Sciences, 275(1651), 2539–45.Google Scholar
Rowland, H. M., Speed, M. P., Ruxton, G. D., Edmunds, M., Stevens, M., and Harvey, I. F. (2007). Countershading enhances cryptic protection: an experiment with wild birds and artificial prey. Animal Behaviour, 74, 1249–58.CrossRefGoogle Scholar
Ruxton, G. D., Sherratt, T. N., and Speed, M. P. (2004a). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press.CrossRefGoogle Scholar
Ruxton, G. D., Speed, M. P., and Kelly, D. J. (2004b). What, if anything, is the adaptive function of countershading? Animal Behaviour, 68, 445–51.CrossRefGoogle Scholar
Saito, A., Mikami, A., Kawamura, S., Ueno, Y., Hiramatsu, C., Widayati, K. A., Suryobroto, B., et al. (2005). Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates. American Journal of Primatology, 67, 425–36.Google ScholarPubMed
Sargent, T. D. (1966). Background selections of geometrid and noctuid moths. Science, 154, 1674–5.CrossRefGoogle Scholar
Savage, J. M., and Slowinski, J. B. (1992). The coloration of the venomous coral snakes (family Elapidae) and their mimics (families Aniliidae and Colubridae). Biological Journal of the Linnean Society, 45, 235–54.Google Scholar
Sbordoni, V., Bullini, L., Scarpelli, G., Forestiero, S., and Rampini, M. (1979). Mimicry in the burnet moth Zygaena ephialtes: population studies and evidence of a Batesian–Müllerian situation. Ecological Entomology, 4, 8393.CrossRefGoogle Scholar
Schaefer, H. M., and Stobbe, N. (2006). Disruptive coloration provides a camouflage independent of background matching. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 2427–32.Google ScholarPubMed
Scott-Samuel, N. E., Baddeley, R., Palmer, C. E., and Cuthill, I. C. (2011). Dazzle camouflage affects speed perception. PLoS ONE, 6, e20233.CrossRefGoogle ScholarPubMed
Servedio, M. R. (2000). The effects of predator learning, forgetting, and recognition errors on the evolution of warning coloration. Evolution, 54, 751–63.Google ScholarPubMed
Skelhorn, J., and Rowe, C. (2006). Avian predators taste-reject aposematic prey on the basis of their chemical defence. Biology Letters, 2, 348–50.CrossRefGoogle ScholarPubMed
Skelhorn, J, Rowland, H. M., Delf, J., Speed, M. P., and Ruxton, G. D. (2011). Density-dependent predation influences the evolution and behavior of masquerading prey. Proceedings of the National Academy of Sciences of the United States of America, 108, 6532–6.Google ScholarPubMed
Skelhorn, J., Rowland, H. M., and Ruxton, G. D. (2009). The evolution and ecology of masquerade. Biological Journal of the Linnean Society, 99, 18.CrossRefGoogle Scholar
Skelhorn, J., Rowland, H. M., Speed, M. P., and Ruxton, G. D. (2010). Masquerade: camouflage without crypsis. Science, 327, 51.CrossRefGoogle ScholarPubMed
Skelhorn, J., and Ruxton, G. D. (2010). Predators are less likely to misclassify masquerading prey when their models are present. Biology Letters, 6, 597–9.CrossRefGoogle ScholarPubMed
Sköld, H. N., Aspengren, S., and Wallin, M. (2013). Rapid color change in fish and amphibians – function, regulation, and emerging applications. Pigment Cell & Melanoma Research, 26, 2938.CrossRefGoogle Scholar
Snowden, R. J., Thompson, P., and Troscianko, T. (2006). Basic Vision: An Introduction to Visual Perception. Oxford University Press.Google Scholar
Speed, M. P. (1993a). Müllerian mimicry and the psychology of predation. Animal Behaviour, 45, 571–80.CrossRefGoogle Scholar
Speed, M. P. (1993b). When is mimicry good for predators? Animal Behaviour, 46, 1246–8.CrossRefGoogle Scholar
Speed, M. P., Kelly, D. J., Davidson, A. M., and Ruxton, G. D. (2005). Countershading enhances crypsis with some bird species but not others. Behavioral Ecology, 16, 327–34.CrossRefGoogle Scholar
Speed, M. P., Ruxton, G. D., Blount, J. D., and Stephens, P. A. (2010). Diversification of honest signals in a predator–prey system. Ecology Letters, 13, 744–53.CrossRefGoogle Scholar
Speed, M. P., Ruxton, G. D., Mappes, J., and Sherratt, T. N. (2012). Why are defensive toxins so variable? An evolutionary perspective. Biological Reviews, 87, 874–84.CrossRefGoogle ScholarPubMed
Stevens, M. (2007). Predator perception and the interrelation between different forms of protective coloration. Proceedings of the Royal Society of London. Series B, Biological Sciences, 274, 1457–64.Google ScholarPubMed
Stevens, M. (2013a). Sensory Ecology, Behaviour, and Evolution. Oxford University Press.CrossRefGoogle Scholar
Stevens, M. (2013b). Evolutionary ecology: knowing how to hide your eggs. Current Biology, 23, R106–8.CrossRefGoogle ScholarPubMed
Stevens, M., and Cuthill, I. C. (2006). Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 2141–7.Google ScholarPubMed
Stevens, M., Cuthill, I. C., Windsor, A. M. M., and Walker, H. J. (2006). Disruptive contrast in animal camouflage. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 2433–8Google ScholarPubMed
Stevens, M., Graham, J., Winney, I. S., and Cantor, A. (2008a). Testing Thayer’s hypothesis: can camouflage work by distraction? Biology Letters, 4, 648–50.CrossRefGoogle ScholarPubMed
Stevens, M., and Merilaita, S. (2009). Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Societyof London. Series B, Biological Sciences, 364, 423–7.Google ScholarPubMed
Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C., and Troscianko, T. (2007). Using digital photography to study animal coloration. Biological Journal of the Linnean Society, 90, 211–37.CrossRefGoogle Scholar
Stevens, M., and Ruxton, G. D. (2012). Linking the evolution and form of warning coloration in nature. Proceedings of the Royal Society of London. Series B, Biological Sciences, 279, 417–26.Google ScholarPubMed
Stevens, M., Searle, W. T. L., Seymour, J. E., Marshall, K. M., and Ruxton, G. D. (2011). Motion dazzle and camouflage as distinct anti-predator defenses. BMC Biology, 9, 81.CrossRefGoogle ScholarPubMed
Stevens, M., Troscianko, J., Marshall, K., and Finlay, S. (2013). What is camouflage through distractive markings? A reply to Merilaita et al. (2013). Behavioral Ecology, 24, e1271–2.CrossRefGoogle Scholar
Stevens, M., Winney, I. S., Cantor, A., and Graham, J. (2009). Object outline and surface disruption in animal camouflage. Proceedings of the Royal Society of London. Series B, Biological Sciences, 276, 781–6.Google ScholarPubMed
Stevens, M., Yule, D. H., and Ruxton, G. D. (2008b). Dazzle coloration and prey movement. Proceedings of the Royal Society of London. Series B, Biological Sciences, 275, 2639–43.Google ScholarPubMed
Stuart-Fox, D., and Moussalli, A. (2009). Camouflage, communication and thermoregulation: lessons from colour changing organisms. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 463–70.Google ScholarPubMed
Stuart-Fox, D. M., Moussalli, A., Marshall, N. J., and Owens, I. P. F. (2003). Conspicuous males suffer higher predation risk: visual modelling and experimental evidence from lizards. Animal Behaviour, 66(3), 541–50.CrossRefGoogle Scholar
Summers, K., and Clough, M. E. (2001). The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proceedings of the National Academy of Sciences of the United States of America, 98, 6227–32.Google ScholarPubMed
Symula, R., Schulte, R., and Summers, K. (2001). Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Mullerian mimicry hypothesis. Proceedings of the Royal Society of London. Series B, Biological Sciences, 268, 2415–21.Google ScholarPubMed
Tankus, A., and Yeshurun, Y. (2009). Computer vision, camouflage breaking and countershading. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 529–36.Google ScholarPubMed
Thayer, A. H. (1896). The law which underlies protective coloration. The Auk, 13, 477–82.Google Scholar
Thayer, A. H. (1909). Concealing-Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise Through Color and Pattern: Being a Summary of Abbott H. Thayer’s Discoveries. New York: Macmillan.Google Scholar
Troscianko, J., Lown, A. E., Hughes, A. E., and Stevens, M. (2013). Defeating crypsis: detection and learning of camouflage strategies. PLoS ONE, 8, e73733.CrossRefGoogle ScholarPubMed
Tullberg, B. S., Merilaita, S., and Wiklund, C. (2005). Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. Proceedings of the Royal Society of London. Series B, Biological Sciences, 272, 1315–21.Google ScholarPubMed
Uma, D., Durkee, C., Herzner, G., and Weiss, M. (2013). Double deception: ant-mimicking spiders elude both visually- and chemically-oriented predators. PLoS ONE, 8, e79660.CrossRefGoogle ScholarPubMed
Vignieri., S. N., Larson, J. G., Hoekstra, H. E. (2010). The selective advantage of crypsis in mice. Evolution, 64(7), 2153–8.Google ScholarPubMed
Waldbauer, G. P. (1970). Mimicry of hymenopteran antennae by Syrphidae. Psyche, 77, 45–9.Google Scholar
Wallace, A. R. (1889). Darwinism. London: Macmillan.Google Scholar
Webster, R. J., Hassall, C., Herdman, C. M., Godin, J. G., and Sherratt, T. N. (2013). Disruptive camouflage impairs object recognition. Biology Letters, 9, 20130501.CrossRefGoogle ScholarPubMed
Wertheim, A. H., Hooge, I. T. C., Krikke, K., and Johnson, A. (2006). How important is lateral masking in visual search? Experimental Brain Research, 170, 387402.CrossRefGoogle ScholarPubMed
Wikler, K. C., and Rakic, P. (1990). Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. Journal of Neuroscience, 10, 33903401.CrossRefGoogle ScholarPubMed
Williams, B. L., and Caldwell, R. L. (2009). Intra-organismal distribution of tetrodotoxin in two species of blue-ringed octopuses (Hapalochlaena fasciata and H. lunulata). Toxicon, 54, 345–53.CrossRefGoogle ScholarPubMed
Young, B. A. (2003). Snake bioacoustics: toward a richer understanding of the behavioral ecology of snakes. Quarterly Review of Biology, 78, 303–25.CrossRefGoogle Scholar
Young, R. E., and Roper, C. F. E. (1977). Intensity regulation of bioluminescence during countershading in living midwater animals. Fishery Bulletin, 75.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×