Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-25T13:11:57.317Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  25 January 2011

Edward S. Sarachik
Affiliation:
University of Washington
Mark A. Cane
Affiliation:
Columbia University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AchutaRao, K., and Sperber, K. R., 2006: ENSO simulations in coupled ocean–atmosphere models: are the current models better? Clim. Dyn., 27, 1–16.CrossRefGoogle Scholar
Anderson, D. L. T., 1984: An advective mixed layer model with applications to the diurnal cycle of the low-level East African jet. Tellus, 36A, 278–91.Google Scholar
Anderson, D. L. T., and McCreary, J. P., 1985: Slowly propagating disturbances in a coupled atmosphere–ocean model. J. Atmos. Sci., 42, 615–29.2.0.CO;2>CrossRefGoogle Scholar
Anderson, D. L. T., and Rowlands, P. B., 1976a: The role of inertia-gravity and planetary waves in the response of a tropical ocean to the incidence of an equatorial Kelvin wave on a meridional boundary. J. Mar. Res., 34, 295–312.Google Scholar
Anderson, D. L. T., and Rowlands, P. B., 1976b: The Somali current response to the southwest monsoon: the relative importance of local and remote forcing. J. Mar. Res., 34, 395–417.Google Scholar
Asmerom, Y., Polyak, V., Burns, S., and Rasmussen, J., 2007: Solar forcing of Holocene climate: new insights from a speleothem record, southwestern United States. Geology, 35, 1–4, doi:10.1130/G22865A.CrossRefGoogle Scholar
Barnett, T. P., Latif, M., Kirk, E., and Roeckner, E., 1991: On ENSO physics. J. Climate, 4, 487–515.2.0.CO;2>CrossRefGoogle Scholar
Barnston, A. G., Glantz, M. H., and He, Y., 1999: Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño episode and the 1998 La Niña onset. Bull. Am. Met. Soc., 80, 217–43.2.0.CO;2>CrossRefGoogle Scholar
Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45, 2889–919.2.0.CO;2>CrossRefGoogle Scholar
Battisti, D. S., and Hirst, A. C., 1989: Interannual variability in a tropical atmosphere–ocean model: influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 1687–712.2.0.CO;2>CrossRefGoogle Scholar
Battisti, D. S., Hirst, A. C., and Sarachik, E. S., 1989: Instability and predictability in coupled atmosphere–ocean models. Phil. Trans. Roy. Soc. Lond., A329, 237–47.CrossRefGoogle Scholar
Battisti, D. S., Sarachik, E. S., and Hirst, A. C., 1999: A consistent model for the large-scale steady surface atmospheric circulation in the tropics. J. Climate, 12, 2956–64.2.0.CO;2>CrossRefGoogle Scholar
Biondi, F., Gershunov, A., and Cayan, D. R., 2001: North Pacific decadal climate variability since 1661. J. Climate, 14, 5–10.2.0.CO;2>CrossRefGoogle Scholar
Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820–9.CrossRefGoogle Scholar
Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev., 97, 163–72.2.3.CO;2>CrossRefGoogle Scholar
Bjerknes, J., 1972: Large-scale atmospheric response to the 1964–65 Pacific equatorial warming. J. Phys. Oceanogr., 2, 212–7.2.0.CO;2>CrossRefGoogle Scholar
Blandford, R., 1966: Mixed gravity-Rossby waves in the ocean. Deep. Sea. Res., 13, 941–60.Google Scholar
Blumenthal, M. B., 1991: Predictability of a coupled ocean–atmosphere model. J. Climate, 4, 766–84.2.0.CO;2>CrossRefGoogle Scholar
Bove, M. C., Elsner, J. B., Landsea, C. W., Niu, X., and O'Brien, J. J., 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Am. Met. Soc., 79, 2477–82.2.0.CO;2>CrossRefGoogle Scholar
Bretherton, C. J., and Battisti, D. S., 2000: An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys. Res. Lett., 27, 767–70.CrossRefGoogle Scholar
Callahan, B. M., Miles, E. L., and Fluharty, D. L., 1999: Policy implications of climate forecasts for water resources management in the Pacific Northwest. Policy Sci., 32, 269–93.CrossRefGoogle Scholar
Cane, M. A., 1979: The response of an equatorial ocean to simple wind stress patterns. II. Numerical results. J. Mar. Res., 37, 253–99.Google Scholar
Cane, M. A., 1992: Tropical Pacific ENSO models: ENSO as a mode of the coupled system. In Climate System Modeling, Trenberth, K. E., ed. Cambridge University Press.Google Scholar
Cane, M. A., 2005: The evolution of El Niño, past and future. Earth Plan. Sci. Lett., 230, 227–40.CrossRefGoogle Scholar
Cane, M. A., and du Penhoat, Y., 1982: The effect of islands on low-frequency equatorial motions. J. Marine Research, 40, 937–62.Google Scholar
Cane, M. A., and Moore, D. W., 1981: A note on low frequency equatorial basin modes. J. Phys. Ocean., 11, 1578–84.2.0.CO;2>CrossRefGoogle Scholar
Cane, M. A., and Patton, R. J., 1984: A numerical model for low-frequency equatorial dynamics. J. Phys. Oceanogr., 14, 1853–63.2.0.CO;2>CrossRefGoogle Scholar
Cane, M. A., and Sarachik, E. S., 1976: Forced baroclinic ocean motion. I. The equatorial unbounded case. J. Marine Res., 34, 629–65.Google Scholar
Cane, M. A., and Sarachik, E. S., 1977: Forced baroclinic ocean motions. II. The equatorial bounded case, J. Marine Res., 35, 395–432.Google Scholar
Cane, M. A., and Sarachik, E. S., 1979: Forced baroclinic ocean motions. III. The equatorial basin case. J. Marine Res., 37, 355–98.Google Scholar
Cane, M. A., and Sarachik, E. S., 1981: The response of a linear baroclinic equatorial ocean to periodic forcing. J. Marine Res., 39, 651–93.Google Scholar
Cane, M. A., and Sarachik, E. S., 1983: Seasonal heat transports in a forced equatorial baroclinic model. J. Phys. Oceanogr., 13, 1744–6.2.0.CO;2>CrossRefGoogle Scholar
Cane, M. A., and Zebiak, S. E., 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 1085–7.CrossRefGoogle ScholarPubMed
Cane, M. A., Zebiak, S. E., and Dolan, S. C., 1986: Experimental forecasts of El Niño. Nature, 321, 827–32.CrossRefGoogle Scholar
Cane, M. A., Münnich, M., and Zebiak, S. E., 1990: A study of self-excited oscillations of the tropical ocean–atmosphere system. 1. Linear analysis. J. Atmos. Sci., 47, 1562–77.2.0.CO;2>CrossRefGoogle Scholar
Cane, M. A., Eshel, G., and Buckland, R. W., 1994: Forecasting Zimbabwean yield using eastern equatorial Pacific sea surface temperatures. Nature, 370, 204–5.CrossRefGoogle Scholar
Cane, M. A., Zebiak, S. E., and Xue, Y., 1995: Model studies of the long-term behavior of ENSO. In Natural Climate Variability on Decade-to-Century Time Scales, Martinson, D. G., Bryan, K., Ghil, M., Hall, M. M., Karl, T. R., Sarachik, E. S., Sorooshian, S., and Talley, L. D., eds. National Academy Press, Washington, D.C., DEC-CEN Workshop, Irvine, CA, pp. 442–57.Google Scholar
Cane, M. A., Clement, A. C., Kaplan, A., et al., 1997: 20th century sea surface temperature trends. Science, 275, 957–60.CrossRefGoogle ScholarPubMed
Cane, M. A., Braconnot, P., Clement, A., et al., 2006: Progress in paleoclimate modeling. J. Climate, 19, 5031–57.CrossRefGoogle Scholar
Capotondi, A., Wittenberg, A., and Masina, S., 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modeling, 15, 274–98.CrossRefGoogle Scholar
Chang, P., Saravanan, R., DelSole, T., and Wang, F., 2004: Predictability of linear coupled systems. Part I. Theory. J. Climate, 17, 1474–86.2.0.CO;2>CrossRefGoogle Scholar
Changnon, D., 2000: Who used and benefited from El Niño forecasts? In El Niño, 1997–1998: The Climate Event of the Century, Changnon, S. A., ed. Oxford University Press, 215 pp.Google Scholar
Charney, J. G., 1948: On the scale of atmospheric motions. Geofysiske Publikasjoner, 17, 1–17. Reprinted in: The Atmosphere – A Challenge: The Science of Jule Gregory Charney, R. S. Lindzen, E. N. Lorenx, and G. W. Platzman, eds. American Meteorological Society, 1990.Google Scholar
Chen, D., and Cane, M. A., 2008: El Niño prediction and predictability. J. Computational Phys., 227, 3625–40, doi:10.1016/j.jcp.2007.05.014.CrossRefGoogle Scholar
Chen, D., Zebiak, S. E., Busalacchi, A. J., and Cane, M. A., 1995: An improved procedure for El Niño forecasting. Science, 269, 1699–702.CrossRefGoogle ScholarPubMed
Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E., and Huang, D. J., 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733–6.CrossRefGoogle ScholarPubMed
Chen, Y.-Q., Battisti, D. S., Palmer, T. N., Barsugli, J., and Sarachik, E. S., 1997: A study of the predictability of tropical Pacific SST in a coupled atmosphere/ocean model using singular vector analysis: the role of the annual cycle and the ENSO cycle. Mon. Wea. Rev. 125, 831–45.2.0.CO;2>CrossRefGoogle Scholar
Chiang, J. C. H., Zebiak, S. E., and Cane, M. A., 2001: Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J Atmos. Sci., 58, 1371–94.2.0.CO;2>CrossRefGoogle Scholar
Clement, A. C., Seager, R., Cane, M. A., and Zebiak, S. E., 1996: An ocean dynamical thermostat. J. Climate, 9, 2190–6.2.0.CO;2>CrossRefGoogle Scholar
Clement, A. C., Seager, R., and Cane, M. A., 1999: Orbital controls on tropical climate. Paleoceanography, 14, 441–56.CrossRefGoogle Scholar
Clement, A. C., Seager, R., and Cane, M. A., 2000: Suppression of El Niño during the mid-Holocene by changes in the earth's orbit. Paleoceanography, 15, 731–7.CrossRefGoogle Scholar
Clement, A. C., Cane, M. A., and Seager, R., 2001: An orbitally driven tropical source for abrupt climate change. J. Climate, 14, 2369–75.2.0.CO;2>CrossRefGoogle Scholar
Cobb, K. M., Charles, C. D., Edwards, R. L., Cheng, H., and Kastner, M., 2003: El Niño–Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424, 271–6.CrossRefGoogle ScholarPubMed
Cole, J. E., Overpeck, J. T., and Cook, E. R., 2002: Multiyear La Niña events and persistent drought in the contiguous United States. Geophys. Res. Lett., 29, doi:10.1029/2001GL013561.CrossRefGoogle Scholar
Crowley, T. J., 2000: Causes of climate change over the past 1000 years. Science, 289, 270–7.CrossRefGoogle ScholarPubMed
D'Arrigo, R., Villalba, R., and Wiles, G., 2001: Tree-ring estimates of Pacific decadal climate variability. Climate Dynamics, 18, 219–24.CrossRefGoogle Scholar
Davis, M., 2001: Late Victorian Holocausts: El Niño Famines and the Making of the Third World. Verso Press, London/New York, 465 pp.Google Scholar
,DEMETER, 2005: Tellus, 57A, 217–512.
Denman, K. L., 1973: A time-dependent model of the upper ocean. J. Phys. Oceanogr., 3, 173–84.2.0.CO;2>CrossRefGoogle Scholar
Deser, C., Phillips, A. S., and Hurrell, J. W., 2004: Pacific interdecadal climate variability: linkages between the tropics and North Pacific during boreal winter since 1900. J. Climate, 17, 3109–24.2.0.CO;2>CrossRefGoogle Scholar
Szoeke, S. P., and Xie, S. P., 2008: The tropical eastern Pacific seasonal cycle: assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 2573–90.CrossRefGoogle Scholar
Dima, I. M., and Wallace, J. M., 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 1522–7.2.0.CO;2>CrossRefGoogle Scholar
Doblas-Reyes, F. J., Hagedorn, R., and Palmer, T. N., 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting. II. Calibration and combination. Tellus, 57A, 234–52.Google Scholar
du Penhoat, Y., and Cane, M. A., 1991: Effects of low-latitude western boundary gaps on the reflection of equatorial motions. J. Geophys. Res., 96, 3307–22.CrossRefGoogle Scholar
Ekman, V. W., 1905: On the influence of earth's rotation on ocean currents. Ark. Math. Astron. Fys., 2, 1–53.Google Scholar
Emile-Geay, J., Cane, M. A., Seager, R., Kaplan, A., and Almasi, P., 2007: El Niño as a mediator of the solar influence on climate. Paleoceanography. 22, PA3210, doi:10.1029/2006PA001304.CrossRefGoogle Scholar
Emile-Geay, J., Seager, R., Cane, M. A., Cook, E. R., and Haug, G. H., 2008: Volcanoes and ENSO over the last millennium. J. Climate, 21, 3134–48.CrossRefGoogle Scholar
Evans, M. N., Kaplan, A., and Cane, M. A., 2000: Intercomparison of coral oxygen isotope data and historical SST: potential for coral-based SST field reconstructions. Paleoceanography, 15, 551–63.CrossRefGoogle Scholar
Evans, M. N., Cane, M. A., Schrag, D. P., et al., 2001: Support for tropically-driven Pacific decadal variability based on paleoproxy evidence. Geophys. Res. Lett., 28, 3689–92.CrossRefGoogle Scholar
Evans, M. N., Kaplan, A., and Cane, M. A., 2002: Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis. Paleoceanography, 17, doi:10.1029/2000PA000590.CrossRefGoogle Scholar
Farrell, B. F., and Ioannou, P. J., 1993: Stochastic forcing of the linearized Navier-Stokes equations. Phys. Fluids, A5, 2600–9.CrossRefGoogle Scholar
Fedorov, A. V., 2007: Net energy dissipation rates in the tropical ocean and ENSO dynamics. J. Climate, 20, 1108–17.CrossRefGoogle Scholar
Federov, A. V., and Philander, S. G., 2000: Is El Niño changing? Science, 288, 1997–2002.CrossRefGoogle Scholar
Fedorov, A. V., and Philander, S. G., 2001: A stability analysis of tropical ocean–atmosphere interactions: bridging measurements and theory for El Niño. J. Climate, 14, 3086–101.2.0.CO;2>CrossRefGoogle Scholar
Fedorov, A. V., Dekens, P. S., McCarthy, M., et al., 2006: The Pliocene paradox (mechanisms for a permanent El Niño). Science, 312, 1485–9.CrossRefGoogle Scholar
Friedman, B., 1956: Principles and Techniques of Applied Mathematics. John Wiley & Sons, 315 pp.Google Scholar
Garreaud, R. D., and Battisti, D. S., 1999: Interannual ENSO and interdecadal ENSO-like variability in the southern hemisphere tropospheric circulation. J. Climate, 12, 2113–23.2.0.CO;2>CrossRefGoogle Scholar
Gedalov, Z., and Smith, D. J., 2001: Interdecadal climate variability and regime-scale shifts in Pacific North America. Geophys. Res. Lett., 28, 1515–8.CrossRefGoogle Scholar
Gershunov, A., and Barnett, T. P., 1998: Interdecadal modulation of ENSO teleconnections. Bull Am. Met. Soc., 79, 2715–25.2.0.CO;2>CrossRefGoogle Scholar
Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Q. J. Roy. Met. Soc., 106, 447–62.CrossRefGoogle Scholar
Gill, A., and Niiler, P., 1973: The theory of the seasonal variability in the ocean. Deep-Sea Res., 20, 141–77.Google Scholar
Goddard, L., and Dilley, M., 2005: El Niño: catastrophe or opportunity. J. Climate, 18, 651–65.CrossRefGoogle Scholar
Goddard, L., and Graham, N. E., 1999: Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res., 104, 19099–116.CrossRefGoogle Scholar
Goddard, L., Mason, S. J., Zebiak, S. E., et al., 2001: Current approaches to seasonal-to-interannual climate predictions. Int. J. Climatol., 21, 1111–52.CrossRefGoogle Scholar
,GCOS (Global Climate Observing System), 2004: Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC. World Meteorological Organization TD No. 1219, 136 pp. Available at www.wmo.ch/web/gcos/gcoshome.html.
Gradshteyn, I. S., and Rhyzhik, I. M., 1965: Table of Integrals, Series and Products, 4th edn. Academic Press, 1086 pp.Google Scholar
Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Clim. Dyn., 26, 329–48.CrossRefGoogle Scholar
Guilyardi, E., Wittenberg, A., Fedorov, A., et al., 2009: Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull. Am. Met. Soc., 90, 325–40.CrossRefGoogle Scholar
Hagedorn, R., Doblas-Reyes, F. J., and Palmer, T. N., 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting-I. Basic concept. Tellus, 57A, 219–33.Google Scholar
Hamlet, A. F., and Lettenmaier, D., 2006: West-Wide Seasonal Hydrologic Forecast System. www.hydro.washington.edu/forecast/westwide/index.shtml.
Hammer, G., 2000: A general systems approach to applying seasonal forecasts. In Applications of Seasonal Climate Forecasting in Agricultural and Natural Ecosystems, Hammer, G. L., Nicholls, N., and Mitchell, C., eds. Kluwer Academic Publishers, 469 pp.CrossRefGoogle Scholar
Harrison, D. E., and Larkin, N. K., 1998: El Niño–Southern Oscillation sea surface temperature and wind anomalies, 1946–1993. Rev. Geophys., 36, 353–99.CrossRefGoogle Scholar
Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.Google Scholar
Haywood, A. M., Dekens, P., Ravelo, A. C., and Williams, M., 2005: Warmer tropics during the mid-Pliocene? Evidence from alkenone paleothermometry and a fully coupled ocean–atmosphere GCM. Geochem. Geophys. Geosyst., 6, doi:10.1029/2004GC000799.CrossRefGoogle Scholar
Haywood, A. M., Valdes, P. J, and Peck, V. L., 2007: A permanent El Niño-like state during the Pliocene?Paleoceanography, 22, doi:10.1029/2006PA001323.CrossRefGoogle Scholar
Hewitt, C. D., Broccoli, A. J., Mitchell, J. F. B., and Stouffer, R. J., 2001: A coupled model study of the last glacial maximum: was part of the North Atlantic relatively warm?Geophys. Res. Lett., 28, 1571–4.CrossRefGoogle Scholar
Hide, R., 1969: Dynamics of the atmospheres of the major planets with an Appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26, 841–53.2.0.CO;2>CrossRefGoogle Scholar
Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled models. J. Atmos. Sci., 43, 606–30.2.0.CO;2>CrossRefGoogle Scholar
Hirst, A. C., 1988: Slow instabilities in tropical ocean basin global–atmosphere models. J. Atmos. Sci., 45, 606–30.2.0.CO;2>CrossRefGoogle Scholar
Hoerling, M. P., and Kumar, A., 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15, 2184–203.2.0.CO;2>CrossRefGoogle Scholar
Hoerling, M. P., Kumar, A., and Zhong, M., 1997. El Niño, La Niña, and the nonlinearities of their teleconnections. J. Climate, 10, 1769–86.2.0.CO;2>CrossRefGoogle Scholar
Hough, S. S., 1898: On the applications of harmonic analysis to the dynamical theroy of tides. II. On the general integration of Laplace's tidal equations. Phil. Trans. Roy. Soc. London, A191, 139–85.CrossRefGoogle Scholar
Hughen, K. A., Schrag, D. P., Jacobsen, S. B., and Hantoro, W., 1999: El Niño during the last interglacial period recorded by a fossil coral from Indonesia. Geophys. Res. Lett., 26, 3129–32.CrossRefGoogle Scholar
Hurrell, J., 1995: Decadal trends in the North-Atlantic oscillation – regional temperatures and precipitation. Science, 269, 676–9.CrossRefGoogle ScholarPubMed
,Intergovernmental Panel on Climate Change, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., eds.]. Cambridge University Press, Cambridge, UK, and New York, 996 pp.Google Scholar
Ioannou, P., 1995: Nonnormality increases variance. J. Atmos. Sci., 52, 1155–8.2.0.CO;2>CrossRefGoogle Scholar
Ioannou, P. J., and Farrell, B. F., 2006: Application of generalized stability theory to deterministic and statistical prediction. In Predictability of Weather and Climate, Palmer, T., and Hagedorn, R., eds. Cambridge University Press, pp. 181–216.Google Scholar
Jin, E. K., Kinter, J. L., Wang, B., et al., 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim. Dyn., 31, 647–64.CrossRefGoogle Scholar
Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I. Conceptual model. J. Atmos. Sci., 54, 811–29.2.0.CO;2>CrossRefGoogle Scholar
Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II. A stripped-down coupled model. J. Atmos. Sci., 54, 830–847.2.0.CO;2>CrossRefGoogle Scholar
Jin, F.-F., and Neelin, J. D., 1993a: Modes of interannual tropical ocean–atmosphere interaction – a unified view. Part I. Numerical results. J. Atmos. Sci., 50, 3477–502.2.0.CO;2>CrossRefGoogle Scholar
Jin, F.-F., and Neelin, J. D., 1993b: Modes of interannual tropical ocean–atmosphere interaction – a unified view. Part III. Analytical results in fully coupled cases. J. Atmos. Sci., 50, 3523–40.2.0.CO;2>CrossRefGoogle Scholar
Jin, F.-F., Neelin, J. D., and Ghil, M., 1994: El Niño on the devil's staircase: annual subharmonic steps to chaos. Science, 264, 70–2.CrossRefGoogle Scholar
Jones, P. D., Osborn, T. J., and Briffa, K. R., 2001: The evolution of climate over the last millennium. Science, 292, 662–7.CrossRefGoogle ScholarPubMed
Josey, S. A., Kent, E. C., and Taylor, P. K., 1998: The Southampton Oceanography Centre (SOC) Ocean–Atmosphere Heat, Momentum and Freshwater Flux Atlas. Southampton Oceanography Centre Report No. 6, Southampton, UK, 30 pp.
Kållberg, P., Berrisford, P., Hoskins, B., et al., 2005. The ERA-40 Atlas. ECMWF ERA-40 Report Series No. 19, 191 pp.
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.Google Scholar
Kaplan, A., Cane, M. A., Kushnir, Y., et al., 1998: Analyses of global sea surface temperature, 1856–1991. J. Geophys. Res., 103, 18567–89.CrossRefGoogle Scholar
Karspeck, A. R., Kaplan, A., and Cane, M. A., 2006: Predictability loss in an intermediate ENSO model due to initial error and atmospheric noise. J. Climate, 19, 3572–88.CrossRefGoogle Scholar
Kiehl, J. T., and Trenberth, K. E., 1997: Earth's annual global mean energy budget. Bull. Am. Met. Soc., 78, 197–208.2.0.CO;2>CrossRefGoogle Scholar
Kleeman, R., 2008: Stochastic theories for the irregularity of ENSO. Phil. Trans. Roy. Soc., A366, 2511–26.Google Scholar
Kleeman, R., and Moore, A. M., 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54, 753–67.2.0.CO;2>CrossRefGoogle Scholar
Koutavas, A., and Lynch-Stieglitz, J., 2005: Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: regional perspective and global context. In The Hadley Circulation: Present Past and Future, Bradley, R., and Diaz, H., eds. Springer, pp. 347–69.Google Scholar
Koutavas, A., Lynch-Stieglitz, J., Marchitto, T. M., and Sachs, J. P., 2002: El Niño-like pattern in ice age tropical Pacific sea surface temperature. Science, 297, 226–30.CrossRefGoogle ScholarPubMed
Kraus, E. B., and Businger, J. A., 1994: Atmosphere-Ocean Interactions, 2nd edn. Oxford University Press, 362 pp.Google Scholar
Kraus, E. B., and Turner, J. S., 1967: A one-dimensional model of the seasonal thermocline. II. The general theory and its consequences. Tellus, 19, 98–106.CrossRefGoogle Scholar
Kumar, K., Rajagopalan, B., and Cane, M. A., 1999: On the weakening relationship between the Indian Monsoon and ENSO. Science, 284, 2156–9.CrossRefGoogle Scholar
Lacara, J.-F., and Talagrand, O., 1988: Short-range evolution of small perturbations in a barotropic model. Tellus, 40A, 81–95.CrossRefGoogle Scholar
Large, W. G., and Danabasoglu, G., 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19, 2325–46.CrossRefGoogle Scholar
Large, W. G., McWilliams, J. C., and Doney, S. C., 1994: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403.CrossRefGoogle Scholar
Latif, M., Anderson, D., Barnett, T., et al., 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, C7, 14375–93.CrossRefGoogle Scholar
Legler, D. M., and O'Brien, J. J., 1988: Tropical Pacific wind stress analysis for TOGA. In IOC Time Series of Ocean Measurements, IOC Technical Series 33, Vol. 4, UNESCO.Google Scholar
Lewis, H. W., 1997: Why Flip a Coin? The Art and Science of Good Decisions. John Wiley & Sons, 206 pp.Google Scholar
Lighthill, M. J., 1969: Dynamical response of the Indian Ocean to the onset of the Southwest Monsoon. Phil. Trans. Roy. Soc. London, A265, 45–92.CrossRefGoogle Scholar
Lindzen, R. D., 1967: Planetary waves on beta-planes. Mon. Wea. Rev., 95, 441–51.2.3.CO;2>CrossRefGoogle Scholar
Lindzen, R. S., 1966: On the theory of the diurnal tide. Mon. Wea. Rev., 94, 295–301.2.3.CO;2>CrossRefGoogle Scholar
Lindzen, R. S., 1970: Atmospheric tides. In Mathematical Problems in the Geophysical Sciences. American Mathematical Society.Google Scholar
Lindzen, R. S., and Nigam, S., 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–36.2.0.CO;2>CrossRefGoogle Scholar
Liu, Z., and Alexander, M., 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, doi:10.1029/2005RG000172.CrossRefGoogle Scholar
Liu, Z, Kutzbach, J., and Wu, L., 2000: Modeling the climatic shift of El Niño variability in the Holocene. Geophys. Res. Lett., 27, 2265–8.CrossRefGoogle Scholar
Longuet-Higgins, , 1968: The eigenfunctions of Laplace's tidal equations on a sphere. Phil. Trans. Roy. Soc., A262, 511–607.CrossRefGoogle Scholar
Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–41.2.0.CO;2>CrossRefGoogle Scholar
Lunt, D. J., Foster, G. L., Haywood, A. M., and Stone, E. J., 2008: Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature, 454, 1102–5.CrossRefGoogle ScholarPubMed
Lyon, B., and Barnston, A. G., 2005: ENSO and the spatial extent of interannual precipitation extremes in tropical land areas. J. Climate, 18, 5095–109.CrossRefGoogle Scholar
Malkus, J. S., 1958: On the Structure of the Trade-Wind Moist Layer. Papers in Physical Oceanography and Meteorology, Vol. XIII, No. 2, MIT and Woods Hole Oceanographic Institution, 47 pp.CrossRefGoogle Scholar
Malkus, J. S., 1962: Interactions of properties between sea and air. 4. Large scale interactions. In The Sea, Vol. 1, Hill, M. N., ed. John Wiley and Sons, pp. 88–294.Google Scholar
Manabe, S., and Möller, F., 1961: On the radiative equilibrium and heat balance of the atmosphere. Mon. Wea. Rev., 89, 503–32.2.0.CO;2>CrossRefGoogle Scholar
Mann, M. E., Bradley, R. S., and Hughes, M. K., 2000: Long-term variability in the El Niño/southern oscillation and associated teleconnections. In El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts, Diaz, H. F., and Markgraf, V., eds. Cambridge University Press.Google Scholar
Mann, M. E., 2002: The value of multiple proxies. Science, 297, 1481–2.CrossRefGoogle ScholarPubMed
Mann, M. E., Cane, M. A., Zebiak, S. E., and Clement, A. C., 2005: Volcanic and solar forcing of El Niño over the past 1000 years. J. Climate, 18, 447–56.CrossRefGoogle Scholar
Mantua, N. J., and Battisti, D. S., 1994: Evidence for the delayed oscillator mechanism for ENSO: the “observed” oceanic Kelvin wave in the far western Pacific. J. Atmos. Sci., 48, 1238–48.Google Scholar
Mantua, N. J., and Battisti, D. S., 1995: Aperiodic variability in the Zebiak–Cane coupled atmosphere-ocean model: air–sea interactions in the western equatorial Pacific. J. Climate, 8, 2897–927.2.0.CO;2>CrossRefGoogle Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C., 1997: A Pacific interdecadal oscillation with impacts on salmon production. Bull. Am. Met. Soc., 78, 1069–79.2.0.CO;2>CrossRefGoogle Scholar
Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Met. Soc. Japan, 44, 25–43.CrossRefGoogle Scholar
McPhaden, M. J., Busalacchi, A. J., Cheney, R., et al., 1998: The tropical ocean–global atmosphere observing system. J. Geophys. Res., 103, 14169–240.CrossRefGoogle Scholar
Mellor, G. L., and Yamada, T., 1982: Development of turbulence closure models for geophysical fluid problems. Rev. Geophys. Space Phys., 4, 851–75.CrossRefGoogle Scholar
Merryfield, W. J., 2006: Changes to ENSO under CO2 doubling in the IPCC AR4 coupled climate models. J. Climate, 19, 4009–27.CrossRefGoogle Scholar
Molnar, P., and Cane, M. A., 2002: El Niño's tropical climate and teleconnections as a blueprint for pre–Ice-Age climates. Paleoceanography, 17, 2, doi:10.1029.2001PA000663.CrossRefGoogle Scholar
Molnar, P., and Cane, M. A., 2008: Early Pliocene (pre-Ice Age) El Niño-like global climate: which El Niño? Geosphere, 3, 337–65, doi:10.1130/GES00103.1.CrossRefGoogle Scholar
Moore, A. M., and Kleeman, R., 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 1199–220.2.0.CO;2>CrossRefGoogle Scholar
Moore, A. M., Zavala-Garay, J., Tang, Y., et al., 2006: Optimal forcing patterns for coupled models of ENSO. J. Climate, 19, 4683–99.CrossRefGoogle Scholar
Moore, D. W., 1968: Planetary-gravity waves in an equatorial ocean. Ph.D. Dissertation, Harvard University, 207 pp.
Moore, D. W., and Philander, S. G. H., 1976: Modeling of the tropical oceanic circulation. In The Sea, Vol. 6, Chap. 8. Interscience.Google Scholar
Moura, A. D., 1976: The eigensolutions of the linearized balance equations on a sphere. J. Atmos. Sci., 33, 877–907.2.0.CO;2>CrossRefGoogle Scholar
Moy, C. M., Seltzer, G. O., Rodbell, D. T., and Anderson, D. M., 2002: Variability of El Niño/southern oscillation activity at millennial timescales during the Holocene epoch. Nature, 420, 162–5.CrossRefGoogle Scholar
Munk, W. H., and Anderson, E. R., 1948: Notes on a theory of the thermocline. J. Mar. Res., 7, 276–95.Google Scholar
Münnich, M., Cane, M. A., and Zebiak, S. E., 1991: A study of self-excited oscillations of the tropical ocean atmosphere system. 2. Nonlinear cases. J. Atmos. Sci., 48, 1238–48.2.0.CO;2>CrossRefGoogle Scholar
,National Research Council, 1999: Making Climate Forecasts Matter. Stern, P. C., and Easterling, W. E., eds. National Academy Press, 175 pp.Google Scholar
Neelin, J. D., 1989: On the interpretation of the Gill model. J. Atmos. Sci.,46, 2466–8.2.0.CO;2>CrossRefGoogle Scholar
Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48, 584–606.2.0.CO;2>CrossRefGoogle Scholar
Neelin, J. D., and Jin, F.-F., 1993: Modes of interannual tropical ocean–atmosphere interaction – a unified view. Part II. Analytical results in the weak-coupling limit. J. Atmos. Sci., 50, 3504–22.2.0.CO;2>CrossRefGoogle Scholar
Neelin, J. D., Battisti, D. S., Hirst, A. C., et al., 1998: ENSO theory. J. Geophys. Res., 103, C7, 14261–90.CrossRefGoogle Scholar
Nicholls, N., 2000a: Cognitive illusions, heuristics and climate prediction. Bull. Am. Met. Soc., 80, 1385–97.2.0.CO;2>CrossRefGoogle Scholar
Nicholls, N., 2000b: Opportunities to improve the use of seasonal climate forecasts. In Applications of Seasonal Climate Forecasting in Agricultural and Natural Ecosystems, Hammer, G. L., Nicholls, N., and Mitchell, C., eds. Kluwer Academic Publishers, 469 pp.Google Scholar
Niiler, P. P., and Kraus, E. B., 1977: One-dimensional models of the upper ocean. In Modelling and Prediction of the Upper Layers of the Ocean, Kraus, E. B., ed. Pergamon Press.Google Scholar
Noble, B., and Daniel, J. W., 1988: Applied Linear Algebra, 3rd edn. Prentice Hall, 521 pp.Google Scholar
Oberhuber, J. M., 1988: An Atlas Based on the COADS Data Set: The Budgets of Heat, Buoyancy and Turbulent Kinetic Energy at the Surface of the Global Ocean. MPI Report 15.
Otto-Bleisner, B. L., Brady, E. C., Shin, S.-I., Liu, Z., and Shields, C., 2003: Modeling El Niño and its tropical teleconnections during the last glacial-interglacial cycle. Geophys. Res. Lett, 30, doi:10.1029/2003GL018553.
Pacanowski, R. C., and Philander, S. G. H., 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 1443–51.2.0.CO;2>CrossRefGoogle Scholar
Palmer, T. N., Alessandri, A., Andersen, U., et al., 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Am. Met. Soc., 85, 853–72.CrossRefGoogle Scholar
Pearson, P. N., and Palmer, M. R., 2000: Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–9.CrossRefGoogle ScholarPubMed
Pedlosky, J., 1965: A note on the western intensification of the oceanic circulation. J. Mar. Res., 23, 207–10.Google Scholar
Penland, C., and Magorian, T., 1993: Prediction of Niño3 sea surface temperature using linear inverse modeling. J. Climate, 6, 1067–76.2.0.CO;2>CrossRefGoogle Scholar
Penland, C., and Sardeshmukh, P., 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 1999–2024.2.0.CO;2>CrossRefGoogle Scholar
Persson, A., and Gravini, F., 2005: User Guide to ECMWF Forecast Products. European Centre for Medium Range Weather Forecasts, 154 pp. Available at www.ecmwf.int/products/forecasts/guide/user_guide.pdf.
Philander, S. G. H., 1978: Forced oceanic waves. Rev. Geophys., 16, 15–46.CrossRefGoogle Scholar
Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.Google Scholar
Philander, S. G. H., and Fedorov, A., 2003: Is El Niño sporadic or cyclic? Ann. Rev. Earth Planet. Sci., 31, 579–94.CrossRefGoogle Scholar
Philander, S. G. H., and Fedorov, A. V, 2003: Role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography, 18, doi:10.1029/2002PA000837.CrossRefGoogle Scholar
Philander, S. G. H., Yamagata, T., and Pacanowski, R. C., 1984: Unstable air–sea interactions in the tropics. J. Atmos. Sci., 41, 604–13.2.0.CO;2>CrossRefGoogle Scholar
Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forecasting. J. Atmos. Sci., 14, 184–5.Google Scholar
Phillips, N. A., 1968: Reply. J. Atmos. Sci., 25, 1155–7.2.0.CO;2>CrossRefGoogle Scholar
Phillips, N. A., 1973: Principles of large scale numerical weather prediction. In Dynamical Meteorology, Morel, P., ed. D. Reidel Publishing Co., 622 pp.Google Scholar
Picaut, J., Menkes, C., Boulanger, J.-P., and Penhoat, Y. du, 1993: Dissipation in a Pacific equatorial long wave model. TOGA Notes, 10, 11–15.Google Scholar
Pielke, R. A., Jr., 2000: Policy responses to El Niño 1997–1998. In El Niño, 1997–1998: The Climate Event of the Century, Changnon, S. A., ed. Oxford University Press, 215 pp.Google Scholar
Pielke, R. A., and Landsea, C. N., 1999: La Niña, El Niño, and Atlantic hurricane damages in the United States. Bull. Am. Met. Soc., 80, 2027–33.2.0.CO;2>CrossRefGoogle Scholar
Pollard, R. T., Rhines, P. B., and Thompson, R. O. R. Y., 1973: The deepening of the wind mixed layer. Geophys. Fluid. Dyn., 4, 381–404.CrossRefGoogle Scholar
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V., 1999: Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn., 15, 319–24.CrossRefGoogle Scholar
Price, J. F., 1979: On the scaling of stress-driven entrainment experiments. J. Fluid Mech., 90, 509–29.CrossRefGoogle Scholar
Price, J. F., Weller, R. A., and Pinkel, R., 1986: Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411–27.CrossRefGoogle Scholar
,PROVOST, 2000: Q. J. Roy. Met. Soc., 126B, 1989–2351, July 2000 issue.
Pulwarty, R. S., and Redmond, K. T., 1997: Climate and salmon restoration in the Columbia River Basin: the role and suability of seasonal forecasts. Bull. Am. Met. Soc., 78, 381–7.2.0.CO;2>CrossRefGoogle Scholar
Qian, J. H., 2008: Why precipitation is mostly concentrated over islands in the maritime continent. J. Atmos. Sci., 65, 1428–41.CrossRefGoogle Scholar
Rajagopalan, B., Lall, U., and Cane, M. A., 1997: Anomalous ENSO occurrences: an alternate view. J. Climate, 10, 2351–57.2.0.CO;2>CrossRefGoogle Scholar
Rasmusson, E. M., and Carpenter, T. H., 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–84.2.0.CO;2>CrossRefGoogle Scholar
Rayner, S., Lach, D., and Ingram, H., 2005: Weather forecasts are for wimps: why water resource managers do not use climate forecasts. Climatic Change, 69, 197–227.CrossRefGoogle Scholar
Reed, R. J., and Recker, E. E., 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 1117–33.2.0.CO;2>CrossRefGoogle Scholar
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–25.2.0.CO;2>CrossRefGoogle Scholar
Rodbell, D., Seltzer, G., Anderson, D., et al., 1999: A 15,000 year record of El Niño-driven alluviation in southwestern Ecuador. Science, 283, 516–20.CrossRefGoogle ScholarPubMed
Rogers, E. M., 2003: Diffusion of Innovations, 5th edn. Free Press, 551 pp.
Ropelewski, C. F., and Halpert, M. S., 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 1606–26.2.0.CO;2>CrossRefGoogle Scholar
Ropelewski, C. F., and Halpert, M. S., 1996: Quantifying Southern Oscillation–precipitation relationships. J. Climate, 9, 1043–59.2.0.CO;2>CrossRefGoogle Scholar
Sandweiss, D., Richardson, J., Reitz, E., and Rollins, H., 1996: Geoarchaeological evidence from Peru for a 5000 year B.P. onset of El Niño. Science, 273, 1531–3.CrossRefGoogle Scholar
Sarachik, E. S., 1978: Tropical sea surface temperature: an interactive one-dimensional atmosphere–ocean model. Dyn. Atmos. Oceans, 2, 455–69.CrossRefGoogle Scholar
Sarachik, E. S., 1985: A simple theory for the vertical structure of the tropical atmosphere. Pure Appl. Geophys., 123, 261–71.CrossRefGoogle Scholar
Sarachik, E. S., 1990: Predictability of ENSO. In Climate–Ocean Interaction, Schlesinger, M. E., ed. Kluwer Academic Publishers, 161–71.CrossRefGoogle Scholar
Sarachik, E. S., 1999: The application of climate information. Consequences, 5, 27–36. Available at www.gcrio.org/CONSEQUENCES/index.htm.Google Scholar
Schneider, E. K., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci., 34, 280–97.2.0.CO;2>CrossRefGoogle Scholar
Schneider, E. K., and Lindzen, R. S., 1976: A discussion of the parameterization of momentum exchange by cumulus convection. J. Geophys. Res., 81, 3158–60.CrossRefGoogle Scholar
Schneider, E. K., and Lindzen, R. S., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. I. Linearized calculations. J. Atmos. Sci., 34, 263–79.2.0.CO;2>CrossRefGoogle Scholar
Schopf, P. S., and Cane, M. A., 1983: On equatorial dynamics, mixed layer physics and sea-surface temperature. J. Phys. Oceanogr., 13, 917–35.2.0.CO;2>CrossRefGoogle Scholar
Schopf, P. S., and Suarez, M. J., 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45, 549–66.2.0.CO;2>CrossRefGoogle Scholar
Shaman, J., Stieglitz, M., Zebiak, S., and Cane, M., 2003: A local forecast of land surface wetness conditions derived from seasonal climate predictions. J. Hydromet., 4, 611–26.2.0.CO;2>CrossRefGoogle Scholar
Shaman, J., Day, J. F., Stieglitz, M., Zebiak, S., and Cane, M., 2006: An ensemble seasonal forecast of human cases of St. Louis encephalitis in Florida based on seasonal hydrologic forecasts. Climatic Change, 75, 495–511.CrossRefGoogle Scholar
Shukla, J., 1981: Predictability of the tropical atmosphere. NASA Tech., Memo 83829.
Smith, N. R., 1995: An improved system for tropical ocean subsurface temperature analyses. J. Atmos. Ocean. Technol., 12, 850–70.2.0.CO;2>CrossRefGoogle Scholar
Stan, C., and Kirtman, B. P., 2008: The influence of atmospheric noise and uncertainty in ocean initial conditions on the limit of predictability in a coupled GCM. J. Climate, 21, 3487–503.CrossRefGoogle Scholar
Stephens, D., Butler, D., and Hammer, G., 2000: Using seasonal climate forecasts in forecasting the Australian wheat crop. In Applications of Seasonal Climate Forecasting in Agricultural and Natural Ecosystems, Hammer, G. L., Nicholls, N., and Mitchell, C., eds. Kluwer Academic Publishers, 469 pp.Google Scholar
Suarez, M. J., and Schopf, P. S., 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 3283–7.2.0.CO;2>CrossRefGoogle Scholar
Sun, D.-Z., Zhang, T., Covey, C., et al., 2006: Radiative and dynamical feedbacks over the equatorial cold tongue: results from nine atmospheric GCMs. J. Climate, 19, 4059–74.CrossRefGoogle Scholar
Sverdrup, H. U., 1947: Wind driven currents in a baroclinic ocean with application to the equatorial currents of the eastern Pacific. PNAS, 33, 318–26.CrossRefGoogle Scholar
Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30, 558–67.2.0.CO;2>CrossRefGoogle Scholar
Thompson, C. J., and Battisti, D. S., 2000: A linear stochastic dynamical model of ENSO. I. Model development. J. Climate, 13, 2818–32.2.0.CO;2>CrossRefGoogle Scholar
Thompson, C. J., and Battisti, D. S., 2001: A linear stochastic dynamical model of ENSO. II. Analysis. J. Climate, 14, 445–66.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E., and Hoar, T. J., 1997: El Niño and climate change. Geophys. Res. Lett., 24, 3057–60.CrossRefGoogle Scholar
Trenberth, K. E., and Caron, J. M., 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 3433–43.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E., Branstator, G. W., Karoly, D., et al., 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, C7, 14291–324.CrossRefGoogle Scholar
Tudhope, A. W., Cilcott, C. P., McCulloch, M. T., et al., 2001: Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science, 291, 1511–7.CrossRefGoogle ScholarPubMed
Tziperman, E., Stone, L., Cane, M., and Jarosh, H., 1994: E1 Niño chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean–atmosphere oscillator. Science, 264, 72–4.CrossRefGoogle Scholar
Tziperman, E., Cane, M. A., and Zebiak, S., 1995: Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos. J. Atmos. Sci., 50, 293–306.2.0.CO;2>CrossRefGoogle Scholar
Tziperman, E., Zebiak, S. E., and Cane, M. A., 1997: Mechanisms of seasonal-ENSO interaction. J. Atmos. Sci., 52, 61–71.2.0.CO;2>CrossRefGoogle Scholar
Uppala, S. M., Kållberg, P. W., Simmons, , et al., 2005: The ERA-40 re-analysis. Q. J. Roy. Met. Soc., 131, 2961–3012, doi: 10.1256/qj.04.176.CrossRefGoogle Scholar
,USGS, 1994: Climatic Fluctuations, Drought, and Flow in the Colorado River Basin. USGS Fact Sheet 2004-3062 version 2. Available at http://pubs.usgs.gov/fs/2004/3062.
,USGS, 2004: Climatic Fluctuation, Drought and Flow in the Colorado River Basin. USGS Fact Sheet 2004-3062 Version 2.
Uvo, C. B, Repelli, C. A., Zebiak, S. E., and Kushnir, Y., 1998: The relationships between tropical Pacific and Atlantic SST and northeast Brazil monthly precipitation. J. Climate, 11, 551–62.2.0.CO;2>CrossRefGoogle Scholar
Oldenborgh, G. J., Philip, S., and Collins, M., 2005: El Niño in a changing climate: a multi-model study. Ocean Science, 1, 81–95.CrossRefGoogle Scholar
Vecchi, G. A., and Bond, N. A., 2004: The Madden–Julian oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys. Res. Lett. 31, L04104, doi: 10.1029/2003GL018645.CrossRefGoogle Scholar
Vecchi, G. A., Soden, B. J., Wittenberg, A. T., et al., 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–6.CrossRefGoogle ScholarPubMed
Veronis, , 1973: Large scale ocean circulation. Adv. Appl. Mech., 13, 1–92.CrossRefGoogle Scholar
Villalba, R. R., D'Arrigo, D., Cook, E. R., Jacoby, G. C., and Wiles, G., 2001: Decadal-scale climate variability along the extratropical western coast of the Americas: evidence from tree-ring records. In Interhemispheric Climate Linkages, Markgraf, V., ed., Academic Press, San Diego, pp. 155–72.CrossRefGoogle Scholar
Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of ENSO-like decadal variability. J. Climate, 18, 2080–92.CrossRefGoogle Scholar
Wakata, Y., and Sarachik, E. S., 1991: Unstable coupled atmosphere ocean basin modes in the presence of a spatially varying basic state. J. Atmos. Sci., 48, 2060–77.2.0.CO;2>CrossRefGoogle Scholar
Wallace, J. M., Rasmusson, E. M., Mitchell, T. P., et al., 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. J. Geophys. Res. Oceans, 103, C7, 14241–60.CrossRefGoogle Scholar
Wang, B., 1994: On the annual cycle in the tropical eastern central Pacific. J. Climate, 7, 1926–42.2.0.CO;2>CrossRefGoogle Scholar
Wang, C., 1994: Understanding ENSO physics – a review. In the Ocean–Atmosphere Interaction, Geophysical Monograph Series, 147, 21–48.Google Scholar
Wang, C., 2001: A unified oscillator model for the El Niño-Southern Oscillation. J. Climate, 14, 98–115.2.0.CO;2>CrossRefGoogle Scholar
Wara, M. W., Ravelo, A. C., and Delaney, M. L., 2005: Permanent El Niño-like conditions during the Pliocene warm period. Science, 309, 758–61.CrossRefGoogle ScholarPubMed
White, W. B., Meyers, G. A., Donguy, J. R., and Pazan, S. E., 1985: Short-term climatic variability in the thermal structure of the Pacific Ocean during 1979–82. J. Phys. Oceanogr., 15, 917–35.2.0.CO;2>CrossRefGoogle Scholar
Wiley, M.et al.: Available at www.tag.washington.edu/projects/midrange.html.
Woodhouse, C. A., Gray, S. T., and Meko, D. M., 2006: Updated streamflow reconstructions for the upper Colorado river basin. Water Resources Res., 42, W05415, doi:10.1029/2005WR004455.CrossRefGoogle Scholar
Woodruff, S. D., Slutz, R. J., Jenne, R. L., and Steurer, P. M., 1987: A comprehensive ocean–atmosphere data set. Bull. Am. Met. Soc., 68, 1239–50.2.0.CO;2>CrossRefGoogle Scholar
Woodruff, S. D., Lubker, S. J., Wolter, K., Worley, S. J., and Elms, J. D., 1993: Comprehensive ocean-atmosphere data set (COADS) release 1a: 1980–92. Earth Syst. Monitor, 4, 1–8.Google Scholar
Wu, Z., 2003: A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J. Atmos. Sci., 60, 377–92.2.0.CO;2>CrossRefGoogle Scholar
Wu, Z., Sarachik, E. S., and Battisti, D. S., 1999: Thermally forced surface winds on an equatorial beta-plane. J. Atmos. Sci., 56, 2029–37.2.0.CO;2>CrossRefGoogle Scholar
Wu, Z., Battisti, D. S., and Sarachik, E. S., 2000a: Rayleigh friction, Newtonian cooling, and the linear response to steady tropical heating. J. Atmos. Sci., 57, 1937–57.2.0.CO;2>CrossRefGoogle Scholar
Wu, Z., Sarachik, E. S., and Battisti, D. S., 2000b: The vertical structure of convective heating and the three-dimensional structure of the forced circulation in the tropics. J. Atmos. Sci., 57, 2169–87.2.0.CO;2>CrossRefGoogle Scholar
Wu, Z., Sarachik, E. S., and Battisti, D. S., 2001: Thermally driven tropical circulations under Rayleigh friction and Newtonian cooling: analytic solutions. J. Atmos. Sci., 58, 724–41.2.0.CO;2>CrossRefGoogle Scholar
Wunsch, C., 1999: The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull. Am. Met. Soc., 80, 245–55.2.0.CO;2>CrossRefGoogle Scholar
Wyrtki, K., 1975: El Niño – the dynamic response of the ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572–84.2.0.CO;2>CrossRefGoogle Scholar
Wyrtki, K., 1979: The response of sea surface topography to the 1976 El Niño. J. Phys. Oceanogr., 11, 1205–31.2.0.CO;2>CrossRefGoogle Scholar
Wyrtki, K., 1985a: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90, 7129–32.CrossRefGoogle Scholar
Wyrtki, K., 1985b: Sea level fluctuations in the Pacific during the 1982–83 El Niño. Geophys. Res. Lett., 12, 125–8.CrossRefGoogle Scholar
Yamagata, T., and Philander, S. G. H., 1985: The role of damped equatorial waves in the oceanic response to winds. J. Oceanogr. Soc. Japan, 41, 345–57.CrossRefGoogle Scholar
Yanai, M., Esbensen, S., and Chu, J., 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–27.2.0.CO;2>CrossRefGoogle Scholar
Yuan, D., 2005: Role of the Kelvin and Rossby waves in the seasonal cycle of the equatorial Pacific Ocean circulation. J. Geophys. Res., 110, doi:10.1029/2004JC002344.CrossRefGoogle Scholar
Yulaeva, E., and Wallace, J. M., 1994: The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J. Climate, 7, 1719–36.2.0.CO;2>CrossRefGoogle Scholar
Zebiak, S. E., 1990: Diagnostic studies of Pacific surface winds. J. Climate, 3, 1016–31.2.0.CO;2>CrossRefGoogle Scholar
Zebiak, S. E., 1982: A simple atmospheric model of relevance to El Niño. J. Atmos. Sci., 39, 2017–27.2.0.CO;2>CrossRefGoogle Scholar
Zebiak, S. E., 1986: Atmospheric convergence feedback in a simple model for El Niño. Mon. Wea. Rev., 114, 1263–71.2.0.CO;2>CrossRefGoogle Scholar
Zebiak, S. E., and Cane, M. A., 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 2262–78.2.0.CO;2>CrossRefGoogle Scholar
Zebiak, S. E., and Cane, M. A., 1991: Natural climate variability in a coupled model. In Greenhouse Gas-Induced Climatic Change: Critical Appraisal of Simulations and Observations, Schlesinger, M. E., ed., Elsevier, 457–70.CrossRefGoogle Scholar
Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, 2004RG000158.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edward S. Sarachik, University of Washington, Mark A. Cane, Columbia University, New York
  • Book: The El Niño-Southern Oscillation Phenomenon
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511817496.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edward S. Sarachik, University of Washington, Mark A. Cane, Columbia University, New York
  • Book: The El Niño-Southern Oscillation Phenomenon
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511817496.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edward S. Sarachik, University of Washington, Mark A. Cane, Columbia University, New York
  • Book: The El Niño-Southern Oscillation Phenomenon
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511817496.016
Available formats
×