Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-26T11:26:09.827Z Has data issue: false hasContentIssue false

11 - Scaling, fractals, and renormalization

Published online by Cambridge University Press:  03 December 2009

Joseph Rudnick
Affiliation:
University of California, Los Angeles
George Gaspari
Affiliation:
University of California, Santa Cruz
Get access

Summary

We are almost ready to fully exploit the connection, established in earlier chapters, between the statistics of a self-avoiding random walk and the statistical mechanics of a magnet near the phase transition from its paramagnetic and ferromagnetic states. Because of the mathematical similarity between the two systems, we will be able to make use of an array of calculational strategies that, collectively, represent realizations of the renormalization group. This generic method for the study of systems with long-range correlations has fundamentally altered the way in which physicists view the world around them. The method is so powerful and so widespread in its application, that it seems worthwhile to do a little more than simply explain how to use it in the present context. This chapter consists of a discussion of the philosophy underlying the renormalization group and of a general description of the way in which it is applied. We will finish off by taking the reader through a simple calculation that is relevant to random walks and the associated magnetic system. Then, we will generalize the method to encompass a wide class of systems, the O(n) model being one of them. In the next chaper, the reader will be subjected to a full-blown introduction to the method, as it applies to the self-avoiding walk. Those already familiar with the renormalization group may wish to skip directly to Chapter 12.

Scale invariance in mathematics and nature

The notion of scale invariance is not exactly new. A famous poem by Jonathan Swift goes as follows:

So, naturalists observe, a flea

Has smaller fleas that on him prey,

And these have smaller still to bite 'em

And so proceed ad infinitum.

Type
Chapter
Information
Elements of the Random Walk
An introduction for Advanced Students and Researchers
, pp. 255 - 284
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×