Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-gsnzm Total loading time: 0.789 Render date: 2022-09-27T17:32:02.940Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Chapter 9 - Anesthetic Considerations for Deep Brain Stimulator Placement

Published online by Cambridge University Press:  02 November 2018

Sulpicio G. Soriano
Affiliation:
Boston Children’s Hospital
Craig D. McClain
Affiliation:
Boston Children’s Hospital
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rossi, U. The history of electrical stimulation of the nervous system for the control of pain. In: Simpson, BA, ed. Electrical Stimulation and the Relief of Pain. Amsterdam: Elsevier; 2003:516.Google Scholar
Sironi, VA. Origin and evolution of deep brain stimulation. Front Integr Neurosci. 2011;8:42:15.Google Scholar
Osborn, IP, Kurtis, SD, Alterman, RL. Functional neurosurgery: anesthetic considerations. Int Anesthesiol Clin. 2015;53(1):3952.CrossRefGoogle ScholarPubMed
Rekriwal, A, Baltuch, G. Deep brain stimulation: expanding applications. Neurol Med Chir (Tokyo). 2015;55:861–77.Google Scholar
Fasano, A, Lozano, A. Deep brain stimulation for movement disorders: 2015 and beyond. Curr Opin Neurol. 2015;28(4):423–36.CrossRefGoogle ScholarPubMed
Sebeo, J, Deiner, SG, Alterman, RL, Osborn, IP. Anesthesia for pediatric deep brain stimulation. Anesthesiol Res Pract. 2010;2010:401419.
Air, EI, Ostrem, JA, Sanger, TD, Starr, PA. Deep brain stimulation in children: experience and technical pearls. J Neurosurg Pediatrics. 2011;8:566–74.CrossRefGoogle ScholarPubMed
Fahn, S, Bressman, SB, Marsden, CD. Classification of dystonia. Adv Neurol. 1998;78:110.CrossRefGoogle ScholarPubMed
DiFrancesco, MF, Halpern, CH, Hurtig, HH, Baltuch, GH, Heur, GG. Pediatric indications for deep brain simulation. Childs Nerv Syst. 2012;28:1701–14.CrossRefGoogle Scholar
Ostrem, JL, Starr, PA. Treatment of dystonia with deep brain stimulation. Neurotherapeutics. 2008;5:320–30.CrossRefGoogle ScholarPubMed
Marks, WA, Honeycutt, J, Acosta, F, Reed, M. Deep brain stimulation for pediatric movement disorders. Semin Pediatr Neurol. 2009;16:90–8.CrossRefGoogle ScholarPubMed
Pin, TW, McCartney, L, Lewis, L, Waugh, MC. Use of intrathecal baclofen therapy in ambulant children and adolescents with spacity and dystonia of cerebral origin: a systematic review. Dev Med Child Neurol. 2011;53(11):1065.CrossRefGoogle Scholar
Zhang, JG, Zhang, K, Wang, ZC, Ge, M, Ma, Y. Deep brain stimulation in the treatment of secondary dystonia. Chin Med J. 2006;119:206974.Google ScholarPubMed
Holloway, KL, Baron, MS, Brown, R, Cifu, DX, Carne, W, Ramakaishnan, V. Stimulation for dystonia: a meta-analysis. Neuromodulation. 2006;4:253–61.Google Scholar
Burke, RE, Fahn, S, Marsden, CD, Bressman, SB, Maskowitz, C, Friedman, J. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology. 1985;35:73–7.CrossRefGoogle ScholarPubMed
Comella, CL, Leurgans, S, Wuu, J, Stebbins, GT, Chmura, T. Dystonia Study Group. Rating scales for dystonia: a multicenter assessment. Mov Disord. 2003;18:303–12.CrossRefGoogle Scholar
Comella, CL, Stebbins, GT, Chmura, TA, Bressman, SB, Lang, AF. Teaching tape for the motor section of the Toronto Western Spasmotic Torticollis Scale. Mov Disord. 1997;12:570–5.CrossRefGoogle Scholar
Lipsman, N, Ellis, M, Lozeno, AM. Current and future indications for deep brain stimulation in pediatric populations. Neurosurg Focus. 2010;29(2):E2.CrossRefGoogle ScholarPubMed
Vidailhet, M, Vercueil, L, Houeto, JL, Krystkowiak, P, Benabid, AL, Cornu, P, et al. Bilateral deep brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med. 2005;352:459–67.CrossRefGoogle ScholarPubMed
Vidailhet, M, Vercueil, L, Houeto, JL, Krystkowiak, P, Lagrange, C, Yelnik, J, et al. Bilateral deep brain stimulation in primary generalized dystonia: a prospective 3 year follow-up study. Lancet Neurol. 2007;6:223–9.CrossRefGoogle Scholar
Coubes, P, Cif, L, El Fertit, H, Hemm, S, Vayssiere, N, Serrat, S, et al. Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. J. Neurosurg. 2004;101:189–94.Google ScholarPubMed
FitzGerald, JJ, Rosendal, F, de Pennington, N, Joint, C, Forrow, B, Fletcher, C, et al. Long-term outcome of deep brain stimulation in generalized dystonia: a series of 60 cases. J Neurol Neurosurg Psychiatry. 2014;85:1371–8.CrossRefGoogle Scholar
Chang, EF, Schrock, LE, Starr, PA, Ostrem, JL. Long-term benefit sustained after bilateral pallidal deep brain stimulation in patients with refractory tardive dystonia. Stereotact Funct Neurosurg. 2010;88:304–10.CrossRefGoogle ScholarPubMed
Goto, S, Yamada, K. Long-term continuous bilateral pallidal stimulation produces stimulation independent relief of cervical dystonia. J Neurol Neurosurg Psychiatry. 2004;75:1506–7.CrossRefGoogle ScholarPubMed
Hebb, MO, Chiasson, P, Lang, AE, Brownstone, RM, Mendez, I. Sustained relief of dystonia following cessation of deep brain stimulation. Mov Disord. 2007;22:195862.CrossRefGoogle ScholarPubMed
Eltahawy, HA, Saint-Cyr, J, Giladi, N, Lang, AE, Lozano, AM. Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery. 2004;54:613–21.CrossRefGoogle ScholarPubMed
Starr, PA, Turner, RS, Rau, G, Lindsey, N, Heath, S, Volz, M, et al. Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, locations and outcomes. J Neurosurg. 2006;104:488501.CrossRefGoogle ScholarPubMed
Venkatraghavan, L, Manninen, P. Anesthesia for deep brain stimulation. Curr Opin Anaesthesiol. 2011;24:495–9.CrossRefGoogle ScholarPubMed
Hutchinson, WD, Lang, AE, Dostrovsky, JO, Lozano, AM. Pallidal neuronal activity: implications for models of dystonia. Ann Neurol. 2003;53:480–8.Google Scholar
Venkatraghaven, L, Luciano, M, Manninen, P. Anesthetic management of patients undergoing deep brain stimulator insertion. Anesth Analg. 2010;110(4): 1138–45.Google Scholar
Schapf, DT, Sharma, M, Deogaonkar, M, Rezai, A, Bergese, SD. Practical considerations and nuances in anesthesia for patients undergoing deep brain stimulation implantation surgery. Korean J Anesthesiol. 2015;68:332–9.Google Scholar
Poon, CC, Irwin, MG. Anaesthesia for deep brain stimulation and in patients with implanted neurostimulator devices. Br J Anaesth. 2009;103:152–65.CrossRefGoogle ScholarPubMed
Chakrabarti, R, Ghazanwy, M, Tewari, A. Anesthetic challenges for deep brain stimulation: a systematic approach. N Am J Med Sci. 2014;6(8):359–69.CrossRefGoogle ScholarPubMed
Pinsker, MO, Volkmann, J, Falk, D, Herzog, J, Steigerwald, F, Denschl, G, Mehdorn, AM. Deep brain stimulation of the internal globus pallidus in dystonia: target localization under general anaesthesia. Acta Neurochir. 2009;151:751–8.CrossRefGoogle Scholar
Sanghera, MK, Grossman, RG, Kahorn, CG, Hamilton, WL, Ondo, WG, Jankovic, J. Basal ganglia neuronal discharge in primary and secondary dystonia in patients undergoing pallidotomy. Neurosurgery. 2003;52:1358–73.CrossRefGoogle ScholarPubMed
Rozet, I. Anesthesia for functional neurosurgery: the role of dexmedetomidine. Curr Opin Anaesthesiol. 2008;21:537–43.CrossRefGoogle ScholarPubMed
Maurtua, MA, Cata, JP, Martirena, M, Deogaonkar, M, Rezi, A, Sung, W, et al. Dexmedetomidine for deep brain stimulator placement in a child with primary generalized dystonia: case report and literature review. J Clin Anesth. 2009;21:213–16.CrossRefGoogle Scholar
Koroglu, A, Teksan, H, Sagir, O, Yucel, A, Toprak, H, Ersoy, O. A comparison of the sedative, hemodynamic and respiratory effects of dexmedetomidine and propofol in children undergoing magnetic resonance imaging. Anesth Analg. 2006;103:63–7.CrossRefGoogle ScholarPubMed
Brewer, S, Gleditsch, SL, Syblik, D, Tietjens, ME, Vacik, HW. Pediatric anxiety: child life intervention in day surgery. J Pediatr Nurs. 2006;21(1):1322.CrossRefGoogle ScholarPubMed
Sorensen, HL, Card, CA, Malley, MT, Strzelecki, JM. Using a collaborative child life approach for continuous surgical preparation. AORN J. 2009;90(4): 557–66.CrossRefGoogle ScholarPubMed
Justus, R, Wilson, J, Walther, V, Wyles, D, Rode, D, Lim-Sulit, N. Preparing children and families for surgery: Mount Sinai’s multidisciplinary perspective. Pediatr Nurs. 2006;32(1):3543.Google ScholarPubMed
Yuen, VM, Hui, V, Irwin, MG, Yuen, MK. A comparison of intranasal dexmedetomidine and oral midazolam for premedication in pediatric anesthesia: a double-blind randomized controlled trial. Anesth Analg. 2008;106:1715–21.CrossRefGoogle Scholar
Pinosky, ML, Dorman, RL, Reeves, ST, Harvey, SC, Patel, S, Palesch, Y, Dorman, BH. The effect of bupivacaine skull block on the hemodynamic response to craniotomy. Anesth Analg. 1996;83:1256–61.CrossRefGoogle ScholarPubMed
Starr, PA, Markun, LC, Larson, PS, Volz, MM, Martin, AJ, Ostrem, JL. Interventional MRI-guided deep brain stimulation in pediatric dystonia: first experience with the ClearPoint system. J Neurosurg Pediat. 2014;14:400–8.CrossRefGoogle ScholarPubMed
Martin, AJ, Larson, PS, Ziman, N, Levesque, N, Volz, M, Ostrem, JL, Starr, PA. Deep brain stimulator implantation in a diagnostic MRI suite: infection history over a 10-year period. J Neurosurg. 2017;126:108–13.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×