Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T12:27:01.666Z Has data issue: false hasContentIssue false

2 - Image formation and ray tracing

Published online by Cambridge University Press:  13 January 2010

George Smith
Affiliation:
University of Melbourne
David A. Atchison
Affiliation:
Queensland University of Technology
Get access

Summary

Introduction

In this chapter, we will introduce the concept of an image forming system in its most general sense. By tracing rays from an object through the system, using Snell's law at each surface, we will show how to find the image of that object. When we decide to ray trace, there are two types of rays that we can choose, (a) finite or real rays and (b) paraxial rays. A finite or real ray is a general exact ray, and a paraxial ray is a special type of finite ray that is traced very close to the optical axis. One distinct advantage of paraxial rays is that their ray trace equations are much simpler than finite ray trace equations and hence are easier to apply. In this chapter, we will look at each of these two types and use the paraxial rays to develop a concept of the “ideal” image.

In the next chapter, Chapter 3, we will use the behaviour of paraxial rays to explore some of the properties of both simple and more complex optical systems. We will show that given the details of these properties, we can often find the ideal image positions and sizes without recourse to any type of ray tracing.

Image formation

We define an imaging optical system as a system consisting of any number of refracting or reflecting surfaces. Usually the surfaces will be spherical and we will assume that the centres of curvature of each of the spherical surfaces lie on a single line called the optical axis. Such a system is depicted schematically in Figure 2.1, but without any individual surfaces shown.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×