Part II - Evolution of Memory Processes
Published online by Cambridge University Press: 26 May 2022
Summary
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.

- Type
- Chapter
- Information
- Evolution of Learning and Memory Mechanisms , pp. 283 - 472Publisher: Cambridge University PressPrint publication year: 2022
References
References
Bier, D. M. (1999). Institute of Medicine (US) Committee on Military Nutrition Research. The Role of Protein and Amino Acids in Sustaining and Enhancing Performance. Washington, D): National Academies Press (US). The Energy Costs of Protein Metabolism: Lean and Mean on Uncle Sam’s Team. www.ncbi.nlm.nih.gov/books/NBK224633/Google Scholar
Blanchard, R. J., & Blanchard, D. C. (1972). Effects of hippocampal lesions on the rat’s reaction to a cat. Journal of Comparative and Physiological Psychology, 78, 77–82. https://doi.org/10.1037/h0032176CrossRefGoogle ScholarPubMed
Blanchard, R. J., Fukunaga, K. K., & Blanchard, D. C. (1976). Environmental control of defensive reactions to a cat. Bulletin of the Psychonomic Society, 8, 179–181. https://doi.org/10.3758/BF03335118CrossRefGoogle Scholar
Blanchard, R. J., Mast, M., & Blanchard, D. C. (1975). Stimulus control of defensive reactions in the albino rat. Journal of Comparative and Physiological Psychology, 88, 81–88. https://doi.org/10.1037/h0076213CrossRefGoogle ScholarPubMed
Bolles, R. C. (1993). The Story of psychology: A thematic history. Brooks/Cole Publishing.Google Scholar
Bronstein, P. M., & Hirsch, S. M. (1976). Ontogeny of defensive reactions in Norway rats. Journal of Comparative and Physiological Psychology, 90, 620–629. http://dx.doi.org/10.1037/h0077224CrossRefGoogle ScholarPubMed
Choi, J.-S., & Kim, J. J. (2010). Amygdala regulates risk of predation in rats foraging in a dynamic fear environment. Proceedings of the National Academy of Sciences, 107, 21773–21777. https://doi.org/10.1073/pnas.1010079108CrossRefGoogle Scholar
Dezfouli, A., & Balleine, B. W. (2012). Habits, action sequences and reinforcement learning. European Journal of Neuroscience, 35, 1036–1051. https://doi.org/10.1111/j.1460-9568.2012.08050.xCrossRefGoogle ScholarPubMed
Domjan, M. (2005). Pavlovian conditioning: A functional perspective. Annual Review of Psychology, 56, 179–206. https://doi.org/10.1146/annurev.psych.55.090902.141409CrossRefGoogle ScholarPubMed
Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., & Engel, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nature Neuroscience, 3, 1149–1152. https://doi.org/10.1038/80671CrossRefGoogle ScholarPubMed
Fanselow, M. S. (1980). Conditional and unconditional components of post-shock freezing in rats. Pavlovian Journal of Biological Sciences, 15, 177–182. https://doi.org/10.1007/BF03001163CrossRefGoogle Scholar
Fanselow, M. S. (1986). Associative vs. topographical accounts of the immediate shock freezing deficit in rats: Implications for the response selection rules governing species specific defensive reactions. Learning & Motivation, 17, 16–39. https://doi.org/10.1016/0023-9690(86)90018-4CrossRefGoogle Scholar
Fanselow, M. S. (1990). Factors governing one trial contextual conditioning. Animal Learning & Behavior, 18, 264–270. https://doi.org/10.3758/BF03205285CrossRefGoogle Scholar
Fanselow, M. S. (2000). Contextual fear, gestalt memories, and the hippocampus. Behavioural Brain Research, 110, 73–81. https://doi.org/10.1016/s0166-4328(99)00186-2CrossRefGoogle ScholarPubMed
Fanselow, M. S. (2018). The role of learning in threat imminence and defensive behaviors. Current Opinion in Behavioral Sciences, 24, 44–49. https://doi.org/10.1016/j.cobeha.2018.03.003CrossRefGoogle ScholarPubMed
Fanselow, M. S., Landeira-Fernandez, J., DeCola, J. P., & Kim, J. J. (1994). The immediate shock deficit and postshock analgesia: Implications for the relationship between the analgesic CR and UR. Animal Learning & Behavior, 22, 72–76. https://doi.org/10.3758/BF03199957CrossRefGoogle Scholar
Gale, G. D., Anagnostaras, S. G., Godsil, B. P., Mitchell, S., Nozawa, T., Sage, J. R., Wiltgen, B., & Fanselow, M. S. (2004). Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. Journal of Neuroscience, 24, 3810–3815. https://doi.org/10.1523/JNEUROSCI.4100-03.2004CrossRefGoogle ScholarPubMed
Garcia, J., & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4, 123–124. https://doi.org/10.3758/BF03342209CrossRefGoogle Scholar
Gould, S. J., & Vrba, E. S. (1982). Exaptation – A missing term in the science of form. Paleobiology,8, 4–15. https://doi.org/10.1017/S0094837300004310CrossRefGoogle Scholar
Herculano-Houzel, S. (2011). Scaling of brain metabolism with a fixed energy budget per neuron: Implications for neuronal activity, plasticity and evolution. PLoS ONE, 6, e17514. https://doi.org/10.1371/journal.pone.0017514CrossRefGoogle ScholarPubMed
Ingvar, D. H. (1985). Memory of the future: An essay on the temporal organization of conscious awareness. Human Neurobiology, 4, 127–136.Google ScholarPubMed
Kiernan, M. J., Westbrook, R. F., & Cranney, J. (1995). Immediate shock, passive avoidance, and potentiated startle: Implications for the unconditioned response to shock. Animal Learning & Behavior, 23, 22–30. https://doi.org/10.3758/BF03198012CrossRefGoogle Scholar
Kim, J. J., Choi, J.-S., & Lee, H. J. (2016). Foraging in the face of fear: Novel strategies for evaluating amygdala functions in rats. In Amaral, D. G. & Adolphs, R. (Eds.), Living without an amygdala (pp. 129–148). The Guilford Press.Google Scholar
Kim, J. J., & Fanselow, M. S. (1992). Modality-specific retrograde amnesia of fear following hippocampal lesions. Science, 256, 675–677. https://doi.org/10.1126/science.1585183CrossRefGoogle Scholar
Krasne, F. B., Cushman, J. D., & Fanselow, M. S. (2015). A Bayesian context fear learning algorithm/automaton. Frontiers in Behavioral Neuroscience, 9, 1–22. https://doi.org/10.3389/fnbeh.2015.00112CrossRefGoogle ScholarPubMed
Krasne, F. B., Zinn, R., Vissel, B., & Fanselow, M. S. (2021). Extinction and discrimination in a Bayesian model of context fear conditioning (BaconX). Hippocampus, 31, 790–814. https://doi.org/10.1002/hipo.23298CrossRefGoogle Scholar
Landeira-Fernandez, J., Decola, J. P., Kim, J. J., & Fanselow, M. S. (2006). Immediate shock deficit in fear conditioning: Effects of shock manipulations. Behavioral Neuroscience, 120, 873–879. https://doi.org/10.1037/0735-7044.120.4.873CrossRefGoogle ScholarPubMed
Mery, F., & Kawecki, T. J. (2005). A cost of long-term memory in Drosophila. Science, 308, 1148. https://doi.org/10.1126/science.1111331CrossRefGoogle ScholarPubMed
Plaçais, P.-Y., & Preat, T. (2013). To favor survival under food shortage, the brain disables costly memory. Science, 339, 440–442. https://doi.org/10.1126/science.1226018CrossRefGoogle ScholarPubMed
Plaçais, P.-Y., de Tredern, É., Scheunemann, L., Trannoy, S., Goguel, V., Han, K.-A., Isabel, G., & Prea, T. (2017). Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nature Communications, 8, 11510. https://doi.org/10.1038/ncomms15510CrossRefGoogle ScholarPubMed
Rescorla, R. A. (1988). Pavlovian conditioning: It’s not what you think it is. American Psychologist, 43, 151–160. https://doi.org/10.1037/0003-066X.43.3.151CrossRefGoogle Scholar
Rudy, J. W., & Teyler, T .J. (2010). Episodic memory and the hippocampus. In Weiner, I. B. & Craighead, W. E. (Eds.), Corsini encyclopedia of psychology. John Wiley & Sons. https://doi.org/10.1002/9780470479216.corpsy0316Google Scholar
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677–694. https://doi.org/10.1016/j.neuron.2012.11.001CrossRefGoogle ScholarPubMed
Sherry, D. F., & Schacter, D. L. (1987). The evolution of multiple memory systems. Psychological Review, 94, 439–454. https://dx.doi.org/10.1037/0033-295X.94.4.439CrossRefGoogle Scholar
Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82, 171–177. https://doi.org/10.1016/j.nlm.2004.06.005CrossRefGoogle ScholarPubMed
Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences, 93, 13515–13522. https://doi.org/10.1073/pnas.93.24.13515CrossRefGoogle ScholarPubMed
Thompson, R. F., & Steinmetz, J. E. (2009). The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience, 162, 732–755. https://doi.org/10.1016/j.neuroscience.2009.01.041CrossRefGoogle ScholarPubMed
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 1–25. https://doi.org/10.1146/annurev.psych.53.100901.135114CrossRefGoogle Scholar
Voet, D., Voet, V. G., & Pratt, C. W. (2016). Fundamentals of biochemistry: Life at the molecular level. John Wiley & Sons.Google Scholar
Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20, 158–177. https://dx.doi.org/10.1037/h0074428CrossRefGoogle Scholar
Yokoyama, O. T. (in press). Pavlov on the conditional reflex: Papers, 1903–1936. Oxford University Press.Google Scholar
Zinn, R., Leake, J., Krasne, F. B., Corbit, L. H., Fanselow, M. F. & Vissel, B. (2020) Maladaptive properties of context-impoverished memories. Current Biology, 30, 1–12. https://doi.org/10.1016/j.cub.2020.04.040CrossRefGoogle ScholarPubMed
References
Babb, S. J., & Crystal, J. D. (2005). Discrimination of what, when, and where: Implications for episodic-like memory in rats. Learning & Motivation, 36, 177–189. https://doi.org/https://doi.org/10.1016/j.lmot.2005.02.009CrossRefGoogle Scholar
Babb, S. J., & Crystal, J. D. (2006a). Discrimination of what, when, and where is not based on time of day. Learning & Behavior, 34, 124–130. https://doi.org/10.3758/bf03193188CrossRefGoogle Scholar
Babb, S. J., & Crystal, J. D. (2006b). Episodic-like memory in the rat. Current Biology, 16, 1317–1321. https://doi.org/https://doi.org/10.1016/j.cub.2006.05.025CrossRefGoogle ScholarPubMed
Buzsáki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25, 1073–1188. https://doi.org/10.1002/hipo.22488CrossRefGoogle ScholarPubMed
Carr, M. F., Jadhav, S. P., & Frank, L. M. (2011). Hippocampal replay in the awake state: A potential substrate for memory consolidation and retrieval. Nature Neuroscience, 14, 147–153. https://doi.org/https://doi.org/10.1038/nn.2732CrossRefGoogle ScholarPubMed
Carr, M. F., Karlsson, M. P., & Frank, L. M. (2012). Transient slow gamma synchrony underlies hippocampal memory replay. Neuron, 75, 700–713. https://doi.org/https://doi.org/10.1016/j.neuron.2012.06.014CrossRefGoogle ScholarPubMed
Cheng, S., Werning, M., & Suddendorf, T. (2016). Dissociating memory traces and scenario construction in mental time travel. Neuroscience and Biobehavioral Reviews, 60, 82–89. https://doi.org/https://doi.org/10.1016/j.neubiorev.2015.11.011CrossRefGoogle ScholarPubMed
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274. https://doi.org/10.1038/26216CrossRefGoogle ScholarPubMed
Corballis, M. C. (2013a). Mental time travel: A case for evolutionary continuity. Trends in Cognitive Sciences, 17, 5–6. http://linkinghub.elsevier.com/retrieve/pii/S1364661312002458CrossRefGoogle ScholarPubMed
Corballis, M. C. (2013b). The wandering rat: Response to Suddendorf. Trends in Cognitive Sciences, 17, 152. https://doi.org/https://doi.org/10.1016/j.tics.2013.01.012CrossRefGoogle ScholarPubMed
Crystal, J. D. (2013a). Prospective memory. Current Biology, 23, R750–R51. https://doi.org/https://doi.org/10.1016/j.cub.2013.07.081Google ScholarPubMed
Crystal, J. D. (2013b). Remembering the past and planning for the future in rats. Behavioural Processes, 93, 39–49. https://doi.org/http://dx.doi.org/10.1016/j.beproc.2012.11.014CrossRefGoogle ScholarPubMed
Crystal, J. D. (2016a). Animal models of source memory. Journal of the Experimental Analysis of Behavior, 105, 56–67. https://doi.org/10.1002/jeab.173CrossRefGoogle ScholarPubMed
Crystal, J. D. (2016b). Comparative cognition: Action imitation using episodic memory. Current Biology, 26, R1226–R1228. https://doi.org/10.1016/j.cub.2016.10.010CrossRefGoogle ScholarPubMed
Crystal, J. D. (2018). Animal models of episodic memory. Comparative Cognition & Behavior Reviews, 13, 105–122. https://doi.org/10.3819/ccbr.2018.130012CrossRefGoogle Scholar
Crystal, J. D. (2021). Event memory in rats. In Kaufman, A., Call, J., & Kaufman, J. (Eds.), Cambridge handbook of animal cognition (pp. 190–209). Cambridge University Press.CrossRefGoogle Scholar
Crystal, J. D., & Alford, W. T. (2014). Validation of a rodent model of source memory. Biology Letters, 10, 20140064. https://doi.org/10.1098/rsbl.2014.0064CrossRefGoogle ScholarPubMed
Crystal, J. D., Alford, W. T., Zhou, W., & Hohmann, A. G. (2013). Source memory in the rat. Current Biology, 23, 387–391. https://doi.org/http://dx.doi.org/10.1016/j.cub.2013.01.023CrossRefGoogle ScholarPubMed
Crystal, J. D., & Smith, A. E. (2014). Binding of episodic memories in the rat. Current Biology, 24, 2957–2961. https://doi.org/10.1016/j.cub.2014.10.074CrossRefGoogle ScholarPubMed
Crystal, J. D., & Suddendorf, T. (2019). Episodic memory in nonhuman animals? Current Biology, 29, R1291–R1295. https://doi.org/https://doi.org/10.1016/j.cub.2019.10.045CrossRefGoogle ScholarPubMed
Dalecki, S. J., Panoz-Brown, D. E., & Crystal, J. D. (2017). A test of the reward-contrast hypothesis. Behavioural Processes, 145, 15–17. https://doi.org/https://doi.org/10.1016/j.beproc.2017.09.018CrossRefGoogle ScholarPubMed
Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of extended experience. Neuron, 63, 497–507. https://doi.org/https://doi.org/10.1016/j.neuron.2009.07.027CrossRefGoogle ScholarPubMed
Dede, A. J. O., Frascino, J. C., Wixted, J. T., & Squire, L. R. (2016). Learning and remembering real-world events after medial temporal lobe damage. Proceedings of the National Academy of Sciences, 113, 13480–13485. https://doi.org/10.1073/pnas.1617025113CrossRefGoogle ScholarPubMed
Diba, K., & Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. Nature Neuroscience, 10, 1241. https://doi.org/10.1038/nn1961CrossRefGoogle ScholarPubMed
Eacott, M. J., Easton, A., & Zinkivskay, A. (2005). Recollection in an episodic-like memory task in the rat. Learning and Memory, 12(3), 221–223. https://doi.org/http://www.learnmem.org/cgi/doi/10.1101/lm.92505CrossRefGoogle Scholar
Ego-Stengel, V., & Wilson, M. A. (2010). Disruption of ripple‐associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus, 20, 1–10. https://doi.org/10.1002/hipo.20707Google ScholarPubMed
Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1, 41–50. https://doi.org/10.1038/35036213CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2007). Comparative cognition, hippocampal function, and recollection. Comparative Cognition & Behavior Reviews, 2, 47–66. https://doi.org/doi:10.3819/ccbr.2008.20003Google Scholar
Eichenbaum, H., Sauvage, M., Fortin, N., Komorowski, R., & Lipton, P. (2012). Towards a functional organization of episodic memory in the medial temporal lobe. Neuroscience and Biobehavioral Reviews, 36, 1597–1608. https://doi.org/https://doi.org/10.1016/j.neubiorev.2011.07.006CrossRefGoogle ScholarPubMed
Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152. https://doi.org/doi:10.1146/annurev.neuro.30.051606.094328CrossRefGoogle ScholarPubMed
Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306, 1903–1907. https://doi.org/10.1126/science.1098410CrossRefGoogle ScholarPubMed
Ergorul, C., & Eichenbaum, H. (2004). The hippocampus and memory for “what,” “where,” and “when.” Learning and Memory, 11(4), 397–405. https://doi.org/doi.org/10.1101/lm.73304CrossRefGoogle Scholar
Fortin, N. J., Wright, S. P., & Eichenbaum, H. (2004). Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature, 431, 188–191. https://doi.org/10.1038/nature02853CrossRefGoogle ScholarPubMed
Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake hippocampal sharp-wave ripples support spatial memory. Science, 336, 1454–1458. https://doi.org/10.1126/science.1217230CrossRefGoogle ScholarPubMed
Kurth-Nelson, Z., Economides, M., Dolan, R. J., & Dayan, P. (2016). Fast sequences of non-spatial state representations in humans. Neuron, 91(1), 194–204. https://doi.org/https://doi.org/10.1016/j.neuron.2016.05.028CrossRefGoogle ScholarPubMed
Lancet, D. (1986). Vertebrate olfactory reception. Annual Review of Neuroscience, 9, 329–355. https://doi.org/10.1146/annurev.ne.09.030186.001553CrossRefGoogle ScholarPubMed
Mori, K., Nagao, H., & Yoshihara, Y. (1999). The olfactory bulb: Coding and processing of odor molecule information. Science, 286, 711–715. https://doi.org/10.1126/science.286.5440.711CrossRefGoogle ScholarPubMed
Moser, M.-B., Rowland, D. C., & Moser, E. I. (2015). Place cells, grid cells, and memory. Cold Spring Harbor Perspectives in Biology, 7(2), 1–15. https://doi.org/10.1101/cshperspect.a021808CrossRefGoogle ScholarPubMed
Naqshbandi, M., Feeney, M. C., McKenzie, T. L. B., & Roberts, W. A. (2007). Testing for episodic-like memory in rats in the absence of time of day cues: Replication of Babb and Crystal. Behavioural Processes, 74, 217–225. https://doi.org/10.1016/j.beproc.2006.10.010CrossRefGoogle ScholarPubMed
Ólafsdóttir, H. F., Bush, D., & Barry, C. (2018). The role of hippocampal replay in memory and planning. Current Biology, 28, R37–R50. https://doi.org/10.1016/j.cub.2017.10.073CrossRefGoogle ScholarPubMed
Ólafsdóttir, H. F., Carpenter, F., & Barry, C. (2017). Task demands predict a dynamic switch in the content of awake hippocampal replay. Neuron, 96, 925–935.e926. https://doi.org/https://doi.org/10.1016/j.neuron.2017.09.035CrossRefGoogle ScholarPubMed
Panoz-Brown, D., Iyer, V., Carey, L. M., Sluka, C. M., Rajic, G., Kestenman, J., Gentry, M., Brotheridge, S., Somekh, I., Corbin, H. E., Tucker, K. G., Almeida, B., Hex, S. B., Garcia, K. D., Hohmann, A. G., & Crystal, J. D. (2018). Replay of episodic memories in the rat. Current Biology, 28, 1628–1634.e1627. https://doi.org/https://doi.org/10.1016/j.cub.2018.04.006CrossRefGoogle ScholarPubMed
Panoz-Brown, D. E., Corbin, H. E., Dalecki, S. J., Gentry, M., Brotheridge, S., Sluka, C. M., Wu, J.-E., & Crystal, J. D. (2016). Rats remember items in context using episodic memory. Current Biology, 26, 2821–2826. https://doi.org/http://dx.doi.org/10.1016/j.cub.2016.08.023CrossRefGoogle ScholarPubMed
Pavlides, C., & Winson, J. (1989). Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. The Journal of Neuroscience, 9, 2907–2918. https://doi.org/10.1523/jneurosci.09-08-02907.1989CrossRefGoogle ScholarPubMed
Paz, R., Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R., & Fried, I. (2010). A neural substrate in the human hippocampus for linking successive events. Proceedings of the National Academy of Sciences, 107, 6046–6051. https://doi.org/10.1073/pnas.0910834107CrossRefGoogle ScholarPubMed
Pfeiffer, B. E., & Foster, D. J. (2013). Hippocampal place-cell sequences depict future paths to remembered goals. Nature, 497, 74–79. https://doi.org/https://doi.org/10.1038/nature12112CrossRefGoogle ScholarPubMed
Powell, R., Mikhalevich, I., Logan, C., & Clayton, N. S. (2017). Convergent minds: The evolution of cognitive complexity in nature. Interface Focus, 7(3), 1–5. https://doi.org/10.1098/rsfs.2017.0029CrossRefGoogle Scholar
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1, 515–526. https://doi.org/https://doi.org/10.1017/S0140525X00076512CrossRefGoogle Scholar
Roberts, W. A., Feeney, M. C., MacPherson, K., Petter, M., McMillan, N., & Musolino, E. (2008). Episodic-like memory in rats: Is it based on when or how long ago? Science, 320, 113–115. https://doi.org/10.1126/science.1152709CrossRefGoogle ScholarPubMed
Rubin, B. D., & Katz, L. C. (2001). Spatial coding of enantiomers in the rat olfactory bulb. Nature Neuroscience, 4, 355. https://doi.org/10.1038/85997CrossRefGoogle ScholarPubMed
Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271, 1870–1873. https://doi.org/10.1126/science.271.5257.1870CrossRefGoogle ScholarPubMed
Smith, A. E., Dalecki, S. J., & Crystal, J. D. (2017). A test of the reward-value hypothesis. Animal Cognition, 20, 215–220. https://doi.org/10.1007/s10071-016-1040-zCrossRefGoogle ScholarPubMed
Smith, A. E., Slivicki, R. A., Hohmann, A. G., & Crystal, J. D. (2017). The chemotherapeutic agent paclitaxel selectively impairs learning while sparing source memory and spatial memory. Behavioural Brain Research, 320, 48–57. https://doi.org/http://dx.doi.org/10.1016/j.bbr.2016.11.042CrossRefGoogle ScholarPubMed
Staresina, B. P., Alink, A., Kriegeskorte, N., & Henson, R. N. (2013). Awake reactivation predicts memory in humans. Proceedings of the National Academy of Sciences, 110, 21159–21164. https://doi.org/10.1073/pnas.1311989110CrossRefGoogle ScholarPubMed
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of Memory (pp. 381–403). Academic Press.Google Scholar
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 1–25. https://doi.org/10.1146/annurev.psych.53.100901.135114CrossRefGoogle Scholar
Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: Role of the hippocampus. Hippocampus, 8(3), 198–204. https://doi.org/10.1002/(SICI)1098-1063(1998)8:3%3C198::AID-HIPO2%3E3.0.CO;2-G3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Uchida, N., & Mainen, Z. F. (2003). Speed and accuracy of olfactory discrimination in the rat. Nature Neuroscience, 6, 1224. https://dx.doi.org/10.1038/nn1142CrossRefGoogle ScholarPubMed
Wilson, A. G., & Crystal, J. D. (2012). Prospective memory in the rat. Animal Cognition, 15, 349–358. https://doi.org/10.1007/s10071-011-0459-5CrossRefGoogle ScholarPubMed
Wilson, A. G., Pizzo, M. J., & Crystal, J. D. (2013). Event-based prospective memory in the rat. Current Biology, 23, 1089–1093. https://doi.org/http://dx.doi.org/10.1016/j.cub.2013.04.067CrossRefGoogle ScholarPubMed
Wright, A. A. (2018). Episodic memory: Manipulation and replay of episodic memories by rats. Current Biology, 28, R667–R669. https://doi.org/https://doi.org/10.1016/j.cub.2018.04.060CrossRefGoogle ScholarPubMed
Yonelinas, A. P. (2001). Components of episodic memory: The contribution of recollection and familiarity. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356, 1363–1374. https://doi.org/10.1098/rstb.2001.0939CrossRefGoogle ScholarPubMed
Yonelinas, A. P., & Levy, B. J. (2002). Dissociating familiarity from recollection in human recognition memory: Different rates of forgetting over short retention intervals. Psychonomic Bulletin & Review, 9, 575–582. https://doi.org/10.3758/BF03196315CrossRefGoogle ScholarPubMed
Zhou, W., & Crystal, J. D. (2009). Evidence for remembering when events occurred in a rodent model of episodic memory. Proceedings of the National Academy of Sciences of the United States of America, 106, 9525–9529. https://doi.org/10.1073/pnas.0904360106CrossRefGoogle Scholar
Zhou, W., & Crystal, J. D. (2011). Validation of a rodent model of episodic memory. Animal Cognition, 14(3), 325–340. https://doi.org/10.1007/s10071-010-0367-0CrossRefGoogle ScholarPubMed
Zhou, W., Hohmann, A. G., & Crystal, J. D. (2012). Rats answer an unexpected question after incidental encoding. Current Biology, 22, 1149–1153. https://doi.org/10.1016/j.cub.2012.04.040CrossRefGoogle ScholarPubMed
References
Abbott, N. J., Williamson, R., & Maddock, L. (1995). Cephalopod neurobiology. Oxford University Press.Google Scholar
Agin, V., Chichery, R., Chichery, M. P., Dickel, L., Darmaillacq, A. S., & Bellanger, C. (2006a). Behavioural plasticity and neural correlates in adult cuttlefish. Vie Milieu, 56, 81–87.Google Scholar
Agin, V., Chichery, R., Dickel, L., & Chichery, M. P. (2006b). The “prawn-in-the-tube” procedure in the cuttlefish: Habitation or passive avoidance learning? Learning and Memory, 13, 97–101. https://doi.org/10.1101/lm.90106CrossRefGoogle ScholarPubMed
Amici, F., Aureli, F., & Call, J. (2008). Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Current Biology, 18, 1415–1419. https://doi.org/10.1016/j.cub.2008.08.020CrossRefGoogle ScholarPubMed
Amodio, P., Boeckle, M., Schnell, A. K., Ostojić, L., Fiorito, G., & Clayton, N. S. (2018). Grow smart and die young: Why did cephalopods evolve intelligence? Trends in Ecology and Evolution, 34, 45–56. https://doi.org/10.1016/j.tree.2018.10.010CrossRefGoogle ScholarPubMed
Ashton, B. J., Ridley, A. R., Edwards, E. K., & Thornton, A. (2018). Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature, 554, 364–367. https://doi.org/10.1038/nature25503CrossRefGoogle ScholarPubMed
Biederman, G. B., & Davey, V. A. (1993). Social learning in invertebrates. Science, 259, 2413–2419. https://doi.org/10.1126/science.259.5101.1627CrossRefGoogle ScholarPubMed
Billard, P., Clayton, N. S., & Jozet-Alves, C. (2020a). Cuttlefish retrieve whether they smelt or saw a previously encountered item. Scientific Reports, 10, 5413. https://doi.org/10.1038/s41598-020-62335-xCrossRefGoogle ScholarPubMed
Billard, P., Schnell, A. K., Clayton, N. S., & Jozet-Alves, C. (2020b). Cuttlefish show flexible and future-dependent foraging cognition. Biology Letters, 16, 20190743. https://doi.org/10.1098/rsbl.2019.0743CrossRefGoogle ScholarPubMed
Boal, J. G. (1991). Complex learning in Octopus bimaculoides. American Malacological Bulletin, 9, 75–80.Google Scholar
Boal, J. G. (1996). A review of simultaneous visual discrimination as a method of training octopuses. Biological Reviews, 71, 157–190. https://doi.org/10.1111/j.1469-185x.1996.tb00746.xCrossRefGoogle ScholarPubMed
Boal, J. G. (2006). Social recognition: A top down view of cephalopod behavior. Vie Millieu, 56, 69–79.Google Scholar
Boal, J. G., Wittenberg, K. M., & Hanlon, R. T. (2000). Observational learning does not explain improvement in predation tactics by cuttlefish (Mollusca: Cephalopoda). Behavioural Processes, 52, 141–153. https://doi.org/10.1016/S0376-6357(00)00137-6CrossRefGoogle Scholar
Bobrowicz, K., Johansson, M., & Osvath, M. (2020). Great apes selectively retrieve relevant memories to guide action. Scientific Reports, 10, 12603. https://doi.org/10.1038/s41598-020-69607-6CrossRefGoogle ScholarPubMed
Boeckle, M., Schiestl, M., Frohnwieser, A., Gruber, R., Miller, R., Suddendorf, T., Gray, R. D.,Taylor, A. H., & Clayton, N. S. (2020). New Caledonian crows plan for specific future tool use. Proceedings of the Royal Society B, 287, 20201490. https://doi.org/10.1098/rspb.2020.1490CrossRefGoogle ScholarPubMed
Bond, A. B., Kamil, A. C., & Balda, R. P. (2003). Social complexity and transitive inference in corvids. Animal Behaviour, 65, 479–487. https://doi.org/10.1006/anbe.2003.2101CrossRefGoogle Scholar
Brewer, S. M., & McGrew, W. C. (1990). Chimpanzee use of a tool-set to get honey. Folia Primatology, 54, 100–104. https://doi.org/10.1159/000156429CrossRefGoogle ScholarPubMed
Brown, C., Garwood, M. P., & Williamson, J. E. (2012). It pays to cheat: Tactical deception in a cephalopod social signalling system. Biology Letters, 8, 729–732. https://doi.org/10.1098/rsbl.2012.0435CrossRefGoogle Scholar
Budelmann, B. U. (1995). The cephalopod nervous system: What evolution has made of the molluscan design. In Breidbach, O., & Kutsch, W. (Eds.), The nervous systems of invertebrates: An evolutionary and comparative approach (pp. 115–138). Birkhauser Verlag.CrossRefGoogle Scholar
Byrne, R. W. (2004). The manual skills and cognition that lie behind hominid tool use. In Russon, A. E., & Begun, D. R. (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 31–44). Cambridge University Press.CrossRefGoogle Scholar
Byrne, R. W., & Bates, L. A. (2007). Sociality, evolution and cognition. Current Biology, 17, R714–R723. https://doi.org/10.1016/j.cub.2007.05.069.CrossRefGoogle ScholarPubMed
Byrne, R. W., & Whiten, A. (1988). Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes and humans. Oxford University Press.Google Scholar
Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12, 187–192. https://doi.org/10.1016/j.tics.2008.02.010CrossRefGoogle ScholarPubMed
Cheke, L. C., & Clayton, N. S. (2012). Eurasian jays (Garrulus glandarius) overcome their current desires to anticipate two distinct future needs and plan for them appropriately. Biology Letters, 8, 71–175. https://doi.org/10.1098/rsbl.2011.0909CrossRefGoogle ScholarPubMed
Cheng, M. A., & Caldwell, R. (2000). Sex identification and mating in the blue-ringed octopus, Hapalochlaena lunulata. Animal Behaviour, 60, 27–33. https://doi.org/10.1006/anbe.2000.1447CrossRefGoogle ScholarPubMed
Chettleburgh, M. (1952). Observations on the collection and burial of acorns by jays in Hainault Forest. British Birds, 45, 359–364.Google Scholar
Clayton, N. S., Bussey, T. J., & Dickinson, A. (2003). Can animals recall the past and plan for the future? Nature Reviews Neuroscience, 4, 685–691. https://doi.org/10.1038/nrn1180CrossRefGoogle ScholarPubMed
Clayton, N. S., Dally, J. M., & Emery, N. J. (2007). Social cognition by food-caching corvids. The western scrub-jay as a natural psychologist. Philosophical Transactions of the Royal Society B, 362, 507–522. https://doi.org/10.1098/rstb.2006.1992CrossRefGoogle ScholarPubMed
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274. https://doi.org/10.1038/26216CrossRefGoogle ScholarPubMed
Clayton, N. S., & Dickinson, A. (1999b). Memory for the content of caches by scrub jays. Journal of Experimental Psychology: Animal Behavior Processes, 25, 82–91. http://dx.doi.org/10.1037//0097-7403.25.1.82Google ScholarPubMed
Clayton, N. S., & Dickinson, A. (1999a). Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. Journal of Comparative Psychology, 113, 403–416. https://doi.org/10.1037/0735-7036.113.4.403CrossRefGoogle ScholarPubMed
Clayton, N. S., & Emery, N. J. (2015). Avian models of human cognitive neuroscience: A proposal. Neuron, 86, 1330–1342. https://doi.org/10.1016/j.neuron.2015.04.024CrossRefGoogle ScholarPubMed
Clayton, N. S., Yu, K. S., Dickinson, A. (2001). Scrub jays (Aphelocoma coerulescens) form integrated memories of the multiple features of caching episodes. Journal of Experimental Psychology Animal Behavior Processes, 27, 17–29.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H., & Harvey, P. H. (1980). Primates, brain and ecology. Journal of Zoology, 190, 309–323. https://doi.org/10.1111/j.1469-7998.1980.tb01430.xCrossRefGoogle Scholar
Cole, P. D., & Adamo, S. A. (2005). Cuttlefish (Sepia officinalis: Cephalopoda) hunting behavior and associative learning. Animal Cognition, 8, 27–30. https://doi.org/10.1007/s10071-004-0228-9CrossRefGoogle ScholarPubMed
Corballis, M. C. (2013). Mental time travel: A case for evolutionary continuity. Trends in Cognitive Sciences, 17, 5–6. https://doi.org/10.1016/j.tics.2012.10.009CrossRefGoogle ScholarPubMed
Correia, S. P. C., Dickinson, A., & Clayton, N. S. (2007). Western scrub-jays anticipate future needs independently of their current motivational state. Current Biology, 17, 856–861. https://doi.org/10.1016/j.cub.2007.03.063CrossRefGoogle ScholarPubMed
Cristol, D. A., Reynolds, E. B., Leclerc, J. E., Donner, A. H., Farabaugh, C. S., & Ziegenfus, C. W. S. (2003). Migratory dark-eyed juncos, Junco hyemalis, have better spatial memory and denser hippocampal neurons than nonmigratory conspecifics. Animal Behaviour, 66, 317–328. https://doi.org/10.1006/anbe.2003.2194CrossRefGoogle Scholar
Dally, J. M., Emery, N. J., & Clayton, N. S. (2006). Food-caching western scrub-jays keep track of who was watching when. Science, 312, 1662–1665. https://doi.org/10.1126/science.1126539CrossRefGoogle Scholar
Darmaillacq, A. S., Dickel, L., & Mather, J. A. (2014). Cephalopod cognition. Cambridge University Press.CrossRefGoogle Scholar
DeMartini, D. G., Ghoshal, A., Pandolfi, E., Weaver, A. T., Baum, M., & Morse, D. E. (2013). Dynamic biophotonics: Female squid exhibit sexually dimorphic tunable leucophores and iridocytes. Journal of Experimental Biology, 216, 3733–3741. https://doi.org/10.1242/jeb.090415CrossRefGoogle ScholarPubMed
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 9, 178–190. https://doi.org/10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-83.0.CO;2-8>CrossRefGoogle Scholar
Emery, N. J. (2006). Cognitive ornithology: The evolution of avian intelligence. Philosophical Transactions of the Royal Society B, 361, 23–43. https://doi.org/10.1098/rstb.2005.1736CrossRefGoogle ScholarPubMed
Emery, N. J., & Clayton, N. S. (2001). Effects of experience and social context on prospective caching strategies by scrub jays. Nature, 414, 443–-446. https://doi.org/10.1038/35106560CrossRefGoogle ScholarPubMed
Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306, 1903–1907. https://doi.org/10.1126/science.1098410CrossRefGoogle ScholarPubMed
Emery, N. J., & Clayton, N. S. (2005). Evolution of avian brain and intelligence. Current Biology, 15, R946–R950. https://doi.org/10.1016/j.cub.2005.11.029CrossRefGoogle ScholarPubMed
Emery, N. J., Seed, A. M., von Bayern, A. M. P., & Clayton, N. S. (2007). Cognitive adaptations of social bonding in birds. Philosophical Transactions of the Royal Society B, 362, 489–505. https://doi.org/10.1098/rstb.2006.1991CrossRefGoogle ScholarPubMed
Finn, J. K., Tregenza, T., & Norman, M.D. (2009). Defensive tool use in a coconut-carrying octopus. Current Biology, 19, R1069–R1070. https://doi.org/10.1016/j.cub.2009.10.052CrossRefGoogle Scholar
Fiorito, G., & Gherardi, F. (1999). Prey-handling behaviour of Octopus vulgaris (Mollusca, Cephalopoda) on bivalve preys. Behavioural Processes, 46, 75–88. https://doi.org/10.1016/S0376-6357(99)00020-0CrossRefGoogle ScholarPubMed
Fiorito, G., & Scotto, P. (1992). Observational learning in Octopus vulgaris. Science, 256, 545–547. https://doi.org/10.1126/science.256.5056.545CrossRefGoogle ScholarPubMed
Goodall, J. (1964). Tool-using and aimed throwing in a community of free-living chimpanzees. Nature, 201, 1264–1266. https://doi.org/10.1038/2011264a0CrossRefGoogle Scholar
Grodzinski, U., & Clayton, N. S. (2010). Problems faced by food-caching corvids and the evolution of cognitive solutions. Philosophical Transactions of the Royal Society B, 365, 977–987. https://doi.org/10.1098/rstb.2009.0210CrossRefGoogle ScholarPubMed
Gruber, R., Schiestl, M., Boeckle, M., Frohnwieser, A., Miller, R., Gray, R. D., Clayton, N. S., & Taylor, A. H. (2019). New Caledonian crows use mental representations to solve metatool problems. Current Biology, 29, 686–692. https://doi.org/10.1016/j.cub.2019.01.008CrossRefGoogle ScholarPubMed
Güntürkün, O., & Bugnyar, T. (2016). Cognition without cortex. Trends in Cognitive Sciences, 20, 291–303. https://doi.org/10.1016/j.tics.2016.02.001CrossRefGoogle ScholarPubMed
Hall, K. C., & Hanlon, R. T. (2002). Principal features of the mating system of a large spawning aggregation of the giant Australian cuttlefish Sepia apama (Mollusca: Cephalopoda). Marine Biology, 140, 533–545. https://doi.org/10.1007/s00227-001-0718-0Google Scholar
Hanlon, R. T., Conroy, L. A., & Forsythe, J. W. (2008). Mimicry and foraging behaviour of two tropical sand-flat octopus species off North Sulawesi, Indonesia. Biological Journal of Linnean Society, 93, 23–38. https://doi.org/10.1111/j.1095-8312.2007.00948.xCrossRefGoogle Scholar
Hanlon, R. T., & Messenger, J. B. (2018). Cephalopod behaviour, 2nd ed. Cambridge University Press. https://doi.org/10.1017/9780511843600CrossRefGoogle Scholar
Hanlon, R. T., Naud, M. J., Shaw, P. W., & Havenhand, J. N. (2005). Transient sexual mimicry leads to fertilization. Nature, 433, 212. https://doi.org/10.1038/433212aCrossRefGoogle Scholar
Hanlon, R. T., Watson, A. C., & Barbosa, A. (2010). A “mimic octopus,” in the Atlantic: Flatfish mimicry and camouflage by Macrotritopus defilippi. Biological Bulletin, 218, 15–24. https://doi.org/10.1086/BBLv218n1p15CrossRefGoogle ScholarPubMed
Hanus, D., & Call, J. (2008). Chimpanzees infer the location of a reward on the basis of the effect of its weight. Current Biology, 18, R370–R372. https://doi.org/10.1016/j.cub.2008.02.039CrossRefGoogle ScholarPubMed
Hare, B., Call, J., Agnetta, B., & Tomasello, M. (2000). Chimpanzees know what conspecifics do and do not see. Animal Behaviour, 59, 771–785.CrossRefGoogle Scholar
Hare, B., Call, J., & Tomasello, M. (2001). Do chimpanzees know what conspecifics know? Animal Behaviour, 61, 139–151.CrossRefGoogle ScholarPubMed
Heyes, C. (2012). What’s social about social learning? Journal of Comparative Psychology, 126, 193–202. https://doi.org/10.1037/a0025180CrossRefGoogle ScholarPubMed
Heyes, C. (2014). Submentalizing: I am not really reading your mind. Perspectives on Psychological Sciences, 9, 131–143. https://doi.org/10.1177/1745691613518076CrossRefGoogle Scholar
Heyes, C. (2015). Animal mindreading: What’s the problem? Psychonomic Bulletin Review, 22, 313–327. https://doi.org/10.3758/s13423-014-0704-4CrossRefGoogle ScholarPubMed
Hopper, L. M., van de Waal, E., & Caldwell, C. A. (2018). Celebrating the continued importance of “Machiavellian Intelligence” 30 years on. Journal of Comparative Psychology, 132, 427–431. https://doi.org/10.1037/com0000157CrossRefGoogle Scholar
Huang, K. L., & Chiao, C. C. (2013). Can cuttlefish learn by observing others? Animal Cognition, 16, 313–320. https://doi.org/10.1007/s10071-012-0573-zCrossRefGoogle ScholarPubMed
Huffard, C. L. (2006). Locomotion by Abdopus aculeatus (Cephalopod: Octopodidae): Walking the line between primary and secondary defenses. Journal of Experimental Biology, 209, 3697–3707. https://doi.org/10.1242/jeb.02435CrossRefGoogle ScholarPubMed
Humphrey, N. K. (1976). The social function of intellect. In Bateson, P. P. G. & Hinde, R. A. (Eds.), Growing points in ethology (pp. 303–317). Cambridge University Press.Google Scholar
Hunt, G. R. (2000). Tool use by the New Caledonian crow Corvus moneduloides to obtain cerambycidae from dead wood. Emu, 100, 109–114. https://doi.org/10.1071/MU9852CrossRefGoogle Scholar
Hunt, G. R., & Gray, R. D. (2002). Species-wide manufacture of stick-type tools by New Caledonian crows. Emu, 102, 349–353. https://doi.org/10.1071/MU01056CrossRefGoogle Scholar
Hunt, G. R., & Gray, R. D. (2004a). Direct observations of pandanus-tool manufacture and use by a New Caledonian crow (Corvus moneduloides). Animal Cognition, 7, 114–120. https://doi.org/10.1007/s10071-003-0200-0CrossRefGoogle Scholar
Hunt, G. R., & Gray, R. D. (2004b). The crafting of hook tools by wild New Caledonian crows. Biology Letters, 271, 88–90. https://doi.org/10.1098/rsbl.2003.0085Google ScholarPubMed
Jaakola, K., Guarino, E., Donegan, K., & King, S. L. (2018). Bottlenose dolphins can understand their partner’s role in a cooperative task. Proceedings of the Royal Society B, 285, 20180948. https://doi.org/10.1098/rspb.2018.0948CrossRefGoogle Scholar
Jozet-Alves, C., Bertin, M., & Clayton, N. S. (2013). Evidence of episodic-like memory in cuttlefish. Current Biology, 23, R1033–R1035. https://doi.org/10.1016/j.cub.2013.10.021CrossRefGoogle ScholarPubMed
Kabadayi, C., & Osvath, M. (2017). Ravens parallel great apes in flexible planning for tool-use and bartering. Science, 375, 202–204. https://doi.org/10.1126/science.aam8138CrossRefGoogle Scholar
Kirkpatrick, C. (2011). Tactical deception and the great apes: Insight into the question of Theory of Mind. Totem: The University of Western Ontario Journal of Anthropology, 1, 31–37.Google Scholar
de Kort, S. R., & Clayton, N. S. (2006). An evolutional perspective on caching by corvids. Proceedings of the Royal Society B, 273, 417–423. https://doi.org/10.1098/rspb.2005.3350CrossRefGoogle Scholar
Kotrschal, A., Deacon, A. E., Magurran, A. E., & Kolm, N. (2017). Predation pressure shapes brain anatomy in the wild. Evolutionary Ecology, 31, 619–633. https://doi.org/10.1007/s10682-017-9901-8CrossRefGoogle ScholarPubMed
Krebs, J. R., & Dawkins, R. (1984). Animal signals: Mind-reading and manipulation. In Krebs, J. & Davies, N. (Eds.), Behavioural ecology: An evolutionary approach (pp. 380–402). Blackwell Scientific Publications.Google Scholar
Krupenye, C., & Call, J. (2019). Theory of Mind in animals: Current and future directions. WIREs Cognitive Sciences, e1503. https://doi.org/10.1002/wcs.1503CrossRefGoogle Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354, 110–114. https://doi.org/10.1126/science.aaf8110CrossRefGoogle ScholarPubMed
Lefebvre, L., & Bouchard, J. (2003), Social learning about food in birds. In Fragaszy, D. M. & Perry, S. (Eds.), The biology of traditions: Models and evidence (pp. 94–126). Cambridge University Press.CrossRefGoogle Scholar
Lefebvre, L., & Giraldeau, L.-A. (1996 ). Is social learning an adaptive specialization? In Heyes, C. M. & Galef, B. G., Jr. (Eds.), Social learning in animals: The roots of culture (pp. 107–128). Academic Press.CrossRefGoogle Scholar
Lefebvre, L., Nicolakakis, N., & Boire, D. (2002). Tools and brains in birds. Behaviour, 139, 939–973. https://doi.org/10.1163/156853902320387918Google Scholar
Lefebvre, L., Reader, S. M., & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution, 63, 233–246. https://doi.org/10.1159/000076784CrossRefGoogle ScholarPubMed
Mann, J., & Patterson, E. M. (2013). Tool use by aquatic animals. Proceedings of the Royal Society B, 368, 20120424. https://doi.org/10.1098/rstb.2012.0424Google ScholarPubMed
Marino, L. (2002). Convergence of complex cognitive abilities in cetaceans and primates. Brain, Behavior and Evolution, 59, 21–32. https://doi.org/10.1159/000063731CrossRefGoogle ScholarPubMed
Martin-Ordas, G., Haun, D., Colmenares, F., & Call, J. (2010). Keeping track of time: Evidence for episodic-like memory in great apes. Animal Cognition, 13, 331–340. https://doi.org/10.1007/s10071-009-0282-4CrossRefGoogle ScholarPubMed
Mather, J. A. (1991). Navigation by spatial memory and use of visual landmarks in octopuses. Journal of Comparative Physiology A, 168, 491–497. https://doi.org/10.1007/BF00199609CrossRefGoogle Scholar
Mather, J. A. (1994). “Home” choice and modification by juvenile Octopus vulgaris (Mollusca: Cephalopoda): Specialized intelligence and tool use? Journal of Zoology, 233, 359–368. https://doi.org/10.1111/j.1469-7998.1994.tb05270.xCrossRefGoogle Scholar
Mather, J. A. (1995). Cognition in cephalopods. Advances in the Study of Behavior, 24, 317–353.CrossRefGoogle Scholar
Mather, J. A., & Dickel, L. (2017). Cephalopod complex cognition. Current Opinion in Behavioral Sciences, 16, 131–137. https://doi.org/10.1016/j.cobeha.2017.06.008CrossRefGoogle Scholar
Matsuzawa, T. (1994). Field experiments on use of stone tools by chimpanzees in the wild. In Wrangham, R. W., McGrew, W. C., de Waal FBM, F. B. M., & Heltone, P. G. (Eds.), Chimpanzee cultures (pp. 351–370). Harvard University Press.Google Scholar
Matsuzawa, T., Humle, T., & Sugiyama, Y. (2011). The chimpanzees of Bossou and Nimba. Springer.CrossRefGoogle Scholar
Midford, P. E., Hailman, J. P., & Woolfenden, G. E. (2000). Social learning of a novel foraging patch in families of free-living Florida scrub-jays. Animal Behaviour, 59, 1199–1207. https://doi.org/10.1006/anbe.1999.1419CrossRefGoogle ScholarPubMed
Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 543–548. https://doi.org/10.1525/aa.1981.83.3.02a00020CrossRefGoogle Scholar
Mock, D. W., & Fujioka, M. (1990). Monogamy and long-term pair bonding in vertebrates. Trends in Ecology and Evolution, 5, 39–43. https://doi.org/10.1016/0169-5347(90)90045-FCrossRefGoogle ScholarPubMed
Morse, P., & Huffrard, C. L. (2019). Tactical tentacles: New insights on the proves of sexual selection among the Cephalopoda. Frontiers in Physiology, 10, 1035. https://doi.org/10.3389/fphys.2019.01035CrossRefGoogle Scholar
Moynihan, M. H., & Rodaniche, A. F. (1982). The behavior and natural history of the Caribbean reef squid Sepioteuthis sepioidea with a consideration of social, signal, and defensive patterns for difficult and dangerous environments. Fortschritte der Verhaltensforschung, 25, 9–150 [Advanced Ethology, 125, 1–150].Google Scholar
Mulcahy, N. J., & Call, J. (2006). Apes save tools for future use. Science, 312, 1038–1040. https://doi.org/10.1126/science.1125456CrossRefGoogle ScholarPubMed
Musgrave, S., Morgan, D., Lonsdorf, E., Mundry, R., & Sanz, C. (2016). Tool transfers are a form of teaching among chimpanzees. Scientific Reports, 6, 34783. https://doi.org/10.1038/srep34783CrossRefGoogle ScholarPubMed
Nixon, M., & Young, J. Z. (2003). The brains and lives of cephalopods. Oxford University Press.Google Scholar
Norman, M. D., Finn, J., & Tregenza, T. (1999). Female impersonation as an alternative reproductive strategy in giant cuttlefish. Proceedings of the Royal Society B, 266, 1347–1349. https://doi.org/10.1098/rspb.1999.0786CrossRefGoogle Scholar
Norman, M. D., Finn, J., & Tregenza, T. (2001). Dynamic mimicry in an indo-Malayan octopus. Proceedings of the Royal Society B, 268, 1755–1758. https://doi.org/10.1098/rspb.2001.1708CrossRefGoogle Scholar
Okamoto, K., Yasumuro, H., Mori, A., & Ikeda, Y. (2017). Unique arm-flapping behavior of the pharaoh cuttlefish, Sepia pharaonis: Putative mimicry of a hermit crab. Journal of Ethology, 35, 307–311. https://doi.org/10.1007/s10164-017-0519-7CrossRefGoogle ScholarPubMed
Olkowicz, S., Kocourek, M., Lučan, R. K., Porteš, M., Fitch, W. T., Herculano-Houzel, S., & Nêmec, P. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of the United States of America, 113, 7255–7260. https://doi.org/10.1073/pnas.1517131113CrossRefGoogle ScholarPubMed
Osvath, M., Kabadayi, C., & Jacobs, I. (2014). Independent evolution of similar complex cognitive skills: The importance of embodied degrees of freedom. Animal Behaviour and Cognition, 1, 249–264. https://doi.org/10.12966/abc.08.03.2014CrossRefGoogle Scholar
Osvath, M., & Osvath, H. (2008). Chimpanzee (Pan troglodytes) and orangutan (Pongo abelii) forethought: Self-control and pre-experience in the face of future tool use. Animal Cognition, 11, 661–674. https://doi.org/10.1007/s10071-008-0157-0CrossRefGoogle ScholarPubMed
Packard, A. (1972). Cephalopods and fish: The limits of convergence. Biological Reviews, 47, 241–301. https://doi.org/10.1111/j.1469-185X.1972.tb00975.xCrossRefGoogle Scholar
Panetta, D., Buresch, K., & Hanlon, R. T. (2017). Dynamic masquerade with morphing three-dimensional skin in cuttlefish. Biology Letters, 13, 20170070. https://doi.org/10.1098/rsbl.2017.0070CrossRefGoogle ScholarPubMed
Parker, S. T., & Gibson, B. M. (1977). Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in cebus monkeys and great apes. Journal of Human Evolution, 6, 623–641. https://doi.org/10.1016/S0047-2484(77)80135-8CrossRefGoogle Scholar
Penn, D. C., & Povinelli, D. J. (2007). On the lack of evidence that non-human animals possess anything remotely resembling a “Theory of Mind”. Philosophical Transactions of the Royal Society B, 362, 731–744. https://doi.org/10.1098/rstb.2006.2023CrossRefGoogle Scholar
Pepperberg, I. M., Koepke, A., Livingston, P., Girard, M., & Hartsfield, L. A. (2013). Reasoning by inference: Further studies on exclusion in grey parrots (Psittacus erithacus). Journal of Comparative Psychology, 127, 272–281. https://doi.org/10.1037/a0031641CrossRefGoogle Scholar
Plotnik, J. M., Lair, R., Suphachoksahakun, W., & de Waal, F. B. M. (2011). Elephants know when they need a helping trunk in a cooperative task. Proceedings of the National Academy of Sciences of the United States of America, 108, 5116–5121. https://doi.org/10.1073/pnas.1101765108CrossRefGoogle Scholar
Plotnik, J. M., de Waal, F. B. M., & Reiss, D. (2006). Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences of the United States of America, 103, 17053–17057. https://doi.org/10.1073/pnas.0608062103CrossRefGoogle Scholar
Potts, R. (2004). Paleo-environmental basis of cognitive evolution in great apes. American Journal of Primatology, 62, 209–228. https://doi.org/10.1002/ajp.20016CrossRefGoogle Scholar
Povinelli, D. J., & Vonk, J. (2003). Chimpanzee minds: Suspiciously human? Trends in Cognitive Sciences, 7, 157–160. https://doi.org/10.1016/S1364-6613(03)00053-6CrossRefGoogle ScholarPubMed
Pravosudov, V. V., Kitaysky, A. S., Wingfield, J. C., & Clayton, N. S. (2001). Long-term unpredictable foraging conditions and physiological stress response in mountain chickadees (Poecile gambeli). General and Comparative Endocrinology, 123, 324–331. https://doi.org/10.1006/gcen.2001.7684CrossRefGoogle Scholar
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1, 515–526.CrossRefGoogle Scholar
Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Planning for the future by western scrub-jays. Nature, 445, 919–921. https://doi.org/10.1038/nature05575CrossRefGoogle ScholarPubMed
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation and enhanced brain size in primates. Proceedings of the National Academy of Sciences of the United States of America, 99, 4436–4441. https://doi.org/10.1073/pnas.062041299CrossRefGoogle ScholarPubMed
Redshaw, J. & Suddendorf, T. (2016). Children’s and Apes’ preparatory responses to two mutally exclusive possibilities. Current Biology, 26, 1758–1762.CrossRefGoogle Scholar
Redshaw, J., Taylor, A. H., & Suddendorf, T. (2017). Flexible planning in ravens? Trends on Cognitive Sciences, 21, 821–822.CrossRefGoogle ScholarPubMed
Rosati, A. G. (2017). Foraging cognition: Reviving the ecological intelligence hypothesis. Trends in Cognitive Sciences, 21, 691–702. https://doi.org/10.1016/j.tics.2017.05.011CrossRefGoogle ScholarPubMed
Sanders, F. K., & Young, J. Z. (1940). Learning and other functions of the higher nervous centers of Sepia. Journal of Neurophysiology, 3, 501–526.CrossRefGoogle Scholar
Sanz, C., Morgan, D., & Gulick, S. (2004). New insights into chimpanzees, tools, and termites from the Congo Basin. American Naturalist, 164, 567–581. https://doi.org/10.1086/424803CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677–694. https://doi.org/10.1016/j.neuron.2012.11.001CrossRefGoogle ScholarPubMed
Scheel, D., Godfrey-Smith, P., & Lawrence, M. (2014). Octopus tetricus (Mollusca: Cephalopoda) as an ecosystem engineer. Scientia Marina, 78, 521–528. https://doi.org/10.1080/19420889.2017.1395994CrossRefGoogle Scholar
Schnell, A. K., Amodio, P., Boeckle, M., & Clayton, N. S. (2021a). How intelligent is a cephalopod? Lessons from comparative cognition. Biological Reviews, 96(1), 162–178. https://doi.org/doi:10.1111/brv.12651CrossRefGoogle ScholarPubMed
Schnell, A. K., Boeckle, M., Rivera, M., Clayton, N. S., & Hanlon, R. T. (2021b). Cuttlefish exert self-control in a delay of gratification task. Proceedings of the Royal Society B, 288, 20203161. https://doi.org/10.6084/m9.figshare.c.5309888CrossRefGoogle Scholar
Schnell, A. K., Clayton, N. S., Hanlon, R. R. T., & Jozet-Alves, C. (2021c). Episodic-like memory is preserved with age in cuttlefish. Proceedings of the Royal Society B, 288, 20211052. https://doi.org/10.1098/rspb.2021.1052CrossRefGoogle ScholarPubMed
Schnell, A. K., & Clayton, N. S. (2019). Cephalopod cognition. Current Biology, 29, R726–R732. https://doi.org/10.1016/j.cub.2019.06.049CrossRefGoogle ScholarPubMed
Schnell, A. K., Smith, C. L., Hanlon, R. T., & Harcourt, R. (2015). Giant Australian cuttlefish use mutual assessment to resolve male-male contests. Animal Behaviour, 107, 31–40.CrossRefGoogle Scholar
Seed, A. M., Emery, N. J., & Clayton, N. S. (2009). Intelligence in corvids and apes: A case of convergent evolution? Ethology, 115, 401–420. https://doi.org/10.1111/j.1439-0310.2009.01644.xCrossRefGoogle Scholar
Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour, 28, 1070–1094. https://doi.org/10.1016/S0003-3472(80)80097-2CrossRefGoogle Scholar
Shultz, S., & Dunbar, R. I. (2006). Both social and ecological factors predict ungulate brain size. Proceedings of the Royal Society B, 273, 207–215. https://doi.org/10.1098/rspb.2005.3283CrossRefGoogle ScholarPubMed
Silk, J. B. (2007). Social components of fitness in primate groups. Science, 317, 1347–1351. https://doi.org/10.1126/science.1140734CrossRefGoogle ScholarPubMed
Skelhorn, J., & Rowe, C. (2016). Cognition and the evolution of camouflage. Proceedings of the Royal Society B, 283, 20152890. https://doi.org/10.1098/rspb.2015.2890CrossRefGoogle ScholarPubMed
Smith, C. D. (2003). Diet of Octopus vulgaris in False Bay, South Africa. Marine Biology, 143, 1127–1133.CrossRefGoogle Scholar
Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., & Lefebvre, L. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences of the United States of America, 102, 5460–5465. https://doi.org/10.1073/pnas.0408145102CrossRefGoogle ScholarPubMed
Street, S. E., Navarrette, A. F., Reader, S. M., & Laland, K. N. (2017). Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proceedings of the National Academy of Sciences of the United States of America, 114, 7908–7914. https://doi.org/10.1073/pnas.1620734114CrossRefGoogle ScholarPubMed
Stulp, G., Emery, N. J., Verhulst, S., & Clayton, N. S. (2009). Western scrub-jays conceal auditory information when competitors can hear but cannot see. Biology Letters, 5, 20090330. https://doi.org/10.1098/rsbl.2009.0330CrossRefGoogle ScholarPubMed
Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genetic, Social, and General Psychology Monographs, 123, 133–167.Google ScholarPubMed
Suddendorf, T., & Corballis, M. C. (2010). Behavioural evidence for mental time travel in nonhuman animals. Behavioural Brain Research, 215, 292–298.CrossRefGoogle ScholarPubMed
Suddendorf, T., Crimston, J., & Redshaw, J. (2017). Preparatory responses to socially determined, mutually exclusive possibilities in chimpanzees and children. Biology Letters, 13, 20170170.CrossRefGoogle ScholarPubMed
Taylor, A. H., Hunt, G. R., Medina, F. S., & Gray, R. D. (2009). Do new Caledonian crows solve physical problems through causal reasoning? Proceedings of the Royal Society B, 276, 247–254. https://doi.org/10.1098/rspb.2008.1107CrossRefGoogle ScholarPubMed
Tecwyn, E. C., Thorpe, S. K. S., & Chappell, J. (2013). A novel test of planning ability: Great apes can pla step-by-step, but not in advance of action. Behavioural Processes, 100, 174–184.CrossRefGoogle Scholar
Teufel, C. R., Clayton, N. S., & Russell, J. R. (2013). Two-year-old children’s understanding of visual perception and knowledge formation in others. Journal of Cognition and Development, 14, 203–228. https://doi.org/10.1080/15248372.2012.664591CrossRefGoogle Scholar
Tomasello, M., & Call, J. (1994). Social cognition of monkeys and apes. American Journal of Physical Anthropology, 37, 273–305. https://doi.org/10.1002/ajpa.1330370610CrossRefGoogle Scholar
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. and Donaldson, W. (Eds.), Organization of memory (pp. 381–402). Academic Press.Google Scholar
de Waal, F. B. M. (1986) Conflict resolution in monkeys and apes. In Benirschke, K. (Ed.), Primates. Proceedings in life sciences (pp. 341–350). Springer. https://doi.org/10.1007/978-1-4612-4918-4_26Google Scholar
de Waal, F. B. M., & van Roosmalen, A. (1979). Reconciliation and consolation among chimpanzees. Behavioral Ecology and Sociobiology, 5, 55–66. https://doi.org/10.1007/BF00302695CrossRefGoogle Scholar
Wells, M. J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Chapman & Hall.CrossRefGoogle Scholar
Whiten, A., & Byrne, R. W. (1988). Tactical deception in primates. Behavioral and Brain Sciences, 11, 233–273. https://doi.org/10.1017/S0140525X00049682CrossRefGoogle Scholar
Whiten, A., & Byrne, R. W. (1997). Machiavellian intelligence II: Extension and evaluations. Cambridge University Press.CrossRefGoogle Scholar
van Woerden, J. T. Willems, E. P., van Schaik, C. P., & Isler, K. (2012). Large brains buffer energetic effects of seasonal habitats in catarrhine primates. Evolution, 66, 191–199. https://doi.org/10.1111/j.1558-5646.2011.01434.xCrossRefGoogle ScholarPubMed
Zepeda, E. A., Veline, R. J., & Crook, R. J. (2017). Rapid associative learning and stable long-term memory in the squid Euprymna scolopes. Biological Bulletin, 232, 212–218. https://doi.org/10.1086/693461CrossRefGoogle ScholarPubMed
Zuberbühler, K. (2000). Referential labelling in Diana monkeys. Animal Behaviour, 59, 917–927. https://doi.org/10.1006/anbe.1999.1317CrossRefGoogle ScholarPubMed
Zuberbühler, K. (2001). Predator-specific alarm calls in Campbell’s monkeys, Cercopithecus campbelli. Behavioral Ecology and Sociobiology, 50, 414–422. https://doi.org/10.1007/s002650100383Google Scholar
Zuberbühler, K., & Jenny, D. (2002). Leopard predation and primate evolution. Journal of Human Evolution, 43, 873–886. https://doi.org/10.1006/jhev.2002.0605CrossRefGoogle ScholarPubMed
References
Babb, S. J., & Crystal, J. D. (2006). Episodic-like memory in the rat. Current Biology, 16(13), 1317–1321. https://doi.org/10.1016/j.cub.2006.05.025CrossRefGoogle ScholarPubMed
Baddeley, A. (2001). The concept of episodic memory. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 356(1413), 1345–1350. https://doi.org/10.1098/rstb.2001.0957CrossRefGoogle ScholarPubMed
Barham, W., Visser, J., Schoonbee, H., & Evans, L. (1985). Some observations on the influence of stress on ECG patterns in Oreochromis mossambicus and Cyprinus carpio. Comparative Biochemistry and Physiology. A, Comparative Physiology, 82(3), 549–552. https://doi.org/10.1016/0300-9629(85)90431-1CrossRefGoogle ScholarPubMed
Bevins, R. A. (1992). Selective associations: A methodological critique. The Psychological Record, 42(1), 57–73. https://doi.org/10.1007/BF03399587CrossRefGoogle Scholar
Bischof, H. J. (1994). Sexual imprinting as a two-stage process. In Hogan, J. A. and Bolhuis, J. J. (Eds.), Causal mechanisms of behavioural development (pp. 82–97). Cambridge University Press.CrossRefGoogle Scholar
Bolhuis, J. J., Beckers, G. J., Huybregts, M. A., Berwick, R. C., & Everaert, M. B. (2018). Meaningful syntactic structure in songbird vocalizations? PLoS Biology, 16(6), e2005157. https://doi.org/10.1371/journal.pbio.2005157CrossRefGoogle ScholarPubMed
Bossema, I. (1979). Jays and oaks: an eco-ethological study of a symbiosis. Behaviour, 70, 1–116. https://doi.org/10.1163/156853979X00016CrossRefGoogle Scholar
Bouton, M. E. (2016). Learning and behavior: A contemporary synthesis, 2nd ed. Sinauer.Google Scholar
Burdyn, L. E., Noble, L. M., Shreves, L. E., & Thomas, R. K. (1984). Long-term memory for concepts by squirrel monkeys. Physiological Psychology, 12(2), 97–102. https://doi.org/10.3758/BF03332174CrossRefGoogle Scholar
Byrne, R. W. (2002). Imitation of novel complex actions: What does the evidence from animals mean? Advances in the Study of Behavior, 31, 77–105. https://doi.org/10.1016/S0065-3454(02)80006-7CrossRefGoogle Scholar
Chen, J., Van Rossum, D., & Ten Cate, C. (2015). Artificial grammar learning in zebra finches and human adults: XYX versus XXY. Animal Cognition, 18(1), 151–164. https://doi.org/10.1007/s10071-014-0786-4CrossRefGoogle ScholarPubMed
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395(6699), 272–274. https://doi.org/10.1038/26216CrossRefGoogle ScholarPubMed
Clayton, N. S., & Dickinson, A. (1999). Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. Journal of Comparative Psychology, 113(4), 403–416. https://doi.org/10.1037/0735-7036.113.4.403CrossRefGoogle ScholarPubMed
Cole, S., Hainsworth, F. R., Kamil, A. C., Mercier, T., & Wolf, L. L. (1982). Spatial learning as an adaptation in hummingbirds. Science, 217(4560), 655–657. https://doi.org/10.1126/science.217.4560.655CrossRefGoogle ScholarPubMed
Cook, R. G., Levison, D. G., Gillett, S. R., & Blaisdell, A. P. (2005). Capacity and limits of associative memory in pigeons. Psychonomic Bulletin & Review, 12(2), 350–358. https://doi.org/10.3758/BF03196384CrossRefGoogle ScholarPubMed
Crystal, J. D. (2010). Episodic-like memory in animals. Behavioural Brain Research, 215(2), 235–243. https://doi.org/10.1016/j.bbr.2010.03.005CrossRefGoogle ScholarPubMed
Domjan, M. (1993). Biological constraints on instrumental and classical conditioning: Implications for general process theory. In Bower, G. H. (Ed.), The psychology of learning and motivation (vol. 17, pp. 215–277). Academic Press. https://doi.org/10.1016/S0079-7421(08)60100-0Google Scholar
Domjan, M., & Krause, M. (2017). Generality of the laws of learning: from biological constraints to ecological perspectives. In Menzel, R. (Ed.), Learning theory and behavior, Vol. 1, Learning and memory: A comprehensive reference (2nd ed., pp. 189–201). Academic Press. https://doi.org/10.1016/B978-0-12-809324-5.21012-2CrossRefGoogle Scholar
Emlen, S. T. (1970). Celestial rotation: Its importance in the development of migratory orientation. Science, 170(3963), 1198–1201. https://doi.org/10.1126/science.170.3963.1198CrossRefGoogle ScholarPubMed
Enquist, M., Lind, J., & Ghirlanda, S. (2016). The power of associative learning and the ontogeny of optimal behaviour. Royal Society Open Science, 3(11), 160734. https://doi.org/10.1098/rsos.160734CrossRefGoogle ScholarPubMed
Fagot, J., & Cook, R. G. (2006). Evidence for large long-term memory capacities in baboons and pigeons and its implications for learning and the evolution of cognition. Proceedings of the National Academy of Sciences, 103(46), 17564–17567. https://doi.org/10.1073/pnas.0605184103CrossRefGoogle ScholarPubMed
Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440(7088), 1204–1207. https://doi.org/10.1038/nature04675CrossRefGoogle ScholarPubMed
Ghirlanda, S. (2017). Can squirrel monkeys learn an ABnA grammar? A re-evaluation of Ravignani et al. (2013). PeerJ, 5, e3806. https://doi.org/10.7717/peerj.3806CrossRefGoogle Scholar
Ghirlanda, S., Lind, J., & Enquist, M. (2017). Memory for stimulus sequences: A divide between humans and other animals? Royal Society Open Science, 4(6), 161011. https://doi.org/10.1098/rsos.161011CrossRefGoogle ScholarPubMed
Ghirlanda, S., Lind, J., & Enquist, M. (2020). A-learning: A new formulation of associative learning theory. Psychonomic Bulletin & Review, 27, 1166–1194. https://doi.org/10.3758/s13423-020-01749-0CrossRefGoogle ScholarPubMed
Gleitman, H. (1971). Forgetting of long-term memories in animals. In Honig, W. K. & James, P. H. R. (Eds.), Animal memory (pp. 1–44). Academic Press.Google Scholar
Gould, J. L., & Marler, P. (1984). Ethology and the natural history of learning. In Marler, P. & Terrrace, H. S. (Eds.), The biology of learning (pp. 47–74). Springer. https://doi.org/10.1007/978-3-642-70094-1_3CrossRefGoogle Scholar
Griffiths, D., Dickinson, A., & Clayton, N. (1999). Episodic memory: What can animals remember about their past? Trends in Cognitive Sciences, 3(2), 74–80. https://doi.org/10.1016/S1364-6613(98)01272-8CrossRefGoogle ScholarPubMed
Gross, C. T., & Canteras, N. S. (2012). The many paths to fear. Nature Reviews Neuroscience, 13(9), 651. https://doi.org/10.1038/nrn3301CrossRefGoogle ScholarPubMed
Hall, G. (2002). Associative structures in Pavlovian and instrumental conditioning. In Gallistel, R. (Ed.), Stevens’ handbook of experimental psychology (3rd ed., pp. 1–45). Wiley Online Library. https://doi.org/10.1002/0471214426.pas0301Google Scholar
Hanggi, E. B., & Ingersoll, J. F. (2009). Long-term memory for categories and concepts in horses (Equus caballus). Animal Cognition, 12(3), 451–462. https://doi.org/10.1007/s10071-008-0205-9CrossRefGoogle Scholar
Healy, S. D., & Hurly, T. A. (2003). Cognitive ecology: Foraging in hummingbirds as a model system. Advances in the Study of Behavior, 32, 325–359. https://doi.org/10.1016/S0065-3454(03)01007-6CrossRefGoogle Scholar
Helfman, G. S., & Schultz, E. T. (1984). Social transmission of behavioural traditions in a coral reef fish. Animal Behaviour, 32, 379–384. https://doi.org/10.1016/S0003-3472(84)80272-9CrossRefGoogle Scholar
Herbranson, W. T., & Shimp, C. P. (2008). Artificial grammar learning in pigeons. Learning & Behavior, 36(2), 116–137. https://doi.org/10.3758/LB.36.2.116CrossRefGoogle ScholarPubMed
Hogan, J. A. (1997). Energy models of motivation: A reconsideration. Applied Animal Behaviour Science, 53, 89–105. https://doi.org/10.1016/S0168-1591(96)01153-7CrossRefGoogle Scholar
Hogan, J. A. (2017). The study of behavior: Organization, methods, and principles. Cambridge University Press. https://doi.org/10.1017/9781108123792CrossRefGoogle Scholar
Holland, P. C. (2008). Cognitive versus stimulus-response theories of learning. Learning & Behavior, 36(3), 227–241. https://doi.org/10.3758/LB.36.3.227CrossRefGoogle ScholarPubMed
Holmes, P. A., & Bitterman, M. (1966). Spatial and visual habit reversal in the turtle. Journal of Comparative and Physiological Psychology, 62(2), 328–331. https://doi.org/10.1037/h0023675CrossRefGoogle ScholarPubMed
Hultsch, H., & Todt, D. (1989). Memorization and reproduction of songs in nightingales (Luscinia megarhynchos): Evidence for package formation. Journal of Comparative Physiology A, 165(2), 197–203. https://doi.org/10.1007/BF00619194CrossRefGoogle Scholar
Immelmann, K. (1972). The influence of early experience upon the development of social behaviour in estrildine finches. Proceedings XVth Ornithological Congress, Den Haag 1970, pp. 316–338.Google Scholar
Janik, V. M., & Slater, P. J. (1997). Vocal learning in mammals. Advances in the Study of Behaviour, 26, 59–100. https://doi.org/10.1016/S0065-3454(08)60377-0CrossRefGoogle Scholar
Jensen, R. (2006). Behaviorism, latent learning, and cognitive maps: Needed revisions in introductory psychology textbooks. The Behavior Analyst, 29(2), 187–209. https://doi.org/10.1007/BF03392130CrossRefGoogle ScholarPubMed
Johnson, C. K., & Davis, R. T. (1973). Seven-year retention of oddity learning set in monkeys. Perceptual and Motor Skills, 37(3), 920–922. https://doi.org/10.2466/pms.1973.37.3.920Google Scholar
Jozet-Alves, C., Bertin, M., & Clayton, N. S. (2013). Evidence of episodic-like memory in cuttlefish. Current Biology, 23(23), R1033–R1035. https://doi.org/10.1016/j.cub.2013.10.021CrossRefGoogle ScholarPubMed
van Kampen, H. S., & de Vos, G. J. (1995). A study of blocking and overshadowing in filial imprinting. Quarterly Journal of Experimental Psychology, 49B, 346–356. https://doi.org/10.1080/14640749508401457Google Scholar
Kastak, C. R., & Schusterman, R. J. (2002). Long-term memory for concepts in a California sea lion (Zalophus californianus). Animal Cognition, 5(4), 225–232. https://doi.org/10.1007/s10071-002-0153-8CrossRefGoogle Scholar
Kristo, G., Janssen, S. M., & Murre, J. M. (2009). Retention of autobiographical memories: An internet-based diary study. Memory, 17(8), 816–829. https://doi.org/10.1080/09658210903143841CrossRefGoogle ScholarPubMed
Kullberg, C., & Lind, J. (2002). An experimental study of predator recognition in great tit fledglings. Ethology, 108, 429–441. https://doi.org/10.1046/j.1439-0310.2002.00786.xCrossRefGoogle Scholar
Lieberman, D. A. (2011). Human learning and memory. Cambridge University Press.CrossRefGoogle Scholar
Lind, J. (2018). What can associative learning do for planning? Royal Society Open Science, 5(11), 180778. https://doi.org/10.1098/rsos.180778CrossRefGoogle ScholarPubMed
Lind, J., Enquist, M., & Ghirlanda, S. (2015). Animal memory: A review of delayed matching-to-sample data. Behavioural Processes, 117, 52–58. https://doi.org/10.1016/j.beproc.2014.11.019CrossRefGoogle ScholarPubMed
Lind, J., Ghirlanda, S., & Enquist, M. (2019). Social learning through associative processes: A computational theory. Royal Society Open Science, 6, 181777. https://doi.org/10.1098/rsos.181777CrossRefGoogle ScholarPubMed
Lorenz, K. (1935). Der Kumpan in der Umwelt des Vogel. Journal of Ornithology, 83, 137–413. https://doi.org/10.1007/BF01905355CrossRefGoogle Scholar
MacDonald, S. E. (1993). Delayed matching-to-successive-samples in pigeons: Short-term memory for item and order information. Animal Learning & Behavior, 21(1), 59–67. https://doi.org/10.3758/BF03197977CrossRefGoogle Scholar
Mackintosh, N. J. (1983). Conditioning and associative learning. Oxford University Press. https://doi.org/10.2307/1422540Google Scholar
Macphail, E. M., & Bolhuis, J. J. (2001). The evolution of intelligence: Adaptive specializations versus general process. Biological Reviews, 76(3), 341–364. https://doi.org/10.1017/s146479310100570xCrossRefGoogle ScholarPubMed
McLaren, I. P. L., & Mackintosh, N. J. (2000). An elemental model of associative learning: I. Latent inhibition and perceptual learning. Animal Learning & Behavior, 28(3), 211–246. https://doi.org/10.3758/BF03200258CrossRefGoogle Scholar
McLaren, I. P. L., & Mackintosh, N. J. (2002). Associative learning and elemental representation: II. Generalization and discrimination. Animal Learning & Behavior, 30, 177–200. https://doi.org/10.3758/BF03192828CrossRefGoogle ScholarPubMed
Mets, D. G., & Brainard, M. S. (2019). Learning is enhanced by tailoring instruction to individual genetic differences. eLife, 8, e47216 https://doi.org/10.7554/eLife.47216CrossRefGoogle ScholarPubMed
Murphy, R. A., Mondragón, E., & Murphy, V. A. (2008). Rule learning by rats. Science, 319(5871), 1849–1851. https://doi.org/10.1126/science.1151564CrossRefGoogle ScholarPubMed
Ormerod, B. K., & Beninger, R. J. (2002). Water maze versus radial maze: Differential performance of rats in a spatial delayed match-to-position task and response to scopolamine. Behavioural Brain Research, 128(2), 139–152. https://doi.org/10.1016/S0166-4328(01)00316-3CrossRefGoogle Scholar
Overman, W. Jr., & Doty, R. (1980). Prolonged visual memory in macaques and man. Neuroscience, 5(11), 1825–1831. https://doi.org/10.1016/0306-4522(80)90032-9CrossRefGoogle ScholarPubMed
Pahl, M., Zhu, H., Pix, W., Tautz, J., & Zhang, S. (2007). Circadian timed episodic-like memory – A bee knows what to do when, and also where. The Journal of Experimental Biology, 210(20), 3559–3567. https://doi.org/10.1242/jeb.005488CrossRefGoogle Scholar
Patterson, T. L., & Tzeng, O. J. (1979). Long-term memory for abstract concepts in the lowland gorilla (Gorilla g. gorilla). Bulletin of the Psychonomic Society, 13(5), 279–282. https://doi.org/10.3758/BF03336870CrossRefGoogle Scholar
Pearce, J. M. (2008). Animal learning and cognition, 3rd ed. Psychology Press. https://doi.org/10.4324/9781315782911Google Scholar
Perry, S. E., & Manson, J. H. (2003). Traditions in monkeys. Evolutionary Anthropology, 12, 71–81. https://doi.org/10.1002/evan.10105CrossRefGoogle Scholar
Pierce, W. D., & Cheney, Carl D. (2008). Behavior analysis and learning. Psychology Press. https://doi.org/10.4324/9780203441817Google Scholar
Pilley, J. W., & Reid, A. K. (2011). Border collie comprehends object names as verbal referents. Behavioural Processes, 86(2), 184–195. https://doi.org/10.1016/j.beproc.2010.11.007CrossRefGoogle ScholarPubMed
Pinel, J. P., & Treit, D. (1978). Burying as a defensive response in rats. Journal of Comparative and Physiological Psychology, 92(4), 708–712. https://doi.org/10.1037/h0077494CrossRefGoogle Scholar
Roberts, W. A., Feeney, M. C., MacPherson, K., Petter, M., McMillan, N., & Musolino, E. (2008). Episodic-like memory in rats: Is it based on when or how long ago? Science, 320(5872), 113–115. https://doi.org/10.1126/science.1152709CrossRefGoogle ScholarPubMed
Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28(9), 1059–1074. https://doi.org/10.1068/p281059CrossRefGoogle ScholarPubMed
Skinner, B. (1936). Conditioning and extinction and their relation to drive. The Journal of General Psychology, 14(2), 296–317. https://doi.org/10.1080/00221309.1936.9713156CrossRefGoogle Scholar
Soha, J. (2016). The auditory template hypothesis: A review and comparative perspective. Animal Behaviour, 124, 247–254. https://doi.org/10.1016/j.anbehav.2016.09.016CrossRefGoogle Scholar
Staddon, J. E. R. (2001). The new behaviorism: Mind, mechanism and society. Taylor & Francis.Google Scholar
Stephens, D. W. (1987). On economically tracking a variable environment. Theoretical Population Biology, 32(1), 15–25. https://doi.org/10.1016/0040-5809(87)90036-0CrossRefGoogle Scholar
Suzuki, T. N., Wheatcroft, D., & Griesser, M. (2016). Experimental evidence for compositional syntax in bird calls. Nature Communications, 7, 10986. https://doi.org/10.1038/ncomms10986CrossRefGoogle ScholarPubMed
Tennie, C., Völter, C. J., Vonau, V., Hanus, D., Call, J., & Tomasello, M. (2019). Chimpanzees use observed temporal directionality to learn novel causal relations. Primates, 60(6), 517–524. https://doi.org/10.1007/s10329-019-00754-9CrossRefGoogle ScholarPubMed
Thistlethwaite, D. (1951). A critical review of latent learning and related experiments. Psychological Bulletin, 48(2), 97–129. https://doi.org/10.1037/h0055171CrossRefGoogle ScholarPubMed
Thorndike, E. L. (1898). Animal intelligence, an experimental study of the associative processes in animals. Macmillan. https://doi.org/10.1037/h0092987CrossRefGoogle Scholar
Thorndike, E. L. (1911). Animal intelligence. Experimental studies. Macmillan. https://doi.org/10.5962/bhl.title.55072CrossRefGoogle Scholar
Tolman, E. C. (1932). Purposive behavior in animals and men. University of California Press.Google Scholar
Tolman, E. C., & Honzik, C. H. (1930). Introduction and removal of reward, and maze performance in rats. University of California Publications in Psychology, 4, 257–275.Google Scholar
Vaughan, W., & Greene, S. L. (1984). Pigeon visual memory capacity. Journal of Experimental Psychology: Animal Behavior Processes, 10(2), 256–271. https://doi.org/10.1037/0097-7403.10.2.256Google Scholar
Völter, C. J., & Call, J. (2014). Great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo abelii) follow visual trails to locate hidden food. Journal of Comparative Psychology, 128(2), 199–208. https://doi.org/10.1037/a0035434CrossRefGoogle ScholarPubMed
van de Waal, E., Borgeaud, C., & Whiten, A. (2013). Potent social learning and conformity shape a wild primate’s foraging decisions. Science, 340(6131), 483–485. https://doi.org/10.1126/science.1232769CrossRefGoogle ScholarPubMed
Wehner, R. (2003). Desert ant navigation: How miniature brains solve complex tasks. Journal of Comparative Physiology A, 189(8), 579–588. https://doi.org/10.1007/s00359-003-0431-1CrossRefGoogle ScholarPubMed
Weisman, R. G., Duder, C., & von Konigslow, R. (1985). Representation and retention of three-event sequences in pigeons. Learning and Motivation, 16(3), 239–258. https://doi.org/10.1016/0023-9690(85)90014-1CrossRefGoogle Scholar
Weisman, R. G., Wasserman, E., Dodd, P., & Larew, M. B. (1980). Representation and retention of two-event sequences in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 6(4), 312–325. https://doi.org/10.1037/0097-7403.6.4.312Google Scholar
Yerkes, R. M., & Yerkes, D. N. (1928). Concerning memory in the chimpanzee. Journal of Comparative Psychology, 8(3), 237–271. https://doi.org/10.1037/h0073804CrossRefGoogle Scholar
Zeldin, R. K., & Olton, D. S. (1986). Rats acquire spatial learning sets. Journal of Experimental Psychology: Animal Behavior Processes, 12(4), 412–419. https://doi.org/10.1037/0097-7403.12.4.412Google ScholarPubMed
Zentall, T. R., Clement, T. S., Bhatt, R. S., & Allen, J. (2001). Episodic-like memory in pigeons. Psychonomic Bulletin & Review, 8(4), 685–690. https://doi.org/10.3758/BF03196204CrossRefGoogle ScholarPubMed
References
Amici, F., Cacchione, T., & Bueno-Guerra, N. (2017). Understanding of object properties by sloth bears. melursus ursinusursinus. Animal Behaviour, 134, 217–222. http://dx.doi.org/10.1016/j.anbehav.2017.10.028CrossRefGoogle Scholar
Amici, F., Holland, R., & Cacchione, T. (2019). Sloth bears (Melursus ursinus) fail to spontaneously solve a novel problem even if social cues and relevant experience are provided. Journal of Comparative Psychology, 133, 373–379. http://dx.doi.org/10.1037/com0000167CrossRefGoogle ScholarPubMed
Arden, R., Bensky, M. K., & Adams, M. J. (2016). A review of cognitive abilities in dogs, 1911 through 2016: More individual differences, please! Current Directions in Psychological Science, 25, 307–312. http://dx.doi.org/10.1177/0963721416667718CrossRefGoogle Scholar
Bacon, E. S., & Burghardt, G. M. (1976). Learning and color discrimination in the American black bear. Ursus, 3, 27–36.Google Scholar
Bacon, E. S., & Burghardt, G. M. (1983). Food preferences in the American black bear: An experimental approach. Ursus, 5, 102–105. https://doi.org/10.2307/3872525Google Scholar
Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M., & Holekamp, K. E. (2016). Brain size predicts problem-solving ability in mammalian carnivores. PNAS Proceedings of the National Academy of Sciences of the United States of America, 113, 2532–2537. http://dx.doi.org/10.1073/pnas.1505913113CrossRefGoogle ScholarPubMed
Beran, M. J., & Highfill, L. E. (2011). Paying more attention to what (some) nonhuman animals and (some) humans can do: An introduction to the special issue on individual differences in comparative psychology. International Journal of Comparative Psychology, 24, 1–3.Google Scholar
Boesch, C. (2020). Listening to the appeal from the wild. Animal Behavior and Cognition, 7, 257–263. https://doi.org/10.26451/abc.07.02.15.2020CrossRefGoogle Scholar
Borrego, N. (2017). Big cats as a model system for the study of the evolution of intelligence. Behavioural Processes, 141, 261–266. http://dx.doi.org/10.1016/j.beproc.2017.03.010CrossRefGoogle Scholar
Byrne, R. (1997). The technical intelligence hypothesis: An additional evolutionary stimulus to intelligence? In Whiten, A. & Byrne, R. (Eds.), Machiavellian intelligence II: Extensions and evaluations (pp. 289–311). Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511525636.012CrossRefGoogle Scholar
Carter, G. G., Schino, G., & Farine, D. (2019). Challenges in assessing the roles of nepotism and reciprocity in cooperation networks. Animal Behaviour, 150, 255–271. http://dx.doi.org/10.1016/j.anbehav.2019.01.006CrossRefGoogle Scholar
Carter, G. G., & Wilkinson, G. S. (2013). Food sharing in vampire bats: Reciprocal help predicts donations more than relatedness or harassment. Proceedings of the Royal Society, B, 280, 20122573. https://doi.org/10.1098/rspb.2012.2573CrossRefGoogle ScholarPubMed
Colvin, T. R. (1975). Aversive conditioning black bear to honey utilizing lithium chloride. Proceedings of the Annual Conference of the Southeastern Association of Game and Fish Commissions, 29, 450–453.Google Scholar
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178–189. https://doi.org/10.1002/(SICI)1520-6505(1998)6:5%3C178::AID-EVAN5%3E3.0.CO;2-83.0.CO;2-8>CrossRefGoogle Scholar
Dunbar, R. I. M. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology, 36, 562–572. https://doi.org/10.1080/03014460902960289CrossRefGoogle ScholarPubMed
Dungl, E., Schratter, D., & Huber, L. (2008). Discrimination of face-like patterns in the giant panda (Ailuropoda melanoleuca). Journal of Comparative Psychology, 122, 335e343. https://doi.org/10.1037/0735-7036.122.4.335CrossRefGoogle Scholar
Eaton, T., Hutton, R., Leete, J., Lieb, J., Robeson, A., & Vonk, J. (2018). Bottoms-up: Rejecting top-down human-centered approaches in comparative psychology. International Journal of Comparative Psychology, 31. https://escholarship.org/uc/item/11t5q9wtCrossRefGoogle Scholar
Elbroch, M. L., Levy, M., Lubell, M., Quigley, H., & Caragiulo, A. (2017). Adaptive social strategies in a solitary carnivore. Science Advances, 3, e1701218. https://doi.org/10.1126/sciadv.1701218CrossRefGoogle Scholar
Gillin, C. M., Hammond, F. M., & Peterson, C. M. (1994). Evaluation of an aversive conditioning technique used on female grizzly bears in the Yellowstone Ecosystem. International Conference on Bear Restoration and Management, 9, 503–512.Google Scholar
Gittleman, J. L. (1986). Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy, 67, 23–36. https://doi.org/10.2307/1380998CrossRefGoogle Scholar
Hamilton, J., & Vonk, J. (2015). Do dogs (Canis lupus familiaris) recognize kin? Behavioural Processes, 119, 123–134. https://doi.org/10.1016/j.beproc.2015.08.004CrossRefGoogle Scholar
Hartmann, D., Davila-Ross, M., Wong, S. T., Call, J., & Scheumann, M. (2017). Spatial transposition tasks in Indian sloth bears (melursus ursinus) and Bornean sun bears (helarctos malayanus euryspilus). Journal of Comparative Psychology, 131, 290–303. http://dx.doi.org/10.1037/com0000077CrossRefGoogle Scholar
Hepper, P. G. (1994). Long-term retention of kinship recognition established during infancy in the domestic dog. Behavioural Processes, 33, 3–14. http://dx.doi.org/10.1016/0376-6357(94)90056-6CrossRefGoogle ScholarPubMed
Hertel, A. G., Leclerc, M., Warren, D., Pelletier, F., Zedrosser, A., & Mueller, T. (2019). Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Animal Behaviour, 147, 91–104. http://dx.doi.org/10.1016/j.anbehav.2018.11.008CrossRefGoogle Scholar
Hertel, A. G., Steyaert, S. M. J. G., Zedrosser, A., Mysterud, A., Lodberg-Holm, H., Gelink, H. W., Kindberg, J., & Swenson, J. E. (2016). Bears and berries: Species-specific selective foraging on a patchily distributed food resource in a human-altered landscape. Behavioral Ecology and Sociobiology, 70, 831–842. http://dx.doi.org/10.1007/s00265-016-2106-2CrossRefGoogle Scholar
Holekamp, K. E., Dantzer, B., Stricker, G., Shaw Yoshida, K. C., & Benson-Amram, S. (2015). Brains, brawn and sociality: A hyaena’s tale. Animal Behaviour, 103, 237–248. http://dx.doi.org/10.1016/j.anbehav.2015.01.023CrossRefGoogle ScholarPubMed
Humphrey, N. K. (1976). The social function of intellect. In Bateson, P. P. G. & Hinde, R. A. (Eds.), Growing points in ethology (pp. 303–317). Cambridge University Press.Google Scholar
Johnson-Ulrich, Z. (2017). Predictors of behavioral flexibility and problem-solving in carnivora (Order No. 10615355). Available from Dissertations & Theses @ Oakland University. (1980794459).Google Scholar
Johnson-Ulrich, Z., Vonk, J., Humbyrd, M., Crowley, M., Wojtkowski, E., Yates, F., & Allard, S. (2016). Picture object recognition in an American black bear (Ursus americanus). Animal Cognition, 19, 1237–1242. https://doi.org/10.1007/s10071-016-1011-4CrossRefGoogle Scholar
Jolly, A. (1965). Lemur social behavior and primate intelligence. Science, 153, 501–506. https://doi.org/10.1126/science.153.3735.501CrossRefGoogle Scholar
Lea, S. E. G., & Osthaus, B. (2018). In what sense are dogs special? Canine cognition in comparative context. Learning & Behavior, 46, 335–363. http://dx.doi.org/10.3758/s13420-018-0349-7CrossRefGoogle ScholarPubMed
Marshall-Pescini, S., Schwarz, J. F. L., Kostelnik, I., Virányi, Z., & Range, F. (2017). Importance of a species’ socioecology: Wolves outperform dogs in a conspecific cooperation task. Proceedings of the National Academy of Sciences, 114, 11793–11798. https://doi.org/10.1073/pnas.1709027114CrossRefGoogle Scholar
Mazur, R., & Seher, V. (2008). Socially learned foraging behaviour in wild black bears, Ursus americanus. Animal Behaviour, 75, 1503–1508. https://doi.org/10.1016/j.anbehav.2007.10.027CrossRefGoogle Scholar
McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions Panthera leo. Animal Behaviour, 47, 379–387. http://dx.doi.org/10.1006/anbe.1994.1052CrossRefGoogle Scholar
Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 534–548. https://doi.org/10.1525/aa.1981.83.3.02a00020CrossRefGoogle Scholar
Mitchell, M. S., & Powell, R. A. (2007). Optimal use of resources structures home ranges and spatial distribution of black bears. Animal Behaviour, 74, 219–230. http://dx.doi.org/10.1016/j.anbehav.2006.11.017CrossRefGoogle Scholar
Morehouse, A. T., Graves, T. A., Mikle, N., & Boyce, M. S. (2016). Nature vs. nurture: Evidence for social learning of conflict behaviour in grizzly bears. PLoS ONE, 11, 15. https://doi.org/10.1371/journal.pone.0165425CrossRefGoogle ScholarPubMed
Noyce, K. V., & Garshelis, D. L. (2011). Seasonal migrations of black bears (Ursus americanus): Causes and consequences. Behavioral Ecology and Sociobiology, 65, 823–835. http://dx.doi.org/10.1007/s00265-010-1086-xCrossRefGoogle Scholar
Ordiz, A., Kindberg, J., Saebo, S., Swenson, J., & Stoen, O. (2014). Brown bear circadian behavior reveals human environmental encroachment, Biological Conservation, 173, 1–9. https://doi.org/10.1016/j.biocon.2014.03.006CrossRefGoogle Scholar
Ostojić, L., & Clayton, N. S. (2014). Behavioural coordination of dogs in a cooperative problem-solving task with a conspecific and a human partner. Animal Cognition, 17, 445–459. https://doi.org/10.1007/s10071-013-0676-1CrossRefGoogle Scholar
Perdue, B. M., Snyder, R. J., Pratte, J., Marr, M. J., & Maple, T. L. (2009). Spatial memory recall in the giant panda (Ailuropoda melanoleuca). Journal of Comparative Psychology, 123, 275–279. https://doi.org/10.1037/a0016220CrossRefGoogle Scholar
Perdue, B. M., Snyder, R., Zhihe, Z., Marr, J., & Maple, T. (2011) Sex differences in spatial ability: A test of the range size hypothesis in order carnivore. Animal Behaviour, 7, 380–383. https://doi.org/10.1098/rsbl.2010.1116Google Scholar
Polson, J. E. (1983). Application of aversion techniques for the reduction of losses to beehives by black bears in Northeastern Saskatchewan, SRC Publication No. C-805-13-E-83.Google Scholar
Range, F., & Virányi, Z. (2015). Tracking the evolutionary origins of dog-human cooperation: The “canine cooperation hypothesis”. Frontiers in Psychology, 5, 2. https://doi.org/10.3389/fpsyg.2014.01582CrossRefGoogle Scholar
Ripperger, S. P., Carter, G. G., Duda, N., Koelpin, A., Cassens, B., Kapitza, R., Josic, D., Berrío-Martínez, J., Page, R. A., & Mayer, F. (2019). Vampire bats that cooperate in the lab maintain their social networks in the wild. Current Biology, 23, 4139–4144. https://doi.org/10.1016/j.cub.2019.10.024CrossRefGoogle Scholar
Ripperger, S. P., Page, R. A., Mayer, F., & Carter, G. G. (2020). Evidence for unfamiliar kin recognition in vampire bats. BioRxiv. https://doi.org/10.1101/2019.12.16.874057CrossRefGoogle Scholar
Rogers, L. L., Mansfield, S. A., Hornby, K., Hornby, S., Debruyn, T. D., Mize, M., Clark, R., & Burghardt, G. M. (2014). Black bear reactions to venomous and non‐venomous snakes in eastern North America. Ethology, 120, 641–651. http://dx.doi.org/10.1111/eth.12236CrossRefGoogle ScholarPubMed
Sakai, S. T., Arsznov, B. M., Lundrigan, B. L., & Holekamp, K. E. (2011). Brain size and social complexity: A computed tomography study in hyaenidae. Brain, Behavior and Evolution, 77, 91–104. http://dx.doi.org/10.1159/000323849CrossRefGoogle ScholarPubMed
Samuel, L., Arnesen, C., Zedrosser, A., & Rosell, F. (2020). Fears from the past? The innate ability of dogs to detect predator scents. Animal Cognition, 23, 721–729. http://dx.doi.org/10.1007/s10071-020-01379-yCrossRefGoogle ScholarPubMed
Schubiger, M. N., Fichtel, C., & Burkart, J. M. (2020). Validity of cognitive tests for non-human animals: Pitfalls and prospects. Frontiers in Psychology, 11, 1835. https://doi.org/10.3389/fpsyg.2020.01835CrossRefGoogle ScholarPubMed
Silk, J., Brosnan, S. F., Vonk, J., Henrich, J., Povinelli, D. J., Shapiro, S., Richardson, A., Lambeth, S. P., & Mascaro, J. (2005). Chimpanzees are indifferent to the welfare of unrelated group members. Nature, 437, 1357–1359. https://doi.org/10.1038/nature04243CrossRefGoogle Scholar
Silverman, I., Choi, J., & Peters, M. (2007). The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Archives of Sexual Behavior, 36, 261–268. http://dx.doi.org/10.1007/s10508-006-9168-6CrossRefGoogle ScholarPubMed
Smith, M. E., Linnell, J. D., Odden, J., & Swenson, J. E. (2000). Review of methods to reduce livestock depradation: I. Guardian animals. Acta Agriculturae Scandinavica, Section A-Animal Science, 50, 279–290. https://doi.org/10.1080/090647000750069476CrossRefGoogle Scholar
Sol, D. (2009). The cognitive-buffer hypothesis for the evolution of large brains. In Dukas, R. & Ratcliffe, J. M. (Eds.), Cognitive ecology II (pp. 111–136). University of Chicago Press.CrossRefGoogle Scholar
Stevens, J. R., & Gilby, I. C. (2004). A conceptual framework for nonkin food sharing: Timing and currency of benefits. Animal Behaviour, 67, 603–614. http://dx.doi.org/10.1016/j.anbehav.2003.04.012CrossRefGoogle Scholar
Stevens, J. R., & Stephens, D. W. (2002). Food sharing: A model of manipulation by harassment. Behavioral Ecology, 13, 393–400. http://dx.doi.org/10.1093/beheco/13.3.393CrossRefGoogle Scholar
Stillfried, M., Belant, J. L., Svoboda, N. J., Beyer, D. E., & Kramer-Schadt, S. (2015). When top predators become prey: Black bears alter movement behaviour in response to hunting pressure. Behavioural Processes, 120, 30–39. http://dx.doi.org/10.1016/j.beproc.2015.08.003CrossRefGoogle ScholarPubMed
Støen, O., Bellemain, E., Sæbø, S., & Swenson, J. E. (2005). Kin-related spatial structure in brown bears Ursus arctos. Behavioral Ecology and Sociobiology, 59, 191–197. http://dx.doi.org/10.1007/s00265-005-0024-9CrossRefGoogle Scholar
Stringham, S. F. (2012). Salmon fishing by bears and the dawn of cooperative predation. Journal of Comparative Psychology, 126, 329–338. http://dx.doi.org/10.1037/a0028238CrossRefGoogle ScholarPubMed
Suraci, J. P., Clinchy, M., Roberts, D. J., & Zanette, L. Y. (2017). Eavesdropping in solitary large carnivores: Black bears advance and vocalize toward cougar playbacks. Ethology, 123, 593–599. http://dx.doi.org/10.1111/eth.12631CrossRefGoogle Scholar
Tarou, L. R. (2004). An examination of the role of associative learning and spatial memory in foraging of two species of bear (family: Ursidae) (Ailuropoda melanoleuca, Tremarctos ornatus). Dissertation Abstracts International: Section B: The Sciences and Engineering, 64, 5260.Google Scholar
Ternent, M. A., & Garshelis, D. L. (1999). Taste-aversion conditioning to reduce nuisance activity by black bears in a Minnesota military reservation. Wildlife Society Bulletin, 720–728.Google Scholar
Udell, M. A. R. (2018). A new approach to understanding canine social cognition. Learning & Behavior, 46, 329–330. http://dx.doi.org/10.3758/s13420-018-0334-1CrossRefGoogle ScholarPubMed
Udell, M. A. R., & Vitale Shreve, K. R. (2017). Editorial: Feline behavior and cognition. Behavioural Processes, 141, 259–260. http://dx.doi.org/10.1016/j.beproc.2017.04.005CrossRefGoogle ScholarPubMed
Virányi, Z., & Range, F. (2014). On the way to a better understanding of dog domestication: Aggression and cooperativeness in dogs and wolves. In Kaminski, J. & Marshall-Pescini, S. (Eds.), The social dog: Behaviour and cognition (pp. 35–62). Academic Press.CrossRefGoogle Scholar
Vonk, J. (2016). Bigger brains may make better problem-solving carnivores. Learning and Behavior, 44, 99–100. https://doi.org/10.3758/s13420-016-0222-5CrossRefGoogle ScholarPubMed
Vonk, J. (2018). Social strategies in a not-so-social pumas. Learning and Behavior, 46, 105–106. https://doi.org/10.3758/s13420-017-0312-zCrossRefGoogle Scholar
Vonk, J., Allard, S., Torgerson-White, L., Bennett, C., Galvan, M., McGuire, M. M., Hamilton, J., Johnson-Ulrich, Z., & Lieb, J. (2015). Manipulating spatial and visual cues in a win-stay foraging task in captive grizzly bears (Ursus arctos horribilus). In Thayer, E. A. (Ed.), Spatial, long-and short-term memory: Functions, differences and effects of injury (pp. 47–60). Nova Publishers.Google Scholar
Vonk, J., & Beran, M. J. (2012). Bears “count” too: Quantity estimation and comparison in black bears (Ursus americanus). Animal Behaviour, 84, 231–238. https://doi.org/10.1016/j.anbehav.2012.05.001CrossRefGoogle Scholar
Vonk, J., Edge, J., Pappas, J., Robeson, A., & Jordan, A. (2020). Cross species comparisons: When comparing apples to oranges is fruitful. In Shackelford, T. K. (Ed.), The Sage handbook of evolutionary psychology (pp. 285–310). Sage.Google Scholar
Vonk, J., & Jett, S. E. (2018). “Bear-ly” learning: Limits of abstraction in black bear cognition. Animal Behavior and Cognition, 5, 68–78. https://doi.org/10.26451/abc.05.01.06.2018CrossRefGoogle Scholar
Vonk, J., Jett, S. E., & Mosteller, K. W. (2012). Concept formation in American black bears (Ursus americanus). Animal Behaviour, 84, 953–964. https://doi.org/10.1016/j.anbehav.2012.07.020CrossRefGoogle Scholar
Vonk, J. & Johnson-Ulrich, Z. (2014). Social and non-social category discriminations in a chimpanzee (Pan troglodytes) and American black bears (Ursus americanus). Learning and Behavior, 42, 231–245. https://doi.org/10.3758/s13420-014-0141-2CrossRefGoogle Scholar
Vonk, J., & Leete, J. (2017). Carnivore concepts: Categorization in carnivores “bears” further study. International Journal of Comparative Psychology, 30. http://escholarship.org/uc/item/61363164CrossRefGoogle Scholar
de Waal, F. B., & Ferrari, P. F. (2010). Towards a bottom-up perspective on animal and human cognition. Trends in Cognitive Sciences, 14, 201–207. https://doi.org/10.1016/j.tics.2010.03.003CrossRefGoogle ScholarPubMed
Waroff, A. J., Fanucchi, L., Robbins, C. T., & Nelson, O. L. (2017). Tool use, problem-solving, and the display of stereotypic behaviors in the brown bear (Ursus arctos). Journal of Veterinary Behavior: Clinical Applications and Research, 17, 62–68. https://doi.org/10.1016/j.jveb.2016.11.003CrossRefGoogle Scholar
Wynne, C. D. L. (2016). What is special about dog cognition? Current Directions in Psychological Science, 25, 345–350. http://dx.doi.org/10.1177/0963721416657540CrossRefGoogle Scholar
Wilkinson, G. S. (1988). Reciprocal altruism in bats and other mammals. Ethology & Sociobiology, 9, 85–100. https://doi.org/10.1016/0162-3095(88)90015-5CrossRefGoogle Scholar
Zamisch, V., & Vonk, J. (2012). Spatial memory in captive American black bears (Ursus americanus). Journal of Comparative Psychology, 126, 372–387. https://doi.org/10.1037/a0028081CrossRefGoogle Scholar
References
Addessi, E., & Rossi, S. (2010). Tokens improve capuchin performance in the reverse–reward contingency task. Proceedings of the Royal Society of London B: Biological Sciences, rspb20101602. https://doi.org/10.1098/rspb.2010.1602CrossRefGoogle Scholar
Ainslie, G. W. (1974). Impulse control in pigeons. Journal of the Experimental Analysis of Behavior, 21, 485–489. https://doi.org/10.1901/jeab.1974.21-485CrossRefGoogle ScholarPubMed
Albiach-Serrano, A., Guillén-Salazar, F., & Call, J. (2007). Mangabeys (Cercocebus torquatus lunulatus) solve the reverse contingency task without a modified procedure. Animal Cognition, 10, 387–396. https://doi.org/10.1007/s10071-007-0076-5CrossRefGoogle ScholarPubMed
Anderson, J. R., Awazu, S., & Fujita, K. (2000). Can squirrel monkeys (Saimiri sciureus) learn self-control: A study using food array selection tests and reverse-reward contingency. Journal of Experimental Psychology: Animal Behavior Processes, 26, 87–97. https://doi.org/10.1037//0097-7403.26.1.87Google ScholarPubMed
Anderson, J. R., Hattori, Y., & Fujita, K. (2008). Quality before quantity: Rapid learning of reverse-reward contingency by capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 122, 445–448. https://doi.org/10.1037/a0012624CrossRefGoogle Scholar
Auersperg, A. M. I., Laumer, I. B., & Bugnyar, T. (2013). Goffin cockatoos wait for qualitative and quantitative gains but prefer “better” to “more”. Biology Letters, 9, Article 20121092. https://doi.org/10.1098/rsbl.2012.1092CrossRefGoogle Scholar
Beck, B. B. (1980). Animal tool behavior: The use and manufacture of tools by animals. Garland STPM Press.Google Scholar
Beran, M. J. (2002). Maintenance of self-imposed delay of gratification by four chimpanzees (Pan troglodytes) and an orangutan (Pongo pygmaeus). Journal of General Psychology, 129, 49–66. https://doi.org/10.1080/00221300209602032CrossRefGoogle Scholar
Beran, M. J. (2015). The comparative science of “self-control”: What are we talking about? Frontiers in Psychology, 6, Article 51. https://doi.org/10.3389/fpsyg.2015.00051CrossRefGoogle Scholar
Beran, M. J. (2018). Self-control in animals and people. Academic Press. https://doi.org/10.1016/C2016-0-03559-3Google Scholar
Beran, M. J., & Evans, T. A. (2006). Maintenance of delay of gratification by four chimpanzees (Pan troglodytes): The effects of delayed reward visibility, experimenter presence, and extended delay intervals. Behavioural Processes, 73, 315–324. https://doi.org/10.1016/j.beproc.2006.07.005CrossRefGoogle ScholarPubMed
Beran, M. J., James, B. T., Whitham, W., & Parrish, A. E. (2016). Chimpanzees can point to smaller amounts of food to accumulate larger amounts but they still fail the reverse-reward contingency task. Journal of Experimental Psychology: Animal Learning and Cognition, 42, 347–358. https://doi.org/10.1037/xan0000115Google ScholarPubMed
Beran, M. J., Perdue, B. M., Rossettie, M. S., James, B. T., Whitham, W., Walker, B., Futch, S. E., & Parrish, A. E. (2016). Self-control assessments of capuchin monkeys with the rotating tray task and the accumulation task. Behavioural Processes, 129, 68–79. https://doi.org/10.1016/j.beproc.2016.06.007CrossRefGoogle ScholarPubMed
Beran, M. J., Rossettie, M. S., & Parrish, A. E. (2016). Trading up: Chimpanzees (Pan troglodytes) show self-control through their exchange behavior. Animal Cognition, 19, 109–121. https://doi.org/10.1007/s10071-015-0916-7CrossRefGoogle ScholarPubMed
Beran, M. J., Savage-Rumbaugh, E. S., Pate, J. L., & Rumbaugh, D. M. (1999). Delay of gratification in chimpanzees (Pan troglodytes). Developmental Psychobiology, 34, 119–127. https://doi.org/10.1002/(sici)1098-2302(199903)34:2<119::aid-dev5>3.0.co;2-p3.0.CO;2-P>CrossRefGoogle Scholar
Boesch-Achermann, H., & Boesch, C. (1993). Tool use in wild chimpanzees: New light from dark forests. Current Directions in Psychological Science, 2, 18–21. https://doi.org/10.1111/1467-8721.ep10770551CrossRefGoogle Scholar
Boysen, S. T., & Berntson, G. G. (1995). Responses to quantity: Perceptual versus cognitive mechanisms in chimpanzees (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 21, 82–86. https://doi.org/10.1037//0097-7403.21.1.82Google Scholar
Boysen, S. T., Berntson, G. G., Hannan, M. B., & Cacioppo, J. T. (1996). Quantity-based interference and symbolic representations in chimpanzees (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 22, 76–86. https://doi.org/10.1037/0097-7403.22.1.76Google Scholar
Boysen, S. T., Mukobi, K. L., & Berntson, G. G. (1999). Overcoming response bias using symbolic representations of number by chimpanzees (Pan troglodytes). Animal Learning and Behavior, 27, 229–235. https://doi.org/10.3758/BF03199679CrossRefGoogle Scholar
Bramlett, J. L., Perdue, B. M., Evans, T. A., & Beran, M. J. (2012). Capuchin monkeys (Cebus apella) let lesser rewards pass them by to get better rewards. Animal Cognition, 15, 963–969. https://doi.org/10.1007/s10071-012-0522-xCrossRefGoogle ScholarPubMed
Brucks, D., Soliani, M., Range, F., & Marshall-Pescini, S. (2017). Reward type and behavioural patterns predict dogs’ success in a delay of gratification paradigm. Scientific Reports, 7, 42459. https://doi.org/10.1038/srep42459CrossRefGoogle Scholar
Byrne, R. W., Sanz, C. M., & Morgan, D. B. (2013). Chimpanzees plan their tool use. In Sanz, C. M., Call, J., & Boesch, C. (Eds.), Tool use in animals. Cognition and ecology (pp. 48–64). Cambridge University Press. https://doi.org/10.1017/CBO9780511894800.004CrossRefGoogle Scholar
Cheng, K. E. N., Peña, J., Porter, M. A., & Irwin, J. D. (2002). Self-control in honeybees. Psychonomic Bulletin & Review, 9, 259–263. https://doi.org/10.3758/BF03196280CrossRefGoogle ScholarPubMed
De Petrillo, F., Gori, E., Micucci, A., Ponsi, G., Paglieri, F., & Addessi, E. (2015). When is it worth waiting for? Food quantity, but not food quality, affects delay tolerance in tufted capuchin monkeys. Animal Cognition, 18, 1019–1029. https://doi.org/10.1007/s10071-015-0869-xCrossRefGoogle Scholar
Drapier, M., Chauvin, C., Dufour, V., Uhlrich, P., & Thierry, B. (2005). Food-exchange with humans in brown capuchin monkeys. Primates, 46, 241–248. https://doi.org/10.1007/s10329-005-0132-1CrossRefGoogle ScholarPubMed
Duckworth, A. L., & Kern, M. L. (2011). A meta-analysis of the convergent validity of self-control measures. Journal of Research in Personality, 45, 259–268. https://doi.org/10.1016/j.jrp.2011.02.004CrossRefGoogle ScholarPubMed
Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and passion for long-term goals. Journal of Personality and Social Psychology, 92, 1087–1101. https://doi.org/10.1037/0022-3514.92.6.1087CrossRefGoogle ScholarPubMed
Dufour, V., Pelé, M., Sterck, E. H. M., & Thierry, B. (2007). Chimpanzee (Pan troglodytes) anticipation of food return: Coping with waiting time in an exchange task. Journal of Comparative Psychology, 121, 145–155. https://doi.org/10.1037/0735-7036.121.2.145CrossRefGoogle Scholar
Dufour, V., Wascher, C. A. F., Braun, A., Miller, R., & Bugnyar, T. (2012). Corvids can decide if a future exchange is worth waiting for. Biology Letters, 8, 201–204. https://doi.org/10.1098/rsbl.2011.0726CrossRefGoogle ScholarPubMed
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267CrossRefGoogle Scholar
Evans, T. A., & Beran, M. J. (2007a). Delay of gratification and delay maintenance by rhesus macaques (Macaca mulatta). Journal of General Psychology, 134, 199–216. https://doi.org/10.3200/GENP.134.2.199-216CrossRefGoogle Scholar
Evans, T. A., & Beran, M. J. (2007b). Chimpanzees use self-distraction to cope with impulsivity. Biology Letters, 3, 599–602. https://doi.org/10.1098/rsbl.2007.0399CrossRefGoogle ScholarPubMed
Evans, T. A., & Westergaard, G. C. (2006). Self-control and tool use in tufted capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 120, 163–166. https://doi.org/10.1037/0735-7036.120.2.163CrossRefGoogle Scholar
Freeman, K. B., Nonnemacher, J. E., Green, L., Myerson, J., & Woolverton, W. L. (2012). Delay discounting in rhesus monkeys: Equivalent discounting of more and less preferred sucrose concentrations. Learning & Behavior, 40, 54–60. https://doi.org/10.3758/s13420-011-0045-3CrossRefGoogle ScholarPubMed
Galtress, T., Garcia, A., & Kirkpatrick, K. (2012). Individual differences in impulsive choice and timing in rats. Journal of the Experimental Analysis of Behavior, 98, 65–87. https://doi.org/10.1901/jeab.2012.98-65CrossRefGoogle ScholarPubMed
Genty, E., Chung, P. C., & Roeder, J. J. (2011). Testing brown lemurs (Eulemur fulvus) on the reverse-reward contingency task without a modified procedure. Behavioural Processes, 86, 133–137. https://doi.org/10.1016/j.beproc.2010.10.006CrossRefGoogle ScholarPubMed
Genty, E., Palmier, C., & Roeder, J. J. (2004). Learning to suppress responses to the larger of two rewards in two species of lemurs, Eulemur fulvus and E. macaco. Animal Behaviour, 67, 925–932. https://doi.org/10.1016/j.anbehav.2003.09.007CrossRefGoogle Scholar
Genty, E., & Roeder, J. J. (2006). Self-control: Why should sea lions, Zalophus californianus, perform better than primates? Animal Behaviour, 72, 1241–1247. https://doi.org/10.1016/j.anbehav.2006.02.023CrossRefGoogle Scholar
Grosch, J., & Neuringer, A. (1981). Self-control in pigeons under the Mischel paradigm. Journal of the Experimental Analysis of Behavior, 35, 3–21. https://doi.org/10.1901/jeab.1981.35-3CrossRefGoogle ScholarPubMed
Hayden, B. Y., & Platt, M. L. (2007). Temporal discounting predicts risk sensitivity in rhesus macaques. Current Biology, 17, 49–53. https://doi.org/10.1016/j.cub.2006.10.055CrossRefGoogle ScholarPubMed
Inzlicht, M., Schmeichel, B. J., & Macrae, C. N. (2014). Why self-control seems (but may not be) limited. Trends in Cognitive Sciences, 18, 127–133. https://doi.org/10.1016/j.tics.2013.12.009CrossRefGoogle ScholarPubMed
Kabadayi, C., Bobrowicz, K., & Osvath, M. (2018). The detour paradigm in animal cognition. Animal Cognition 21, 21–35. https://doi.org/10.1007/s10071-017-1152-0CrossRefGoogle ScholarPubMed
Kabadayi, C., Krasheninnikova, A., O’Neill, L., van de Weijer, J., Osvath, M., & von Bayern, A. M. (2017). Are parrots poor at motor self-regulation or is the cylinder task poor at measuring it? Animal Cognition, 20, 1137–1146. https://doi.org/10.1007/s10071-017-1131-5CrossRefGoogle ScholarPubMed
Kabadayi, C., Taylor, L. A., von Bayern, A. M., & Osvath, M. (2016). Ravens, New Caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains. Royal Society Open Science, 3, 160104. https://doi.org/10.1098/rsos.160104CrossRefGoogle ScholarPubMed
Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39, 341–350. https://doi.org/10.1037/0003-066X.39.4.341CrossRefGoogle Scholar
Kirkpatrick, K., Marshall, A. T., & Smith, A. P. (2015). Mechanisms of individual differences in impulsive and risky choice in rats. Comparative Cognition & Behavior Reviews, 10, 45. https://doi.org/10.3819/ccbr.2015.100003CrossRefGoogle ScholarPubMed
Koepke, A. E., Gray, S. L., & Pepperberg, I. M. (2015). Delayed gratification: A Grey parrot (Psittacus erithacus) will wait for a better reward. Journal of Comparative Psychology, 129, 339–346. https://doi.org/10.1037/a0039553CrossRefGoogle ScholarPubMed
Kralik, J. D. (2005). Inhibitory control and response selection in problem solving: How cotton-top tamarins (Saguinas oedipus) overcome a bias for selecting the larger quantity of food. Journal of Comparative Psychology, 119, 78–89. https://doi.org/10.1037/0735-7036.119.1.78CrossRefGoogle Scholar
Lempert, K. M., & Phelps, E. A. (2016). The malleability of intertemporal choice. Trends in Cognitive Sciences, 20, 64–74. https://doi.org/10.1016/j.tics.2015.09.005CrossRefGoogle ScholarPubMed
Leonardi, R. J., Vick, S. J., & Dufour, V. (2012). Waiting for more: The performance of domestic dogs (Canis familiaris) on exchange tasks. Animal Cognition, 15, 107–120. https://doi.org/10.1007/s10071-011-0437-yCrossRefGoogle ScholarPubMed
Logue, A. W. (1988). Research on self-control: An integrating framework. Behavioral and Brain Sciences, 11, 665–679. https://doi.org/10.1017/S0140525X00053978CrossRefGoogle Scholar
MacLean, E. L., Hare, B., Nunn, C. L., Addessi, E., Amici, F., Anderson, R. C., … & Boogert, N. J. (2014). The evolution of self-control. Proceedings of the National Academy of Sciences, 111, E2140–E2148. https://doi.org/10.1073/pnas.1323533111CrossRef