Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T19:30:00.944Z Has data issue: false hasContentIssue false

3 - Medium access control

Published online by Cambridge University Press:  05 March 2016

Guowang Miao
Affiliation:
KTH Royal Institute of Technology, Stockholm
Jens Zander
Affiliation:
KTH Royal Institute of Technology, Stockholm
Ki Won Sung
Affiliation:
KTH Royal Institute of Technology, Stockholm
Slimane Ben Slimane
Affiliation:
KTH Royal Institute of Technology, Stockholm
Get access

Summary

Overview

In wireless networks, multiple terminals need to communicate at the same time and a medium access control (MAC) protocol allows several terminals to transmit over the wireless channel and to share its capacity.MAC protocols multiplex several data streams of different terminals to share the same channel and deal with issues such as addressing, how a terminal obtains a channel when it needs one, and so forth.

The design of MAC protocols closely relates to the condition of the physical channels. Initially MAC protocols were designed for wired communications where multiple computers need to transmit data packets at the same time in a local area network (LAN). With wired networks, the physical medium can be copper or fiber optics, which are in general very reliable with abundant bandwidth. Packet loss in wired networks is mainly due to collisions and the MAC designs are relatively simple.

The MAC design in wireless networks is much more challenging. The difficulties lie in the following aspects. With wireless communications, a radio signal may experience reflection, diffraction or scattering before reaching its receiver. Any of them will deteriorate the signal and incur variation of signal quality in time, frequency and space. Another main issue is the broadcast nature of wireless channels. For reliable transmission against fading, strong radio transmission power needs to be used by the transmitter. This incurs strong interference with other terminals in the vicinity. The stronger the transmission power or the closer the neighboring terminals, the stronger the interference will be. Because of fading and interference, wireless networks are more vulnerable compared to wired ones. Usually the bit error rate of wired networks is better than 10−6 and that of wireless ones is worse than 10−3. The difficulty also lies in the fact that wireless terminals usually have to operate in half-duplex mode. This is because transmission power is in general much stronger than reception power, and with full-duplex operation the leakage of transmission power to the receiver component will incur very strong self-interference and therefore the terminal will not be able to receive packets or detect a collision when it is sending.

MAC schemes can be divided into two categories, contention-free and contention-based protocols. A contention-free MAC protocol requires a central controller to coordinate the resource allocation and the central controller can be a base station in a cellular network or an access point in a wireless local area network.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

3GPP TS 25.211 V9.2.0. 2010. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical channels and mapping of transport channels onto physical channels (FDD). Sept.
L., Ahlin, J., Zander and S. Ben, Slimane. 2006. Principles of Wireless Communications. Lund: Studentlitteratur.
J. J., Capertanakis. 1979. Improvements in Block Retransmission Schemes. IEEE Trans. Commun., 27(Feb.), 524–532.Google Scholar
L., Kleinrock. 1976. Queueing Systems, Part I: Theory. New York: John Wiley & Sons.
G. W., Miao, Y. (G.), Li and A., Swami. 2012. Channel aware distributed medium access control. IEEE/ACM Trans. Networking, 20(4), 1290–1303.Google Scholar
R., Rom and M., Sidi. 1990. Multiple Access Protocols. New York: Springer-Verlag.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Medium access control
  • Guowang Miao, KTH Royal Institute of Technology, Stockholm, Jens Zander, KTH Royal Institute of Technology, Stockholm, Ki Won Sung, KTH Royal Institute of Technology, Stockholm, Slimane Ben Slimane, KTH Royal Institute of Technology, Stockholm
  • Book: Fundamentals of Mobile Data Networks
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316534298.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Medium access control
  • Guowang Miao, KTH Royal Institute of Technology, Stockholm, Jens Zander, KTH Royal Institute of Technology, Stockholm, Ki Won Sung, KTH Royal Institute of Technology, Stockholm, Slimane Ben Slimane, KTH Royal Institute of Technology, Stockholm
  • Book: Fundamentals of Mobile Data Networks
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316534298.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Medium access control
  • Guowang Miao, KTH Royal Institute of Technology, Stockholm, Jens Zander, KTH Royal Institute of Technology, Stockholm, Ki Won Sung, KTH Royal Institute of Technology, Stockholm, Slimane Ben Slimane, KTH Royal Institute of Technology, Stockholm
  • Book: Fundamentals of Mobile Data Networks
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316534298.004
Available formats
×