Skip to main content Accessibility help
×
Hostname: page-component-5db6c4db9b-bhjbq Total loading time: 0 Render date: 2023-03-24T01:36:55.300Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

References

Published online by Cambridge University Press:  18 May 2019

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Frege
A Philosophical Biography
, pp. 641 - 658
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

1873Über eine geometrische Darstellung der imaginären Gebilde in der Ebene. PhD Dissertation, University of Göttingen.Google Scholar
1874a – Rechnungsmethoden, die sich auf eine Erweiterung des Größenbegriffes gründen. Habilitationsschrift, University of Jena.Google Scholar
1874b – “Rezension von: H. Seeger, Die Elemente der Arithmetik, für den Schulunterricht bearbeitet,” Jenaer Literaturzeitung, 1(46), 722.Google Scholar
1879Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: L. Nebert. (Second edition, Begriffsschrift und andere Aufsätze. Zweite Auflage, mit E. [Edmund] Husserls und H. [Heinrich] Scholz’ Anmerkungen, herausgegeben von Ignacio Angelelli. Darmstadt: Wissenschaftliche Buchgesellschaft, 1964.)Google Scholar
1884Die Grundlagen der Arithmetik, eine logisch mathematische Untersuchung über den Begriff der Zahl. Breslau: W. Koebner.Google Scholar
1885 – “Über formale Theorien der Arithmetik,” Sitzungsberichte der Jenaischen Gesellschaft für Medizin und Naturwissenschaft, 19, 94104.Google Scholar
1891a – Funktion und Begriff. Jena: Hermann Pohle, 1891.Google Scholar
1891b – “Über das Trägheitsgesetz,” Zeitschrift für Philosophie und philosophische Kritik, 98, 145–61.Google Scholar
1892a – “Über Sinn und Bedeutung,” Zeitschrift für Philosophie und philosophische Kritik, 100, 2550.Google Scholar
1892b – “Über Begriff und Gegenstand,” Vierteljahrsschrift für wissenschaftliche Philosophie, 16, 192205.Google Scholar
1892c – “Rezension von: G. Cantor, Zur Lehre vom Transfiniten,” Gesammelte Abhandlungen aus der Zeitschrift für Philosophie und philosophische Kritik, 100, 269–72.Google Scholar
1893/1903 – Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet I, II. Two volumes. Jena: Hermann Pohle.Google Scholar
1894 – “Rezension von: E. Husserl, Philosophie der Arithmetik I,Zeitschrift für Philosophie und philosophische Kritik, 103, 313–32.Google Scholar
1895a – “Kritische Beleuchtung einiger Punkte in E. Schröders Vorlesungen über die Algebra der Logik,” Archiv für systematische Philosophie, 1, 433–56.Google Scholar
1895b – “Le nombre entier,” Revue de Métaphysique et de Morale, 3, 7378.Google Scholar
1897 – “Über die Begriffsschrift des Herrn Peano und meine eigene,” Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, 48, 362–68.Google Scholar
1899Über die Zahlen des Herrn H. Schubert. Jena: Hermann Pohle.Google Scholar
1903Grundgesetze II, see the entry dated 1893/1903 above.Google Scholar
1903/1906 – “Über die Grundlagen der Geometrie,” Jahresbericht der Deutschen Mathematiker-Vereinigung, 12 (1903): 319–24, 368–75; 15 (1906): 293309, 377403, 423–30.Google Scholar
1904 – “Was ist eine Funktion?” In Festschrift Ludwig Boltzmann gewidmet zum sechzigsten Geburtstage. Leipzig: Verlag von Ambrosius Barth. 656–66Google Scholar
1906 – “Antwort auf die Ferienplauderei des Herrn Thomae,” Jahresbericht der Deutschen Mathematiker-Vereinigung, 15, 586–90.Google Scholar
1908 – “Die Unmöglichkeit der Thomaeschen formalen Arithmetik aus Neue nachgewiesen,” Jahresbericht der Deutschen Mathematiker-Vereinigung, 17, 5255.Google Scholar
1918a – “Der Gedanke. Eine logische Untersuchung,” Beträge zur Philosophie des deutschen Idealismus, 1, 5877.Google Scholar
1918b – “Die Verneinung. Eine logische Untersuchung,” Beiträge zur Philosophie des deutschen Idealismus, 1, 143–57.Google Scholar
1923“Gedankengefüge” (“Logische Untersuchungen – Dritter Teil: Gedankengefüge”), Beiträge zur Philosophie des deutschen Idealismus, 3, 3651.Google Scholar
1969Nachgelassene Schriften. Ed. Hans Hermes, Friedrich Kambartel, and Friedrich Kaulbach. Hamburg: Felix Meiner.Google Scholar
1976Wissenschaftlicher Briefwechsel. Hamburg: Felix Meiner.Google Scholar
1989 – “Briefe an Ludwig Wittgenstein aus den Jahren 1914–1920.” Ed. Janik, Allan, with commentary by Berger, Christian Paul. In Wittgenstein in Focus – Im Brennpunkt: Wittgenstein. Ed. McGuinness, Brian and Haller, Rudolf. Special issue, Grazer Philosophische Studien, 33/34, 533.Google Scholar
1994 – “Gottlob Freges politisches Tagebuch.” Ed. Gabriel, Gottfried and Kienzler, Wolfgang, with an introduction and commentary. Deutsche Zeitschrift für Philosophie, 42, 1057–98 (editors’ introduction 1057–66).CrossRefGoogle Scholar
Translations from the Philosophical Writings of Gottlob Frege [BG]. Third edition. Trans. Black, Max and Geach, P. T.. Lanham: Rowman & Littlefield, 1980.Google Scholar
Collected Papers on Mathematics, Logic and Philosophy [CP]. Ed. Black, Max, Dudman, V., Geach, P. T., Kaal, H., Kluge, E.-H. W., McGuinness, Brian, and Stoothoff, R. H.. Oxford: Basil Blackwell, 1984.Google Scholar
The Frege Reader [FR]. Ed. Beaney, Michael. Oxford: Blackwell, 1997.Google Scholar
Über eine geometrische Darstellung der imaginären Gebilde in der Ebene [1873]. Translated as “On a Geometrical Representation of Imaginary Forms in the Plane” in [CP]: 155.Google Scholar
Rechnungsmethoden, die sich auf eine Erweiterung des Größenbegriffes gründen [1874]. Translated as “Methods of Calculation Based on an Extension of the Concept of Quantity” in [CP]: 5692.Google Scholar
Begriffsschrift [1879]. Translated as “Begriffsschrift, a Formula Language, Modeled upon That of Arithmetic, for Pure Thought” by Bauer-Mengelberg, S.. In From Frege to Gödel: A Sourcebook in Mathematical Logic 1879–1931. Ed. van Heijenoort, Jean. Cambridge: Harvard University Press, 1967. 182. Translated as Conceptual Notation and Related Articles by Bynum, Terrell W.. London: Oxford University Press, 1972.Google Scholar
Grundlagen [1884]. Translated as The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number by Austin, J. L.. Oxford: Blackwell, 1953 (second edition). Translated with an introduction and critical commentary as The Foundations of Arithmetic: A Logico-Mathematical Investigation into the Concept of Number by Jacquette, Dale. New York: Pearson Longman, 2007.Google Scholar
“Über formale Theorien der Arithmetik” [1885]. Translated as “On Formal Theories of Arithmetic” in [CP]: 112–21.Google Scholar
Erwiderung” [to Cantor 1885, Deutsche Literaturzeitung, 6(20), columns 728–29]. Translated as “Reply to Cantor’s Review of Grundlagen der Arithmetik” in [CP]: 122.Google Scholar
“Funktion und Begriff” [1891]. Translated as “Function and Concept” in [CP]: 137–56; [BG]: 2141; [FR]: 130–48.Google Scholar
“Über das Trägheitsgesetz” [1891]. Translated as “On the Law of Inertia” in [CP]: 123–36.Google Scholar
“Über Sinn und Bedeutung” [1892]. Translated as “On Sense and Meaning” in [CP]: 157–77. Translated as “On Sense and Reference” in [BG]: 5678; [FR]: 151–71.Google Scholar
“Über Begriff und Gegenstand” [1892]. Translated as “On Concept and Object” in [CP]: 182–94; [BG]: 4255; [FR]: 181–93.Google Scholar
“Rezension von: G. Cantor, Zur Lehre vom Transfiniten” [1892]. Translated as “Review of Georg Cantor, Contributions to the Theory of the Transfinite” in [CP]: 178–81.Google Scholar
Grundgesetze [1893/1903]. Edited and translated in part (Volume I plus Volume II Nachwort) as The Basic Laws of Arithmetic: Exposition of the System by Furth, Montgomery. Berkeley: University of California Press, 1964. Edited and translated in its entirety as Basic Laws of Arithmetic: Derived Using Concept-Script by Ebert, Philip A. and Rossberg, Marcus with Wright, Crispin. Oxford: Oxford University Press, 2013.Google Scholar
“Rezension von: E. Husserl, Philosophie der Arithmetik” [1894]. Translated as “Review of Philosophie der Arithmetik by Edmund Husserl” in [CP]: 195–209. Translated as “Illustrative Extracts from Frege’s Review of Husserl’s Philosophy der Arithmetik” in [BG]: 7985; [FR]: 224–26 (extract). Translated as “Review of Dr. E. Husserl’s Philosophy of Arithmetic” by Kluge, E. W., Mind, 81 (1972): 321–37.Google Scholar
“Kritische Beleuchtung einiger Punkte in E. Schröders Vorlesungen über die Algebra der Logik” [1895]. Translated as “A Critical Elucidation of Some Points in E. Schröder, Vorlesungen über die Algebra der Logik [Lectures on the Algebra of Logic]” in [CP]: 210–28; [BG]: 86106.Google Scholar
“Le nombre entier” [1895]. Translated as “Whole Numbers” in [CP]: 229–33.Google Scholar
“Über die Begriffsschrift des Herrn Peano und meine eigene” [1897]. Translated as “On Mr. Peano’s Conceptual Notation and My Own” in [CP]: 234–48.Google Scholar
“Über die Zahlen des Herrn H. Schubert” [1899]. Translated as “On Mr. H. Schubert’s Numbers” in [CP]: 249–72.Google Scholar
Über die Grundlagen der Geometrie” [1903/1906]. Translated as “On the Foundations of Geometry” in [CP]: 273340. Translated as On the Foundations of Geometry and Formal Theories of Arithmetic by Kluge, E. W.. New Haven: Yale University Press, 1971.Google Scholar
“Was ist eine Funktion?” [1904]. Translated as “What is a Function?” in [CP]: 285–92.Google Scholar
“Antwort auf die Ferienplauderei des Herrn Thomae” [1906]. Translated as “Reply to Thomae’s Holiday Causerie” in [CP]: 341–45.Google Scholar
“Die Unmöglichkeit der Thomaeschen formalen Arithmetik aufs Neue nachgewiesen” [1908]. Translated as “Renewed Proof of the Impossibility of Mr. Thomae’s Formal Arithmetic” in [CP]: 346–50.Google Scholar
Logical Investigations [LI]. Translated by Geach, P. T. (from Frege 1918a, b and 1923). New Haven: Yale University Press, 1977.Google Scholar
“Der Gedanke. Eine logische Untersuchung” [1918]. Translated as “Thoughts” in [CP]: 351–72; [LI]: 130. Translated as “Thought” in [FR]: 325–45.Google Scholar
“Die Verneinung. Eine logische Untersuchung” [1918]. Translated as “Negation” in [CP]: 373–89; [LI]: 3153; [FR]: 346–61.Google Scholar
“Gedankengefüge” [1923]. Translated as “Compound Thoughts” in [CP]: 390406; [LI]: 5577.Google Scholar
“Gottlob Freges politisches Tagebuch” [1994]. Translated as “Diary: Written by Professor Dr. Gottlob Frege in the Time from 10 March to 9 April 1924” by Mendelsohn, Richard L., in Inquiry 39 (1996): 303–42 (editors’ introduction by Gabriel, G. and Kienzler, W., 303–8).Google Scholar
Nachgelassene Schriften [1969]. Translated as Posthumous Writings [PW] by Long, Peter and White, Roger. Oxford: Basil Blackwell, 1979.Google Scholar
“Boole’s Logical Calculus and the Concept-Script” in [PW]: 946.Google Scholar
“Boole’s Logical Formula-Language and My Concept-Script” in [PW]: 4752.Google Scholar
“Draft towards a Review of Cantor’s Gesammelte Abhandlungen zur Lehre vom Transfiniten” in [PW]: 6871.Google Scholar
“Logic” in [PW]: 126–51.Google Scholar
“On Euclidean Geometry” in [PW]: 167–69.Google Scholar
“Notes on Hilbert’s ‘Grundlagen der Geometrie’” in [PW]: 170–3.Google Scholar
“Logic in Mathematics” in [PW]: 203–50.Google Scholar
“Notes for Ludwig Darmstaedter” in [PW]: 253–57.Google Scholar
“Logical Generality” in [PW]: 258–62.Google Scholar
“Number” in [PW]: 265–66.Google Scholar
“Numbers and Arithmetic” in [PW]: 275–77.Google Scholar
On the Foundations of Geometry and Formal Theories of Arithmetic. Trans. Kluge, E. W.. New Haven: Yale University Press, 1971.Google Scholar
Wissenschaftlicher Briefwechsel [1976]. Translated as Philosophical and Mathematical Correspondence by Kaal, Hans. Ed. McGuinness, Brian. Chicago: University of Chicago Press, 1980.Google Scholar

Secondary Sources

1873Über eine geometrische Darstellung der imaginären Gebilde in der Ebene. PhD Dissertation, University of Göttingen.Google Scholar
1874a – Rechnungsmethoden, die sich auf eine Erweiterung des Größenbegriffes gründen. Habilitationsschrift, University of Jena.Google Scholar
1874b – “Rezension von: H. Seeger, Die Elemente der Arithmetik, für den Schulunterricht bearbeitet,” Jenaer Literaturzeitung, 1(46), 722.Google Scholar
1879Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: L. Nebert. (Second edition, Begriffsschrift und andere Aufsätze. Zweite Auflage, mit E. [Edmund] Husserls und H. [Heinrich] Scholz’ Anmerkungen, herausgegeben von Ignacio Angelelli. Darmstadt: Wissenschaftliche Buchgesellschaft, 1964.)Google Scholar
1884Die Grundlagen der Arithmetik, eine logisch mathematische Untersuchung über den Begriff der Zahl. Breslau: W. Koebner.Google Scholar
1885 – “Über formale Theorien der Arithmetik,” Sitzungsberichte der Jenaischen Gesellschaft für Medizin und Naturwissenschaft, 19, 94104.Google Scholar
1891a – Funktion und Begriff. Jena: Hermann Pohle, 1891.Google Scholar
1891b – “Über das Trägheitsgesetz,” Zeitschrift für Philosophie und philosophische Kritik, 98, 145–61.Google Scholar
1892a – “Über Sinn und Bedeutung,” Zeitschrift für Philosophie und philosophische Kritik, 100, 2550.Google Scholar
1892b – “Über Begriff und Gegenstand,” Vierteljahrsschrift für wissenschaftliche Philosophie, 16, 192205.Google Scholar
1892c – “Rezension von: G. Cantor, Zur Lehre vom Transfiniten,” Gesammelte Abhandlungen aus der Zeitschrift für Philosophie und philosophische Kritik, 100, 269–72.Google Scholar
1893/1903 – Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet I, II. Two volumes. Jena: Hermann Pohle.Google Scholar
1894 – “Rezension von: E. Husserl, Philosophie der Arithmetik I,Zeitschrift für Philosophie und philosophische Kritik, 103, 313–32.Google Scholar
1895a – “Kritische Beleuchtung einiger Punkte in E. Schröders Vorlesungen über die Algebra der Logik,” Archiv für systematische Philosophie, 1, 433–56.Google Scholar
1895b – “Le nombre entier,” Revue de Métaphysique et de Morale, 3, 7378.Google Scholar
1897 – “Über die Begriffsschrift des Herrn Peano und meine eigene,” Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, 48, 362–68.Google Scholar
1899Über die Zahlen des Herrn H. Schubert. Jena: Hermann Pohle.Google Scholar
1903Grundgesetze II, see the entry dated 1893/1903 above.Google Scholar
1903/1906 – “Über die Grundlagen der Geometrie,” Jahresbericht der Deutschen Mathematiker-Vereinigung, 12 (1903): 319–24, 368–75; 15 (1906): 293309, 377403, 423–30.Google Scholar
1904 – “Was ist eine Funktion?” In Festschrift Ludwig Boltzmann gewidmet zum sechzigsten Geburtstage. Leipzig: Verlag von Ambrosius Barth. 656–66Google Scholar
1906 – “Antwort auf die Ferienplauderei des Herrn Thomae,” Jahresbericht der Deutschen Mathematiker-Vereinigung, 15, 586–90.Google Scholar
1908 – “Die Unmöglichkeit der Thomaeschen formalen Arithmetik aus Neue nachgewiesen,” Jahresbericht der Deutschen Mathematiker-Vereinigung, 17, 5255.Google Scholar
1918a – “Der Gedanke. Eine logische Untersuchung,” Beträge zur Philosophie des deutschen Idealismus, 1, 5877.Google Scholar
1918b – “Die Verneinung. Eine logische Untersuchung,” Beiträge zur Philosophie des deutschen Idealismus, 1, 143–57.Google Scholar
1923“Gedankengefüge” (“Logische Untersuchungen – Dritter Teil: Gedankengefüge”), Beiträge zur Philosophie des deutschen Idealismus, 3, 3651.Google Scholar
1969Nachgelassene Schriften. Ed. Hans Hermes, Friedrich Kambartel, and Friedrich Kaulbach. Hamburg: Felix Meiner.Google Scholar
1976Wissenschaftlicher Briefwechsel. Hamburg: Felix Meiner.Google Scholar
1989 – “Briefe an Ludwig Wittgenstein aus den Jahren 1914–1920.” Ed. Janik, Allan, with commentary by Berger, Christian Paul. In Wittgenstein in Focus – Im Brennpunkt: Wittgenstein. Ed. McGuinness, Brian and Haller, Rudolf. Special issue, Grazer Philosophische Studien, 33/34, 533.Google Scholar
1994 – “Gottlob Freges politisches Tagebuch.” Ed. Gabriel, Gottfried and Kienzler, Wolfgang, with an introduction and commentary. Deutsche Zeitschrift für Philosophie, 42, 1057–98 (editors’ introduction 1057–66).CrossRefGoogle Scholar
Translations from the Philosophical Writings of Gottlob Frege [BG]. Third edition. Trans. Black, Max and Geach, P. T.. Lanham: Rowman & Littlefield, 1980.Google Scholar
Collected Papers on Mathematics, Logic and Philosophy [CP]. Ed. Black, Max, Dudman, V., Geach, P. T., Kaal, H., Kluge, E.-H. W., McGuinness, Brian, and Stoothoff, R. H.. Oxford: Basil Blackwell, 1984.Google Scholar
The Frege Reader [FR]. Ed. Beaney, Michael. Oxford: Blackwell, 1997.Google Scholar
Über eine geometrische Darstellung der imaginären Gebilde in der Ebene [1873]. Translated as “On a Geometrical Representation of Imaginary Forms in the Plane” in [CP]: 155.Google Scholar
Rechnungsmethoden, die sich auf eine Erweiterung des Größenbegriffes gründen [1874]. Translated as “Methods of Calculation Based on an Extension of the Concept of Quantity” in [CP]: 5692.Google Scholar
Begriffsschrift [1879]. Translated as “Begriffsschrift, a Formula Language, Modeled upon That of Arithmetic, for Pure Thought” by Bauer-Mengelberg, S.. In From Frege to Gödel: A Sourcebook in Mathematical Logic 1879–1931. Ed. van Heijenoort, Jean. Cambridge: Harvard University Press, 1967. 182. Translated as Conceptual Notation and Related Articles by Bynum, Terrell W.. London: Oxford University Press, 1972.Google Scholar
Grundlagen [1884]. Translated as The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number by Austin, J. L.. Oxford: Blackwell, 1953 (second edition). Translated with an introduction and critical commentary as The Foundations of Arithmetic: A Logico-Mathematical Investigation into the Concept of Number by Jacquette, Dale. New York: Pearson Longman, 2007.Google Scholar
“Über formale Theorien der Arithmetik” [1885]. Translated as “On Formal Theories of Arithmetic” in [CP]: 112–21.Google Scholar
Erwiderung” [to Cantor 1885, Deutsche Literaturzeitung, 6(20), columns 728–29]. Translated as “Reply to Cantor’s Review of Grundlagen der Arithmetik” in [CP]: 122.Google Scholar
“Funktion und Begriff” [1891]. Translated as “Function and Concept” in [CP]: 137–56; [BG]: 2141; [FR]: 130–48.Google Scholar
“Über das Trägheitsgesetz” [1891]. Translated as “On the Law of Inertia” in [CP]: 123–36.Google Scholar
“Über Sinn und Bedeutung” [1892]. Translated as “On Sense and Meaning” in [CP]: 157–77. Translated as “On Sense and Reference” in [BG]: 5678; [FR]: 151–71.Google Scholar
“Über Begriff und Gegenstand” [1892]. Translated as “On Concept and Object” in [CP]: 182–94; [BG]: 4255; [FR]: 181–93.Google Scholar
“Rezension von: G. Cantor, Zur Lehre vom Transfiniten” [1892]. Translated as “Review of Georg Cantor, Contributions to the Theory of the Transfinite” in [CP]: 178–81.Google Scholar
Grundgesetze [1893/1903]. Edited and translated in part (Volume I plus Volume II Nachwort) as The Basic Laws of Arithmetic: Exposition of the System by Furth, Montgomery. Berkeley: University of California Press, 1964. Edited and translated in its entirety as Basic Laws of Arithmetic: Derived Using Concept-Script by Ebert, Philip A. and Rossberg, Marcus with Wright, Crispin. Oxford: Oxford University Press, 2013.Google Scholar
“Rezension von: E. Husserl, Philosophie der Arithmetik” [1894]. Translated as “Review of Philosophie der Arithmetik by Edmund Husserl” in [CP]: 195–209. Translated as “Illustrative Extracts from Frege’s Review of Husserl’s Philosophy der Arithmetik” in [BG]: 7985; [FR]: 224–26 (extract). Translated as “Review of Dr. E. Husserl’s Philosophy of Arithmetic” by Kluge, E. W., Mind, 81 (1972): 321–37.Google Scholar
“Kritische Beleuchtung einiger Punkte in E. Schröders Vorlesungen über die Algebra der Logik” [1895]. Translated as “A Critical Elucidation of Some Points in E. Schröder, Vorlesungen über die Algebra der Logik [Lectures on the Algebra of Logic]” in [CP]: 210–28; [BG]: 86106.Google Scholar
“Le nombre entier” [1895]. Translated as “Whole Numbers” in [CP]: 229–33.Google Scholar
“Über die Begriffsschrift des Herrn Peano und meine eigene” [1897]. Translated as “On Mr. Peano’s Conceptual Notation and My Own” in [CP]: 234–48.Google Scholar
“Über die Zahlen des Herrn H. Schubert” [1899]. Translated as “On Mr. H. Schubert’s Numbers” in [CP]: 249–72.Google Scholar
Über die Grundlagen der Geometrie” [1903/1906]. Translated as “On the Foundations of Geometry” in [CP]: 273340. Translated as On the Foundations of Geometry and Formal Theories of Arithmetic by Kluge, E. W.. New Haven: Yale University Press, 1971.Google Scholar
“Was ist eine Funktion?” [1904]. Translated as “What is a Function?” in [CP]: 285–92.Google Scholar
“Antwort auf die Ferienplauderei des Herrn Thomae” [1906]. Translated as “Reply to Thomae’s Holiday Causerie” in [CP]: 341–45.Google Scholar
“Die Unmöglichkeit der Thomaeschen formalen Arithmetik aufs Neue nachgewiesen” [1908]. Translated as “Renewed Proof of the Impossibility of Mr. Thomae’s Formal Arithmetic” in [CP]: 346–50.Google Scholar
Logical Investigations [LI]. Translated by Geach, P. T. (from Frege 1918a, b and 1923). New Haven: Yale University Press, 1977.Google Scholar
“Der Gedanke. Eine logische Untersuchung” [1918]. Translated as “Thoughts” in [CP]: 351–72; [LI]: 130. Translated as “Thought” in [FR]: 325–45.Google Scholar
“Die Verneinung. Eine logische Untersuchung” [1918]. Translated as “Negation” in [CP]: 373–89; [LI]: 3153; [FR]: 346–61.Google Scholar
“Gedankengefüge” [1923]. Translated as “Compound Thoughts” in [CP]: 390406; [LI]: 5577.Google Scholar
“Gottlob Freges politisches Tagebuch” [1994]. Translated as “Diary: Written by Professor Dr. Gottlob Frege in the Time from 10 March to 9 April 1924” by Mendelsohn, Richard L., in Inquiry 39 (1996): 303–42 (editors’ introduction by Gabriel, G. and Kienzler, W., 303–8).Google Scholar
Nachgelassene Schriften [1969]. Translated as Posthumous Writings [PW] by Long, Peter and White, Roger. Oxford: Basil Blackwell, 1979.Google Scholar
“Boole’s Logical Calculus and the Concept-Script” in [PW]: 946.Google Scholar
“Boole’s Logical Formula-Language and My Concept-Script” in [PW]: 4752.Google Scholar
“Draft towards a Review of Cantor’s Gesammelte Abhandlungen zur Lehre vom Transfiniten” in [PW]: 6871.Google Scholar
“Logic” in [PW]: 126–51.Google Scholar
“On Euclidean Geometry” in [PW]: 167–69.Google Scholar
“Notes on Hilbert’s ‘Grundlagen der Geometrie’” in [PW]: 170–3.Google Scholar
“Logic in Mathematics” in [PW]: 203–50.Google Scholar
“Notes for Ludwig Darmstaedter” in [PW]: 253–57.Google Scholar
“Logical Generality” in [PW]: 258–62.Google Scholar
“Number” in [PW]: 265–66.Google Scholar
“Numbers and Arithmetic” in [PW]: 275–77.Google Scholar
On the Foundations of Geometry and Formal Theories of Arithmetic. Trans. Kluge, E. W.. New Haven: Yale University Press, 1971.Google Scholar
Wissenschaftlicher Briefwechsel [1976]. Translated as Philosophical and Mathematical Correspondence by Kaal, Hans. Ed. McGuinness, Brian. Chicago: University of Chicago Press, 1980.Google Scholar
Aczel, Amir D. Descartes’s Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe. New York: Random House, 2005.Google Scholar
Albisetti, James C. Schooling German Girls and Women. Princeton: Princeton University Press, 1988.Google Scholar
Allwein, Gerard, and Barwise, Jon, eds. Logical Reasoning with Diagrams. Oxford: Oxford University Press, 1996.CrossRefGoogle Scholar
Andrews, Peter B. An Introduction to Mathematical Logic and Type Theory: To Truth through Proof. Second edition. Berlin: Springer-Verlag, 2002.CrossRefGoogle Scholar
Anellis, Irving H.Did Principia Mathematica Precipitate a ‘Fregean Revolution’?,” Russell: The Journal of Bertrand Russell Studies, 31 (2011): 131–50.CrossRefGoogle Scholar
Aristotle, . The Complete Works of Aristotle. Ed. Barnes, Jonathan (Oxford Translation). Fifth printing with corrections, two volumes. Princeton: Princeton University Press, 1995.Google Scholar
Asser, Günter, Alexander, David, and Metzler, Helmut. “Gottlob Frege – Persönlichkeit und Werk.” In Begriffsschrift – Jenaer Frege-Konferenz. Jena: Friedrich-Schiller-Universität, 1979. 632.Google Scholar
Auerbach, Felix. The Zeiss Works and the Carl Zeiss Foundation in Jena, Their Scientific, Technical and Sociological Development and Importance Popularly Described. Trans. Kanthack, Ralph from the fifth German edition. London: W. & G. Foyle, Ltd., 1927.Google Scholar
Baedeker, Karl. Northern Germany as Far as the Bavarian and Austrian Frontiers: Handbook for Travelers. Revised edition. New York: Charles Scribner’s Sons, 1910.Google Scholar
Bainton, Roland H. Here I Stand: A Life of Martin Luther. New York: Plume, 1995.Google Scholar
Baker, G. P., and Hacker, P. M. S.. Frege: Logical Excavations. Oxford: Basil Blackwell, 1984.Google Scholar
Baker, G. P., and Hacker, P. M. S.. “Frege’s Anti-psychologism.” In Perspectives on Psychologism. Ed. Notturno, M. A.. Leiden: Brill Academic Publishers, 1989. 75127.Google Scholar
Ballue, Eugène. “Le nombre entier: considéré comme fondement de l’analyse mathématique,” Revue de Métaphysique et de Morale, 2 (1894): 317–28.Google Scholar
Balzac, Honoré. The Unknown Masterpiece and Gambara. Trans. Howard, Richard. Introduction by Danto, Arthur C.. New York: New York Review Books, 2001.Google Scholar
Bauch, Bruno. “Lotzes Logik und ihre Bedeutung im deutschen Idealismus,” Beiträge zur Philosophie des deutschen Idealismus, 1 (1918): 4558.Google Scholar
Beaney, Michael. “Introduction.” In The Frege Reader. Ed. Beaney, Michael. Oxford: Blackwell, 1997. 146.Google Scholar
Berkeley, George. A Treatise Concerning the Principles of Human Knowledge [1710]. In The Works of George Berkeley, Bishop of Cloyne. Ed. Luce, A. A. and Jessup, T. E.. London: Thomas Nelson and Sons Ltd., 1948–1957, 9 volumes. Volume 1.Google Scholar
Berkeley, George. Three Dialogues between Hylas and Philonous [third edition, 1734]. In Berkeley, , Works, Volume 2.Google Scholar
Bird, Otto A. Syllogistic and Its Extensions. Englewood Cliffs: Prentice-Hall, 1964.Google Scholar
Blackburn, Simon, and Code, Alan. “The Power of Russell’s Criticism of Frege: ‘On Denoting’ pp. 48–50,” Analysis, 38(2) (1978): 6577.Google Scholar
Blackwell, Kenneth, Griffin, Nicholas, and Jacquette, Dale, eds. After “On Denoting” : Themes from Russell and Meinong. Hamilton: McMaster University for The Bertrand Russell Research Centre, 2007.Google Scholar
Blanchette, Patricia A.Frege and Hilbert on Consistency,” The Journal of Philosophy, 93 (1996): 317–36.CrossRefGoogle Scholar
Blanchette, Patricia A.Frege (1848–1925).” In The Oxford Handbook of German Philosophy in the Nineteenth Century. Ed. Forster, Michael N. and Gjesdal, Kristen. Oxford: Oxford University Press, 2015. 207–29.Google Scholar
Bolzano, Bernard. Theory of Science [Wissenschaftslehre. Versuch einer ausführlichen und größtentheils neuen Darstellung der Logik mit steter Rücksicht auf deren bisherige Bearbeiter, 1837]. Trans. Rusnock, Paul and George, Rolf. Oxford: Oxford University Press, 2014. Four volumes.Google Scholar
Boole, George. The Mathematical Analysis of Logic: Being an Essay towards a Calculus of Deductive Reasoning [1847], with a new introduction by Slater, John. Bristol: Thoemmes Press, 1998.Google Scholar
Boole, George. An Investigation of the Laws of Thought on Which Are Founded the Mathematical Theories of Logic and Probabilities [1854]. New York: Dover Publications, 1958.Google Scholar
Boole, George. A Treatise on the Calculus of Finite Differences [1860]. Fourth edition. Ed. Moulton, J. F.. New York: Chelsea Publishing Company, 1872.Google Scholar
Bowie, Andrew. Introduction to German Philosophy: From Kant to Habermas. Oxford: Blackwell, 2003.Google Scholar
Boyer, Carl Benjamin. The History of the Calculus and Its Conceptual Development. New York: Dover Books, 1959.Google Scholar
Brentano, Franz. Psychologie vom empirischen Standpunkt. Leipzig: Duncker & Humblot, 1874.Google Scholar
Brouwer, L. E. J. “The Effect of Intuitionism on Classical Algebra of Logic,” Proceedings of the Royal Irish Academy, 57 (1955): 113–16.Google Scholar
Burge, Tyler. Truth, Thought, Reason: Essays on Frege. Oxford: Oxford University Press, 2005.CrossRefGoogle Scholar
Burge, Tyler. “Gottlob Frege: Some Forms of Influence.” In The Oxford Handbook of the History of Analytic Philosophy. Ed. Beaney, Michael. Oxford: Oxford University Press, 2013. 355–82.Google Scholar
Burgess, John P. Fixing Frege. Princeton: Princeton University Press, 2005.CrossRefGoogle Scholar
Burke, Edmund. A Philosophical Enquiry into the Origin of Our Ideas of the Sublime and Beautiful [1757]. Ed. with an introduction and notes by Phillips, Adam. Oxford: Oxford University Press, 2008.Google Scholar
Bynum, Terrell Ward. “On the Life and Work of Gottlob Frege.” In Frege: Conceptual Notation and Related Articles. Trans. Bynum, Terrell Ward. Oxford: Oxford University Press, 1972. 154.Google Scholar
Cantor, Georg. “Review of Grundlagen der Arithmetik, by Gottlob Frege,” Deutsche Literaturzeitung 6 (1885): 728–29.Google Scholar
Cantor, Georg. “Beiträge zur Begründung der transfiniten Mengenlehre,” Mathematische Annalen, 46(4) (1895): 481512.CrossRefGoogle Scholar
Carl, Wolfgang. Frege’s Theory of Sense and Reference: Its Origins and Scope. Cambridge: Cambridge University Press, 1994.CrossRefGoogle Scholar
Carnap, Rudolf. “Intellectual Autobiography.” In The Philosophy of Rudolf Carnap. Ed. Schilpp, Paul. LaSalle: Open Court, 1963.Google Scholar
Carnap, Rudolf. Frege’s Lectures on Logic: Carnap’s Student Notes 1910–1914. Ed. Reck, Erich H. and Awodey, Steve. Introduction by Gabriel, Gottfried. LaSalle: Open Court, 2004.Google Scholar
Church, Alonzo. “An Unsolvable Problem of Elementary Number Theory,” Bulletin of the American Mathematical Society, 41(5) (1935): 332–33.Google Scholar
Chrudzimski, Arkadiusz. Intentionalitätstheorie beim frühen Brentano. Dordrecht: Kluwer Academic Publishers, 2001.CrossRefGoogle Scholar
Cocchiarella, Nino. “Whither Russell’s Paradox of Predication.” In Logic and Ontology. Ed. Munitz, Milton K.. New York: New York University Press, 1973. 133–58.Google Scholar
Corcoran, John. “Aristotle’s Demonstrative Logic,” History and Philosophy of Logic, 30 (2009): 120.CrossRefGoogle Scholar
Currie, Gregory. “Frege on Thoughts,” Mind, 89(354) (1980): 234–48.Google Scholar
Dauben, Joseph W.Georg Cantor and Pope Leo XIII: Mathematics, Theology, and the Infinite,” Journal of the History of Ideas, 38 (1977): 85108.CrossRefGoogle Scholar
de Maimieux, Joseph. Pasigraphie, ou, Premiers élémens du nouvel art-science d’écrire et d’imprimer en une langue de manière à être lu et entendu dans toute autre langue sans traduction. Paris: Bureau de la Pasigraphie, 1797.Google Scholar
Decker, Christine. Wismar 1665: Eine Stadtgesellschaft im Spiegel des Türkensteuerregisters. Berlin: LIT Verlag, 2006.Google Scholar
Demopoulos, William. “Frege, Hilbert and the Conceptual Structure of Model Theory,” History and Philosophy of Logic, 15(2) (1994): 211–25.CrossRefGoogle Scholar
Demopoulos, William. ed. Frege’s Philosophy of Mathematics. Cambridge: Harvard University Press, 1997.Google Scholar
Demopoulos, William. Logicism and Its Philosophical Legacy. Cambridge: Cambridge University Press, 2013.Google Scholar
Dipert, Randall R.The Life and Work of Ernst Schröder,” Modern Logic, 1 (1990–1991): 117–39.Google Scholar
Dudman, Victor, translator and commentator. “Peano’s Review of Frege’s Grundgesetze,” The Southern Journal of Philosophy, 9 (1971): 2537.CrossRefGoogle Scholar
Dummett, Michael. “Frege, Gottlob.” In Encyclopedia of Philosophy. Ed. Edwards, Paul. New York: Macmillan, 1967. Volume III, 225–37.Google Scholar
Dummett, Michael. “Frege on the Consistency of Mathematical Theories.” In Studien zu Frege. Ed. Schirn, Matthias. Stuttgart-Bad Cannstatt: Frommann-Holzboog, 1975. 229–42.Google Scholar
Dummett, Michael. Frege: Philosophy of Language [1973]. Second edition. Cambridge: Harvard University Press, 1981.Google Scholar
Dummett, Michael. The Interpretation of Frege’s Philosophy. Cambridge: Harvard University Press, 1981.Google Scholar
Dummett, Michael. “Frege and Kant on Geometry,” Inquiry: An Interdisciplinary Journal of Philosophy, 25(2) (1982): 233–54.CrossRefGoogle Scholar
Dummett, Michael. Frege: Philosophy of Mathematics. Cambridge: Harvard University Press, 1991.Google Scholar
Dummett, Michael. “Gottlob Frege.” In Encyclopedia Britannica Online. www.britannica.com/biography/Gottlob-FregeGoogle Scholar
Edwards, Charles Henry Jr. The Historical Development of the Calculus. Berlin: Springer-Verlag, 1979.CrossRefGoogle Scholar
Eisenstein, Elizabeth. The Printing Press as an Agent of Change: Communications and Cultural Transformations in Early Modern Europe. Cambridge: Cambridge University Press, 1979.Google Scholar
Erdmann, Benno. Logik. Band I. Logische Elementarlehre. Halle: Niemeyer, 1892.Google Scholar
Erikson, Erik H. Young Man Luther: A Study in Psychoanalysis and History. Gloucester: Peter Smith Publishing, Inc., 1962.Google Scholar
Eucken, Rudolf. “Review of Grundlagen der Arithmetik, by G. Frege,” Philosophische Monatshefte, 22 (1886): 421–22.Google Scholar
Euclid, . The Elements of Euclid, with Dissertations. Trans. Williamson, James. Oxford: Clarendon Press, 1782.Google Scholar
Ewen, Wolfgang. Carl Stumpf und Gottlob Frege. Würzburg: Königshausen und Neumann, 2008.Google Scholar
Faerber, Carl. “Referat von Prof. Faerber, Berlin,” Mitteilungen der Deutschen Mathematiker-Vereinigung, 39 (1911): 230–31.Google Scholar
Feldman, Gerald D. The Great Disorder: Politics, Economics, and Society in the German Inflation, 1914–1924. Oxford: Oxford University Press, 1997.Google Scholar
Flood, Raymond, Rice, Adrian, and Wilson, Robin, eds. Mathematics in Victorian Britain. Oxford: Oxford University Press, 2011.Google Scholar
Franklin, James. “Aristotelianism in the Philosophy of Mathematics,” Studia Neoaristotelica, 8 (2011): 315.CrossRefGoogle Scholar
Gabbay, Dov M., and Woods, John, eds. British Logic in the Nineteenth Century (Handbook of the History of Logic, Volume 4). Amsterdam: Elsevier, 2008.Google Scholar
Gabriel, Gottfried. “Frege als Neukantianer,” Kant-Studien, 77(1) (1986): 84101.Google Scholar
Gabriel, Gottfried. “Leo Sachse, Herbart, Frege und die Grundlagen der Arithmetik.” In Frege in Jena: Beiträge zur Spurensicherung. Ed. Gabriel, Gottfried and Kienzler, Wolfgang. Würzburg: Königshausen und Neumann, 1997. 5367.Google Scholar
Gabriel, Gottfried. “Frege, Lotze, and the Continental Roots of Early Analytic Philosophy.” In From Frege to Wittgenstein: Perspectives on Early Analytic Philosophy. Ed. Reck, Erich H.. Oxford: Oxford University Press, 2002. 3951.CrossRefGoogle Scholar
Gabriel, Gottfried, and Kienzler, Wolfgang, eds. Frege in Jena: Beiträge zur Spurensicherung. Würzburg: Königshausen und Neumann, 1997.Google Scholar
Gardner, Martin. Logic Machines and Diagrams. New York: McGraw-Hill, 1958.Google Scholar
Gauss, Carl Friedrich. Disquisitiones Arithmeticae. Leipzig: Gerhard Fleischer, 1801.CrossRefGoogle Scholar
Gauss, Carl Friedrich. “Disquisitiones Generales circa Superficies Curvas,” Commentationes Societatis Regiae Scientiarum Gottingensis recentiores 6 (1827): 99146.Google Scholar
Gauss, Carl Friedrich. Disquisitiones Generales circa Superficies Curvas. Göttingen: Dieterich, 1928.Google Scholar
Geach, P. T. “On Frege’s Way Out,” Mind, 65 (1956): 408–9.CrossRefGoogle Scholar
Geach, P. T. “Frege.” In Three Philosophers. By Anscombe, G. E. M. and Geach, P. T. Oxford: Basil Blackwell, 1973. 127–62.Google Scholar
George, Alexander and Heck, Richard. “Frege, Gottlob.” In Routledge Encyclopedia of Philosophy. Ed. Craig, Edward. London: Routledge, 1998. Volume 3, 76578.Google Scholar
Giese, Gerd. “Frege und Wismar: Orte der Erinnerung.” In Gottlob Frege – ein Genius mit Wismarer Wurzeln: Leistung – Wirkung – Tradition. Ed. Schott, Dieter. Leipzig: Leipziger Universitätsverlag, 2012. 98111.Google Scholar
Gillies, D. A. Frege, Dedekind, and Peano on the Foundations of Arithmetic. Assen: Van Gorcum, 1982.Google Scholar
Gödel, Kurt. “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme 1,” Monatshefte für Mathematik und Physik, 38 (1931): 173–98.Google Scholar
Griffin, Nicholas. “The Prehistory of Russell’s Paradox.” In One Hundred Years of Russell’s Paradox: Mathematics, Logic, Philosophy. Ed. Link, Godehard and Bell, John L.. Berlin: Walter de Gruyter, 2004. 349–72.Google Scholar
Griffin, Nicholas, and Jacquette, Dale, eds. Russell vs. Meinong: The Legacy of “On Denoting.” London: Routledge, 2009.Google Scholar
Hadamard, Jacques. An Essay on the Psychology of Invention in the Mathematical Field. New York: Dover Publications, 1954.Google Scholar
Haddock, Guillermo E. Rosado. A Critical Introduction to the Philosophy of Gottlob Frege. Aldershot: Ashgate Publishing, 2012.Google Scholar
Hahn, Martin. “The Frege Puzzle One More Time.” In Frege: Sense and Reference One Hundred Years Later. Ed. Biro, John and Kotatko, Petr. Dordrecht: Kluwer Academic Publishers, 1995. 169–83.Google Scholar
Hale, Bob. “Frege’s Platonism,” The Philosophical Quarterly, 34(136) (1984): 225–41.CrossRefGoogle Scholar
Harreld, Donald, ed. A Companion to the Hanseatic League. Leiden: Brill Academic Publishers, 2015.CrossRefGoogle Scholar
Hawkins, Benjamin S.DeMorgan, Victorian Syllogistic and Relational Logic,” The Review of Modern Logic, 5(2) (1995): 131–66.Google Scholar
Heblack, Torsten. “Wer war Leo Sachse? Ein historisch-biographischer Beitrag zur Frege-Forschung.” In Frege in Jena: Beiträge zur Spurensicherung. Ed. Gabriel, Gottfried and Kienzler, Wolfgang. Würzburg: Königshausen und Neumann, 1997. 4152.Google Scholar
Heck, Richard G., and May, Robert. “Frege’s Contribution to Philosophy of Language.” In The Oxford Handbook of Philosophy of Language. Ed. Lepore, Ernest and Smith, Barry C.. Oxford: Oxford University Press, 2008.Google Scholar
Helfferich, Tryntje, ed. The Thirty Years War: A Documentary History. Indianapolis: Hackett Publishing, 2009.Google Scholar
Hellman, Geoffrey. “How to Gödel a Frege–Russell: Gödel’s Incompleteness Theorems and Logicism,” Noûs, 15 (1981): 451–68.CrossRefGoogle Scholar
Hermes, Hans, Kambartel, Friedrich, and Kaulbach, Friedrich. “History of the Frege Nachlaß and the Basis for This Edition.” In Gottlob Frege, Posthumous Writings. Ed. Hermes, Hans, Kambartel, Friedrich, and Kaulbach, Friedrich. Oxford: Basil Blackwell, 1979.Google Scholar
Hill, Claire Ortiz, and Rosado Haddock, Guillermo E.. Husserl or Frege? Meaning, Objectivity, and Mathematics. LaSalle: Open Court, 2003.Google Scholar
Hindley, J. Roger. Basic Simple Type Theory. Cambridge: Cambridge University Press, 1997.CrossRefGoogle Scholar
Hochberg, Herbert. “Russell’s Attack on Frege’s Theory of Meaning,” Philosophica, 18 (1976): 934.Google Scholar
Hochberg, Herbert. “Russell’s Paradox, Russellian Relations, and the Problems of Predication and Impredicativity,” Minnesota Studies in the Philosophy of Science, 12 (1989): 6387.Google Scholar
Holtfrerich, Carl-Ludwig. The German Inflation 1914–1923. Trans. Balderston, Theo. Berlin: Walter de Gruyter, 1986.CrossRefGoogle Scholar
Hopkins, Burt C.Husserl’s Psychologism and Critique of Psychologism, Revisited,” Husserl Studies, 22 (2006): 91119.CrossRefGoogle Scholar
Hoppe, Ernst Reinhold Eduard. “Review of Frege’s Grundgesetze der Arithmetik I,” Archives of Mathematics and Physics, second series 13. Literary Report XLIX (1895): 8.Google Scholar
Horn, Laurence R. A Natural History of Negation. Stanford: Center for the Study of Language and Information, 2001.Google Scholar
Hume, David. A Treatise of Human Nature [1739–1740]. Second edition. Ed. Sir Selby-Bigge, Lewis Amherst and revised by Nidditch, P. H.. Oxford: Clarendon Press, 1978.Google Scholar
Hume, David. Enquiry Concerning Human Understanding [1748]. In Hume, David. Enquiries Concerning Human Understanding and Concerning the Principles of Morals. Third edition. Ed. Sir Selby-Bigge, Lewis Amherst and revised by Nidditch, P. H.. Oxford: Clarendon Press, 1975.CrossRefGoogle Scholar
Hume, David. “My Own Life.” In Mossner, Ernest Campbell. The Life of David Hume. Austin: University of Texas Press, 1954.Google Scholar
Husserl, Edmund. Philosophie der Arithmetik: Psychologische und logische Untersuchungen. Halle: Pfeffer Verlag, 1891.Google Scholar
Husserl, Edmund. Philosophy of Arithmetic: Psychological and Logical Investigations with Supplementary Texts from 1887–1901. Trans. Willard, Dallas. Dordrecht: Kluwer Academic Publishers, 2003.CrossRefGoogle Scholar
Hylton, Peter. Russell, Idealism, and the Emergence of Analytic Philosophy. Oxford: Clarendon Press, 1993.Google Scholar
Jacquette, Dale. Wittgenstein’s Thought in Transition. West Lafayette: Purdue University Press, 1997.Google Scholar
Jacquette, Dale. “Intentionality on the Instalment Plan,” Philosophy, 73 (1998): 6379.CrossRefGoogle Scholar
Jacquette, Dale. On Boole. Belmont: Wadsworth Publishing, 2002.Google Scholar
Jacquette, Dale. ed. Philosophy, Psychology, and Psychologism: Critical and Historical Readings on the Psychological Turn in Philosophy. Dordrecht: Kluwer Academic Publishers, 2003.CrossRefGoogle Scholar
Jacquette, Dale. “Introduction: Psychologism the Philosophical Shibboleth.” In Philosophy, Psychology, and Psychologism: Critical and Historical Readings on the Psychological Turn in Philosophy. Ed. Jacquette, Dale. Dordrecht: Kluwer Academic Publishers, 2003. 119.CrossRefGoogle Scholar
Jacquette, Dale. “Psychologism Revisited in Logic, Metaphysics, and Epistemology.” In Philosophy, Psychology, and Psychologism: Critical and Historical Readings on the Psychological Turn in Philosophy. Ed. Jacquette, Dale. Dordrecht: Kluwer Academic Publishers, 2003. 245–62.CrossRefGoogle Scholar
Jacquette, Dale. “Frege on Identity as a Relation of Names,” Metaphysica: International Journal for Ontology and Metaphysics, 12 (2011): 5172.CrossRefGoogle Scholar
Jacquette, Dale. “Thinking Outside the Square of Opposition Box.” In Around and beyond the Square of Opposition. Ed. Béziau, Jean-Yves and Jacquette, Dale. Basel: Springer-Verlag, 2012. 7392.CrossRefGoogle Scholar
Jacquette, Dale. “Qualities, Relations, and Property Exemplification,” Axiomathes, 23 (2013): 381–99.CrossRefGoogle Scholar
Jacquette, Dale. “Newton’s Metaphysics of Space as God’s Emanative Effect,” Physics in Perspective, 16 (2014): 344–70.CrossRefGoogle Scholar
Jacquette, Dale. “Toward a Neoaristotelian Inherence Philosophy of Mathematical Entities,” Studia Neoaristotelica, 11 (2014): 159204.CrossRefGoogle Scholar
Jacquette, Dale. Alexius Meinong: The Shepherd of Non-Being. Berlin: Springer-Verlag, 2015.CrossRefGoogle Scholar
Jacquette, Dale. “Referential Analysis of Quotation.” In Semantic and Pragmatic Aspects of Quotation. Ed. Paul Saka. Berlin: Springer-Verlag, forthcoming.Google Scholar
Kant, Immanuel. Critique of Pure Reason [1781/1787]. Trans. Guyer, Paul and Wood, Allen W.. Cambridge: Cambridge University Press, 1998.CrossRefGoogle Scholar
Kant, Immanuel. The Groundwork to the Metaphysics of Morals [1785]. Trans. Gregor, Mary and Timmermann, Jens. Cambridge: Cambridge University Press, 2012.Google Scholar
Kanterian, Edward. “Review of Carl Stumpf und Gottlob Frege, by W. Ewen,” Philosophical Investigations, 34 (3) (2011): 312–17.CrossRefGoogle Scholar
Kanterian, Edward. Frege: A Guide for the Perplexed. London: Continuum, 2012.Google Scholar
Kenny, Anthony. Frege: An Introduction to the Founder of Modern Analytic Philosophy. London: Penguin Books Ltd., 1995.Google Scholar
Kerry, Benno. “Über Anschauung und ihre psychische Verarbeitung,” Vierteljahrsschrift für wissenschaftliche Philosophie, 9 (1885): 433–93.Google Scholar
Kerry, Benno. “Über Anschauung und ihre psychische Verarbeitung,” Vierteljahrsschrift für wissenschaftliche Philosophie, 10 (1886): 419–67.Google Scholar
Kerry, Benno. “Über Anschauung und ihre psychische Verarbeitung,” Vierteljahrsschrift für wissenschaftliche Philosophie, 11 (1887): 53116.Google Scholar
Kerry, Benno. “Über Anschauung und ihre psychische Verarbeitung,” Vierteljahrsschrift für wissenschaftliche Philosophie, 11 (1887): 249307.Google Scholar
Kerry, Benno. “Über Anschauung und ihre psychische Verarbeitung,” Vierteljahrsschrift für wissenschaftliche Philosophie, 13 (1889): 71124.Google Scholar
Kerry, Benno. “Über Anschauung und ihre psychische Verarbeitung,” Vierteljahrsschrift für wissenschaftliche Philosophie, 13 (1889): 392419.Google Scholar
Kerry, Benno. “Über Anschauung und ihre psychische Verarbeitung,” Vierteljahrsschrift für wissenschaftliche Philosophie, 14 (1890): 317–53.Google Scholar
Kerry, Benno. “Über Anschauung und ihre psychische Verarbeitung,” Vierteljahrsschrift für wissenschaftliche Philosophie, 15 (1891): 127–67.Google Scholar
Klement, Kevin C. Frege and the Logic of Sense and Reference. Reprint edition. London: Routledge, 2011.Google Scholar
Kratzsch, Irmgard. “Material zu Leben und Wirken Freges aus dem Besitz der Universitäts-Bibliothek Jena.” In Begriffsschrift – Jenaer Frege-Konferenz. Jena: Friedrich-Schiller-Universität, 1979. 534–46.Google Scholar
Kreiser, Lothar. “G. Frege ‘Die Grundlagen der Arithmetik’ – Werk und Geschichte.” In Frege Conference 1984: Proceedings of the International Conference Held at Schwerin (GDR), September 10–14, 1984. Ed. Wechsung, Gerd. Berlin: Akademie-Verlag, 1984. 1327.Google Scholar
Kreiser, Lothar. “Alfred.” In Frege in Jena: Beiträge zur Spurensicherung. Ed. Gabriel, Gottfried and Kienzler, Wolfgang. Würzburg: Königshausen und Neumann, 1997. 6883.Google Scholar
Kreiser, Lothar. “Freges Universitätsstudium – Warum Jena?” In Frege in Jena: Beiträge zur Spurensicherung. Ed. Gabriel, Gottfried and Kienzler, Wolfgang. Würzburg: Königshausen und Neumann, 1997. 3340.Google Scholar
Kreiser, Lothar. “Gottlob Frege: Ein Leben in Jena.” In Gottlob Frege – Werk und Wirkung. Ed. Gabriel, Gottfried and Dathe, Uwe. Paderborn: Mentis, 2000. 924.Google Scholar
Kreiser, Lothar. Gottlob Frege: Leben – Werk – Zeit. Hamburg: Felix Meiner Verlag, 2001.CrossRefGoogle Scholar
Kreiser, Lothar. “Die Freges aus Wismar.” In Gottlob Frege – ein Genius mit Wismarer Wurzeln: Leistung – Wirkung – Tradition. Ed. Schott, Dieter. Leipzig: Leipziger Universitätsverlag, 2012. 6997.Google Scholar
Kripke, Saul A. Wittgenstein on Rules and Private Language: An Elementary Exposition. Cambridge: Harvard University Press, 1982.Google Scholar
Kuehn, Manfred. Kant: A Biography. Cambridge: Cambridge University Press, 2001.CrossRefGoogle Scholar
Kuehn, Manfred. “Kant’s Critical Philosophy and Its Reception – the First Five Years (1781–1786).” In The Cambridge Companion to Kant and Modern Philosophy. Ed. Guyer, Paul. Cambridge: Cambridge University Press, 2006. 630–64.Google Scholar
Kusch, Martin. Psychologism: A Case Study in the Sociology of Philosophical Knowledge. London: Routledge, 1995.Google Scholar
Kusch, Martin. A Sceptical Guide to Meaning and Rules: Defending Kripke’s Wittgenstein. Montreal: McGill–Queen’s University Press, 2006.Google Scholar
Landini, Gregory. Frege’s Notations: What They Are and How They Mean. London: Palgrave-Macmillan, 2012.CrossRefGoogle Scholar
Laßwitz, Kurd. “Rezension von Begriffsschrift,” Jenaer Literaturzeitung, 6 (1879): 248–49.Google Scholar
Leibniz, Gottfried Wilhelm. Mathematische Schriften [1850–63]. Ed. Gerhardt, C. J.. Hildesheim: Georg Olms Verlag, 1971.Google Scholar
Lindström, Sten, Palmgren, Erik, Segerberg, Krister, and Stoltenberg-Hansen, Viggo, eds. Logicism, Intuitionism, and Formalism: What Has Become of Them? Berlin: Springer-Verlag, 2009.CrossRefGoogle Scholar
Linsky, Leonard. Referring. London: Routledge & Kegan Paul, 1967.Google Scholar
Lotze, Hermann. Grundzüge der Religionsphilosophie. Leipzig: S. Hirzel, 1884.Google Scholar
Macbeth, Danielle. Frege’s Logic. Cambridge: Harvard University Press, 2005.CrossRefGoogle Scholar
MacCulloch, Diarmaid. The Reformation. New York: Penguin Books, 2004.Google Scholar
MacFarlane, John. “Frege, Kant, and the Logic in Logicism,” The Philosophical Review, 111 (2002): 2566.CrossRefGoogle Scholar
Makin, Gideon. The Metaphysicians of Meaning: Russell and Frege on Sense and Denotation. London: Routledge, 2001.Google Scholar
Makin, Gideon. “‘On Denoting’: Appearance and Reality.” In Russell vs. Meinong: The Legacy of “On Denoting.” Ed. Griffin, Nicholas and Jacquette, Dale. London: Routledge, 2009. 78100.Google Scholar
Massey, Gerald J.Some Reflections on Psychologism.” In Phenomenology and the Formal Sciences. Ed. Seebohm, Thomas M., Føllesdal, Dagfinn and Mohanty, Jitendranath N.. Dordrecht: Kluwer Academic Publishing, 1991. 183–94.Google Scholar
McDonough, Richard. “A Note on Frege’s and Russell’s Influence on Wittgenstein’s Tractatus,” Russell: The Journal of the Bertrand Russell Archives 14 (1994): 3946.CrossRefGoogle Scholar
McGinn, Colin. Wittgenstein on Meaning: An Interpretation and Evaluation. Oxford: Basil Blackwell, 1984.Google Scholar
McGuinness, Brian. Wittgenstein: A Life: Young Ludwig 1889–1921. Berkeley: University of California Press, 1988.Google Scholar
McGuinness, Brian and Haller, Rudolf, eds. Wittgenstein in Focus – Im Brennpunkt: Wittgenstein. Amsterdam: Rodopi, 1989.Google Scholar
Mendelsohn, Richard L. The Philosophy of Gottlob Frege. Cambridge: Cambridge University Press, 2005.CrossRefGoogle Scholar
Milkov, Nikolay. “Frege in Context” [essay review of Gabriel, and Kienzler, , eds., Frege in Jena (1997)], British Journal for the History of Philosophy, 9 (2001): 557–70.CrossRefGoogle Scholar
Mill, John Stuart. A System of Logic, Ratiocinative and Inductive [1843]. Ed. Robson, J. M. [Mill, , Collected Works. Volume VII]. London: Routledge & Kegan Paul, 1973.Google Scholar
Mohanty, Jitendranath N.Husserl and Frege: A New Look at Their Relationship,” Research in Phenomenology, 4(1) (1974): 51–62.CrossRefGoogle Scholar
Mohanty, Jitendranath N. Readings on Edmund Husserl’s Logical Investigations. The Hague: Martinus Nijhoff, 1977. 2232.CrossRefGoogle Scholar
Mohanty, Jitendranath N.Husserl, Frege and the Overcoming of Psychologism.” In Philosophy and Science in Phenomenological Perspective. Ed. Cho, K. K.. Dordrecht: Martinus Nijhoff, 1984. 143–52.Google Scholar
Moktefi, Amirouche, and Shin, Sun-Joo, eds. Visual Reasoning with Diagrams. Basel: Birkhäuser Verlag, 2013.CrossRefGoogle Scholar
Monk, Ray. Ludwig Wittgenstein: The Duty of Genius. Harmondsworth: Penguin Books, 1990.Google Scholar
Nahin, Paul J. An Imaginary Tale: The Story of √−1. Princeton: Princeton University Press, 2010.CrossRefGoogle Scholar
Newton, Isaac. Principia Mathematica Philosophiæ Naturalis. Trans. Cohen, Bernard and Whitman, Anne. Berkeley: University of California Press, 1999. Volume I.Google Scholar
Newton, Isaac. De Gravitatione et æquipondio fluidorum. In Newton, Isaac. Philosophical Writings. Ed. Janiak, Andrew. Trans. Hall, A. R. and Hall, Marie Boas. Cambridge: Cambridge University Press, 2004. 2658.Google Scholar
Nidditch, Peter H.Peano and the Recognition of Frege,” Mind, 72 (1963): 103–10.Google Scholar
Noonan, Harold W. Frege: A Critical Introduction. Cambridge: Polity Press, 2001.Google Scholar
Papineau, David. Philosophical Devices: Proofs, Probabilities, Possibilities, and Sets. Oxford: Oxford University Press, 2012.Google Scholar
Parker, Philip M., ed. Wismar: Webster’s Timeline History, 1348–2007. San Diego: ICON Group International, 2010.Google Scholar
Parsons, Charles. “Frege’s Theory of Number.” In Philosophy in America. Ed. Black, Max. Ithaca: Cornell University Press, 1965. 180203.Google Scholar
Peano, Giuseppe. “Dr. Gottlob Frege, Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet, Erster Band, Jena, 1893, pag. XXXII + 254,” Rivista di matematica, 5 (1895): 122–28.Google Scholar
Peano, Giuseppe. Opere scelte. Rome: Edizioni Cremonese, 1959. Volume 2, 187–95.Google Scholar
Peckhaus, Volker. “Benno Kerry: Beiträge zu seiner Biographie,” History and Philosophy of Logic, 15 (1994): 18.CrossRefGoogle Scholar
Peckhaus, Volker. “Schröder’s Logic.” In The Rise of Modern Logic: From Leibniz to Frege. Ed. Gabbay, Dov M. and Woods, John. Amsterdam: Elsevier, 1994. 557609.Google Scholar
Peirce, Charles S. Collected Papers of Charles Sanders Peirce. Ed. Hartshorne, Charles, Weiss, Paul, and Burks, Arthur W.. Cambridge: Harvard University Press, 1931–1935.Google Scholar
Pelletier, Francis Jeffry, and Linsky, Bernard. “Russell vs. Frege on Definite Descriptions as Singular Terms.” In Russell vs. Meinong: The Legacy of “On Denoting.” Ed. Griffin, Nicholas and Jacquette, Dale. London: Routledge, 2009. 4064.Google Scholar
Perloff, Marjorie, ed. Wittgenstein’s Ladder: Poetic Language and the Strangeness of the Ordinary. Chicago: University of Chicago Press, 1999.Google Scholar
Perry, John. “Frege on Demonstratives,” The Philosophical Review, 86 (4) (1977): 474–97.CrossRefGoogle Scholar
Picardi, Eva. “Kerry und Frege über Begriff und Gegenstand,” History and Philosophy of Logic, 15 (1994): 932.CrossRefGoogle Scholar
Poincaré, Henri. “Les mathématiques et la logique,” Revue de Métaphysique et de Morale, 14 (1906): 294317.Google Scholar
Poincaré, Henri. “Mathematical Discovery.” In Poincaré, Henri. Science and Method [1908]. Trans. Maitland, Francis. London: T. Nelson and Sons, 1914. 4663.Google Scholar
Posy, Carl J., ed. Kant’s Philosophy of Mathematics: Modern Essays. Berlin: Springer-Verlag, 1982.Google Scholar
Potter, Michael. “Introduction.” In The Cambridge Companion to Frege. Ed. Potter, Michael and Ricketts, Tom. Cambridge: Cambridge University Press, 2010. 131.Google Scholar
Pratt-Hartmann, Ian. “The Hamiltonian Syllogistic,” Journal of Logic, Language and Information, 20 (4) (2011): 445–74.CrossRefGoogle Scholar
Prescott, George. History, Theory and Practice of the Electric Telegraph. Boston: Ticknor and Fields, 1860.Google Scholar
Quine, Willard Van Orman. “On Frege’s Way Out,” Mind, 64 (1955): 145–59.Google Scholar
Quine, Willard Van Orman. Word and Object. Cambridge: MIT Press, 1960.Google Scholar
Quine, Willard Van Orman. “Reference and Modality.” In Quine, Willard Van Orman. From a Logical Point of View. Cambridge: Harvard University Press, 1961. 139–59.Google Scholar
Quine, Willard Van Orman. “Speaking of Objects.” In Quine, Willard Van Orman. Ontological Relativity and Other Essays. New York: Columbia University Press, 1969.CrossRefGoogle Scholar
Quine, Willard Van Orman. “The Ways of Paradox.” In Quine, Willard Van Orman. The Ways of Paradox and Other Essays. Revised and enlarged edition. Cambridge: Harvard University Press, 1976.Google Scholar
Quine, Willard Van Orman. Theories and Things. Cambridge: Harvard University Press, 1981.Google Scholar
Quine, Willard Van Orman. “Reply to Charles Parsons.” In The Philosophy of W. V. Quine. Ed. Hahn, Lewis Edwin and Schilpp, Paul Arthur. LaSalle: Open Court, 1986. 396403.Google Scholar
Reck, Erich H.Wittgenstein’s ‘Great Debt’ to Frege: Biographical Traces and Philosophical Themes.” In From Frege to Wittgenstein: Perspectives on Early Analytic Philosophy. Ed. Reck, Erich H.. Oxford: Oxford University Press, 2002. 338.CrossRefGoogle Scholar
Reck, Erich H., and Awodey, Steve, eds. Frege’s Lectures on Logic: Carnap’s Student Notes 1910–1914. Chicago: Open Court, 2004.Google Scholar
Reed, Delbert. The Origins of Analytic Philosophy: Kant and Frege. London: Continuum, 2007.Google Scholar
Resnik, Michael D.The Frege–Hilbert Controversy,” Philosophy and Phenomenological Research, 34 (1973): 386403.CrossRefGoogle Scholar
Resnik, Michael D. Frege and the Philosophy of Mathematics. Ithaca: Cornell University Press, 1980.Google Scholar
Rockmore, Tom. In Kant’s Wake: Philosophy in the Twentieth Century. Oxford: Wiley-Blackwell, 2006.CrossRefGoogle Scholar
Rosser, Barkley. “Extensions of Some Theorems of Gödel and Church,” Journal of Symbolic Logic, 1 (1936): 8791.CrossRefGoogle Scholar
Russell, Bertrand. The Principles of Mathematics. New York: W. W. Norton & Company, 1903.Google Scholar
Russell, Bertrand. “On Denoting,” Mind, 14 (1905): 479–93.Google Scholar
Russell, Bertrand. “Mathematical Logic as Based on a Theory of Types,” American Journal of Mathematics, 30 (1908): 222–62.CrossRefGoogle Scholar
Russell, Bertrand. Introduction to Mathematical Philosophy. New York: Simon and Schuster, 1919.Google Scholar
Russell, Bertrand. Last Philosophical Testament 1943–1968. The Collected Papers of Bertrand Russell. Volume 11. Ed. Slater, John G., with the assistance of Köllner, Peter. London: Routledge, 1997.Google Scholar
Ryle, Gilbert. “Meaning and Necessity,” Philosophy, 24 (1949): 6976.CrossRefGoogle Scholar
Salmon, Nathan. Frege’s Puzzle. Atascadero: Ridgeview Publishing Company, 1986.Google Scholar
Santayana, George. Lotze’s System of Philosophy. Bloomington: Indiana University Press, 1971.CrossRefGoogle Scholar
Schildauer, Johannes. The Hansa: History and Culture. Trans. Vanovitch, Katherine. Erfurt: Edition Leipzig, 1985.Google Scholar
Schildt, Franz. Geschichte der Stadt Wismar bis zum Ende des 13. Jahrhunderts [Wismar 1872]. Reprint edition. Charleston: Nabu Press, 2013.Google Scholar
Schirn, Matthias. Frege: Importance and Legacy. Berlin: Walter de Gruyter, 1996.CrossRefGoogle Scholar
Schlote, Karl-Heinz, and Dathe, Uwe. “Die Anfänge von Gottlob Freges wissenschaftlicher Laufbahn,” Historia Mathematica, 21 (2) (1994): 185–95.CrossRefGoogle Scholar
Schön, Karl. Friedrich Schiller in Jena 1789–1799: Seine Lebens- und Schaffensjahre in Jena. Munich: BookRix GmbH & Co., 2014.Google Scholar
Schott, Dieter, ed. Gottlob Frege – ein Genius mit Wismarer Wurzeln: Leistung – Wirkung – Tradition. Leipzig: Leipziger Universitätsverlag, 2012.Google Scholar
Schröder, Ernst. “Anzeige von Freges Begriffsschrift,” Zeitschrift für Mathematik und Physik, 25 (1881): 8194.Google Scholar
Schröder, Ernst. Vorlesungen über die Algebra der Logik. Three volumes. Leipzig: B. G. Taubner Verlag, 1890–1910.Google Scholar
Schulte, Joachim. “Frege und Wittgenstein.” In Gottlob Frege – Werk und Wirkung. Ed. Gabriel, Gottfried and Dathe, Uwe. Paderborn: Mentis. 211–26.Google Scholar
Sedwick, Sally. Kant’s Groundwork of the Metaphysics of Morals. Cambridge: Cambridge University Press, 2008.Google Scholar
Shabel, Lisa. Mathematics in Kant’s Critical Philosophy: Reflections on Mathematical Practice. London: Routledge, 2011.Google Scholar
Shapiro, Stewart. “Categories, Structures, and the Frege–Hilbert Controversy: The Status of Meta-mathematics,” Philosophia Mathematica, 13 (2005): 6177.CrossRefGoogle Scholar
Shorto, Russell. Descartes’ Bones: A Skeletal History of the Conflict between Faith and Reason. New York: Random House, 2008.Google Scholar
Simons, Peter. “Judging Correctly: Brentano and the Reform of Elementary Logic.” In The Cambridge Companion to Brentano. Ed. Jacquette, Dale. Cambridge: Cambridge University Press, 2004. 4565.CrossRefGoogle Scholar
Sluga, Hans D. Gottlob Frege [1980]. London: Routledge, 1999.Google Scholar
Sluga, Hans D.Gottlob Frege: The Early Years.” In Philosophy in History: Essays on the Historiography of Philosophy. Ed. Rorty, Richard, Schneewind, Jerome B., and Skinner, Quentin. Cambridge: Cambridge University Press, 1984. 329–56.Google Scholar
Smith, David Woodruff, and McIntyre, Ronald. Husserl and Intentionality: A Study of Mind, Meaning, and Language. Dordrecht: D. Reidel Publishing Company, 1982.CrossRefGoogle Scholar
Sobociński, Bolesław. “L’Analyse de l’antinomie russellienne par Leśniewski,” Methodos, 1 (1949): 99104, 220–28, 308–16; 2 (1950): 237–57.Google Scholar
Spade, Paul Vincent. “Ockham’s Nominalist Metaphysics: Some Main Themes.” In The Cambridge Companion to Ockham. Ed. Spade, Paul Vincent. Cambridge: Cambridge University Press, 1999. 100–17.CrossRefGoogle Scholar
Standage, Tom. The Victorian Internet: The Remarkable Story of the Telegraph and the Nineteenth Century’s On-Line Pioneers. Revised second edition. London: Bloomsbury, 2014.Google Scholar
Stelzner, Werner. “Ernst Abbe and Gottlob Frege.” In Frege in Jena: Beiträge zur Spurensicherung. Ed. Gabriel, Gottfried and Kienzler, Wolfgang. Würzburg: Königshausen und Neumann, 1997. 532.Google Scholar
Sternfeld, Robert. Frege’s Logical Theory. Carbondale: Southern Illinois University Press, 1966.Google Scholar
Struik, Dirk Jan. A Source Book in Mathematics 1200–1800. Cambridge: Harvard University Press, 1969.Google Scholar
Taylor, Brook. Methodus incrementorum directa et inversa [Direct and Reverse Methods of Incrementation]. London: William Innys, 1715.Google Scholar
Thiel, Christian. Sense and Reference in Frege’s Logic. Dordrecht: D. Reidel Publishing Company, 1968.CrossRefGoogle Scholar
Twain, Mark. Autobiography of Mark Twain: The Complete and Authoritative Edition. Ed. Smith, Harriet E., Griffin, Benjamin, and Fisher, Victor. Berkeley: University of California Press, 2010.Google Scholar
Unwin, Nicholas. “Quasi-Realism, Negation and the Frege–Geach Problem,” The Philosophical Quarterly, 49 (1999): 337–52.CrossRefGoogle Scholar
Venn, John. “Review of Begriffsschrift, by G. Frege,” Mind, 5 (1880): 297.Google Scholar
Vikko, Risto. “The Reception of Frege’s Begriffsschrift,” Historia Mathematica, 25 (1998): 412–22.Google Scholar
Vlastos, Gregory. “The Socratic Elenchus,” The Journal of Philosophy, 79(11) (1982): 711–14.CrossRefGoogle Scholar
Vlastos, Gregory. “The Socratic Elenchus,” Oxford Studies in Ancient Philosophy, 1 (1983): 2758.Google Scholar
Weber, Max. Die Protestantische Ethik und der Geist des Kapitalismus. [Original publication in Archiv für Sozialwissenschaften und Sozialpolitik 1904–1905.] Tübingen: J. C. B. Mohr, 1934.Google Scholar
Wedgwood, Cicely Veronica. The Thirty-Years War [1938]. New York: New York Review Books, 2005.Google Scholar
Wegner, Sven-Ake. Eine kurze Einführung in Gottlob Freges Begriffsschrift. Wuppertal: Bergische Universität, 1979.Google Scholar
Wehmeier, Kai. “Aspekte der Frege–Hilbert-Korrespondenz,” History and Philosophy of Logic, 18 (1997): 201–9.CrossRefGoogle Scholar
Weiner, Joan. Frege Explained: From Arithmetic to Analytic Philosophy. LaSalle: Open Court, 2004.Google Scholar
White, Roger. “Wittgenstein on Identity,” Proceedings of the Aristotelian Society, 78 (1977–1978): 157–74.Google Scholar
Whitehead, Alfred North, and Russell, Bertrand. Principia Mathematica. Three volumes. Cambridge: Cambridge University Press, 1910–1913 (first edition) and 1925 and 1927 (second edition).Google Scholar
Wilson, Mark. “Frege: The Royal Road from Geometry,” Noûs, 26(2) (1992): 149–80.CrossRefGoogle Scholar
Wilson, Peter Harnish. The Thirty Years War: Europe’s Tragedy. Cambridge: Harvard University Press, 2009.Google Scholar
Winterbourne, Anthony T. The Ideal and the Real: Kant’s Theory of Space, Time, and Mathematical Constructions. Bury St. Edmunds: Abramis Academic Publishing, 2007.Google Scholar
Wittgenstein, Ludwig. Tractatus Logico-Philosophicus. Ed. Ogden, C. K.. London: Routledge & Kegan Paul, 1922.Google Scholar
Wittgenstein, Ludwig. Zettel. Trans. Anscombe, G. E. M.. Ed. Anscombe, G. E. M. and von Wright, G. H.. Berkeley: University of California Press, 1970.Google Scholar
Wittgenstein, Ludwig. Letters to Russell, Keynes and Moore. Ed. von Wright, G. H.. Oxford: Basil Blackwell, 1974.Google Scholar
Wittgenstein, Ludwig. Remarks on the Foundations of Mathematics. Ed. von Wright, G. H., Rhees, R., and Anscombe, G. E. M.. Revised edition. Cambridge: MIT Press, 1978.Google Scholar
Wittgenstein, Ludwig. Notebooks 1914–1916. Second edition. Ed. von Wright, G. H. and Anscombe, G. E. M., with an English translation by Anscombe, G. E. M.. Chicago: University of Chicago Press, 1979.Google Scholar
Wittgenstein, Ludwig. Philosophical Investigations [1953]. Trans. Anscombe, G. E. M.. Third edition. Oxford: Blackwell Publishing, 2001.Google Scholar
Wright, Crispin. Frege’s Conception of Numbers as Objects. Aberdeen: Aberdeen University Press, 1983.Google Scholar
Zalta, Edward N.Gottlob Frege.” In The Stanford Encyclopedia of Philosophy. Ed. Zalta, Edward N.. Stanford: Stanford University Press, 2012.Google Scholar
Zamyatin, Yevgeny. We [1921]. Trans. Brown, Clarence. London: Penguin Books, 1993.Google Scholar
Zimmerman, Aaron. Moral Epistemology. Abingdon: Routledge, 2010.CrossRefGoogle Scholar