Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-13T08:48:16.669Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  22 August 2009

P. M. Cohn
Affiliation:
University College London
Get access

Summary

It is not your duty to complete the work,

But neither are you free to desist from it.

R. Tarphon, Sayings of the Fathers.

One of the questions that intrigued me in the 1950s was to find conditions for an embedding of a non-commutative ring in a skew field to be possible. I felt that such an embedding should exist for a free product of skew fields, but there seemed no obvious route. My search eventually led to the notion of a free ideal ring, fir for short, and I was able to prove (i) the free product of skew fields (amalgamating a skew subfield) is a fir and (ii) every fir is embeddable in a skew field. Firs may be regarded as the natural generalization (in the non-commutative case) of principal domains, to which they reduce when commutativity is imposed. The proof of (i) involved an algorithm, which when stated in simple terms, resembled the Euclidean algorithm but depended on a condition of linear dependence. In this form it could be used to characterize free associative algebras, and this ‘weak’ algorithm enables one to develop a theory of free algebras similar to that of a polynomial ring in one variable. Of course free algebras are a special case of firs, and other facts about firs came to light, which were set forth in my book Free Rings and their Relations (a pun and a paradox). It appeared in 1971 and in a second edition in 1985. A Russian translation appeared in 1975.

More recently there has been a surprising increase of interest, in many fields of mathematics, in non-commutative theories.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • P. M. Cohn, University College London
  • Book: Free Ideal Rings and Localization in General Rings
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542794.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • P. M. Cohn, University College London
  • Book: Free Ideal Rings and Localization in General Rings
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542794.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • P. M. Cohn, University College London
  • Book: Free Ideal Rings and Localization in General Rings
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542794.001
Available formats
×