Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T02:03:06.491Z Has data issue: false hasContentIssue false

7 - Future Earth and the Cryosphere

from Part III - Future Earth and the Earth’s Fluid Environment

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 91 - 113
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikari, S. and Ivins, E. R. (2016). Climate-driven polar motion: 2003–2015. Science Advances, 2(4), p.e1501693.Google Scholar
Aitken, A. R. A., Roberts, J. L., van Ommen, T. D., Young, D. A., Golledge, N. R., Greenbaum, J. S., Blankenship, D. D., and Siegert, M. J. (2016). Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature, 533(7603), 385389.Google Scholar
Allison, I., Colgan, W., King, M., and Paul, F. (2015). Ice sheets, glaciers and sea-level. In: Haeberli, W. and Whiteman, C. (eds.): Snow and Ice-Related Hazards, Risks and Disasters, pp. 713747, Elsevier, Amsterdam.Google Scholar
Andersen, M. L., Stenseng, L., Skourup, H., Colgan, W., Khan, S. A., Kristensen, S. S., Andersen, S. B., Box, J. E., Ahlstrøm, A. P., Fettweis, X., and Forsberg, R. (2015). Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth and Planetary Science Letters, 409, 8995.Google Scholar
Arendt, A., Bliss, A., Bolch, T., Cogley, J., Gardner, A., Hagen, J.-O. et al. (2015). Randolph glacier inventory – a dataset of global glacier outlines: Version 5.0. GLIMS Technical Report.Google Scholar
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W. (2014). The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophysical Journal International, 198(1), 537563, doi:10.1093/gji/ggu140.Google Scholar
Austermann, J., Mitrovica, J. X., Latychev, K., and Milne, G. A. (2013). Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate. Nat. Geosci., 6(7), 553557. http://dx.doi.org/10.1038/ngeo1859.Google Scholar
Bahr, D. B., Dyurgerov, M., and Meier, M. F. (2009). Sea‐level rise from glaciers and ice caps: a lower bound. Geophysical Research Letters, 36(3).Google Scholar
Bahr, D. B., Meier, M. F., and Peckham, S. D. (1997). The physical basis of glacier volume-area scaling. J. Geophys. Res., 102(B9), 2035520362.Google Scholar
Barletta, V. R., Sørensen, L. S., and Forsberg, R. (2013). Scatter of mass changes estimates at basin scale for Greenland and Antarctica. The Cryosphere, 7(5), 14111432.Google Scholar
Barrett, P. J. (1996). Antarctic paleoenvironment through Cenozoic times – a review. Terr. Antarct. 3, 103119.Google Scholar
Bentley, M. J. (1999). Volume of Antarctic ice at the Last Glacial Maximum, and its impact on global sea level change. Quaternary Science Reviews, 18(14), 15691595.Google Scholar
Bentley, M. J., Fogwill, C. J., Le Brocq, A. M., Hubbard, A. L., Sugden, D. E., Dunai, T. J., and Freeman, S. P. (2010). Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment: constraints on past ice volume change. Geology, 38(5), 411414.Google Scholar
Bevis, M., Wahr, J., Khan, S., Madsen, F., Brown, A., and Willis, M. et al. (2012). Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change. Proc. Nat. Acad. Sci. USA, 109(30), 1194411948. http://dx.doi.org/10.1073/pnas.1204664109.Google Scholar
Bevis, M., Kendrick, E., Smalley, R., Dalziel, I., Caccamise, D., Sasgen, I., Helsen, M., Taylor, F. W., Zhou, H., Brown, A., Raleigh, D., Willis, M., Wilson, T., and Konfal, S. (2009). Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochemistry Geophysics Geosystems, 10, Q10005, doi:10.1029/2009gc002642.Google Scholar
Bindschadler, R. A., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H., Fastook, J., (2013). Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). Journal of Glaciology, 59(214), 195224.Google Scholar
Bingham, R. G., Ferraccioli, F., King, E. C., Larter, R. D., Pritchard, H. D., Smith, A. M., and Vaughan, D. G. (2012). Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts. Nature, 487(7408), 468471.Google Scholar
Boening, C., Lebsock, M., Landerer, F., and Stephens, G. (2012). Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett., 39(21), L21501. http://dx.doi.org/10.1029/ 2012gl053316.Google Scholar
Chen, J. L., Wilson, C. R., and Tapley, B. D. (2006). Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313, 1958–60.Google Scholar
Chen, J. L., Wilson, C. R., and Tapley, B. D. (2011). Interannual variability of Greenland ice losses from satellite gravimetry. J. Geophys. Res., 116, B07406.Google Scholar
Chen, J. L., Wilson, C. R., Ries, J. C., and Tapley, B. D. (2013). Rapid ice melting drives Earth's pole to the east. Geophysical Research Letters, 40(11), 26252630.Google Scholar
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A. et al. (2013). Sea level change. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.): Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M. (2009). The last glacial maximum. Science, 325(5941), 710714.Google Scholar
Clark, P. U., Mitrovica, J. X., Milne, G. A., and Tamisiea, M. E. (2002). Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science, 295(5564), 24382441.Google Scholar
Clark, P. U. and Tarasov, L. (2014). Closing the sea level budget at the Last Glacial Maximum. Proceedings of the National Academy of Sciences, 111(45), 1586115862, doi:10.1073/pnas.1418970111.Google Scholar
Cogley, J. G. (2005). Mass and Energy Balances of Glaciers and Ice Sheets. In: Encyclopedia of Hydrological Sciences. Wiley Online Library, John Wiley & Sons.Google Scholar
Cogley, J. G. (2009). Geodetic and direct mass-balance measurements: comparison and joint analysis. Annals of Glaciology, 50(50), 96100.Google Scholar
Cornford, S. L., Martin, D. F., Payne, A. J., Ng, E. G., Le Brocq, A. M., Gladstone, R. M., Edwards, T. L., Shannon, S. R., Agosta, C., Van Den Broeke, M. R., and Hellmer, H. H. (2015). Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. The Cryosphere, 9, 15791600.Google Scholar
DeConto, R. M. and Pollard, D. (2003). A coupled climate–ice sheet modeling approach to the early Cenozoic history of the Antarctic ice sheet. Palaeogeography, Palaeoclimatology, Palaeoecology, 198(1), 3952.Google Scholar
DeConto, R. M. and Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise. Nature, 531(7596), 591597.Google Scholar
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J., Ligtenberg, S., van den Broeke, M., and Moholdt, G. (2013). Calving fluxes and melt rates of Antarctic ice shelves. Nature, 502, 8992.Google Scholar
Deschamps, P., Durand, N., Bard, E., Hamelin, B., Camoin, G., Thomas, A. L., Henderson, G. M., Okuno, J. I., and Yokoyama, Y. (2012). Ice-sheet collapse and sea-level rise at the Bolling warming 14,600 years ago. Nature, 483(7391), 559564.Google Scholar
Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E., Barker, P. M., and Dunn, J. R. (2008). Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093. http://dx.doi.org/10.1038/nature07080.Google Scholar
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E. (2015). Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science, 349(6244), aaa4019.Google Scholar
Dutton, A. and Lambeck, K. (2012). Ice volume and sea level during the last interglacial. Science, 337(6091), 216219.Google Scholar
Dyurgerov, M. B. and Meier, M. F. (2005). Glaciers and the changing earth system: a 2004 snapshot. Institute of Arctic and Alpine Research, University of Colorado, Boulder.Google Scholar
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and van den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41(3), 2013GL059010, doi:10.1002/2013gl059010.Google Scholar
Ewert, H., Groh, A. and Dietrich, R. (2012). Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J. Geodyn., 59–60, 111123.Google Scholar
Fahnestock, M., Scambos, T., Moon, T., Gardner, A., Haran, T., and Klinger, M. (2016). Rapid large-area mapping of ice flow using Landsat 8. Remote Sensing of Environment, 185, 8494.Google Scholar
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O., Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and Le Brocq, A. M. (2014). Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nature Climate Change, 4(2), 117121.Google Scholar
Fretwell, P. T., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R. et al. (2013). Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 375393.Google Scholar
Fogwill, C. J., Turney, C. S., Meissner, K. J., Golledge, N. R., Spence, P., Roberts, J. L., England, M. H., Jones, R. T., and Carter, L. (2014). Testing the sensitivity of the East Antarctic ice sheet to southern ocean dynamics: past changes and future implications. Journal of Quaternary Science, 29(1), 9198.Google Scholar
Forsberg, R., Sørensen, L., and Simonsen, S. (2016). Greenland and Antarctica ice sheet mass changes and effects on global sea level. Surv. Geophys., doi:10.1007/s10712-016-9398-7.Google Scholar
Fu, Y., Freymueller, J. T., and Jensen, T. (2012). Seasonal hydrological loading in southern Alaska observed by GPS and GRACE. Geophysical Research Letters, 39(15), L15310, doi:10.1029/2012gl052453.Google Scholar
Gabbi, J., Carenzo, M., Pellicciotti, F., Bauder, A., and Funk, M. (2014). A comparison of empirical and physically based glacier surface melt models for long-term simulations of glacier response. Journal of Glaciology, 60(224), 11401154.Google Scholar
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J. et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134), 852857, doi:10.1126/science.1234532.Google Scholar
Gasson, E., DeConto, R. M., Pollard, D., and Levy, R. H. (2016). Dynamic Antarctic ice sheet during the early to mid-Miocene. Proceedings of the National Academy of Sciences, 113(13), 34593464.Google Scholar
Giesen, R. H. and Oerlemans, J. (2013). Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Climate Dynamics, 41(11–12), 32833300, doi: 10.1007/s00382-013-1743-7.Google Scholar
Golledge, N. R., Fogwill, C. J., Mackintosh, A. N. and Buckley, K. M. (2012). Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing. Proceedings of the National Academy of Sciences, 109(40), 1605216056.Google Scholar
Golledge, N. R., Menviel, L., Carter, L., Fogwill, C. J., England, M. H., Cortese, G., and Levy, R. H. (2014). Antarctic contribution to meltwater pulse 1A from reduced southern Ocean overturning. Nature Communications, 5.Google Scholar
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy, R. H., Fogwill, C. J., and Gasson, E. G. (2015). The multi-millennial Antarctic commitment to future sea-level rise. Nature, 526(7573), 421425.Google Scholar
Gomez, N., Mitrovica, J. X., Huybers, P. and Clark, P. U. (2010). Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nature Geosci., 3(12), 850853, doi:10.1038/ngeo1012.Google Scholar
Gomez, N., Pollard, D., and Mitrovica, J. X. (2013). A 3-D coupled ice sheet – sea level model applied to Antarctica through the last 40 ky. Earth and Planetary Science Letters, 384, 8899, doi:10.1016/j.epsl.2013.09.042.Google Scholar
Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts, J. L., Aitken, A. R. A., Legresy, B., Schroeder, D. M., Warner, R. C., van Ommen, T. D., and Siegert, M. J. (2015). Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nature Geoscience, 8(4), 294298.Google Scholar
Gregoire, L. J., Payne, A. J., and Valdes, P. J. (2012). Deglacial rapid sea level rises caused by ice‐sheet saddle collapses. Nature, 487, 219222, doi:10.1038/nature11257.Google Scholar
Gregory, J. M., and Oerlemans, J. (1998). Simulated future sea-level rise due to glacier melt based on regionally and seasonally resolved temperature changes. Nature, 391(6666), 474476.Google Scholar
Grinsted, A. (2013). An estimate of global glacier volume. The Cryosphere, 7(1), 141151, doi:10.5194/tc-7-141-2013.Google Scholar
Haeberli, W. and Linsbauer, A. (2013). Global glacier volumes and sea level – small but systematic effects of ice below the surface of the ocean and of new local lakes on land. Brief communication. The Cryosphere, 7, 817821.Google Scholar
Hanna, E. H., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., Nicholls, R. J., Ritz, C., Smith, B., Tulaczyk, S., Whitehouse, P. L., and Zwally, H. J. (2013). Ice-sheet mass balance and climate change. Nature, 498, 5159. http://dx.doi.org/10.1038/nature12238.Google Scholar
Harig, C. and Simons, F. J. (2015). Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains. Earth and Planetary Science Letters, 415, 134141.Google Scholar
Harig, C. and Simons, F. J. (2016). Ice mass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago: seasonal cycles and decadal trends. Geophysical Research Letters, 43(7), 31503159, doi:10.1002/2016GL067759.Google Scholar
Heeszel, D. S., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Dalziel, I. W. D., Huerta, A. D., Nyblade, A. A., Wilson, T. J., and Winberry, J. P. (2016). Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities. Journal of Geophysical Research: Solid Earth, doi:10.1002/2015JB012616.Google Scholar
Helm, V., Humbert, A., and Miller, H. (2014). Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8(4), 15391559.Google Scholar
Hirabayashi, Y., Doll, P., and Kanae, S. (2010). Global-scale modeling of glacier mass balances for water resources assessments: Glacier mass changes between 1948 and 2006. Journal of Hydrology, 390(3–4), 245256, doi:10.1016/j.jhydrol.2010.07.001.Google Scholar
Hock, R., de Woul, M., Radic, V., and Dyurgerov, M. (2009). Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophysical Research Letters, 36, L07501 doi:10.1029/2008gl037020.Google Scholar
Holland, P. R., Jenkins, A., and Holland, D. M. (2008). The response of ice shelf basal melting to variations in ocean temperature. J. Clim., 21(11), 25582572.Google Scholar
Holmlund, P., Jansson, P., and Pettersson, R. (2005). A re-analysis of the 58 year mass-balance record of Storglaciaren, Sweden. Annals of Glaciology, 42(1), 389394, doi:10.3189/172756405781812547.Google Scholar
Howat, I. M., Ahn, Y., Joughin, I., van den Broeke, M. R., Lenaerts, J. T. M., and Smith, B. (2011). Mass balance of Greenland’s three largest outlet glaciers, 2000–2010. Geophys. Res. Lett., 38, L12501. http://dx.doi.org/10.1029/2011gl047565.Google Scholar
Hughes, T. 1973. Is the West Antarctic ice sheet disintegrating? Journal of Geophysical Research, 78, 78847910.Google Scholar
Hurkmans, R. T. W. L., Bamber, J. L., Davis, C. H., Joughin, I. R., Khvorostovsky, K. S., Smith, B. S., and Schoen, N. (2014). Time-evolving mass loss of the Greenland ice sheet from satellite altimetry. The Cryosphere, 8, 1725–40.Google Scholar
Huss, M. and Farinotti, D. (2012). Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research: Earth Surface, 117(F4), F04010 doi:10.1029/2012jf002523.Google Scholar
Huss, M. and Hock, R. (2015). A new model for global glacier change and sea-level rise. Frontiers in Earth Science, 3, 54.Google Scholar
Huss, M., Jouvet, G., Farinotti, D., and Bauder, A. (2010). Future high-mountain hydrology: a new parameterization of glacier retreat. Hydrology and Earth System Sciences, 14(5), 815829.Google Scholar
IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.). Cambridge University Press, Cambridge.Google Scholar
IPCC (2007). Climate Change 2007: The Physical Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.). Cambridge University Press, Cambridge.Google Scholar
IPCC (2013). Climate Change 2013: The Physical Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.). Cambridge University Press, Cambridge.Google Scholar
Ivins, E. R., James, T. S., Wahr, J., Schrama, E. J. O., Landerer, F., and Simon, K. (2013). Antarctic contribution to sea-level rise observed by GRACE with improved GIA correction. J. Geophys. Res., 118. http://dx.doi.org/10.1002/jgrb.50208.Google Scholar
Johannessen, O. M., Khvorostovsky, K., Miles, M. W., and Bobylev, L. P. (2005). Recent ice-sheet growth in the interior of Greenland. Science, 310, 10131016.Google Scholar
Jones, R. S., Mackintosh, A. N., Norton, K. P., Golledge, N. R., Fogwill, C. J., Kubik, P. W., Christl, M., and Greenwood, S. L. (2015). Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Nature Communications, 6.Google Scholar
Joughin, I., Smith, B. E., and Medley, B. (2014). Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344(6185), 735738.Google Scholar
Kapnick, S. B., Delworth, T. L., Ashfaq, M., Malyshev, S., and Milly, P. C. D. (2014). Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nature Geoscience, 7, 834840, doi:10.1038/ngeo2269.Google Scholar
Kaser, G., Cogley, J. G., Dyurgerov, M. B., Meier, M. F., and Ohmura, A. (2006). Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophysical Research Letters, 33(19).Google Scholar
Khan, S. A., Kjaer, K. H., Bevis, M., Bamber, J. L., Wahr, J., Kjeldsen, K. K., Bjork, A. A., Korsgaard, N. J., Stearns, L. A., van den Broeke, M. R., Liu, L., Larsen, N. K., and Muresan, I. S. (2014). Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Clim. Change, 4(4), 292299, doi:10.1038/nclimate2161.Google Scholar
Khan, S. A., Aschwanden, A., Bjørk, A., Wahr, J., Kjeldsen, K. K., and Kjær, K. H. (2015). Greenland ice sheet mass balance: a review. Reports on Progress in Physics, 78(4): 046801.Google Scholar
Khan, S. A., Sasgen, I., Bevis, M., van Dam, T., Bamber, J. L., Wahr, J., Willis, M., Kjær, K. H., Wouters, B., Helm, V., Csatho, B., Fleming, K., Bjørk, A. A., Aschwanden, A., Knudsen, P., and Munneke, P. K. (2016). Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances, 2(9), doi:10.1126/sciadv.1600931.Google Scholar
Khazendar, A., Schodlok, M. P., Fenty, I., Ligtenberg, S. R. M., Rignot, E., and Van den Broeke, M. R. (2013). Observed thinning of Totten Glacier is linked to coastal polynya variability. Nature Communications, 4.Google Scholar
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Funder, S., Larsen, N. K., Bamber, J. L., Colgan, W., van den Broeke, M., Siggaard-Andersen, M. L., and Nuth, C. (2015). Spatial and temporal distribution of mass loss from the Greenland ice sheet since AD 1900. Nature, 528(7582), 396400.Google Scholar
King, M. A., Bingham, R. J., Moore, P., Whitehouse, P. L., Bentley, M. J., and Milne, G. A. (2012). Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature, 491(7425), 586589.Google Scholar
King, M. A., Whitehouse, P. L., and van der Wal, W. (2016). Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations. Geophysical Journal International, 204(1), 324330, doi:10.1093/gji/ggv461.Google Scholar
Konrad, H., Sasgen, I., Pollard, D., and Klemann, V. (2015). Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth and Planetary Science Letters, 432, 254264, doi: http://dx.doi.org/10.1016/j.epsl.2015.10.008.Google Scholar
Konrad, H., Gilbert, L., Cornford, S., Payne, A., Hogg, A., Muir, A., and Shepherd, A. (2016). Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophysical Research Letters, doi:10.1002/2016GL070733.Google Scholar
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer, M. (2013). A probabilistic assessment of sea level variations within the last interglacial stage. Geophys. J. Int., 193, 711716.Google Scholar
Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho, B., Frederick, E., Manizade, S., Martin, C., Sonntag, J., and Swift, R. (2004). Greenland ice sheet: increased coastal thinning. Geophysical Research Letters, 31, L24402.Google Scholar
Lambeck, K., Yokoyama, Y., and Purcell, T. (2002). Into and out of the last glacial maximum: sea-level change during oxygen isotope stages 3 and 2. Quat. Sci. Rev., 21(1), 343360.Google Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M. (2014). Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences, 111(43), 1529615303.Google Scholar
Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., and Zhang, T. (2007). Observations: changes in snow, ice and frozen ground. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.), Climate Change 2007: The Physical Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 337383 Cambridge University Press, Cambridge.Google Scholar
Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E., and Munneke, P. Kuipers (2012). A new, high resolution surface mass balance map of Antarctica (1979–2010) based on regional climate modeling. Geophys. Res. Lett., 39(1–5), L04501.Google Scholar
Lisiecki, L. E. and Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1).Google Scholar
Liu, J., Milne, G. A., Kopp, R. E., Clark, P. U., and Shennan, I. (2016). Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A. Nature Geoscience, 9(2), 130134.Google Scholar
Loriaux, T. and Casassa, G. (2013). Evolution of glacial lakes from the Northern Patagonian Icefield and terrestrial water storage in a sea-level rise context. Global Planet. Change, 102, 3340.Google Scholar
Luthcke, S. B., Zwally, H. J., Abdalati, W., Rowlands, D. D., Ray, R. D., Nerem, R. S., Lemoine, F. G., McCarthy, J. J., and Chinn, D. S. (2006). Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314, 12861289.Google Scholar
Luthcke, S. B., Sabaka, T. J., Loomis, B. D., Arendt, A. A., McCarthy, J. J., and Camp, J. (2013). Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology, 59(216), 613631.Google Scholar
Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White, D., Pollard, D., DeConto, R., Fink, D., Zwartz, D., and Gore, D. (2011). Retreat of the East Antarctic ice sheet during the last glacial termination. Nature Geoscience, 4(3), 195202.Google Scholar
Mackintosh, A., Anderson, B., Lorrey, A., Renwick, J., Frei, P., and Dean, S. (2017). Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nature Communications, doi:10.1038/ncomms1420.Google Scholar
Martín Español, A., Mangion, A. Zammit, Clarke, P. J., Flament, T., Helm, V., King, M. A., Luthcke, S. B., Petrie, E., Rémy, F., Schön, N., and Wouters, B. (2016a). Spatial and temporal Antarctic ice sheet mass trends, glacio isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. Journal of Geophysical Research: Earth Surface, 121(2), 182200, doi:10.1002/2015JF003550.Google Scholar
Martín-Español, A., King, M. A., Zammit-Mangion, A., Andrews, S. B., Moore, P., and Bamber, J. L. (2016b). An assessment of forward and inverse GIA solutions for Antarctica. Journal of Geophysical Research: Solid Earth, 121(9), 69476965, doi:10.1002/2016jb013154.Google Scholar
Marzeion, B., Cogley, J. G., Richter, K., and Parkes, D. (2014). Attribution of global glacier mass loss to anthropogenic and natural causes. Science, 345, 919921, doi:10.1126/science.1254702.Google Scholar
Marzeion, B., Champollion, N., Haeberli, W., Langley, K., Leclercq, P., and Paul, F. (2017). Observation-based estimates of global glacier mass change and its contribution to sea-level change. Surveys in Geophysics, 1–26.Google Scholar
Marzeion, B., Jarosch, A., and Hofer, M. (2012). Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere, 6(6), 12951322.Google Scholar
Marzeion, B., Leclercq, P. W., Cogley, J. G., and Jarosch, A. H. (2015). Brief communication: global reconstructions of glacier mass change during the 20th century are consistent. The Cryosphere, 9(6), 23992404.Google Scholar
McMillan, M., Shepherd, A., Sundal, A., Briggs, K., Muir, A., Ridout, A., Hogg, A., and Wingham, D. (2014). Increased ice losses from Antarctica detected by CryoSat‐2. Geophysical Research Letters, 41(11), 38993905.Google Scholar
Meier, M. F. (1984). Contribution of small glaciers to global sea level. Science, 226(4681), 14181421, doi: 10.1126/science.226.4681.1418.Google Scholar
Meier, M. F., Dyurgerov, M. B., Rick, U. K., O'Neel, S., Pfeffer, W. T., Anderson, R. S. et al. (2007). Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 10641067.Google Scholar
Mengel, M. and Levermann, A. (2014). Ice plug prevents irreversible discharge from East Antarctica. Nat. Clim. Change, 4(6), 451455.Google Scholar
Mercer, J. (1978). West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature, 271, 321325.Google Scholar
Mernild, S. H., Lipscomb, W. H., Bahr, D. B., Radic, V., and Zemp, M. (2013). Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties. The Cryosphere 7(5), 15651577, doi: 10.5194/tc-7-1565-2013.Google Scholar
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H. and Larour, E. (2014). Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nature Geoscience, 7(6).Google Scholar
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., and Carter, L. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458(7236), 322328.Google Scholar
Neckel, N., Kropacek, J., Bolch, T., and Hochschild, V. (2014). Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett., 9. http://dx.doi.org/10.1088/1748-9326/9/1/014009.Google Scholar
Nick, F. M., Vieli, A., Howat, I. M., and Joughin, I. (2009). Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2, 110114.Google Scholar
Nield, G. A., Barletta, V. R., Bordoni, A., King, M. A., Whitehouse, P. L., Clarke, P. J., Domack, E., Scambos, T. A., and Berthier, E. (2014). Rapid bedrock uplift in the Antarctic peninsula explained by viscoelastic response to recent ice unloading. Earth and Planetary Science Letters, 397, 3241.Google Scholar
Ohmura, A. (2004). Cryosphere during the twentieth century. The State of the Planet: Frontiers and Challenges in Geophysics, American Geophysical Union, Geophysical Monograph 150, 239–257.Google Scholar
Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh, R. et al. (2013). Grounding-line migration in plan-view marine ice models: results of the ice2sea MISMIP3d intercomparison. J. Glaciol., 59, 410422.Google Scholar
Pattyn, F. and Durand, G. (2013). Why marine ice sheet model predictions may diverge in estimating future sea level rise. Geophysical Research Letters, 40(16), 43164320.Google Scholar
Peltier, W. (2004). Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111.Google Scholar
Pfeffer, W. T., Arendt, A., Bliss, A., Bolch, T., Cogley, J., Gardner, A., Hagen, J., Hock, R., Kaser, G., Kienholz, C., Miles, E., Moholdt, G., Mölg, N., Paul, F., Radic, V., Rastner, P., Raup, B., Rich, J., and Sharp, M. J. (2014). The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol., 60(221), 537551.Google Scholar
Pollard, D. and DeConto, R. M. (2009). Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458(7236), 329332.Google Scholar
Pollard, D., DeConto, R. M., and Alley, R. B. (2015). Potential Antarctic ice sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters, 412, 112121.Google Scholar
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R. and Padman, L. (2012). Antarctic ice loss driven by ice-shelf melt. Nature, 484, 502505.Google Scholar
Radic, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., and Cogley, J. G. (2014). Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics, 42(1–2), 3758, doi:10.1007/s00382-013-1719-7.Google Scholar
Radic, V. and Hock, R. (2011). Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geoscience, 4(2), 9194, doi:10.1038/Ngeo1052.Google Scholar
Radic, V. and Hock, R. (2014). Glaciers in the Earth's hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales. Surveys in Geophysics, 35(3), 813837, doi:10.1007/s10712-013-9262-y.Google Scholar
Ramillien, G., Lombard, A., Cazenave, A., Ivins, E. R., Llubes, M., Remy, F., and Biancale, R. (2006). Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob. Planet. Change, 53, 198208.Google Scholar
Raper, S. C., and Braithwaite, R. (2006). Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature, 439(7074), 311313, doi: 10.1038/nature04448.Google Scholar
Raper, S. C. B., Brown, O., and Braithwaite, R. J. (2000). A geometric glacier model for sea-level change calculations. Journal of Glaciology, 46(154), 357368, doi: 10.3189/172756500781833034.Google Scholar
Reager, J. T., Gardner, A. S., Famiglietti, J. S., Wiese, D. N., Eicker, A., and Lo, M. H. (2016). A decade of sea level rise slowed by climate-driven hydrology. Science, 351(6274), 699703, doi:10.1126/science.aad8386.Google Scholar
RGI Consortium (2017). Randolph Glacier Inventory – a Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado. Digital Media, doi: https://doi.org/10.7265/N5-RGI-60.Google Scholar
Richter, A., Ivins, E., Lange, H., Mendoza, L., Schröder, L., Hormaechea, J. L., Casassa, G., Marderwald, E., Fritsche, M., Perdomo, R., and Horwath, M. (2016). Crustal deformation across the Southern Patagonian Icefield observed by GNSS. Earth and Planetary Science Letters, 452, 206215.Google Scholar
Richter, A., Horwath, M., and Dietrich, R. (2016). Comment on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). Journal of Glaciology, 62(233), 604606, doi:10.1017/jog.2016.60.Google Scholar
Rignot, E., Mouginot, J., and Scheuchl, B. (2011a). Ice flow of the Antarctic ice sheet. Science 333, 14271430.Google Scholar
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J. (2011b). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503.Google Scholar
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B. (2013). Ice shelf melting around Antarctica. Science, 341(6143), 266270. http://dx.doi.org/10.1126/science.1235798.Google Scholar
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B. (2014). Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters, 41(10), 35023509.Google Scholar
Rintoul, S. R., Silvano, A., Pena-Molino, B., van Wijk, E., Rosenberg, M., Greenbaum, J. S., and Blankenship, D. D. (2016). Ocean heat drives rapid basal melt of the Totten Ice Shelf. Science Advances, 2(12), p. e1601610.Google Scholar
Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and Hindmarsh, R. C. (2015). Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature, 528(7580), 115118.Google Scholar
Riva, R., Bamber, J., Lavallée, D., and Wouters, B. (2010). Sea-level fingerprint of continental water and ice mass change from GRACE. Geophys. Res. Lett., 37, L19605. http://dx.doi.org/10.1029/ 2010GL044770.Google Scholar
Roe, G., Baker, M., and Herla, F. (2017). Centennial glacier retreat as categorical evidence of regional climate change. Nature Geoscience,10, 95, doi:10.1038/NGEO2863.Google Scholar
Rosenau, R., Scheinert, M., and Dietrich, R. (2015). A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery. Remote Sensing of Environment, 169, 119. https://doi.org/10.1016/j.rse.2015.07.012.Google Scholar
Sabadini, R., Yuen, D. A., and Boschi, E. (1982). Polar wandering and the forced responses of a rotating, multilayered, viscoelastic planet. Journal of Geophysical Research: Solid Earth, 87(B4), 28852903, doi:10.1029/JB087iB04p02885.Google Scholar
Sasgen, I., van den Broeke, M., Bamber, J. L., Rignot, E., Sørensen, L. S., Wouters, B., Martinec, Z., Velicogna, I., and Simonsen, S. B. (2012). Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett., 333–334, 293303.Google Scholar
Sasgen, I., Konrad, H., Ivins, E. R., Van den Broeke, M. R., Bamber, J. L., Martinec, Z., and Klemann, V. (2013). Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. The Cryosphere, 7, 14991512.Google Scholar
Scambos, T. and Shuman, C. (2016). Comment on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). Journal of Glaciology, 62(233), 599603, doi:10.1017/jog.2016.59.Google Scholar
Schoof, C. (2007). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research: Earth Surface, 112(F3).Google Scholar
Schoof, C. (2011). Marine ice sheet dynamics. Part 2. A Stokes flow contact problem. Journal of Fluid Mechanics, 679, 122155.Google Scholar
Schrama, E. J. O. and Wouters, B. (2011). Revisiting Greenland ice sheet mass loss observed by GRACE. J. Geophys. Res., 116, B02407. http://dx.doi.org/10.1029/2009JB006847.Google Scholar
Schrama, E. J., Wouters, B., and Rietbroek, R. (2014). A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. Journal of Geophysical Research: Solid Earth, 119(7), 60486066.Google Scholar
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S. et al. (2012). A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189.Google Scholar
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I. et al. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 556, 219222.Google Scholar
Siemes, C., Ditmar, P., Riva, R. E. M., Slobbe, D. C., Liu, X. L., and Farahani, H. H. (2013). Estimation of mass change trends in the Earth’s system on the basis of GRACE satellite data, with application to Greenland. J. Geod., 87, 6987.Google Scholar
Slangen, A. B. A., Katsman, C. A., van de Wal, R. S. W., Vermeersen, L. L. A., and Riva, R. E. M. (2012). Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Climate Dynamics, 38(5–6), 11911209, doi:10.1007/s00382-011-1057-6.Google Scholar
Slangen, A. B. and Lenaerts, J. T. (2016). The sea level response to ice sheet freshwater forcing in the Community Earth System Model. Environmental Research Letters, 11(10), 104002.Google Scholar
Slobbe, D. C., Ditmar, P., and Lindenbergh, R. C. (2009). Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data. Geophys. J. Int., 176, 95106.Google Scholar
Sørensen, L. S., Simonsen, S. B., Nielsen, K., Lucas-Picher, P., Spada, G., Adalgeirsdottir, G., Forsberg, R. and Hvidberg, C. S. (2011). Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density. The Cryosphere, 5, 173186.Google Scholar
Stanford, J. D., Hemingway, R., Rohling, E. J., Challenor, P. G., Medina-Elizalde, M., and Lester, A. J. (2010). Sea-level probability for the last deglaciation: a statistical analysis of far-field records. Global Planet. Change, 79(3), 193203. http://dx.doi.org/10.1016/j.gloplacha.2010.11.002.Google Scholar
Sutterley, T. C., Velicogna, I., Rignot, E., Mouginot, J., Flament, T., van den Broeke, M. R., van Wessem, J. M., and Reijmer, C. H. (2014). Mass loss of the Amundsen Sea embayment of West Antarctica from four independent techniques. Geophysical Research Letters, 41(23), 84218428, doi:10.1002/2014GL061940.Google Scholar
Tamisiea, M. E. and Mitrovica, J. X. (2011). The moving boundaries of sea level change: understanding the origins of geographic variability. Oceanography, 24(2), 2439, doi:10.5670/ oceanog.2011.25.Google Scholar
Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An Overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485498, doi:10.1175/Bams-D-11-00094.1.Google Scholar
Tedesco, M., Box, J. E., Cappelen, J., Fausto, R. S., Fettweis, X., Mote, T., Smeets, C. J. P. P., van As, D., Velicogna, I., van de Wal, R. S. W., and Wahr, J. (2016). Greenland ice sheet [in Arctic Report Card 2016], http://www.arctic.noaa.gov/Report-Card.Google Scholar
Thomas, I. D., King, M. A., Bentley, M. J., Whitehouse, P. L., Penna, N. T., Williams, S. D. P., Riva, R. E. M., Lavallee, D. A., Clarke, P. J., King, E. C., Hindmarsh, R. C. A., and Koivula, H. (2011). Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophysical Research Letters, 38, L22302, doi:10.1029/2011GL049277.Google Scholar
Thomas, R. H. (1979). The dynamics of marine ice sheets. Journal of Glaciology, 24, 167177.Google Scholar
Thomas, R. H., Frederick, E., Krabill, W., Manizade, S., and Martin, C. (2006). Progressive increase in ice loss from Greenland. Geophys. Res. Lett., 33, L10503.Google Scholar
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. et al. (2009). Partitioning recent Greenland mass loss. Science, 326. http://dx.doi.org/10.1126 /science.1178176.Google Scholar
van de Wal, W., Whitehouse, P. L., and Schrama, E. J. O. (2015). Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica. Earth and Planetary Science Letters, 414, 134143, doi:10.1016/j.epsl.2015.01.001.Google Scholar
van de Wal, R.S.W., and Wild, M. (2001). Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high resolution GCM. Climate Dynamics, 18(3–4), 359366.Google Scholar
Vaughan, D.G., Comiso, J.C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T. (2013). Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds.). Cambridge and New York: Cambridge University Press, pp. 317382, doi:10.1017/CBO9781107415324.012.Google Scholar
Velicogna, I., 2009. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett., 36, L19503.Google Scholar
Velicogna, I. and Wahr, J. (2006). Acceleration of Greenland ice mass loss in spring 2004. Nature, 443, 328331.Google Scholar
Velicogna, I. and Wahr, J. (2013). Time‐variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophysical Research Letters, 40(12), 30553063.Google Scholar
Velicogna, I., Sutterley, T. C., and van den Broeke, M. R. (2014). Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters, 41(22), 81308137, doi:10.1002/2014GL061052.Google Scholar
Vieli, A. and Nick, F. M. (2011). Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: issues and implications. Surv. Geophys., 32, 437458.Google Scholar
Wahr, J., Khan, S. A., van Dam, T., Liu, L., van Angelen, J. H., van den Broeke, M. R., and Meertens, C. M. (2013). The use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland. Journal of Geophysical Research: Solid Earth, doi:10.1002/jgrb.50104.Google Scholar
Weber, M. E., Clark, P. U., Kuhn, G., Timmermann, A., Sprenk, D., Gladstone, R., Zhang, X., Lohmann, G., Menviel, L., Chikamoto, M.O., and Friedrich, T. (2014). Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature, 510(7503), 134.Google Scholar
Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A., and Thomas, I. D. (2012). A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int., 190, 14641482.Google Scholar
Williams, S. D., Moore, P., King, M. A., and Whitehouse, P. L. (2014). Revisiting GRACE Antarctic ice mass trends and accelerations considering autocorrelation. Earth and Planetary Science Letters, 385, 1221.Google Scholar
Wouters, B., Chambers, D., and Schrama, E. J. O. (2008). GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett., 35, L20501.Google Scholar
Wouters, B., Bamber, J. L., van den Broeke, M. R., Lenaerts, J. T. M., and Sasgen, I. (2013). Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci., 6(8), 613616. http://dx.doi.org/10.1038/ngeo1874.Google Scholar
Wouters, B., Martin-Español, A., Helm, V., Flament, T., van Wessem, J. M., Ligtenberg, S. R. M., van den Broeke, M. R., and Bamber, J. L. (2015). Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 348(6237), 899903, doi:10.1126/science.aaa5727.Google Scholar
Xu, Z., Schrama, E. J. O., van de Wal, W., van den Broeke, M., and Enderlin, E. M. (2016). Improved GRACE regional mass balance estimates of the Greenland ice sheet cross-validated with the input–output method. The Cryosphere, 10(2), 895912, doi:10.5194/tc-10-895-2016.Google Scholar
Zemp, M., Frey, H., Gartner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F. et al. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), 745762, doi:10.3189/2015JoG15J017.Google Scholar
Zemp, M., Hoelzle, M., and Haeberli, W. (2009). Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Annals of Glaciology, 50(50), 101111.Google Scholar
Zwally, H. J., Giovinetto, M. B., Li, J., Cornejo, H. G., Beckley, M. A., Brenner, A. C., Saba, J. L., and Yi, D. (2005). Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51, 509527.Google Scholar
Zwally, H. J., Li, J., Brenner, A. C., Beckley, M., Cornejo, H. G., Dimarzio, J., Giovinetto, M. B., Neumann, T. A., Robbins, J., Saba, J. L., Yi, D., and Wang, W. (2011). Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. J. Glaciol., 57, 88102.Google Scholar
Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D., and Brenner, A. C. (2015). Mass gains of the Antarctic ice sheet exceed losses. Journal of Glaciology, 61(230), 10191036.Google Scholar
Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D., and Brenner, A. C. (2016a). Response to Comment by T. Scambos and C. Shuman (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). Journal of Glaciology, 62(235), 990992, doi:10.1017/jog.2016.91.Google Scholar
Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D., and Brenner, A. C. (2016b). Response to Comment by A. Richter, M. Horwarth, R. Dietrich (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). Journal of Glaciology, 62(235): 993995, doi:10.1017/jog.2016.92.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×