Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-n4bck Total loading time: 0.974 Render date: 2022-08-19T21:01:10.074Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Chapter 3 - Neuroprotective Strategies in the Pediatric Patient

Published online by Cambridge University Press:  02 November 2018

Sulpicio G. Soriano
Affiliation:
Boston Children’s Hospital
Craig D. McClain
Affiliation:
Boston Children’s Hospital
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Casaccia-Bonnefil, P. Cell death in the oligodendrocyte lineage: a molecular perspective of life/death decisions in development and disease. Glia. 2000;29(2):124–35.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Chang, E. Preterm birth and the role of neuroprotection. BMJ. 2015;350:g6661.CrossRefGoogle ScholarPubMed
Shea, KL, Palanisamy, A. What can you do to protect the newborn brain? Curr Opin Anaesthesiol. 2015;28(3):261–6.CrossRefGoogle Scholar
Johnston, MV. Excitotoxicity in perinatal brain injury. Brain Pathol. 2005;15(3):234–40.Google ScholarPubMed
Clarkson, AN. Anesthetic-mediated protection/preconditioning during cerebral ischemia. Life Sci. 2007;80(13):1157–75.CrossRefGoogle ScholarPubMed
Kukreti, V, Mohseni-Bod, H, Drake, J. Management of raised intracranial pressure in children with traumatic brain injury. J Pediatr Neurosci. 2014;9(3):207–15.Google ScholarPubMed
Laffey, JG, Kavanagh, BP. Hypocapnia. N Engl J Med. 2002;347(1):4353.CrossRefGoogle ScholarPubMed
Shao, L, Hong, F, Zou, Y, Hao, X, Hou, H, Tian, M. Hypertonic saline for brain relaxation and intracranial pressure in patients undergoing neurosurgical procedures: a meta-analysis of randomized controlled trials. PLOS ONE. 2015;10(1):e0117314.CrossRefGoogle ScholarPubMed
Dostal, P, Schreiberova, J, Dostalova, V, Tyll, T, Paral, J, Abdo, I, et al. Effects of hypertonic saline and mannitol on cortical cerebral microcirculation in a rabbit craniotomy model. BMC Anesthesiol. 2015;15(1):88.CrossRefGoogle Scholar
Stilling, M, Karatasi, E, Rasmussen, M, Tankisi, A, Juul, N, Cold, GE. Subdural intracranial pressure, cerebral perfusion pressure, and degree of cerebral swelling in supra- and infratentorial space-occupying lesions in children. Acta Neurochir Suppl. 2005;95:133–6.CrossRefGoogle ScholarPubMed
Jacobs, SE, Berg, M, Hunt, R, Tarnow-Mordi, WO, Inder, TE, Davis, PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 2013;(1):CD003311.Google ScholarPubMed
Azzopardi, D, Strohm, B, Marlow, N, Brocklehurst, P, Deierl, A, Eddama, O, et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med. 2014;371(2):140–9.CrossRefGoogle ScholarPubMed
Hindman, BJ, Bayman, EO, Pfisterer, WK, Torner, JC, Todd, MM, Investigators, IHAST. No association between intraoperative hypothermia or supplemental protective drug and neurologic outcomes in patients undergoing temporary clipping during cerebral aneurysm surgery: findings from the Intraoperative Hypothermia for Aneurysm Surgery Trial. Anesthesiology. 2010;112(1):86101.CrossRefGoogle ScholarPubMed
Sonneville, R, Vanhorebeek, I, den HM, Hertog, Chrétien, F, Annane, D, Sharshar, T, et al. Critical illness-induced dysglycemia and the brain. Intensive Care Med. 2015;41(2):192202.CrossRefGoogle Scholar
Ntaios, G, Egli, M, Faouzi, M, Michel, P. J-shaped association between serum glucose and functional outcome in acute ischemic stroke. Stroke. 2010;41(10):2366–70.CrossRefGoogle ScholarPubMed
de Ferranti, S, Gauvreau, K, Hickey, PR, Jonas, RA, Wypij, D, Plessis du A, et al. Intraoperative hyperglycemia during infant cardiac surgery is not associated with adverse neurodevelopmental outcomes at 1, 4, and 8 years. Anesthesiology. 2004;100(6):1345–52.Google Scholar
Fairbanks, SL, Brambrink, AM. Preconditioning and postconditioning for neuroprotection: the most recent evidence. Best Pract Res Clin Anaesthesiol. 2010;24(4):521–34.CrossRefGoogle ScholarPubMed
Hudetz, JA, Patterson, KM, Iqbal, Z, Gandhi, SD, Pagel, PS. Remote ischemic preconditioning prevents deterioration of short-term postoperative cognitive function after cardiac surgery using cardiopulmonary bypass: results of a pilot investigation. J Cardiothorac Vasc Anesth. 2015;29(2):382–8.CrossRefGoogle ScholarPubMed
Zwerus, R, Absalom, A. Update on anesthetic neuroprotection. Curr Opin Anaesthesiol. 2015;28(4):424–30.CrossRefGoogle ScholarPubMed
Wells, BA, Keats, AS, Cooley, DA. Increased tolerance to cerebral ischemia produced by general anesthesia during temporary carotid occlusion. Surgery. 1963;54:216–23.Google ScholarPubMed
Matchett, GA, Allard, MW, Martin, RD, Zhang, JH. Neuroprotective effect of volatile anesthetic agents: molecular mechanisms. Neurol Res. 2009;31(2):128–34.CrossRefGoogle ScholarPubMed
Bilotta, F, Stazi, E, Zlotnik, A, Gruenbaum, SE, Rosa, G. Neuroprotective effects of intravenous anesthetics: a new critical perspective. Curr Pharm Des. 2014;20(34):5469–75.CrossRefGoogle ScholarPubMed
Schifilliti, D, Grasso, G, Conti, A, Fodale, V. Anaesthetic-related neuroprotection: intravenous or inhalational agents? CNS Drugs. 2010;24(11):893907.Google ScholarPubMed
Elsersy, H, Sheng, H, Lynch, JR, Moldovan, M, Pearlstein, RD, Warner, DS. Effects of isoflurane versus fentanyl-nitrous oxide anesthesia on long-term outcome from severe forebrain ischemia in the rat. Anesthesiology. 2004;100(5):1160–6.CrossRefGoogle ScholarPubMed
Elsersy, H, Mixco, J, Sheng, H, Pearlstein, RD, Warner, DS. Selective gamma-aminobutyric acid type A receptor antagonism reverses isoflurane ischemic neuroprotection. Anesthesiology. 2006;105(1):8190.CrossRefGoogle ScholarPubMed
Engelhard, K, Werner, C, Reeker, W, Lu, H, Möllenberg, O, Mielke, L, et al. Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Br J Anaesth. 1999;83(3):415–21.CrossRefGoogle ScholarPubMed
Lai, Z, Zhang, L, Su, J, Cai, D, Xu, Q. Sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage rats via the PI3 K/Akt-mPTP pathway. Brain Res. 2016;1630:2537.CrossRefGoogle Scholar
Haelewyn, B, Yvon, A, Hanouz, JL, MacKenzie, ET, Ducouret, P, Gérard, JL, et al. Desflurane affords greater protection than halothane against focal cerebral ischaemia in the rat. Br J Anaesth. 2003;91(3):390–6.CrossRefGoogle ScholarPubMed
Jevtovic-Todorovic, V, Todorović, SM, Mennerick, S, Powell, S, Dikranian, K, Benshoff, N, et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med. 1998;4(4):460–3.CrossRefGoogle ScholarPubMed
Haelewyn, B, David, HN, Rouillon, C, Chazalviel, L, Lecocq, M, Risso, J-J, et al. Neuroprotection by nitrous oxide: facts and evidence. Crit Care Med. 2008;36(9):2651–9.CrossRefGoogle ScholarPubMed
Wilhelm, S, Ma, D, Maze, M, Franks, NP. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology. 2002;96(6):1485–91.CrossRefGoogle ScholarPubMed
David, HN, Leveille, F, Chazalviel, L, MacKenzie, ET, Buisson, A, Lemaire, M, et al. Reduction of ischemic brain damage by nitrous oxide and xenon. J Cereb Blood Flow Metab. 2003;23(10):1168–73.CrossRefGoogle ScholarPubMed
Metaxa, V, Lagoudaki, R, Meditskou, S, Thomareis, O, Oikonomou, L, Sakadamis, A. Delayed post-ischaemic administration of xenon reduces brain damage in a rat model of global ischaemia. Brain Inj. 2014;28(3):364–9.CrossRefGoogle Scholar
Ma, D, Hossain, M, Chow, A, Arshad, M, Battson, RM, Sanders, RD, et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol. 2005;58(2):182–93.CrossRefGoogle ScholarPubMed
Dingley, J, Tooley, J, Liu, X, Scull-Brown, E, Elstad, M, Chakkarapani, E, et al. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study. Pediatrics. 2014;133(5):809–18.CrossRefGoogle ScholarPubMed
Zaidan, JR, Klochany, A, Martin, WM, Ziegler, JS, Harless, DM, Andrews, RB. Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology. 1991;74(3):406–11.CrossRefGoogle ScholarPubMed
Gelb, AW, Bayona, NA, Wilson, JX, Cechetto, DF. Propofol anesthesia compared to awake reduces infarct size in rats. Anesthesiology. 2002;96(5):1183–90.CrossRefGoogle ScholarPubMed
Engelhard, K, Werner, C, Eberspächer, E, Pape, M, Stegemann, U, Kellermann, K, et al. Influence of propofol on neuronal damage and apoptotic factors after incomplete cerebral ischemia and reperfusion in rats: a long-term observation. Anesthesiology. 2004;101(4):912–17.CrossRefGoogle ScholarPubMed
Adembri, C, Venturi, L, Pellegrini-Giampietro, DE. Neuroprotective effects of propofol in acute cerebral injury. CNS Drug Rev. 2007;13(3):333–51.CrossRefGoogle ScholarPubMed
Roach, GW, Newman, MF, Murkin, JM, Martzke, J, Ruskin, A, Li, J, et al. Ineffectiveness of burst suppression therapy in mitigating perioperative cerebrovascular dysfunction. Multicenter Study of Perioperative Ischemia (McSPI) Research Group. Anesthesiology. 1999;90(5):1255–64.CrossRefGoogle ScholarPubMed
Proescholdt, M, Heimann, A, Kempski, O. Neuroprotection of S(+) ketamine isomer in global forebrain ischemia. Brain Res. 2001;904(2):245–51.CrossRefGoogle ScholarPubMed
Hudetz, JA, Pagel, PS. Neuroprotection by ketamine: a review of the experimental and clinical evidence. J Cardiothorac Vasc Anesth. 2010;24(1):131–42.CrossRefGoogle ScholarPubMed
Hudetz, JA, Patterson, KM, Iqbal, Z, Gandhi, SD, Byrne, AJ, Hudetz, AG, et al. Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2009;23(5):651–7.CrossRefGoogle ScholarPubMed
Soriano, SG, Liu, Q, Li, J, Liu, J-R, Han, XH, Kanter, JL, et al. Ketamine activates cell cycle signaling and apoptosis in the neonatal rat brain. Anesthesiology. 2010;112(5):1155–63.CrossRefGoogle ScholarPubMed
Lei, B, Popp, S, Capuano-Waters, C, Cottrell, JE, Kass, IS. Effects of delayed administration of low-dose lidocaine on transient focal cerebral ischemia in rats. Anesthesiology. 2002;97(6):1534–40.CrossRefGoogle ScholarPubMed
Ren, X, Ma, H, Zuo, Z. Dexmedetomidine postconditioning reduces brain injury after brain hypoxia-ischemia in neonatal rats. J Neuroimmune Pharmacol. 2016;11(2):238–47.CrossRefGoogle ScholarPubMed
Sanders, RD, Xu, J, Shu, Y, Januszewski, A, Halder, S, Fidalgo, A, et al. Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology. 2009;110(5):1077–85.CrossRefGoogle ScholarPubMed
Ge, Y-L, Li, X, Gao, JU, Zhang, X, Fang, X, Zhou, L, et al. Beneficial effects of intravenous dexmedetomidine on cognitive function and cerebral injury following a carotid endarterectomy. Exp Ther Med. 2016;11(3):1128–34.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×