Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T00:26:48.751Z Has data issue: false hasContentIssue false

17 - Mediators and Mechanisms of Inflammatory Pain

from PART IV - IMMUNOPHARMACOLOGY

Published online by Cambridge University Press:  05 April 2014

Tony L. Yaksh
Affiliation:
University of California
Charles N. Serhan
Affiliation:
Harvard Medical School
Peter A. Ward
Affiliation:
University of Michigan, Ann Arbor
Derek W. Gilroy
Affiliation:
University College London
Get access

Summary

After tissue injury or exposure of the organ to a foreign body or infectious entity, a complex cascade of cellular and humoral events is initiated. These events, observed in virtually every organ system, including skin, muscle, meninges, dentition, bone, and visceral tissues, fall broadly under the rubric of “inflammation.” In general, this cascade serves to protect and maintain the functional integrity of the systems in the face of insult. The process activates the immune system and directs chemotactic agents, neutrophils, and mononuclear cells to migrate from the vascular bed to the injury site. The cardinal clinical signs of this process, rubor/calor (increased local blood flow) and tumor (swelling secondary to local plasma extravasation) are manifested to varying degrees in all of these tissues. The fourth cardinal sign, dolor (pain), typically accompanies such cascades. The biological processes whereby these inflammatory cascades serve to initiate and sustain a pain state are the focus of this commentary.

INFLAMMATORY PAIN PHENOTYPE

The acute application of a thermal or mechanical stimulus of such intensity as to potentially produce tissue injury will typically evoke a somatic escape response (e.g., a withdrawal of the stimulated limb) and an autonomic response (e.g., hypertension and tachycardia), a syndrome classically referred to by Sherrington as a nociceptive reflex [1]. These acute responses typically display four characteristics: (i) the magnitude of these responses varies directly with stimulus intensity; (ii) the latency varies inversely with stimulus intensity; (iii) the focus of the response is referred to as the specific site of stimulation (e.g., it is homotopic); and (iv) in the absence of tissue injury, removal of the acute stimulus results in a rapid attenuation of the sensation and the attendant behaviors.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sherrington, C. 1947. The Integrative Action of the Nervous System. New Haven, CT: Yale University Press. 228 pp.Google Scholar
2. Cervero, F. 1994. Sensory innervation of the viscera: peripheral basis of visceral pain. Physiol Rev 74:95–138.CrossRefGoogle ScholarPubMed
3. Neugebauer, V., Han, J.S., Adwanikar, H., Fu, Y., and Ji, G. 2007. Techniques for assessing knee joint pain in arthritis. Mol Pain 3:8.CrossRefGoogle ScholarPubMed
4. Vermeirsch, H., Biermans, R., Salmon, P.L., and Meert, T.F. 2007. Evaluation of pain behavior and bone destruction in two arthritic models in guinea pig and rat. Pharmacol Biochem Behav 87:349–359.CrossRefGoogle ScholarPubMed
5. Christianson, J.A., and Gebhart, G.F. 2007. Assessment of colon sensitivity by luminal distension in mice. Nat Protocol 2: p. 2624–31.CrossRefGoogle ScholarPubMed
6. Delgado-Aros, S., and Camilleri, M. 2005. Visceral hypersensitivity. J Clin Gastroenterol 39:S194–S203; discussion S210.CrossRefGoogle ScholarPubMed
7. Johanek, L., Shim, B., and Meyer, R.A. 2006. Chapter 4 Primary hyperalgesia and nociceptor sensitization. Handb Clin Neurol 81:35–47.Google ScholarPubMed
8. Schaible, H.G., Ebersberger, A., and Von Banchet, G.S. 2002. Mechanisms of pain in arthritis. Ann N Y Acad Sci 966:343–354.CrossRefGoogle ScholarPubMed
9. Dougherty, P.M. 2003. Central sensitization and cutaneous hyperalgesia. Semin Pain Med 1:121–131.CrossRefGoogle Scholar
10. Treede, R.D., Meyer, R.A., Raja, S.N., and Campbell, J.N. 1992. Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol 38:397–421.CrossRefGoogle ScholarPubMed
11. Mulak, A. 2003. Testing of visceral sensitivity. J Physiol Pharmacol 54(Suppl 4):55–72.Google ScholarPubMed
12. Sandkuhler, J. 2009. Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707–758.CrossRefGoogle ScholarPubMed
13. Morris, C.J. 2003. Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol 225:115–121.Google Scholar
14. Dirig, D.M., Salami, A., Rathbun, M.L., Ozaki, G.T., and Yaksh, T.L. 1997. Characterization of variables defining hindpaw withdrawal latency evoked by radiant thermal stimuli. J Neurosci Methods 76:183–191.CrossRefGoogle ScholarPubMed
15. Chaplan, S.R., Bach, F.W., Pogrel, J.W., Chung, J.M., and Yaksh, T.L. 1994. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63.CrossRefGoogle ScholarPubMed
16. Oliveira, P.G., Brenol, C.V., Edelweiss, M.I., Meurer, L., Brenol, J.C., and Xavier, R.M. 2007. Subcutaneous inflammation (panniculitis) in tibio-tarsal joint of rats inoculated with complete Freund's adjuvant. Clin Exp Med 7:184–187.CrossRefGoogle ScholarPubMed
17. Waksman, B.H. 2002. Immune regulation in adjuvant disease and other arthritis models: relevance to pathogenesis of chronic arthritis. Scand J Immunol 56:12–34.CrossRefGoogle ScholarPubMed
18. Nozaki-Taguchi, N., and Yaksh, T.L. 1998. A novel model of primary and secondary hyperalgesia after mild thermal injury in the rat. Neurosci Lett 254:25–28.CrossRefGoogle ScholarPubMed
19. Brennan, T.J. 1999. Postoperative models of nociception. Ilar J 40:129–136.CrossRefGoogle ScholarPubMed
20. Nagasaka, H., Awad, H., and Yaksh, T.L. 1996. Peripheral and spinal actions of opioids in the blockade of the auto-nomic response evoked by compression of the inflamed knee joint. Anesthesiology 85:808–816.CrossRefGoogle ScholarPubMed
21. Staines, N.A., and Wooley, P.H. 1994. Collagen arthritis – what can it teach us?Br J Rheumatol 33:798–807.CrossRefGoogle ScholarPubMed
22. Morris, G.P., Beck, P.L., Herridge, M.S., Depew, W.T., Szewczuk, M.R., and Wallace, J.L. 1986. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96:795–803.Google Scholar
23. Lamb, K., Kang, Y.M., Gebhart, G.F., and Bielefeldt, K. 2003. Gastric inflammation triggers hypersensitivity to acid in awake rats. Gastroenterology 125:1410–1418.CrossRefGoogle ScholarPubMed
24. Chuang, Y.C., Yoshimura, N., Huang, C.C., Wu, M., Chiang, P.H., and Chancellor, M.B. 2008. Intravesical botulinum toxin A administration inhibits COX-2 and EP4 expression and suppresses bladder hyperactivity in cyclophosphamide-induced cystitis in rats. Eur Urol 56(1):159–167.Google ScholarPubMed
25. Glawe, C., Emmrich, J., Sparmann, G., and Vollmar, B. 2005. In vivo characterization of developing chronic pancreatitis in rats. Lab Invest 85:193–204.CrossRefGoogle ScholarPubMed
26. Mayer, E.A., and Gebhart, G.F. 1994. Basic and clinical aspects of visceral hyperalgesia. Gastroenterology 107:271–293.CrossRefGoogle ScholarPubMed
27. Yaksh, T.L. 1998. Preclinical models of nociception. In Cousins & Bridenbaugh's Neural Blockade in Clinical Anesthesia and Pain Medicine, Cousins, M.J., and Bridenbaugh, P.O. (eds.), 3rd ed., pp. 685–718. Philadelphia: Lippincott-Raven Publisher.Google Scholar
28. Willis, W.D. Jr. 2007. The somatosensory system, with emphasis on structures important for pain. Brain Res Rev 55:297–313.CrossRefGoogle ScholarPubMed
29. Yaksh, T.L. 2009. Physiologogic and pharmacologic substrates of nociception after tissue and nerve injury. In Cousins & Bridenbaugh's Neural Blockade in Clinical Anesthesia and Pain Medicine, Cousins, M.J., Carr, D.B., Horlocker, T.T., and Bridenbaugh, P.O. (eds), 4th ed., pp. 693–751. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
30. Berthoud, H.R., and Neuhuber, W.L. 2000. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 85:1–17.CrossRefGoogle ScholarPubMed
31. Maier, S.F., Goehler, L.E., Fleshner, M., and Watkins, L.R. 1998. The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 840:289–300.CrossRefGoogle ScholarPubMed
32. Price, D.D., Barrell, J.J., and Rainville, P. 2002. Integrating experiential-phenomenological methods and neuroscience to study neural mechanisms of pain and consciousness. Conscious Cogn 11:593–608.CrossRefGoogle ScholarPubMed
33. Luger, T.A. 2002. Neuromediators – a crucial component of the skin immune system. J Dermatol Sci 30:87–93.CrossRefGoogle ScholarPubMed
34. Julius, D., and Basbaum, A.I. 2001. Molecular mechanisms of nociception. Nature 413:203–210.CrossRefGoogle ScholarPubMed
35. England, S. 2008. Voltage-gated sodium channels: the search for subtype-selective analgesics. Expert Opin Investig Drugs 17:1849–1864.CrossRefGoogle ScholarPubMed
36. Schaible, H.G., Del Rosso, A., and Matucci-Cerinic, M. 2005. Neurogenic aspects of inflammation. Rheum Dis Clin North Am 31:77–101, ix.CrossRefGoogle ScholarPubMed
37. Steinhoff, M., Stander, S., Seeliger, S., Ansel, J.C., Schmelz, M., and Luger, T. 2003. Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol 139:1479–1488.CrossRefGoogle ScholarPubMed
38. Reeh, P.W., and Steen, K.H. 1996. Tissue acidosis in nociception and pain. Prog Brain Res 113:143–151.Google ScholarPubMed
39. Rueff, A., and Dray, A. 1992. 5-Hydroxytryptamine-induced sensitization and activation of peripheral fibres in the neonatal rat are mediated via different 5-hydroxytryptamine-receptors. Neuroscience 50:899–905.CrossRefGoogle ScholarPubMed
40. Schmelz, M., Schmidt, R., Weidner, C., Hilliges, M., Torebjork, H.E., and Handwerker, H.O. 2003. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 89:2441–2448.CrossRefGoogle ScholarPubMed
41. Mayer, S., Izydorczyk, I., Reeh, P.W., and Grubb, B.D. 2007. Bradykinin-induced nociceptor sensitisation to heat depends on COX-1 and COX-2 in isolated rat skin, Pain 130:14–24.CrossRefGoogle ScholarPubMed
42. Russell, F.A., and McDougall, J.J. 2009. Proteinase activated receptor (PAR) involvement in mediating arthritis pain and inflammation. Inflamm Res 58:119–126.CrossRefGoogle ScholarPubMed
43. Weidner, C., Klede, M., Rukwied, R., et al. 2000. Acute effects of substance P and calcitonin gene-related peptide in human skin – a microdialysis study. J Invest Dermatol 115:1015–1020.CrossRefGoogle ScholarPubMed
44. Perretti, M. 1998. Lipocortin 1 and chemokine modulation of granulocyte and monocyte accumulation in experimental inflammation. Gen Pharmacol 31: 545–552.CrossRefGoogle ScholarPubMed
45. Burgos, R.A., Hidalgo, M.A., Figueroa, C.D., Conejeros, I., and Hancke, J.L. 2009. New potential targets to modulate neutrophil function in inflammation. Mini Rev Med Chem 9:153–168.CrossRefGoogle ScholarPubMed
46. Michaelis, M., Vogel, C., Blenk, K.H., and Janig, W. 1997. Algesics excite axotomised afferent nerve fibres within the first hours following nerve transection in rats. Pain 72:347–354.CrossRefGoogle ScholarPubMed
47. Cheng, J.K., and Ji, R.R. 2008. Intracellular signaling in primary sensory neurons and persistent pain. Neurochem Res 33:1970–1978.CrossRefGoogle ScholarPubMed
48. Wang, H., Ehnert, C., Brenner, G.J., and Woolf, C.J. 2006. Bradykinin and peripheral sensitization. Biol Chem 387:11–14.CrossRefGoogle ScholarPubMed
49. Bevan, S., and Yeats, J. 1991. Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones. J Physiol 433:145–161.CrossRefGoogle Scholar
50. Krishtal, O. 2003. The ASICs: signaling molecules? Modulators?Trends Neurosci 26:477–483.CrossRefGoogle ScholarPubMed
51. Kollarik, M., Ru, F., and Undem, B.J. 2007. Acid-sensitive vagal sensory pathways and cough. Pulm Pharmacol Ther 20:402–411.CrossRefGoogle ScholarPubMed
52. Cesare, P., and McNaughton, P. 1997. Peripheral pain mechanisms. Curr Opin Neurobiol 7:493–499.CrossRefGoogle ScholarPubMed
53. Hucho, T., and Levine, J.D. 2007. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55:365–376.CrossRefGoogle Scholar
54. Banik, R.K., Kozaki, Y., Sato, J., Gera, L., and Mizumura, K. 2001. B2 receptor-mediated enhanced bradykinin sensitivity of rat cutaneous C-fiber nociceptors during persistent inflammation. J Neurophysiol 86:2727–2735.CrossRefGoogle ScholarPubMed
55. Couture, R., Harrisson, M., Vianna, R.M., and Cloutier, F. 2001. Kinin receptors in pain and inflammation. Eur J Pharmacol 429:161–176.CrossRefGoogle ScholarPubMed
56. Manning, D.C., Raja, S.N., Meyer, R.A., and Campbell, J.N. 1991. Pain and hyperalgesia after intradermal injection of bradykinin in humans. Clin Pharmacol Ther 50:721–729.CrossRefGoogle ScholarPubMed
57. Mendell, L.M., Albers, K.M., and Davis, B.M. 1999. Neurotrophins, nociceptors, and pain. Microsc Res Tech 45:252–261.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
58. Pezet, S., and McMahon, S.B. 2006. Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538.CrossRefGoogle Scholar
59. Malin, S.A., Molliver, D.C., Koerber, H.R., et al. 2006. Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J Neurosci 26:8588–8599.CrossRefGoogle ScholarPubMed
60. Ossovskaya, V.S., and Bunnett, N.W. 2004. Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621.CrossRefGoogle ScholarPubMed
61. Vergnolle, N. 2004. Modulation of visceral pain and inflammation by protease-activated receptors. Br J Pharmacol 141:1264–1274.CrossRefGoogle ScholarPubMed
62. Murphy, P.G., Borthwick, L.A., Altares, M., Gauldie, J., Kaplan, D., and Richardson, P.M. 2000. Reciprocal actions of interleukin-6 and brain-derived neurotrophic factor on rat and mouse primary sensory neurons. Eur J Neurosci 12:1891–1899.CrossRefGoogle ScholarPubMed
63. Schafers, M., Sommer, C., Geis, C., Hagenacker, T., Vandenabeele, P., and Sorkin, L.S. 2008. Selective stimulation of either tumor necrosis factor receptor differentially induces pain behavior in vivo and ectopic activity in sensory neurons in vitro. Neuroscience 157:414–423.CrossRefGoogle ScholarPubMed
64. Cunha, F.Q., and Ferreira, S.H. 2003. Peripheral hyper-algesic cytokines. Adv Exp Med Biol 521:22–39.Google Scholar
65. Coutaux, A., Adam, F., Willer, J.C., and Le Bars, D. 2005. Hyperalgesia and allodynia: peripheral mechanisms. Joint Bone Spine 72:359–371.CrossRefGoogle ScholarPubMed
66. Ji, R.R., Gereau, R. W. T., Malcangio, M., and Strichartz, G.R. 2009. MAP kinase and pain. Brain Res Rev 60:135–148.CrossRefGoogle ScholarPubMed
67. Nicol, G.D., and Vasko, M.R. 2007. Unraveling the story of NGF-mediated sensitization of nociceptive sensory neurons: ON or OFF the Trks?Mol Interv 7:26–41.CrossRefGoogle ScholarPubMed
68. Djouhri, L., Koutsikou, S., Fang, X., McMullan, S., and Lawson, S.N. 2006. Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. J Neurosci 26:1281–1292.CrossRefGoogle ScholarPubMed
69. Mantyh, P.W. 2004. A mechanism-based understanding of bone cancer pain. Novartis Found Symp 261:194–214; discussion 214–219, 256–261.Google ScholarPubMed
70. Boettger, M.K., Hensellek, S., Richter, F., et al. 2008. Antinociceptive effects of tumor necrosis factor alpha neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum 58:2368–2378.CrossRefGoogle Scholar
71. Holzer, P. 2007. Role of visceral afferent neurons in mucosal inflammation and defense. Curr Opin Pharmacol 7:563–569.CrossRefGoogle ScholarPubMed
72. Nazif, O., Teichman, J.M., and Gebhart, G.F. 2007. Neural upregulation in interstitial cystitis. Urology 69:24–33.CrossRefGoogle ScholarPubMed
73. Zimmermann, K., Reeh, P.W., and Averbeck, B. 2002. ATP can enhance the proton-induced CGRP release through P2Y receptors and secondary PGE(2) release in isolated rat dura mater. Pain 97:259–265.CrossRefGoogle ScholarPubMed
74. Hermanstyne, T.O., Markowitz, K., Fan, L., and Gold, M.S. 2008. Mechanotransducers in rat pulpal afferents. J Dent Res 87:834–838.CrossRefGoogle ScholarPubMed
75. Waxman, S.G., Cummins, T.R., Dib-Hajj, S. D., and Black, J.A. 2000. Voltage-gated sodium channels and the molecular pathogenesis of pain: a review. J Rehabil Res Dev 37:517–528.Google ScholarPubMed
76. Lu, S.G., and Gold, M.S. 2008. Inflammation-induced increase in evoked calcium transients in subpopulations of rat dorsal root ganglion neurons. Neuroscience 153:279–288.CrossRefGoogle ScholarPubMed
77. Maingret, F., Coste, B., Padilla, F., Clerc, N., Crest, M., Korogod, S.M., and Delmas, P. 2008. Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. J Gen Physiol 131:211–225.CrossRefGoogle ScholarPubMed
78. Delcroix, J.D., Valletta, J.S., Wu, C., Hunt, S.J., Kowal, A.S., and Mobley, W.C. 2003. NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals. Neuron 39:69–84.CrossRefGoogle ScholarPubMed
79. D'Mello, R., and Dickenson, A.H. 2008. Spinal cord mechanisms of pain. Br J Anaesth 101:8–16.Google ScholarPubMed
80. Herrero, J.F., Laird, J.M., and Lopez-Garcia, J.A. 2000. Wind-up of spinal cord neurones and pain sensation: much ado about something?Prog Neurobiol 61:169–203.CrossRefGoogle ScholarPubMed
81. Gabay, C., and Kushner, I. 1999. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454.CrossRefGoogle ScholarPubMed
82. Milligan, E.D., and Watkins, L.R. 2009. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36.CrossRefGoogle ScholarPubMed
83. Ren, K., and Dubner, R. 2008. Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol 21:570–579.CrossRefGoogle ScholarPubMed
84. Wieseler-Frank, J., Maier, S.F., and Watkins, L.R. 2005. Central proinflammatory cytokines and pain enhancement. Neurosignals 14:166–174.CrossRefGoogle ScholarPubMed
85. McDonald, D.M., Bowden, J.J., Baluk, P., and Bunnett, N.W. 1996. Neurogenic inflammation. A model for studying efferent actions of sensory nerves. Adv Exp Med Biol 410:453–462.Google ScholarPubMed
86. Sorkin, L.S., Moore, J., Boyle, D.L., Yang, L., and Firestein, G.S. 2003. Regulation of peripheral inflammation by spinal adenosine: role of somatic afferent fibers. Exp Neurol 184:162–168.CrossRefGoogle ScholarPubMed
87. Heppelmann, B. 1997. Anatomy and histology of joint innervation. J Peripher Nerv Syst 2:5–16.Google ScholarPubMed
88. Konttinen, Y.T., Tiainen, V.M., Gomez-Barrena, E., Hukkanen, M., and Salo, J. 2006. Innervation of the joint and role of neuropeptides. Ann N Y Acad Sci 1069:149–154.CrossRefGoogle ScholarPubMed
89. Todd, A.J. 2002. Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Exp Physiol 87:245–249.CrossRefGoogle ScholarPubMed
90. Todd, A.J., and Spike, R.C. 1993. The localization of classical transmitters and neuropeptides within neurons in laminae I-III of the mammalian spinal dorsal horn. Prog Neurobiol 41:609–645.CrossRefGoogle ScholarPubMed
91. Willis, W.D. 2001. Role of neurotransmitters in sensitiza-tion of pain responses. Ann N YAcad Sci 933:142–156.Google Scholar
92. Bleakman, D., Alt, A., and Nisenbaum, E.S. 2006. Glutamate receptors and pain. Semin Cell Dev Biol 17:592–604.CrossRefGoogle ScholarPubMed
93. Yaksh, T.L. 1999. Spinal systems and pain processing: development of novel analgesic drugs with mechanistically defined models. Trends Pharmacol Sci 20:329–337.CrossRefGoogle ScholarPubMed
94. Luo, C., Seeburg, P.H., Sprengel, R., and Kuner, R. 2008. Activity-dependent potentiation of calcium signals in spinal sensory networks in inflammatory pain states. Pain 140:358–367.CrossRefGoogle ScholarPubMed
95. Merighi, A., Salio, C., Ghirri, A., et al. 2008. BDNF as a pain modulator. Prog Neurobiol 85:297–317.CrossRefGoogle ScholarPubMed
96. Black, I.B. 1999. Trophic regulation of synaptic plasticity. J Neurobiol 41:108–118.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
97. Jones, T.L., and Sorkin, L.S. 2005. Activated PKA and PKC, but not CaMKIIalpha, are required for AMPA/Kainate-mediated pain behavior in the thermal stimulus model. Pain 117:259–270.CrossRefGoogle Scholar
98. Svensson, C.I., Marsala, M., Westerlund, A., et al. 2003. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem 86:1534–1544.CrossRefGoogle ScholarPubMed
99. Sorkin, L., Svensson, C.I., Jones-Cordero, T. L., Hefferan, M.P., and Campana, W.M. 2009. Spinal p38 mitogenactivated protein kinase mediates allodynia induced by first-degree burn in the rat. J Neurosci Res 87:948–955.CrossRefGoogle Scholar
100. Svensson, C.I., and Yaksh, T.L. 2002. The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol 42:553–583.CrossRefGoogle ScholarPubMed
101. Svensson, C.I., Hua, X.Y., Protter, A.A., Powell, H.C., and Yaksh, T.L. 2003. Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE(2) release and thermal hyperalgesia. Neuroreport 14:1153–1157.CrossRefGoogle ScholarPubMed
102. Meves, H. 2006. The action of prostaglandins on ion channels. Curr Neuropharmacol 4:41–57.CrossRefGoogle ScholarPubMed
103. Harvey, R.J., Depner, U.B., Wassle, H., et al. 2004. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304:884–887.CrossRefGoogle ScholarPubMed
104. Malmberg, A.B., and Yaksh, T.L. 1993. Spinal nitric oxide synthesis inhibition blocks NMDA-induced thermal hyperalgesia and produces antinociception in the formalin test in rats. Pain 54:291–300.CrossRefGoogle ScholarPubMed
105. Tang, Q., Svensson, C.I., Fitzsimmons, B., Webb, M., Yaksh, T.L., and Hua, X.Y. 2007. Inhibition of spinal constitutive NOS-2 by 1400W attenuates tissue injury and inflammation-induced hyperalgesia and spinal p38 activation. Eur J Neurosci 25:2964–2972.CrossRefGoogle ScholarPubMed
106. Cronin, J.N., Bradbury, E.J., and Lidierth, M. 2004. Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity. Pain 112:156–163.CrossRefGoogle ScholarPubMed
107. Loomis, C.W., Khandwala, H., Osmond, G., and Hefferan, M.P. 2001. Coadministration of intrathecal strychnine and bicuculline effects synergistic allodynia in the rat: an isobolographic analysis. J Pharmacol Exp Ther 296:756–761.Google ScholarPubMed
108. Polgar, E., Hughes, D.I., Riddell, J.S., Maxwell, D.J., Puskar, Z., and Todd, A.J. 2003. Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain 104:229–239.CrossRefGoogle Scholar
109. Price, T.J., Cervero, F., and de Koninck, Y. 2005. Role of cation-chloride-cotransporters (CCC) in pain and hyperalgesia. Curr Top Med Chem 5:547–555.Google ScholarPubMed
110. Suzuki, R., Rygh, L.J., and Dickenson, A.H. 2004. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci 25:613–617.CrossRefGoogle ScholarPubMed
111. Cao, H., and Zhang, Y.Q. 2008. Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev 32:972–983.CrossRefGoogle ScholarPubMed
112. Scholz, J., and Woolf, C.J. 2007. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368.CrossRefGoogle ScholarPubMed
113. Scemes, E., Suadicani, S.O., Dahl, G., and Spray, D.C. 2007. Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol 3:199–208.CrossRefGoogle ScholarPubMed
114. Abbadie, C., Bhangoo, S., De Koninck., Y., Malcangio, M., Melik-Parsadaniantz, S., and White, F.A. 2009. Chemokines and pain mechanisms. Brain Res Rev 60:125–134.CrossRefGoogle ScholarPubMed
115. Clark, A.K., Gentry, C., Bradbury, E.J., McMahon, S.B., and Malcangio, M. 2007. Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain 11:223–230.CrossRefGoogle ScholarPubMed
116. Hald, A. 2009. Spinal astrogliosis in pain models: cause and effects. Cell Mol Neurobiol 29:609–619.CrossRefGoogle ScholarPubMed
Abbadie, C., Bhangoo, S., De Koninck, Y., Malcangio, M., Melik-Parsadaniantz, S., and White, F.A. 2009. Chemokines and pain mechanisms. Brain Res Rev 60:125–134.CrossRefGoogle ScholarPubMed
Coutaux, A., Adam, F., Willer, J.C., and Le Bars., D. 2005. Hyperalgesia and allodynia: peripheral mechanisms. Joint Bone Spine 72:359–371.CrossRefGoogle ScholarPubMed
Hucho, T., and Levine, J.D. 2007. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55:365–376.CrossRefGoogle Scholar
Milligan, E.D., and Watkins, L.R. 2009. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36.CrossRefGoogle ScholarPubMed
Yaksh, T.L. 2006. Central pharmacology of nociceptive transmission. In Wall and Melzack's Textbook of Pain, McMahon, S.B., and Koltzenburg, M. (eds), 5th ed., pp. 371–414. Philadelphia: Elsevier Churchill Livingstone.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×