Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-19T03:03:37.878Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  30 January 2010

Frank J. Lovicu
Affiliation:
University of Sydney
Michael L. Robinson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelhak, S., Kalatzis, V., Heilig, R., Compain, S., Samson, D. V. C., Weil, D., Cruaud, C., Sahly, I., Leibovici, M., Bitner-Glindzicz, M. F. M., et al. (1997). A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (bOR) syndrome and identifies a novel gene family. Nat. Genet. 15, 157–64CrossRefGoogle ScholarPubMed
Abe, S. I. and Eguchi, G. (1977). An analysis of differentiative capacity of pigmented epithelial cells of adult newt iris in clonal cell culture. Dev. Growth Differ. 19, 309–17CrossRefGoogle Scholar
Aberle, H., Schwartz, H. and Kemler, R. (1996). Cadherin-catenin complex: protein interactions and their implications for cadherin function. J. Cell. Biochem. 61, 514–233.0.CO;2-R>CrossRefGoogle ScholarPubMed
Acampora, D., Avantaggiato, V., Tuorto, F., Barone, P., Perera, M., Choo, D., Wu, D., Corte, G. and Simeone, A. (1999a). Differential transcriptional control as the major molecular event in generating Otx1-/- and Otx2-/- divergent phenotypes. Development 126, 1417–26Google Scholar
Acampora, D., Gulisano, M. and Simeone, A. (1999b). Otx genes and the genetic control of brain morphogenesis. Mol. Cell. Neurosc. 13, 1–8CrossRefGoogle Scholar
Acampora, D., Mazan, S., Avantaggiato, V., Barone, P., Tuorto, F., Lallemand, Y., Brulet, P. and Simeone, A. (1996). Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat. Genet. 14, 218–22CrossRefGoogle ScholarPubMed
Acampora, D., Mazan, S., Lallemand, Y., Avantaggiato, V., Maury, M., Simeone, A. and Brulet, P. (1995). Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121, 3279–90Google ScholarPubMed
Adelmann, H. B. (1966). Marcello Malpighi and the Evolution of Embryology. Ithaca; Cornell University Press
Aerts, T., Xia, J. Z., Slegers, H., Block, J. and Clauwaert, J. (1990). Hydrodynamic characterization of the major intrinsic protein from the bovine lens fibre membranes. J. Biol. Chem. 265, 8675–80Google Scholar
Agata, K., Kobayashi, H., Itoh, Y., Mochii, M., Sawada, K. and Eguchi, G. (1993). Genetic characterization of the multipotent dedifferentiated state of pigmented epithelial cells in vitro. Development 118, 1025–30Google ScholarPubMed
Akhurst, R. J. and Derynck, R. (2001). TGF-beta signaling in cancer: a double-edged sword. Trends. Cell Biol. 11, S44–51Google ScholarPubMed
Akimenko, M.-A., Ekker, M., Wegner, J., Lin, W. and Westerfield, M. (1994). Combinatorial expression of three zebrafish genes related to Distal-less: Part of a homeobox gene code for the head. J. Neurosci. 14, 3475–86CrossRefGoogle ScholarPubMed
Albert, D. M. (1996a). Greek, Roman and Arabian ophthalmology. In D. M. Albert and D. D. Edwards (Eds.), The History of Ophthalmology. Cambridge, MA: Blackwell Science
Albert, D. M. (1996b). The development of ophthalmic pathology. In D. M. Albert and D. D. Edwards (Eds.), The History of Ophthalmology. Cambridge, MA: Blackwell Science
Albert, D. M. (1996c). Discovering the anatomy of the eye. In D. M. Albert and D. D. Edwards (Eds.), The History of Ophthalmology. Cambridge, MA: Blackwell Science
Albert, D. M. and D. D. Edwards, eds. (1996). The History of Ophthalmology. Cambridge, MA; Blackwell Science
Alcala, J. and Maisel, H. (1985). Biochemistry of lens plasma membrane and cytoskeleton. In The Ocular Lens: Structure, Function and Pathology, ed. H. Maisel. New York: Marcel Dekker, pp. 169–222
Alemany, J., Girbau, M., Bassas, L. and Pablo, F. (1990). Insulin receptors and insulin-like growth factor I receptors are functional during organogenesis of the lens. Mol. Cell. Endocrinol. 74, 155–62CrossRefGoogle Scholar
Alexander, L. E. (1937). An experimental study of the role of optic cup and overlying ectoderm in lens formation in the chick embryo. J. Exp. Zool. 75, 41–74CrossRefGoogle Scholar
Al-Ghoul, K. J. and Costello, M. J. (1997). Light microscopic variation of fiber cell size, shape and ordering in the equatorial plane of bovine and human lenses. Mol. Vis. 3, 2. Available at http://www.emory.edu/molvis/v3/al-ghoulGoogle ScholarPubMed
Al-Ghoul, K. J., Kirk, T., Kuszak, A. J., Zoltoski, R. K., Shiels, A. and Kuszak, J. R. (2003). Lens structure in MIP-deficient mice. Anat. Rec. Part A, 273A, 714–30CrossRefGoogle ScholarPubMed
Al-Ghoul, K. J., Nordgren, R. K., Kuszak, A. J., Freel, C. D., Costello, M. J. and Kuszak, J. R. (2001). Structural evidence of human nuclear fiber compaction as a function of aging and cataractogenesis. Exp. Eye Res. 72, 199–214CrossRefGoogle ScholarPubMed
Alizadeh, A., Clark, J., Seeberger, T., Hess, J., Blankenship, T. and FitzGerald, P. G. (2003). Targeted deletion of the lens fiber cell-specific intermediate filament protein filensin. Invest. Ophthalmol. Vis. Sci. 44, 5252–8CrossRefGoogle ScholarPubMed
Alizadeh, A., Clark, J., Seeberger, T., Hess, J., Blankenship, T. and FitzGerald, P. G. (2004). Characterization of a mutation in the lens-specific CP49 in the 129 strain of mouse. Invest. Ophthalmol. Vis. Sci. 45, 884–91CrossRefGoogle ScholarPubMed
Alizadeh, A., Clark, J. I., Seeberger, T., Hess, J., Blankenship, T., Spicer, A. and FitzGerald, P. G. (2002). Targeted genomic deletion of the lens-specific intermediate filament protein CP49. Invest. Ophthalmol. Vis. Sci. 43, 3722–7Google ScholarPubMed
Allen, D. P., Low, P. S., Dola, A. and Maisel, H. (1987). Band 3 and ankyrin homologues are present in eye lens: evidence for all major erythrocyte membrane components in same non-erythroid cell. Biochem. Biophys. Res. Commun. 149, 266–75CrossRefGoogle ScholarPubMed
Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W. and Yuan, J. (1996). Human ICE/CED-3 protease nomenclature [letter]. Cell 87, 171CrossRefGoogle Scholar
Alonso, M. I., Gato, A., Moro, J. A., Martin, C., Barbosa, M., Callejo, S. and Barbosa, E. (1996). Role of sulfated proteoglycans in early lens development. Int. J. Dev. Biol. Suppl 1, 249S–50SGoogle ScholarPubMed
Altmann, C. R., Chow, R. L., Lang, R. A. and Hemmati-Brivanlou, A. (1997). Lens induction by Pax-6 in Xenopus laevis. Dev. Biol. 185, 119–23CrossRefGoogle ScholarPubMed
Alvarez, L. J., Candia, O. A. and Grillone, L. R. (1985). Na+/K+ ATPase distribution in frog and bovine lenses. Curr. Eye Res. 4, 143–52CrossRefGoogle Scholar
Alvarez, L. J., Candia, O. A. and Zamudio, A. C. (1995). Acetylcholine modulation of the short-circuit current across the rabbit lens. Exp. Eye Res. 61, 129–40CrossRefGoogle ScholarPubMed
Amano, U. und Sato, J. (1940). Uber die xenoplastische Implantation der larvalen des Triturus pyrrhogaster in das entlinste Auge der Larven des Hynobius nebulosus. Jpn. J. Med. Sci. I. Anat. 8, 75–81Google Scholar
Amaya, E., Offield, M. F. and Grainger, R. M. (1998). Frog genetics: Xenopus tropicalis jumps into the future. Trends Genet. 14, 253–5CrossRefGoogle ScholarPubMed
Ameen, N. A., Figueroa, Y. and Salas, P. J. (2001). Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia. J. Cell Sci. 114, 563–75Google ScholarPubMed
Andley, U. P., Song, Z., Wawrousek, E. F. and Bassnett, S. (1998). The molecular chaperone alphaA-crystallin enhances lens epithelial cell growth and resistance to UVA stress. J. Biol. Chem. 273, 31252–61CrossRefGoogle ScholarPubMed
Andley, U. P., Song, Z., Wawrousek, E. F., Fleming, T. P. and Bassnett, S. (2000). Differential protective activity of alpha A- and alpha B-crystallin in lens epithelial cells. J. Biol. Chem. 275, 36823–31CrossRefGoogle Scholar
Andra, K., Lassmann, H., Bittner, R., Shorny, S., Fassler, R., Propst, F. and Wiche, G. (1997). Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev. 11, 3143–56CrossRefGoogle ScholarPubMed
Andra, K., Nikolic, B., Stocher, M., Drenckhahn, D. and Wiche, G. (1998). Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev. 12, 3442–51CrossRefGoogle ScholarPubMed
Ang, S.-L., Conlon, R. A., Jin, O. and Rossant, J. (1994). Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120, 2979–89Google ScholarPubMed
Ang, S.-L., Jin, O., Rhinn, M., Daigle, N., Stevenson, L. and Rossant, J. (1996). A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122, 243–52Google ScholarPubMed
Angst, B. D., Marcozzi, C. and Magee, A. I. (2001). The cadherin superfamily. J. Cell Sci. 114, 625–6Google ScholarPubMed
Apple, D. J. (1992). Posterior capsule opacification. Surv. Ophthalmol. 37, 73–116CrossRefGoogle ScholarPubMed
Appleby, D. W. and Modak, S. P. (1977). DNA degradation in terminally differentiating lens fiber cells from chick embryos. Proc. Natl. Acad. Sci. USA 74, 5579–83CrossRefGoogle ScholarPubMed
Arneson, M. L. and Louis, C. F. (1998). Structural arrangement of lens fiber cell plasma membrane protein MP20. Exp. Eye Res. 66, 495–509CrossRefGoogle ScholarPubMed
Arnold, D. R., Moshayedi, P., Schoen, T. J., Jones, B. E., Chader, G. J. and Waldbillig, R. J. (1993). Distribution of IGF-I and -II, IGF binding proteins (IGFBPs) and IGFBP mRNA in ocular fluids and tissues: potential sites of synthesis of IGFBPs in aqueous and vitreous. Exp. Eye Res. 56, 555–65CrossRefGoogle ScholarPubMed
Arnold, J. M. (1984). Closure of the squid cornea: a muscular basis for embryonic tissue movement. J. Exp. Zool. 232, 187–95CrossRefGoogle ScholarPubMed
Arruti, C., Chaudun, E., Maria, A., Courtois, Y. and Counis, M.-F. (1995). Characterization of eye-lens DNases: long term persistence of activity in post apoptotic lens fiber cells. Cell Death Diff. 2, 47–56Google Scholar
Ashery-Padan, R., Marquardt, T., Zhou, X. and Gruss, P. (2000). Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 14, 2701–11CrossRefGoogle Scholar
Asselbergs, F. A., Koopmans, M., Venrooij, W. J. and Bloemendal, H. (1979). Improved resolution of calf lens beta-crystallins. Exp. Eye Res. 28, 223–8CrossRefGoogle ScholarPubMed
Atreya, P. L., Barnes, J., Katar, M., Alcala, J. and Maisel, H. (1989). N-cadherin of the human lens. Curr. Eye Res. 8, 947–56Google ScholarPubMed
Azuma, N. and Hara, T. (1998). Extracellular matrix of opacified anterior capsule after endocapsular cataract surgery. Graefes Arch. Clin. Exp. Ophthalmol. 236, 531–6CrossRefGoogle ScholarPubMed
Azuma, N., Hirakiyama, A., Inoue, T., Asaka, A. and Yamada, M. (2000). Mutations of a human homologue of the Drosophila eyes absent gene (EYA1) detected in patients with congenital cataracts and ocular anterior segment anomalies. Hum. Mol. Genet. 9, 363–6CrossRefGoogle ScholarPubMed
Baas, P. W. (1998). The role of motor proteins in establishing the microtubule arrays of axons and dendrites. J. Chem. Neuroanat. 14, 175–80CrossRefGoogle ScholarPubMed
Baas, D., Bumsted, K. M., Martinez, J. A., Vaccarino, F. M., Wikler, K. C. and Barnstable, C. J. (2000). The subcellular localization of Otx2 is cell-type specific and developmentally regulated in the mouse retina. Mol. Brain Res. 78, 26–37CrossRefGoogle ScholarPubMed
Bagby, S., Harvey, T. S., Eagle, S. G., Inouye, S. and Ikura, M. (1994). Structural similarity of a developmentally related bacterial spore coat protein to βγ-crystallins of the vertebrate eye lens. Proc. Natl. Acad. Sci. USA 91, 4308–12CrossRefGoogle Scholar
Bagchi, M., Alcala, J. R. and Maisel, H. (1981). Delta-crystallin synthesis by the adult chicken lens. Exp. Eye Res. 32, 251–4CrossRefGoogle ScholarPubMed
Bagchi, S., Weinmann, R. and Raychaudhuri, P. (1991). The retinoblastoma protein copurifies with E2F-I, an E1A-regulated inhibitor of the transcription factor E2F. Cell 65, 1063–72CrossRefGoogle ScholarPubMed
Bailly, E., Pines, J., Hunter, T. and Bornens, M. (1992). Cytoplasmic accumulation of cyclin B1 in human cells: association with a detergent-resistant compartment and with the centrosome. J. Cell Sci. 101, 529–45Google ScholarPubMed
Baldin, V., Lukas, J., Marcote, M. J., Pagano, M. and Draetta, G. (1993). Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7, 812–21CrossRefGoogle ScholarPubMed
Baldo, G. J. and Mathias, R. T. (1992). Spatial variations in membrane properties in the intact rat lens. Biophys. J. 63, 518–29CrossRefGoogle ScholarPubMed
Balkan, W., Klintworth, G. K., Bock, C. B. and Linney, E. (1992). Transgenic mice expressing a constitutively active retinoic acid receptor in the lens exhibit ocular defects. Dev. Biol. 151, 622–5CrossRefGoogle ScholarPubMed
Bansal, R. (2002). Fibroblast growth factors and their receptors in oligodendrocyte development: implications for demyelination and remyelination. Dev. Neurosci. 24, 35–46CrossRefGoogle ScholarPubMed
Barabanov, V. M. (1977). Detection of δ-crystallins in the adenohypophysis of chick embryos. Dokl. Akad. Nauk. USSR 234, 195–8Google ScholarPubMed
Barabanov, V. M. and Fedtsova, N. G. (1982). The distribution of lens differentiation capacity in the head ectoderm of chick embryos. Differentiation 21, 183–90CrossRefGoogle ScholarPubMed
Barber, V. C., Evan, E. M. and Land, M. F. (1967). The fine structure of the eye of the mollusk Pecten maximus. Z. Zellforsch. 76, 295–312CrossRefGoogle Scholar
Barbosa, P., Wistow, G. J., Cialkowski, M., Piatigorsky, J. and O'Brien, W. E. (1991). Expression of duck lens delta-crystallin cDNAs in yeast and bacterial hosts: delta 2-crystallin is an active argininosuccinate lyase. J. Biol. Chem. 266, 22319–22Google ScholarPubMed
Barr, F. G. (1999). The role of chimeric paired box transcription factors in the pathogenesis of pediatric rhabdomysarcoma. Cancer Res. 59 (Suppl), 1711–5Google ScholarPubMed
Barondes, S. H., Cooper, D. N. W., Gitt, M. A. and Leffler, H. (1994). Structure and function of a large family of animal lectins. J. Biol. Chem. 269, 20807–10Google ScholarPubMed
Barrett, J. C. and Preston, G. (1994). Apoptosis and cellular senescence: forms of irreversible growth arrest. In Apoptosis II: The Molecular Basis of Apoptosis in Disease, ed. L. D. Tomei and F. O. Cope. Plainview, New York: Cold Spring Harbor Laboratory Press, pp. 253–81
Bassnett, S. (1992). Mitochondrial dynamics in differentiating fiber cells of the mammalian lens. Curr. Eye Res. 11, 1227–32CrossRefGoogle ScholarPubMed
Bassnett, S. (1995). The fate of the Golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation. Invest. Ophthalmol. Vis. Sci. 36, 1793–803Google ScholarPubMed
Bassnett, S. (1997a). Chromatin degradation in differentiating fiber cells of the eye lens. J. Cell Biol. 137, 37–49CrossRefGoogle ScholarPubMed
Bassnett, S. (1997b). Fiber cell denucleation in the primate lens. Invest. Ophthalmol. Vis. Sci. 38, 1678–87Google Scholar
Bassnett, S. and Beebe, D. C. (1990). Localization of insulin-like growth factor-1 binding sites in the embryonic chicken eye. Invest. Ophthalmol. Vis. Sci. 31, 1637–43Google ScholarPubMed
Bassnett, S. and Beebe, D. C. (1992). Coincident loss of mitochondria and nuclei during lens fiber cell differentiation. Dev. Dyn. 194, 85–93CrossRefGoogle ScholarPubMed
Bassnett, S., Croghan, P. C. and Duncan, G. (1987). Diffusion of lactate and its role in determining intracellular pH in the lens of the eye. Exp. Eye Res. 44, 143–7CrossRefGoogle ScholarPubMed
Bassnett, S., Kuszak, J. R., Reinisch, L., Brown, H. G. and Beebe, D. C. (1994). Intercellular communication between epithelial and fiber cells of the eye lens. J. Cell Sci., 107, 799–811Google ScholarPubMed
Bassnett, S., Missey, H. and Vucemilo, I. (1999). Molecular architecture of the lens fiber cell basal membrane complex. J. Cell Sci. 112, 2155–65Google ScholarPubMed
Bassuk, J. A., Birkebak, T., Rothmier, J. D., Clark, J. M., Bradshaw, A., Muchowski, P. J., Howe, C. C., Clark, J. I. and Sage, E. H. (1999). Disruption of the SPARC locus in mice alters the differentiation of lenticular epithelial cells and leads to cataract formation. Exp. Eye Res. 68, 321–31CrossRefGoogle ScholarPubMed
Bateman, J. B., Geyer, D. D., Flodman, P., Johannes, M., Sikela, J., Walter, N., Moreira, A. T., Clancy, K. and Spence, M. A. (2000). A new betaA1-crystallin splice junction mutation in autosomal dominant cataract. Invest. Ophthalmol. Vis. Sci. 41, 3278–85Google ScholarPubMed
Bavik, C., Ward, S. and Chambon, P. (1996). Developmental abnormalities in cultured mouse embryos deprived of retinoic acid by inhibition of yolk-sac retinol binding protein synthesis. Proc. Natl. Acad. Sci. USA 93, 3110–4CrossRefGoogle ScholarPubMed
Bax, B., Lapatto, R., Nalini, V., Driessen, H., Lindley, P. F., Mahadevan, D., Blundell, T. L. and Slingsby, C. (1990). X-ray analysis of βB2-crystallin and evolution of oligomeric lens proteins. Nature 347, 776–9CrossRefGoogle Scholar
Beebe, D., Snellings, K., Silver, M. and Wyk, J. (1986). Control of lens cell differentiation and ion fluxes by growth factors. Prog. Clin. Biol. Res.365–9Google ScholarPubMed
Beebe, D. C. (1992). The control of lens growth: relationship to secondary cataract. Acta Ophthalmol. Suppl. 205, 53–7Google Scholar
Beebe, D. C. and Cerrelli, S. (1989). Cytochalasin prevents cell elongation and increases potassium efflux from embryonic lens epithelial cells: implications for the mechanism of lens fiber cell elongation. Lens Eye Toxic Res. 6, 589–601Google ScholarPubMed
Beebe, D. C., Compart, P. J., Johnson, M. C., Feagans, D. E. and Feinberg, R. N. (1982). The mechanism of cell elongation during lens fiber cell differentiation. Dev. Biol. 92, 54–9CrossRefGoogle ScholarPubMed
Beebe, D. C., Feagans, D. E., Blanchette-Mackie, E. J. and Nau, M. E. (1979). Lens epithelial cell elongation in the absence of microtubules: evidence for a new effect of colchicine. Science 206, 836–8CrossRefGoogle ScholarPubMed
Beebe, D. C., Feagans, D. E. and Jebens, H. A. (1980). Lentropin: a factor in vitreous humor which promotes lens fiber cell differentiation. Proc. Natl. Acad. Sci. USA 77, 490–3CrossRefGoogle ScholarPubMed
Beebe, D. C. and Masters, B. R. (1996). Cell lineage and the differentiation of corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 37, 1815–25Google ScholarPubMed
Beebe, D. C., Parmelee, J. T. and Belcher, K. S. (1990). Volume regulation in lens epithelial cells and differentiating lens fiber cells. J. Cell. Physiol. 143, 455–9CrossRefGoogle ScholarPubMed
Beebe, D. C. and Piatigorsky, J. (1976). Differential synthesis of crystallin and noncrystallin polypeptides during lens fiber cell differentiation in vitro. Exp. Eye Res. 22, 237–49CrossRefGoogle ScholarPubMed
Beebe, D. C., Silver, M. H., Belcher, K. S., Wyk, J. J., Svoboda, M. E. and Zelenka, P. S. (1987). Lentropin, a protein that controls lens fiber formation, is related functionally and immunologically to the insulin-like growth factors. Proc. Natl. Acad. Sci. USA 84, 2327–30CrossRefGoogle ScholarPubMed
Beebe, D. C., Vasiliev, O., Guo, J., Shui, Y. B. and Bassnett, S. (2001). Changes in adhesion complexes define stages in the differentiation of lens fiber cells. Invest. Ophthalmol. Vis. Sci. 42, 727–34Google ScholarPubMed
Beggs, H. E., Baragona, S. C., Hemperly, J. J. and Maness, P. F. (1997). NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC-related tyrosine kinase p59 (fyn). J. Biol. Chem. 272, 8310–9CrossRefGoogle Scholar
Beggs, H. E., Soriano, P. and Maness, P. F. (1994). NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J. Cell Biol. 127, 825–33CrossRefGoogle ScholarPubMed
Belecky-Adams, T., Tomarev, S., Li, H. S., Ploder, L., McInnes, R. R., Sundin, O. and Adler, R. (1997). Pax-6, Prox 1, and Chx10 homeobox gene expression correlates with phenotypic fate of retinal precursor cells. Invest. Ophthalmol. Vis. Sci. 38, 1293–303Google ScholarPubMed
Belmokhtar, C. A., Torriglia, A., Counis, M. F., Courtois, Y., Jacquemin-Sablon, A. and Segal-Bendirdjian, E. (2000). Nuclear translocation of a leukocyte elastase inhibitor/elastase complex during staurosporine-induced apoptosis: role in the generation of nuclear L-DNase II activity. Exp. Cell Res. 254, 99–109CrossRefGoogle ScholarPubMed
Benedetti, E. L., Dunia, I., Bentzel, C. J., Vermorken, A. J. M., Kibbelaar, M. and Bloemendal, H. (1976). A portrait of plasma membrane specializations in lens epithelium and fibers. Biochim. Biophys. Acta 457, 353–84CrossRefGoogle ScholarPubMed
Benjamin, I. J., Shelton, J., Garry, D. J. and Richardson, J. A. (1997). Temporospatial expression of the small HSP/alpha B-crystallin in cardiac and skeletal muscle during mouse development. Dev. Dyn. 208, 75–843.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Benkhelifa, S., Provot, S., Lecoq, O., Pouponnot, C., Calothy, G. and Felder-Schmittbuhl, M. P. (1998). MafA, a novel member of the maf proto-oncogene family, displays developmental regulation and mitogenic capacity in avian neuroretina cells. Oncogene 17, 247–54CrossRefGoogle ScholarPubMed
Bennett, V. (1990). Spectrin: a structural mediator between diverse plasma membrane proteins and the cytoplasm. Curr. Opin. Cell Biol. 2, 51–6CrossRefGoogle ScholarPubMed
Berthoud, V. M., Bassnett, S. and Beyer, E. C. (1999). Cultured chicken embryo lens cells resemble differentiating fiber cells in vivo and contain two kinetic pools of connexin56. Exp. Eye Res. 68, 475–84CrossRefGoogle ScholarPubMed
Berthoud, V. M., Westphale, E. M., Grigoryeva, A. and Beyer, E. C. (2000). PKC isoenzymes in the chicken lens and TPA-induced effects on intercellular communication. Invest. Ophthalmol. Vis. Sci. 41, 350–8Google ScholarPubMed
Bessa, J., Gebelein, B., Pichaud, F., Casares, F. and Mann, R. S. (2002). Combinatorial control of Drosophila eye development by Eyeless, Homothorax, and Teashirt. Genes Dev. 16, 2415–27CrossRefGoogle ScholarPubMed
Beyer, E. C., Kistler, J., Paul, D. L. and Goodenough, D. A. (1989). Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J. Cell Biol. 108, 595–605CrossRefGoogle ScholarPubMed
Bhat, S. P., Hale, I. L., Matsumoto, B. and Elghanayan, D. (1999). Ectopic expression of alpha B-crystallin in Chinese hamster ovary cells suggests a nuclear role for this protein. Eur. J. Cell. Biol. 78, 143–50CrossRefGoogle ScholarPubMed
Bhat, S. P. and Nagineni, C. N. (1989). Alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem. Biophys. Res. Commun. 158, 319–25CrossRefGoogle Scholar
Bhatnagar, A., Dhir, P., Wang, L. F., Ansari, N. H., Lo, W. K. and Srivastava, S. K. (1997). Alterations in the light transmission through single lens fibers during calcium-mediated disintegrative globulization. Invest. Ophthalmol. Vis. Sci. 38, 586–92Google ScholarPubMed
Bienz, M. and Clevers, H. (2000). Linking colorectal cancer to Wnt signaling. Cell 103, 311–20CrossRefGoogle ScholarPubMed
Bilak, S. R., Sernett, S. W., Bilak, M. M., Bellin, R. M., Stromer, M. H., Huiatt, T. W. and Robson, R. M. (1998). Properties of the novel intermediate filament protein synemin and its identification in mammalian muscle. Arch. Biochem. Biophys. 355, 63–76CrossRefGoogle ScholarPubMed
Bindels, J. G., Koppers, A. and Hoenders, H. J. (1981). Structural aspects of bovine β-crystallins: physical characterization including dissociation-association behavior. Exp. Eye Res. 33, 333–43CrossRefGoogle ScholarPubMed
Birchmeier, W. (1995). E-cadherin as a tumor (invasion) suppressor gene. BioEssays 17, 97–9CrossRefGoogle ScholarPubMed
Bishop, K. M., Goudreau, G. and O'Leary, D. D. (2000). Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–9CrossRefGoogle ScholarPubMed
Bissell, M. J. and Barcellos-Hoff, M. H. (1987). The influence of extracellular matrix on gene expression: is structure the message?J. Cell Sci. 8 (Suppl), 327–43CrossRefGoogle ScholarPubMed
Bissell, M. J., Hall, H. G. and Parry, G. (1982). How does extracellular matrix direct gene expression?J. Theor. Biol. 99, 31–68CrossRefGoogle ScholarPubMed
Blakely, E. A., Bjornstad, K. A., Chang, P. Y., McNamara, M. P., Chang, E., Aragon, G., Lin, S. P., Lui, G. and Polansky, J. R. (2000). Growth and differentiation of human lens epithelial cells in vitro on matrix. Invest. Ophthalmol. Vis. Sci. 41, 3898–907Google ScholarPubMed
Blank, V. and Andrews, N. C. (1997). The Maf transcription factors: regulators of differentiation. Trends Biochem. Sci. 22, 437–41CrossRefGoogle Scholar
Blankenship, T. N., Hess, J. F. and FitzGerald, P. G. (2001). Development- and differentiation- dependent reorganization of intermediate filaments in fiber cells. Invest. Ophthalmol. Visual Sci. 42, 735–42Google ScholarPubMed
Blixt, Å., Mahlapuu, M., Aitola, M., Pelto-Huikko, M., Enerbäck, S. and Carlsson, P. (2000). A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev. 14, 245–54Google ScholarPubMed
Bloemendal, H., Berbers, G. A., Jong, W. W., Ramaekers, F. C., Vermorken, A. J., Dunia, I. and Benedetti, E. L. (1984). Interaction of crystallins with the cytoskeletal—plasma membrane complex of the bovine lens. CIBA Found. Symp. 106, 177–90Google ScholarPubMed
Blundell, T. L., Lindley, P. F., Miller, L., Moss, D. S., Slingsby, C., Tickle, I. J., Turnell, W. G. and Wistow, G. J. (1981). Nature 289, 771–7CrossRef
Bok, D., Dockstader, J. and Horwitz, J. (1982). Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions. J. Cell Bio. 92, 213–20CrossRefGoogle Scholar
Bond, J., Green, C., Donaldson, P. J. and Kistler, J. (1996). Liquefaction of cortical tissue in diabetic and galactosemic rat lenses defined by confocal laser scanning microscopy. Invest. Ophthalmol. Vis. Sci. 37, 1557–65Google ScholarPubMed
Bonifas, J. M., Rothman, A. L. and Epstein, E. H. Jr. (1991). Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities [see comments]. Science 254, 1202–5CrossRefGoogle Scholar
Bonini, N. M., Bui, Q. T., Grayboard, G. L. and Warrick, J. M. (1997). The Drosophila eyes absent gene directs ectopic eye formation in a pathway conserved between flies and vertebrates. Development 124, 4819–26Google Scholar
Bonini, N. M., Leiserson, W. M. and Benzer, S. (1993). The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72, 379–95CrossRefGoogle ScholarPubMed
Bonnet, C. (1781). Sur les reproductions des salamanders: Oeuvres d'Histoire Naturelle et de philosophie, vol. 2. Neuchatel: Chez S. Fauche, pp. 175–9
Borsani, G., DeGrandi, A., Ballabio, A., Bulfone, A., Bernard, L., Banfi, S., Gattuso, C., Mariani, M., Dixon, M., Donnai, D., et al. (1999). EYA4, a novel vertebrate gene related to Drosophila eyes absent. Hum. Mol. Genet. 8, 11–23CrossRefGoogle ScholarPubMed
Bosher, J. M., Totty, N. F., Hsuan, J. J., Williams, T. and Hurst, H. C. (1996). A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene 13, 1701–7Google ScholarPubMed
Boudreau, N., Werb, Z. and Bissell, M. J. (1996). Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc. Natl. Acad. Sci. USA 93, 3509–13CrossRefGoogle ScholarPubMed
Bourdoulous, S., Orend, G., MacKenna, D. A., Pasqualini, R. and Ruoslahti, E. (1998). Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression. J. Cell Biol. 143, 267–76CrossRefGoogle ScholarPubMed
Bova, M. P., Ding, L. L., Horwitz, J. and Fung, B. K. (1997). Subunit exchange of alphaA-crystallin. J. Biol. Chem. 272, 29511–17CrossRefGoogle ScholarPubMed
Bova, M. P., Yaron, O., Huang, Q., Ding, L., Haley, D. A., Stewart, P. L. and Horwitz, J. (1999). Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc. Natl. Acad. Sci. USA 96, 6137–42CrossRefGoogle Scholar
Bovolenta, P., Mallamaci, A., Briata, P., Corte, G. and Boncinelli, E. (1997). Implication of OTX2 in pigment epithelium determination and neural retina differentiation. J. Neurosc. 17, 4243–52CrossRefGoogle ScholarPubMed
Boyadijiev, S. A. and Jabs, E. W. (2000). Online Mendelian Inheritance in Man (OMIM) as a knowledgebase for human developmental disorders. Clin. Genet. 57, 253–66CrossRefGoogle Scholar
Boyd, J. and Barrett, J. C. (1990). Tumor supressor genes: possible functions in the negative regulation of cell proliferation. Mol. Carcinog. 3, 325–9CrossRefGoogle Scholar
Boyer, S., Maunoury, R., Gomes, D., Nechaud, B., Hill, A. M. and Dupouey, P. (1990). Expression of glial fibrillary acidic protein and vimentin in mouse lens epithelial cells during development in vivo and during proliferation and differentiation in vitro: comparison with the developmental appearance of GFAP in the mouse central nervous system. J. Neurosci. Res. 27, 55–64CrossRefGoogle ScholarPubMed
Boyle, D. L. and Takemoto, L. (2000). A possible role for alpha-crystallins in lens epithelial cell differentiation. Mol. Vis. 6, 63–71Google ScholarPubMed
Bradley, R. H., Ireland, M. and Maisel, H. (1979). The cytoskeleton of chick lens cells. Exp. Eye Res. 28, 441–53CrossRefGoogle ScholarPubMed
Brady, J. P., Garland, D., Duglas-Tabor, Y., Robison, W. G. Jr., Groome, A. and Wawrousek, E. F. (1997). Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc. Natl. Acad. Sci. USA 94, 884–9CrossRefGoogle ScholarPubMed
Brady, J. P. and Wawrousek, E. F. (1997). Targeted disruption of the mouse αB-crystallin gene. Invest. Opthalmol. Vis. Sci. 38, S935Google Scholar
Brahma, S. K. (1988). Ontogeny of βB1-crystallin polypeptide during chicken lens development. Exp. Eye Res. 47, 507–10CrossRefGoogle Scholar
Brehm, A., Miska, E. A., McCance, D. J., Reid, J. L., Bannister, A. J. and Kouzarides, T. (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601Google ScholarPubMed
Breitman, M. L., Bruce, D. M., Giddens, E., Clapoff, S., Goring, D., Tsui, L. C., Klintworth, G. K. and Bernstein, A. (1989). Analysis of lens cell fate and eye morphogenesis in transgenic mice ablated for cells of the lens lineage. Development 106, 457–63Google ScholarPubMed
Brekken, R. A. and Sage, E. H. (2000). SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol. 19, 569–80CrossRefGoogle ScholarPubMed
Brewitt, B. and Clark, J. (1988). Growth and transparency in the lens, an epithelial tissue, stimulated by pulses of PDGF. Science 242, 777–9CrossRefGoogle ScholarPubMed
Brisken, C., Heineman, A., Chavarria, T., Elenbaas, B., Tan, J., Dey, S. K., McMahon, J. A., McMahon, A. P. and Weinberg, R. A. (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 14, 650–4Google ScholarPubMed
Broekhuyse, R. M., Kuhlmann, E. D. and Stols, A. L. (1976). Lens membranes. II. Isolation and characterization of the main intrinsic polypeptide (MIP) of bovine lens fiber membranes. Exp. Eye Res. 23, 365–71CrossRefGoogle ScholarPubMed
Bron, A. J., Vrensen, G. F. J. M., Koretz, J., Maraini, G. and Harding, J. J. (2000). The aging lens. Ophthalmologica 214, 86–104CrossRefGoogle Scholar
Brown, H. G., Ireland, M., Pappas, G. D. and Kuszak, J. R. (1990). Ultrastructural, biochemical and immunological evidence of receptor-mediated endocytosis in the crystalline lens. Invest. Ophthalmol. Vis. Sci. 31, 2579–92Google Scholar
Brown, H. G., Pappas, G. D., Ireland, M. E. and Kuszak, J. R. (1990). Ultrastructural, biochemical and immunologic evidence of receptor-mediated endocytosis in the crystalline lens. Invest. Ophthalmol. Vis. Sci. 31, 2579–92Google ScholarPubMed
Brownell, I., Dirksen, M. and Jamrich, M. (2000). Forkhead Foxe3 maps to the dysgenetic lens locus and is citical in lens development and differentiation. Genesis 27, 81–933.0.CO;2-N>CrossRefGoogle Scholar
Buckingham, M. E., Caput, D., Cohen, A., Whalen, R. G. and Gros, F. (1974). The synthesis and stability of cytoplasmic messenger RNA during myoblast differentiation in culture. Proc. Natl. Acad. Sci. USA 71, 1466–70CrossRefGoogle ScholarPubMed
Budtz, P. E. (1994). Epidermal homeostasis: A new model that includes apoptosis. In Apoptosis II: The Molecular Basis of Apoptosis in Disease, ed. L. D. Tomei and F. O. Cope. Plainview, New York: Cold Springs Harbor Laboratory Press, pp. 165–83
Burdon, K. P., Wirth, M. G., Mackey, D. A., Russell-Eggitt, I. M., Craig, J. E., Elder, J. E., Dickinson, J. L. and Sale, M. M. (2004). Investigation of crystallin genes in familial cataract, and report of two disease associated mutations. Br. J. Ophthalmol. 88, 79–83CrossRefGoogle ScholarPubMed
Burglin, T. R. (1997). Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 25, 4173–80CrossRefGoogle ScholarPubMed
Caldes, T., Alemany, J., Robcis, H. L. and Pablo, F. (1991). Expression of insulin-like growth factor I in developing lens is compartmentalized. J. Biol. Chem. 266, 20786–90Google ScholarPubMed
Call, M. K., Grogg, M. W., Del Rio-Tsonis, K. and Tsonis, P. A. (2004). Lens regeneration in mice: implications in cataracts. Exp. Eye Res. 78(2), 297–9CrossRefGoogle ScholarPubMed
Callaerts, P., Halder, G. and Gehring, W. J. (1997). PAX-6 in development and evolution. Annu. Rev. Neurosci. 20, 483–532CrossRefGoogle ScholarPubMed
Cammarata, P. R., Cantu-Crouch, D., Oakford, L. and Morrill, A. (1986). Macromolecular organization of bovine lens capsule. Tissue Cell 18, 83–97CrossRefGoogle ScholarPubMed
Cammarata, P. R. and Chen, H. Q. (1994). Osmoregulatory alterations in myo-inositol uptake by bovine lens epithelial cells: a hypertonicity-induced protein enhances myo-inositol transport. Invest. Ophthalmol. Vis. Sci. 35, 1223–35Google ScholarPubMed
Cammarata, P. R. and Spiro, R. G. (1985). Identification of noncollagenous components of calf lens capsule: evaluation of their adhesion-promoting activity. J. Cell Physiol. 125, 393–402CrossRefGoogle ScholarPubMed
Cammarata, P. R., Zhou, C., Chen, G., Singh, I., Reeves, R. E., Kuszak, J. R. and Robinson, M. L. (1999). A transgenic animal model of osmotic cataract Part I: over-expression of bovine Na+/myo-inositol cotransporter in lens fibers. Invest. Ophthalmol. Vis. Sci. 40, 1727–37Google ScholarPubMed
Campbell, M. T. and McAvoy, J. W. (1984). Onset of fibre differentiation in cultured rat lens epithelium under the influence of neural retina-conditioned medium. Exp. Eye Res. 39, 83–94CrossRefGoogle ScholarPubMed
Cao, L., Faha, B., Denbski, M., Tsai, L.-H., Harlow, E. and Dyson, N. (1992). Independent binding of the retinoblastoma protein and p107 to the transcription factor E2F. Nature 355, 176–9CrossRefGoogle ScholarPubMed
Capdevila, J., Tsukui, T., Rodriquez, Esteban C., Zappavigna, V. and Izpisua, Belmonte J. C. (1999). Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of bMPs by Gremlin. Mol. Cell 4, 839–49CrossRefGoogle ScholarPubMed
Capetanaki, Y., Smith, S. and Heath, J. P. (1989). Overexpression of the vimentin gene in transgenic mice inhibits normal lens cell differentiation. J. Cell Biol. 109, 1653–64CrossRefGoogle ScholarPubMed
Carosa, E., Kozmik, Z., Horwitz, J., Robison, G. and Piatigorsky, J. (2000). Aldehyde dehydrogenase/O-crystallin of the scallop lens. Invest. Ophthalmol. Vis. Sci. 41 (Suppl), S585Google Scholar
Carosa, E., Kozmik, Z., Rall, J. E. and Piatigorsky, J. (2002). Structure and expression of the scallop Omega-crystallin gene. Evidence for convergent evolution of promoter sequences. J. Biol. Chem. 277, 656–64CrossRefGoogle ScholarPubMed
Carper, D., Smith-Gill, S. J. and Kinoshita, J. H. (1986). Immunocytochemical localization of the 27Kbeta-crystallin polypeptide in the mouse lens during development using a specific monoclonal antibody: implications for cataract formation in the Philly mouse. Dev. Biol. 113, 104–9CrossRefGoogle ScholarPubMed
Carter, J. M., Hutcheson, A. M. and Quinlan, R. A. (1995). In vitro studies on the assembly properties of the lens beaded filament proteins: co-assembly with α-crystallin but not with vimentin. Exp. Eye Res. 60, 181–92CrossRefGoogle Scholar
Cartier, M., Breitman, M. L. and Tsui, L.-C. (1992). A frameshift mutation in the γE-crystallin gene of the Elo mouse. Nat. Genet. 2, 42–5CrossRefGoogle Scholar
Caruelle, D., Groux-Muscatelli, B., Gaudric, A., Sestier, C., Coscas, G., Caruelle, J. P. and Barritault, D. (1989). Immunological study of acidic fibroblast growth factor (aFGF) distribution in the eye. J. Cell Biochem. 39, 117–28CrossRefGoogle Scholar
Cavenee, W. K., Dryja, T. P., Philips, R. A., Benedict, W. F., Godbout, R., Gallie, B. L., Murphee, A. L., Strong, L. C. and White, R. L. (1983). Expression of recessive alleles by chromsomal mechanism in retinoblastoma. Nature 305, 779–84CrossRefGoogle Scholar
Center, E. M. and Polizotto, R. S. (1992). Etiology of the developing eye in myelencephalic blebs (my) mice. Histol. Histopathol. 7, 231–6Google ScholarPubMed
Chalcroft, J. P. and Bullivant, S. (1970). An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture. J. Cell Biol. 47, 49–60CrossRefGoogle ScholarPubMed
Chamberlain, C. G. and McAvoy, J. W. (1989). Induction of lens fibre differentiation by acidic and basic fibroblast growth factor (FGF). Growth Factors. 1, 125–34CrossRefGoogle Scholar
Chamberlain, C. G. and McAvoy, J. W. (1997). Fiber differentiation and polarity in the mammalian lens: a key role for FGF. Prog. Ret. Eye Res. 16, 443–78CrossRefGoogle Scholar
Chamberlain, C. G., McAvoy, J. W. and Richardson, N. A. (1991). The effects of insulin and basic fibroblast growth factor on fiber differentiation in rat lens epithelial explants. Growth Factors 4, 183–8CrossRefGoogle Scholar
Chambers, C., Cvekl, A., Sax, C. M. and Russell, P. (1995). Sequence, initial functional analysis and protein-DNA binding sites of the mouse beta B2-crystallin—encoding gene. Gene 166, 287–92CrossRefGoogle ScholarPubMed
Chambers, C. and Russell, P. (1991). Deletion mutation in an eye lens β-crystallin: an animal model for inherited cataracts. J. Biol. Chem. 266, 6742–6Google Scholar
Chandy, G., Zampighi, G. A., Kreman, M. and Hall, J. E. (1997). Comparison of the water transporting properties of MIP and AQP1. J. Membr. Biol. 159, 29–39CrossRefGoogle ScholarPubMed
Chang, T., Lin, C. L., Chen, P. H. and Chang, W. C. (1991). Gamma-crystallin genes in carp: cloning and characterization. Biochim. Biophys. Acta 1090, 261–4CrossRefGoogle ScholarPubMed
Chazaud, C., Oulad-Abdelghani, M., Bouillet, P., Decimo, D., Chambon, P. and Dolle, P. (1996). AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis. Mech. Dev. 54, 83–94CrossRefGoogle ScholarPubMed
Chellappan, S. P., Hiebert, S., Mudryj, M., Horowitz, J. M. and Nevins, J. R. (1991). The E2F transcription factor is a cellular target for the RB protein. Cell 65, 1053–61CrossRefGoogle ScholarPubMed
Chen, L. (1999). Combinatorial gene regulation by eukaryotic transcription factors. Curr. Opin. Struct. Biol. 9, 48–55CrossRefGoogle ScholarPubMed
Chen, P. L., Riley, D. J., Chen, Y. and Lee, W. H. (1996). Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs. Genes Dev. 10, 2794–804CrossRefGoogle ScholarPubMed
Chen, Q., Dowhan, D. H., Liang, D., Moore, D. D. and Overbeek, P. A. (2002). CREB-binding protein/p300 co-activation of crystallin gene expression. J. Biol. Chem. 277, 24081–9CrossRefGoogle ScholarPubMed
Chen, Q., Hung, F.-C., Fromm, L. and Overbeek, P. A. (2000). Induction of cell cycle entry and cell death in postmitotic lens fiber cells by overexpression of E2F1 or E2F2. Invest. Ophthalmol. Vis. Sci. 41, 4223–31Google ScholarPubMed
Chen, R., Amoui, M., Zhang, Z. H. and Mardon, G. (1997a). Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 91, 893–903CrossRefGoogle Scholar
Chen, R., Halder, G., Zhang, Z. and Mardon, G. (1999). Signaling by the TGF-beta homolog decapentaplegic functions reiteratively within the network of genes controlling retinal cell fate determination in Drosophila. Development 126, 935–43Google Scholar
Chen, S. M., Wang, Q. L., Nie, Z. Q., Sun, H., Lennon, G., Copeland, N. G., Gilbert, D. J., Jenkins, N. A. and Zack, D. J. (1997b). Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell—pecific genes. Neuron 19, 1017–30CrossRefGoogle Scholar
Chen, W. V., Fielding, Hejtmancik J., Piatigorsky, J. and Duncan, M. K. (2001). Functional conservation of the βB1-crystallin promoter during evolution. Biochim. Biophys. Acta 1519, 30–8CrossRefGoogle Scholar
Cheng, H. L. and Louis, C. F. (1999). Endogenous casein kinase I catalyzes the phosphorylation of the lens fiber cell connexin49. Eur. J. Biochem. 263, 276–86CrossRefGoogle ScholarPubMed
Chepelinsky, A. B., King, C. R., Zelenka, P. S. and Piatigorsky, J. (1985). Lens-specific expression of the chloramphenicol acetyltransferase gene promoted by 5′ flanking sequences of the murine alpha A-crystallin gene in explanted chicken lens epithelia. Proc. Natl. Acad. Sci. USA 82, 2334–8CrossRefGoogle ScholarPubMed
Cheyette, B. N., Green, P. J., Martin, K., Garren, H., Hartenstein, V. and Zipursky, S. L. (1994). The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12, 977–96CrossRefGoogle ScholarPubMed
Chiesa, R., Gawinowicz-Kolks, M. A. and Spector, A. (1987). The phosphorylation of the primary gene products of alpha-crystallin. J. Biol. Chem. 262, 1438–41Google ScholarPubMed
Chiou, S.-H. (1984). Physicochemical characterization of a crystallin from the squid lens and its comparison with vertebrate lens crystallins. J. Biochem. 95, 75–82CrossRefGoogle ScholarPubMed
Chiou, S.-H. (1988). A novel crystallin from octopus lens. FEBS Lett. 241, 261–4CrossRefGoogle ScholarPubMed
Chiou, S.-H. and Bunn, H. F. (1981). Characterization of a new crystallin from the squid lens and its biochemical comparison with the bovine ß-crystallin. Invest. Ophthalmol. Vis. Sci. 20 (Suppl), 138Google Scholar
Chiou, S. H., Chang, W. P., Lo, C. H. and Chen, S. W. (1987). Sequence comparison of gamma-crystallins from the reptilian and other vertebrate species. FEBS Lett. 221, 134–8CrossRefGoogle ScholarPubMed
Chiou, S.-H., Yu, C.-W., Lin, C.-W., Pan, F.-M., Lu, S.-F., Lee, H.-J. and Chang, G.-G. (1995). Octopus S-crystallins with endogenous glutathione S-transferase (GST) activity: sequence comparison and evolutionary relationships with authentic GST enzymes. Biochem. J. 309, 793–800CrossRefGoogle ScholarPubMed
Chittenden, T., Livingston, D. M. and Kaelin, W. J. (1991). The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65, 1073–82CrossRefGoogle Scholar
Chow, R. L., Altmann, C. R., Lang, R. A. and Hemmati-Brivanlou, A. (1999). Pax6 induces ectopic eyes in a vertebrate. Development 126, 4213–22Google Scholar
Chow, R. L., Roux, G. D., Roghani, M., Palmer, M. A., Rifkin, D. B., Moscatelli, D. A. and Lang, R. A. (1995). FGF suppresses apoptosis and induces differentiation of fiber cells in the mouse lens. Development 121, 4383–93Google Scholar
Chuang, M.-H., Pan, F.-M. and Chiou, S.-H. (1997). Sequence characterization of γ-crystallins from lip shark (Chiloscyllium colax): existence of two cDNAs encoding γ-crystallins of mammalian and teleostean classes. J. Protein Chem. 16, 299–307CrossRefGoogle ScholarPubMed
Church, R. L. and Wang, J. H. (1993). The human lens fiber-cell intrinsic membrane protein MP19 gene: isolation and sequence analysis. Curr. Eye Res. 12, 1057–65CrossRefGoogle ScholarPubMed
Church, R. L., Wang, J. H. and Steele, E. (1995). The human lens intrinsic membrane protein MP70 (Cx50) gene: clonal analysis and chromosome mapping. Curr. Eye Res. 14, 215–21CrossRefGoogle ScholarPubMed
Churchill, G. C. and Louis, C. F. (1997). Stimulation of P2U purinergic or α1A adrenergic receptors mobilizes Ca2+ in lens cells. Invest. Ophthalmol. Vis. Sci. 38, 855–65Google ScholarPubMed
Ciechanover, A., Orian, A. and Schwartz, A. L. (2000). Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays 22, 442–513.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Clarke, A. R., Maandag, E. R., Roon, M., Lugt, N. M., Valk, M., Hooper, M. L., Berns, A. and te Riele, H. (1992). Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–30CrossRefGoogle ScholarPubMed
Claudio, J. O., Veneziale, R. W., Menko, A. S. and Rouleau, G. A. (1997). Expression of schwannomin in lens and Schwann cells. Neuroreport 8, 2025–30CrossRefGoogle ScholarPubMed
Clubb, B. H., Chou, Y. H., Herrmann, H., Svitkina, T. M., Borisy, G. G. and Goldman, R. D. (2000). The 300-kDa intermediate filament-associated protein (IFAP300) is a hamster plectin ortholog. Biochem. Biophys. Res. Commun. 273, 183–7CrossRefGoogle ScholarPubMed
Cobb, B. A. and Petrash, J. M. (2000). Characterization of alpha-crystallin—plasma membrane binding. J. Biol. Chem. 275, 6664–72CrossRefGoogle ScholarPubMed
Cobrinik, D., Lee, M., Hannon, G., Mulligan, G., Bronson, R., Dyson, N., Harlow, E., Beach, D., Weinberg, R. and Jacks, T. (1996). Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev. 10, 1633–44CrossRefGoogle ScholarPubMed
Coleman, T. R. and Dunphy, W. G. (1994). Cdc2 regulatory factors. Curr. Opin. Cell Biol. 6, 877–82CrossRefGoogle ScholarPubMed
Collignon, J., Sockanathan, S., Hacker, A., Cohen-Tannoudji, M., Norris, D., Rasta, S., Stevanovich, M., Goodfellow, P. N. and Lovell-Badge, R. (1996). A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509–20Google ScholarPubMed
Collins, J. M. (1972). Amplification of ribosomal ribonucleic acid cistrons in the regenerating lens of Triturus. Biochemistry 11, 1259–63CrossRefGoogle ScholarPubMed
Collinson, J. M., Hill, R. E. and West, J. D. (2000). Different roles for Pax6 in the optic vesicle and facial epithelium mediate early morphogenesis of the murine eye. Development 127, 945–56Google ScholarPubMed
Collinson, J. M., Quinn, J. C., Buchanan, M. A., Kaufman, M. H., Wedden, S. E., West, J. D. and Hill, R. E. (2001). Primary defects in the lens underlie complex anterior segment abnormalities of the Pax6 heterozygous eye. Proc. Natl. Acad. Sci. USA 98, 9688–93CrossRefGoogle ScholarPubMed
Colluci, V. L. (1891). Sulla rigenerazione parziale dell'occhio nei Tritoni-Istogenesi e sviluppo: Studio sperimentale. Mem. R. Acad. Sci. Ist. Bologna, Ser. 51, 593–629Google Scholar
Colucci-Guyon, E., Portier, M.-M., Dunia, I., Paulin, D., Pournin, S. and Babinet, C. (1994). Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79, 679–94CrossRefGoogle ScholarPubMed
Colville, D. J. and Savige, J. (1997). Alport syndrome: a review of the ocular manifestations. Ophthalmic Genet. 18, 161–73CrossRefGoogle ScholarPubMed
Conley, Y. P., Erturk, D., Keverline, A., Mah, T. S., Keravala, A., Barnes, L. R., Bruchis, A., Hess, J. F., FitzGerald, P. G., Weeks, D. E. et al. (2000). A juvenile-onset, progressive cataract locus on chromosome 3q21—q22 is associated with a missense mutation in the beaded filament structural protein-2. Am. J. Hum. Genet. 66, 1426–31CrossRefGoogle ScholarPubMed
Connor, F., Cary, P. D., Read, C. M., Preston, N. S., Driscoll, P. C., Denny, P., Crane-Robinson, C. and Ashworth, A. (1994). DNA binding and bending properties of the post-meiotically expressed Sry-related protein Sox-5. Nucleic Acids Res. 22, 3339–46CrossRefGoogle ScholarPubMed
Cook, C. S. and Sulik, K. K. (1988). Keratolenticular dysgenesis (Peters' anomaly) as a result of acute embryonic insult during gastrulation. J. Pediatr. Ophthalmol. Strabismus 25, 60–6Google ScholarPubMed
Coop, A., Wiesmann, K. E. and Crabbe, M. J. (1998). Translocation of β-crystallin in neural cells in response to stress. FEBS Lett. 431, 319–21CrossRefGoogle ScholarPubMed
Cooper, K., Gates, P., Rae, J. L. and Dewey, J. (1990). Electrophysiology of cultured human lens epithelial cells. J. Membr. Biol. 117, 285–98CrossRefGoogle ScholarPubMed
Cooper, K., Rae, J. L. and Dewey, J. (1991). Inwardly rectifying potassium current in mammalian lens epithelial cells. Am. J. Physiol. 261, C115–23CrossRefGoogle ScholarPubMed
Cooper, K., Watsky, M. and Rae, J. (1992). Potassium currents from isolated frog lens epithelial cells. Exp. Eye Res. 55, 861–8CrossRefGoogle ScholarPubMed
Cooper, K. E., Tang, J. M., Rae, J. L. and Eisenberg, R. S. (1986). A cation channel in frog lens epithelia responsive to pressure and calcium. J. Membr. Biol. 93, 259–69CrossRefGoogle ScholarPubMed
Cordes, S. P. and Barsh, G. S. (1994). The mouse segmentation gene kr encodes a novel basic domain—leucine zipper transcription factor. Cell 79, 1025–34CrossRefGoogle ScholarPubMed
Cornell, R. A., Musci, T. J. and Kimelman, D. (1995). FGF is a prospective competence factor for early activin-type signals in Xenopus mesoderm induction. Development 121, 2429–37Google ScholarPubMed
Correia, I., Chu, D., Chou, Y. H., Goldman, R. D. and Matsudaira, P. (1999). Integrating the actin and vimentin cytoskeletons: adhesion-dependent formation of fimbrin-vimentin complexes in macrophages. J. Cell Biol. 146, 831–42CrossRefGoogle ScholarPubMed
Costello, M. J., Al-Ghoul, K. J., Oliver, T. N., Lane, C. W., Wodnicka, M. and Wodnicki, P. (1993). Polymorphism of fiber cell junctions in mammalian lens. In Proceedings of the 51st Annual Meeting of the Microscopy Society of America, ed. G. W. Bailey. San Francisco: San Francisco Press, pp. 200–1
Costello, M. J., McIntosh, T. J. and Robertson, J. D. (1985). Membrane specializations in mammalian lens fiber cells: distribution of square arrays. Curr. Eye Res. 4, 1183–201CrossRefGoogle ScholarPubMed
Costello, M. J., McIntosh, T. J. and Robertson, J. D. (1989). Distribution of gap junctions and square array junctions in the mammalian lens. Invest. Ophthalmol. Vis. Sci. 30, 975–89Google ScholarPubMed
Coucouvanis, E. and Martin, G. R. (1995). Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83, 279–87CrossRefGoogle ScholarPubMed
Coulombre, J. L. and Coulombre, A. J. (1963). Lens development: Fiber elongation and lens orientation. Science 142, 1489–90CrossRefGoogle ScholarPubMed
Coulombre, J. L. and Coulombre, A. J. (1969). Lens development. IV. Size, shape, and orientation. Invest. Ophthalmol. 8, 251–7Google ScholarPubMed
Coulombe, P. A., Bousquet, O., Ma, L., Yamada, S. and Wirtz, D. (2000). The “ins” and “outs” of intermediate filament organization. Trends Cell Biol. 10, 420–8CrossRefGoogle ScholarPubMed
Coulombe, P. A., Hutton, M. E., Letai, A., Hebert, A., Paller, A. S. and Fuchs, E. (1991). Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell 66, 1301–11CrossRefGoogle ScholarPubMed
Counis, M. F., Chaudun, E., Arruti, C., Oliver, L., Sanwal, M., Courtois, Y. and Torriglia, A. (1998). Analysis of nuclear degradation during lens cell differentiation. Cell Death Diff. 5, 251–61CrossRefGoogle ScholarPubMed
Counis, M. F., Chaudun, E., Courtois, Y. and Allinquant, B. (1991). DNAase activities in embryonic chicken lens: in epithelial cells or in differentiating fibers where chromatin is progressively cleaved. Biol. Cell 72, 231–8CrossRefGoogle ScholarPubMed
Counis, M. F., Chaudun, E., Courtois, Y. and Skidmore, C. J. (1985). Nuclear ADP-ribosylation in the chick lens during embryonic development. Biochem. Biophys. Res. Commun. 126, 859–66CrossRefGoogle ScholarPubMed
Counis, M. F. and Torriglia, A. (2000). DNases and apoptosis. Biochem. Cell. Biol. 78, 405–14CrossRefGoogle ScholarPubMed
Cowan, N. J. and Milstein, C. (1974). Stability of cytoplasmic ribonucleic acid in a mouse myeloma: estimation of the half-life of the messenger RNA coding for an immunoglobulin light chain. J. Mol. Biol. 82, 469–81CrossRefGoogle Scholar
Cui, W., Tomarev, S. I., Piatigorsky, J., Chepelinsky, A. B. and Duncan, M. K. (2004). Mafs, Prox1 and Pax6 can regulate chicken beta B1-cystallin gene expression. J. Biol. Chem. (in press)CrossRefGoogle Scholar
Curran, K. L. and Grainger, R. M. (2000). Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning. Dev. Biol. 228, 41–56CrossRefGoogle ScholarPubMed
Cuthbertson, R. A., Tomarev, S. I. and Piatigorsky, J. (1992). Taxon-specific recruitment of enzymes as major soluble proteins in the corneal epithelium of three mammals, chicken, and squid. Proc. Natl. Acad. Sci. USA 89, 4004–8CrossRefGoogle ScholarPubMed
Cvekl, A., Kashanchi, F., Brady, J. N. and Piatigorsky, J. (1999). Pax-6 interactions with TATA-box—binding protein and retinoblastoma protein. Invest. Opthal. Vis. Sci. 10, 1343–50Google Scholar
Cvekl, A., Kashanchi, F., Sax, C. M., Brady, J. N. and Piatigorsky, J. (1995a). Transcriptional regulation of the mouse αA-crystallin gene: activation dependent on a cyclic AMP-responsive element (DE1/CRE) and a Pax-6—binding site. Mol. Cell. Biol. 15, 653–60CrossRefGoogle Scholar
Cvekl, A. and Piatigorsky, J. (1996). Lens development and crystallin gene expression: many roles for Pax-6. BioEssays 18, 621–30CrossRefGoogle ScholarPubMed
Cvekl, A., Sax, C. M., Bresnick, E. H. and Piatigorsky, J. (1994). A complex array of positive and negative elements regulates the chicken αA-crystallin gene: involvement of Pax-6, USF, CREB and/or CREM, and AP-1 proteins. Mol. Cell. Biol. 14, 7363–76CrossRefGoogle ScholarPubMed
Cvekl, A., Sax, C. M., Li, X., McDermott, J. B. and Piatigorsky, J. (1995b). Pax-6 and lens-specific transcription of the chicken δ1-crystallin gene. Proc. Natl. Acad. Sci. USA 92, 4681–5CrossRefGoogle Scholar
Czerny, T. and Busslinger, M. (1995). DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and bSAP (Pax-5). Mol. Cell. Biol. 15, 2858–71CrossRefGoogle Scholar
Czerny, T., Halder, G., Kloter, U., Souabni, A., Gehring, W. J. and Busslinger, M. (1999). Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol. Cell 3, 297–307CrossRefGoogle ScholarPubMed
Dahl, E., Koseki, H. and Balling, R. (1997). Pax genes and organogenesis. BioEssays 19, 755–65CrossRefGoogle ScholarPubMed
Dahm, R. (1999). Lens fibre cell differentiation: a link with apoptosis?Ophthalmic Res. 31, 163–83CrossRefGoogle ScholarPubMed
Dahm, R., Gribbon, C., Quinlan, R. A. and Prescott, A. R. (1998a). Changes in the nucleolar and coiled body compartments precede lamina and chromatin reorganization during fibre cell denucleation in the bovine lens. Eur. J. Cell Biol. 75, 237–46CrossRefGoogle Scholar
Dahm, R., Gribbon, C., Quinlan, R. A. and Prescott, A. R. (1998b). Susceptibility of lens epithelial and fibre cells at different stages of differentiation to apoptosis. Biochem. Soc. Trans. 26, S349CrossRefGoogle Scholar
Danchakoff, V. (1926). Lens ectoderm and optic vesicles in allantois grafts. Carnegie Contrib. Embryol. 18, 63–78Google Scholar
Dannenberg, J.-H., Rossum, A., Schuijff, L. and te Riele, H. (2000). Ablation of the retinoblastoma gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051–64CrossRefGoogle ScholarPubMed
David, L. L., Azuma, M. and Shearer, T. R. (1994). Cataract and the acceleration of calpain-induced β-crystallin insolubilization occuring during normal maturation of rat lens. Invest. Ophthalmol. Vis. Sci. 35, 785–93Google Scholar
David, L. L., Shearer, T. R. and Shih, M. (1993). Sequence analysis of lens β-crystallins suggests involvement of calpain in cataract formation. J. Biol. Chem. 268, 1937–40Google ScholarPubMed
Davis, R. J., Shen, W., Sandler, Y. I., Amoui, M., Purcell, P., Maas, R., Ou, C. N., Vogel, H., Beaudet, A. L. and Mardon, G. (2001). Dach1 mutant mice bear no gross abnormalities in eye, limb, and brain development and exhibit postnatal lethality. Mol. Cell. Biol. 21, 1484–90CrossRefGoogle ScholarPubMed
Arcangelis, A., Mark, M., Kreidberg, J., Sorokin, L. and Georges-Labouesse, E. (1999). Synergistic activities of alpha3 and alpha6 integrins are required during apical ectodermal ridge formation and organogenesis in the mouse. Development 126, 3957–68Google ScholarPubMed
DeCaprio, J. A., Ludlow, J. W., Figge, J., Shew, J.-Y., Huang, C.-M., Lee, W.-H., Marsilio, E., Paucha, E. and Livingston, D. M. (1988). SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–83CrossRefGoogle ScholarPubMed
DeGregori, J., Leone, G., Miron, A., Jakoi, L. and Nevins, J. R. (1997). Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl. Acad. Sci. USA 94, 7245–50CrossRefGoogle ScholarPubMed
Iongh, R. U., Gordon-Thomson, C., Chamberlain, C. G., Hales, A. M. and McAvoy, J. W. (2001a). Tgfbeta receptor expression in lens: implications for differentiation and cataractogenesis. Exp. Eye Res. 72, 649–59CrossRefGoogle Scholar
Iongh, R. U., Lovicu, F. J., Chamberlain, C. G. and McAvoy, J. W. (1997). Differential expression of fibroblast growth factor receptors during rat lens morphogenesis and growth. Invest. Ophthalmol. Vis. Sci. 38, 1688–99Google Scholar
Iongh, R. U., Lovicu, F. J., Overbeek, P. A., Schneider, M. D., Joya, J., Hardeman, E. D. and McAvoy, J. W. (2001b). Requirement for TGFbeta receptor signaling during terminal lens fiber differentiation. Development 128, 3995–4010Google Scholar
Iongh, R. and McAvoy, J. W. (1992). Distribution of acidic and basic fibroblast growth factors (FGF) in the foetal rat eye: implications for lens development. Growth Factors 6, 159–77CrossRefGoogle ScholarPubMed
Iongh, R. and McAvoy, J. W. (1993). Spatio-temporal distribution of acidic and basic FGF indicates a role for FGF in rat lens morphogenesis. Dev. Dyn. 198, 190–202CrossRefGoogle ScholarPubMed
Jong, W. W., Leunissen, J. A. and Voorter, C. E. (1993). Evolution of the alpha-crystallin/small heat-shock protein family. Mol. Biol. Evol. 10, 103–26Google ScholarPubMed
Jong, W. W., Lubsen, N. H. and Kraft, H. J. (1994). Molecular evolution of the eye lens. Prog. Ret. Eye Res. 13, 391–442CrossRefGoogle Scholar
Delamere, N. A. and Dean, W. L. (1993). Distribution of lens sodium-potassium-adenosine triphosphatase. Invest. Ophthalmol. Vis. Sci. 34, 2159–63Google ScholarPubMed
Delcour, J. and Papaconstantinou, J. (1974). A change in the stoichiometry of assembly of bovine lens alpha-crystallin subunits in relation to cellular differentiation. Biochem. Biophys. Res. Commun. 57, 134–41CrossRefGoogle ScholarPubMed
Delmar, M., Stergiopoulous, K., Homma, N., Calero, G., Morley, G., Ek-Vitorin, J. F. and Taffet, S. M. (2000). A molecular model for the chemical regulation of connexin43 channels, the “ball-and-chain” hypothesisCurr. Top. Memb. Trans. 49, 223–69CrossRefGoogle Scholar
Del Rio-Tsonis, K., Jung, J. C., Chiu, I. M. and Tsonis, P. A. (1997). Conservation of fibroblast growth factor function in lens regeneration. Proc. Natl. Acad. Sci. USA 94, 13701–6CrossRefGoogle ScholarPubMed
Del Rio-Tsonis, K., Tomarev, S. I. and Tsonis, P. A. (1999). Regulation of Prox-1 during lens regeneration. Invest. Ophthalmol. Vis. Sci. 40, 2039–45Google ScholarPubMed
Del Rio-Tsonis, K., Trombley, M. T., McMahon, G. and Tsonis, P. A. (1998). Regulation of lens regeneration by fibroblast growth factor receptor 1. Dev. Dyn. 213, 140–63.0.CO;2-6>CrossRefGoogle ScholarPubMed
Del Rio-Tsonis, K., Washabaugh, C. H. and Tsonis, P. A. (1995). Expression of Pax-6 during urodele eye development and lens regeneration. Proc. Natl. Acad. Sci. USA 92, 5092–6CrossRefGoogle ScholarPubMed
Del Vecchio, P. J., MacElroy, K. S., Rosser, M. P. and Church, R. L. (1984). Association of alpha-crystallin with actin in cultured lens cells. Curr. Eye Res. 3, 1213–9CrossRefGoogle ScholarPubMed
Delwel, G. O., Hogervorst, F. and Sonnenborg, A. (1996). Cleavage of the alpha6 subunit is essential for activation of the alpha6Abeta1 integrin by phorbol 12-myristate 13-acetate. J. Biol. Chem. 271, 7293–6CrossRefGoogle ScholarPubMed
Delwel, G. O., Kuikman, I., Schors, R. C., Melker, A. A. and Sonnenberg, A. (1997). Identification of the cleavage sites in the alpha6A integrin subunit: structural requirements for cleavage and functional analysis of the uncleaved alpha6Abeta1 integrin. Biochem. J. 324, 263–72CrossRefGoogle ScholarPubMed
Deng, P., Maddala, R. and Rao, P. (2001). Expression and distribution of Rho and Rac GTPases and their effector proteins in lens tissue. Invest. Ophthalmol. Vis. Sci. 42, S289Google Scholar
Deretic, D., Aebersold, R. H., Morrison, H. D. and Papermaster, D. S. (1994). Alpha A- and alpha B-crystallin in the retina: association with the post-Golgi compartment of frog retinal photoreceptors. J. Biol. Chem. 269, 16853–61Google ScholarPubMed
Desplan, C. (1997). Eye development: governed by a dictator or a junta?Cell 91, 861–4CrossRefGoogle ScholarPubMed
Devoto, S. H., Mudryj, M., Pines, J., Hunter, T. and Nevins, J. R. (1992). A cyclin A-protein kinase complex possesses sequence-specific Dna binding activity: p33 cdk2 is a component of the E2F-cyclin A complex. Cell 68, 167–76CrossRefGoogle ScholarPubMed
Dickeson, S. K., Mathis, N. L., Rahman, M., Bergelson, J. M. and Santoro, S. A. (1999). Determinants of ligand binding specificity of the alpha(1)beta(1) and alpha(2)beta(1) integrins. J. Biol. Chem. 274, 32182–91CrossRefGoogle ScholarPubMed
Dimanlig, P. V., Faber, S. C., Auerbach, W., Makarenkova, H. P. and Lang, R. A. (2001). The upstream ectoderm enhancer in Pax6 has an important role in lens induction. Development 128, 4415–24Google ScholarPubMed
Dinnean, F. L. (1942). Lens regeneration from the dorsal iris and its inhibition by lens reimplantation in Triturus torosus larvae. J. Exp. Zool. 90, 461–78CrossRefGoogle Scholar
DiPersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J. A. and Hynes, R. O. (1997). Alpha3beta1 integrin is required for normal development of the epidermal basement membrane. J. Cell Biol. 137, 729–42CrossRefGoogle ScholarPubMed
Dirks, R. P. H., Kraft, H. J., Genessen, S. T. V., Klok, E. J., Pfundt, R., Schoenmakers, J. G. G. and Lubsen, N. H. (1996). The cooperation between two silencers creates an enhancer element that controls both the lens-preferred and the differentiation stage—specific expression of the rat beta B2-crystallin gene. Eur. J. Biochem. 239, 23–32CrossRefGoogle ScholarPubMed
Dirksen, M.-L., Morasso, M. I., Sargent, T. D. and Jamrich, M. (1994). Differential expression of a Distal-less homeobox gene Xdll-2 in ectodermal cell lineages. Mech. Dev. 46, 63–70CrossRefGoogle ScholarPubMed
Doerwald, L., Nijveen, H., Civil, A., Genesen, S. T. and Lubsen, N. H. (2001). Regulatory elements in the rat betaB2-crystallin promoter. Exp. Eye Res. 73, 703–10CrossRefGoogle ScholarPubMed
Dohrmann, C., Gruss, P. and Lemaire, L. (2000). Pax genes and the differentiation of hormone-producing endocrine cells in the pancreas. Mech. Dev. 92, 47–54CrossRefGoogle ScholarPubMed
Donaldson, P. J., Dong, Y., Roos, M., Green, C., Goodenough, D. A. and Kistler, J. (1995). Changes in lens connexin expression lead to increased gap junctional voltage dependence and conductance. Am. J. Physiol. 269, C590–600CrossRefGoogle ScholarPubMed
Donaldson, P. J., Roos, M., Evans, C., Beyer, E. and Kistler, J. (1994). Electrical properties of mammalian lens epithelial gap junction channels. Invest. Ophthalmol. Vis. Sci. 35, 3422–8Google ScholarPubMed
Dong, L. J. and Chung, A. E. (1991). The expression of the genes for entactin, laminin A, laminin B1 and laminin B2 in murine lens morphogenesis and eye development. Differentiation 48, 157–72CrossRefGoogle ScholarPubMed
Draetta, G. F. (1994). Mammalian G1 cyclins. Curr. Opin. Cell Biol. 6, 842–6CrossRefGoogle ScholarPubMed
Driessen, H. P. C., Herbrink, P., Bloemendal, H. and DeJong, W. W. (1981). Primary structure of β-crystallin Bp chain: internal duplication and homology with γ-crystallin. Eur. J. Biochem. 121, 83–91CrossRefGoogle ScholarPubMed
Dryja, T. P., Cavenee, W., White, R., Rapaport, J. M., Peterson, R., Albert, D. M. and Bruns, G. A. P. (1984). Homozygosity of chromosome 13 in retinoblastoma. New Eng. J. Med. 310, 550–3CrossRefGoogle ScholarPubMed
Dubin, R. A., Gopal-Srivastava, R., Wawrousek, E. F. and Piatigorsky, J. (1991). Expression of the murine alpha B-crystallin gene in lens and skeletal muscle: identification of a muscle-preferred enhancer. Mol. Cell. Biol. 11, 4340–9CrossRefGoogle ScholarPubMed
Dubin, R. A., Wawrousek, E. F. and Piatigorsky, J. (1989). Expression of the murine alpha B-crystallin gene is not restricted to the lens. Mol. Cell. Biol. 9, 1083–91CrossRefGoogle ScholarPubMed
Dudley, A. T., Lyons, K. M. and Robertson, E. J. (1995). A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 9, 2795–807CrossRefGoogle Scholar
Duke-Elder, S. (1958). System of Ophthalmology, vol. 1; The eye in evolution, ed. S. Duke-Elder. London: Kimpton
Duke-Elder, S. and Cook, C. (1963). Normal and abnormal development. In System of Ophthalmology, vol. 3. St. Louis: C. V. Mosby, pp. 309–24
Dulic, V., Lees, E. and Reed, S. I. (1992). Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257, 1958–61CrossRefGoogle ScholarPubMed
Dumont, J. N. and Yamada, T. (1972). Dedifferentitation of iris epithelial cells. Dev. Biol. 29, 385–401CrossRefGoogle Scholar
Dumont, J. N., Yamada, T. and Cone, M. V. (1970). Alteration of nucleolar ultrastructure in iris epithelial cells during initiation of Wolffian lens regeneration. J. Exp. Zool. 174, 187–204CrossRefGoogle ScholarPubMed
Duncan, G. (1969). The site of the ion restricting membranes in the toad lens. Exp. Eye Res. 8, 406–12CrossRefGoogle ScholarPubMed
Duncan, G., Williams, M. R. and Riach, R. A. (1994). Calcium, cell signalling and cataract. Prog. Ret. Eye Res. 13, 623–52CrossRefGoogle Scholar
Duncan, G. and Wormstone, I. M. (1999). Calcium cell signalling and cataract, role of the endoplasmic reticulum. Eye 13, 480–3CrossRefGoogle ScholarPubMed
Duncan, M. K., Banerjee-Basu, S., McDermott, J. B. and Piatigorsky, J. (1996a). Sequence and expression of chicken βA2- and βB3-crystallins. Exp. Eye Res. 62, 111–19CrossRefGoogle Scholar
Duncan, M. K., Cui, W., Oh, D.-J. and Tomarav, S. I. (2002). Prox1 is differentially localized during lens development. Mech. Dev. 112, 195–8CrossRefGoogle ScholarPubMed
Duncan, M. K., Cvekl, A., Li, X. and Piatigorsky, J. (2000). Truncated forms of Pax-6 disrupt lens morphology in transgenic mice. Invest. Ophthalmol. Vis. Sci. 41, 464–73Google ScholarPubMed
Duncan, M. K., Haynes, J. I. II, Cvekl, A. and Piatigorsky, J. (1998). Dual roles for Pax-6: a transcriptional repressor of lens fiber cell—specific β-crystallin genes. Mol. Cell. Biol. 18, 5579–86CrossRefGoogle ScholarPubMed
Duncan, M. K., Haynes, J. I. II and Piatigorsky, J. (1995). The chicken βA4- and βB1-crystallin—encoding genes are tightly linked. Gene 162, 189–96CrossRefGoogle Scholar
Duncan, M. K., Kozmik, Z., Cveklova, K., Piatigorsky, J. and Cvekl, A. (2000). Overexpression of Pax-6 (5a) in lens fiber cells results in cataract and upregulation of α5β1 integrin expression. J. Cell Sci. 113, 3173–85Google Scholar
Duncan, M. K., Li, X., Ogino, H., Yasuda, K. and Piatigorsky, J. (1996b). Developmental regulation of the chicken βB1-crystallin promoter in transgenic mice. Mech. Devel. 57, 79–89CrossRefGoogle Scholar
Dunia, I., Pieper, F., Manenti, S., Kemp, A., Devilliers, G., Benedetti, E. L. and Bloemendal, H. (1990). Plasma membrane-cytoskeleton damage in eye lenses of transgenic mice expressing desmin. Eur. J. Cell Biol. 53, 59–74Google ScholarPubMed
Dunia, I., Smit, J. J. M., Valk, M. A., Bloemendal, H., Borst, P. and Benedetti, E. L. (1996). Human multidrug resistance 3-P-glycoprotein expression in transgenic mice induces lens membrane alterations leading to cataract. J. Cell Biol. 132, 701–16CrossRefGoogle ScholarPubMed
Dynlacht, B., Flores, O., Lees, J. and Harlow, E. (1994). Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes Dev. 8, 1772–86CrossRefGoogle ScholarPubMed
Dyson, N. (1998). The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–62CrossRefGoogle ScholarPubMed
Dyson, N., Howley, P., Munger, K. and Harlow, E. (1989). The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–7CrossRefGoogle ScholarPubMed
Eastman, A. (1994). Deoxyribosenuclease II in apoptosis and the significance of intracellular acidification. Cell Death Differ. 1, 7–9Google ScholarPubMed
Eberhard, D., Jimenez, G., Heavey, B. and Busslinger, M. (2000). Transcriptional repression by Pax5 (bSAP) through interaction with corepressors of the Groucho family. EMBO J. 19, 2292–303CrossRefGoogle ScholarPubMed
Ebihara, L., Berthoud, V. M. and Beyer, E. C. (1995). Distinct behavior of connexin56 and connexin46 gap junction channels can be predicted from the behavior of their hemi-gap-junctional channels. Biophys. J. 68, 1796–803CrossRefGoogle ScholarPubMed
Ebihara, L. and Steiner, E. (1993). Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J. Gen. Physiol. 102, 59–74CrossRefGoogle ScholarPubMed
Eckert, R., Adams, B., Kistler, J. and Donaldson, P. J. (1999). Quantitative determination of gap junctional permeability in the lens cortex. J. Membr. Biol. 169, 91–102CrossRefGoogle ScholarPubMed
Eckert, R., Donaldson, P. J., Goldie, K. and Kistler, J. (1998). A distinct membrane current in rat lens fiber cells isolated under calcium-free conditions. Invest. Ophthalmol. Vis. Sci. 39, 1280–5Google ScholarPubMed
Eckert, R., Donaldson, P., Lin, J. S., Bond, J., Green, C., Merriman-Smith, R., Tunstall, M. and Kistler, J. (2000). Gating of gap junction channels and hemichannels in the lens: a role in cataract?Curr. Topics Membr. 49, 343–56CrossRefGoogle Scholar
Ede, D. A. and Kelly, W. A. (1964). Developmental abnormalities in the head region of the talpid3 mutant of the fowl. J. Embryol. Exp. Morphol. 12, 161–82Google Scholar
Edwards, D. D. (1996). Ophthalmology before Hippocrates. In The History of Ophthalmology, ed. D. M. Albert and D. D. Edwards. Cambridge, Mass.; Blackwell Science
Eggert, T., Hauck, B., Hildebrandt, N., Gehring, W. J. and Walldorf, U. (1998). Isolation of a Drosophila homolog of the vertebrate homeobox gene Rx and its possible role in brain and eye development. Proc. Natl. Acad. Sci. USA 95, 2343–8CrossRefGoogle ScholarPubMed
Eguchi, G. (1961). The inhibitory effect of the injured and displaced lens on the lens-formation in Triturus larvae. Embryologia 6, 13–35CrossRefGoogle Scholar
Eguchi, G. (1963). Electron microscopic studies on lens regeneration. I. Mechanisms of depigmentation of the iris. Embryologia 8, 45–62CrossRefGoogle Scholar
Eguchi, G. (1964). Electron microscopic studies on lens regeneration. II. Formation and growth of lens vesicle and differentiation of lens fibers. Embryologia 8, 247–87CrossRefGoogle Scholar
Eguchi, G. (1967). In vitro analyses of Wolffian lens regeneration: differentiation of the regenerating lens rudiment of the newt, Triturus pyrrhogaster. Embryologia 9, 246–66CrossRefGoogle ScholarPubMed
Eguchi, G. (1976). “Transdifferentiation” of vertebrate cells in in vitro cell culture. In Embryogenesis in Mammals (Ciba Foundation Symposium 40). Amsterdam: Elsevier, pp. 241–58
Eguchi, G. (1979). “Transdifferentiation” in pigmented epithelial cells of the vertebrate eye in vitro. In Mechanisms of Cell Change, ed. J. D. Ebert and T. S. Okada. New York: Wiley, pp. 273–91
Eguchi, G. (1986). Instability in cell commitment of vertebrate pigmented epithelial cells and their transdifferentiation into lens cells. Curr. Top. Dev. Biol. 20, 21–37CrossRefGoogle ScholarPubMed
Eguchi, G. (1988). Cellular and molecular background of Wolffian lens regeneration. In Regulatory Mechnisms in Developmental Process, ed. G. Eguchi, T. S. Okada, and L. Saxen. Amsterdam: Elsevier, pp. 147–58CrossRef
Eguchi, G. (1993). Lens transdifferentiation in the vertebrate retinal pigmented epithelial cell. In Progress in Retinal Research 12, ed. N. N. Osborne and J. Chader. London: Pergamon, pp. 205–30CrossRef
Eguchi, G. (1998). Transdiffrentiation as the basis of eye lens regeneration. In Cellular and Molecular Basis of Regeneration: From Invertebrates to Humans, ed. P. Ferreti and J. Géraudie. Chichester, England: Wiley, pp. 207–28
Eguchi, G., Abe, S. I. and Watanabe, K. (1974). Differentiation of lens-like structures from newt iris epithelial cells in vitro. Proc. Natl. Acad. Sci. USA 71, 5052–6CrossRefGoogle ScholarPubMed
Eguchi, G. and Ishikawa, M. (1963). Alkaline phosphatase in the dorsal and ventral halves of the iris during early stages of lens regeneration in the newt. Embryologia 7, 296–305Google Scholar
Eguchi, G. and Itoh, Y. (1982). Regeneration of the lens as a phenomenon of cellular transdifferentiation: regulability of the differentiated state of the vertebrate pigmented epithelial cells. Trans. Ophthalmol. Soc. UK 102, 374–8Google Scholar
Eguchi, G. and Okada, T. S. (1973). Differentiation of lens tissue from the progeny of chick retinal pigment cells cultured in vitro: a demonstration of a switch of cell types in clonal cell culture. Proc. Natl. Acad. Sci. USA. 70, 495–9CrossRefGoogle ScholarPubMed
Eguchi, G. and Shingai, R. (1971). Cellular analysis on localization of lens-forming potency in the newt iris epithelium. Dev. Growth Differ. 13, 337–49CrossRefGoogle ScholarPubMed
Eguchi, G. and Watanabe, K. (1973). Elicitation of lens formation from the ventral iris epithelium of the newt by a carcinogen, MNNG. J. Embryol. Exp. Morphol. 30, 63–71Google Scholar
Ehring, G. R., Zampighi, G., Horvitz, J., Bok, D. and Hall, J. E. (1990). Properties of channels reconstituted from the major intrinsic protein of lens fiber membranes. J. Gen. Physiol. 96, 631–64CrossRefGoogle ScholarPubMed
Ehrnsperger, M., Graber, S., Gaestel, M. and Buchner, J. (1997). Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO. J. 16, 221–9CrossRefGoogle ScholarPubMed
Eichmann, A., Grapin-Botton, A., Kelly, L., Graf, T., Douarin, N. M. and Sieweke, M. (1997). The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant. Mech. Dev. 65, 111–22CrossRefGoogle Scholar
Eisenberg, S. and Yamada, T. (1966). A study of DNA synthesis during the transformation of the iris into lens in the lentectomized newt. J. Exp. Zool. 162, 353–68CrossRefGoogle Scholar
El-Diery, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, J. W. and Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–25CrossRefGoogle Scholar
Elgert, K. L. and Zalik, S. E. (1989). Fibronectin distribution during cell type conversion in newt lens regeneration. Anat. Embryol. (Berl) 180, 131–42CrossRefGoogle ScholarPubMed
Ellis, M., Alousi, S., Lawniczak, J., Maisel, H. and Welsh, M. (1984). Studies on lens vimentin. Exp. Eye Res. 38, 195–202CrossRefGoogle ScholarPubMed
Emptage, N. J., Duncan, G. and Croghan, P. C. (1992). Internal acidification modulates membrane and junctional resistance in the isolated lens of the frog Rana pipiens. Exp. Eye Res. 54, 33–9CrossRefGoogle ScholarPubMed
Enersen, O. D. (2003). “Robert Remak.” Retrieved February 3, 2004, from Who Named it? Web site: http://www.whonamedit.com/doctor.cfm/1180.html
Enwright, J. F. III and Grainger, R. M. (2000). Altered retinoid signalling in the heads of Small eye mouse embryos. Dev. Biol. 221, 10–22CrossRefGoogle Scholar
Epstein, J., Cai, J., Glaser, T., Jepeal, L. and Maas, R. (1994a). Identification of a Pax paired domain recognition sequence and evidence for DNA-dependent conformational changes. J. Biol. Chem. 269, 8355–61Google Scholar
Epstein, J. A., Glaser, T., Cai, J., Jepeal, L., Walton, D. S. and Maas, R. L. (1994b). Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicing. Genes Dev. 8, 2022–34CrossRefGoogle Scholar
Eshaghian, J. and Streeten, B. W. (1980). Human posterior subcapsular cataract: an ultrastructural study of the posteriorly migrating cells. Arch. Ophthalmol. 98, 134–43CrossRefGoogle ScholarPubMed
Eshagian, J. (1982). Human posterior subcapsular cataracts. Trans. Ophthalmol. Soc. UK 102, 364–8Google ScholarPubMed
Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D. and Hunt, T. (1983). Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–96CrossRefGoogle ScholarPubMed
Eves, H. (1978). Geometry: mensuration formulas. In CRC Handbook of Mathematical Sciences, 5th ed., ed. W. H. Beyer. Boca Raton, Fla.: CRC Press, pp. 188–210
Ewen, M. E., Sluss, H. K., Sherr, C. J., Matsushime, H., Kato, J. and Livingston, D. M. (1993). Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73, 487–97CrossRefGoogle ScholarPubMed
Faber, S. C., Dimanlig, P., Makarenkova, H. P., Shirke, S., Ko, K. and Lang, R. A. (2001). Fgf receptor signaling plays a role in lens induction. Development 128, 4425–38Google Scholar
Faber, S. C., Robinson, M. L., Makarenkova, H. P. and Lang, R. A. (2002). Bmp signaling is required for development of primary lens fiber cells. Development 129, 3727–37Google ScholarPubMed
Fagerholm, P. P. and Philipson, B. T. (1981). Human lens epithelium in normal and cataractous lenses. Invest. Ophthalmol. Vis. Sci. 21, 408–14Google ScholarPubMed
Fagerholm, P. P., Philipson, B. T. and Lindstrom, B. (1981). Normal human lens: the distribution of proteins. Exp. Eye Res. 33, 615–20CrossRefGoogle Scholar
Falk, M., Ferletta, M., Forsberg, E. and Ekblom, P. (1999). Restricted distribution of laminin alpha1 chain in normal adult mouse tissues. Matrix Biol. 18, 557–68CrossRefGoogle ScholarPubMed
Fan, S. S. and Ready, D. F. (1997). Glued participates in distinct microtubule-based activities in Drosophila eye development. Development 124, 1497–507Google ScholarPubMed
Faquin, W. C., Husain, A., Hung, J. and Branton, D. (1988). An immunoreactive form of erythrocyte protein 4.9 is present in non-erythroid cells. Eur. J. Cell Biol. 46, 168–75Google ScholarPubMed
Fedtsova, N. G. and Barabanov, V. M. (1978). Lenticular and adenohypophyseal differentiation in the oral region ectoderm of chick embryos in tissue culture. Ontogenez 9, 609–15Google ScholarPubMed
Fernald, R. D. (2000). Evolution of eyes. Curr. Opin. Neurobiol. 10, 444–50CrossRefGoogle ScholarPubMed
Ferreira-Cornwell, M. C., Veneziale, R. W., Grunwald, G. B. and Menko, A. S. (2000). N-cadherin function is required for differentiation-dependent cytoskeletal reorganization in lens cells in vitro. Exp. Cell Res. 256, 237–47CrossRefGoogle ScholarPubMed
Finkelstein, R. and Boncinelli, E. (1994). From fly head to mammalian forebrain: the story of otd and Otx. Trends Genet. 10, 310–15CrossRefGoogle ScholarPubMed
Fischbarg, J., Diecke, F. P. J., Kuang, K., Yu, B., Kang, F., Iserovich, P., Li, Y., Rosskothen, H. and Koniarrek, J. P. (1999). Transport of fluid by lens epithelium. Am. J. Physiol. 276, C548–57CrossRefGoogle ScholarPubMed
Fischer, R. S., Lee, A. and Fowler, V. M. (2000). Tropomodulin and tropomyosin mediate lens cell actin cytoskeleton reorganization in vitro. Invest. Ophthalmol. Vis. Sci. 41, 166–74Google ScholarPubMed
Fitch, J. M., Mayne, R. and Linsenmayer, T. F. (1983). Developmental acquisition of basement membrane heterogeneity: type IV collagen in the avian lens capsule. J. Cell Biol. 97, 940–3CrossRefGoogle ScholarPubMed
FitzGerald, P. G. (1988). Immunochemical characterization of a Mr 115 lens fiber cell-specific extrinsic membrane protein. Curr. Eye Res. 7, 1243–53CrossRefGoogle ScholarPubMed
Fitzgerald, P. G., Bok, D. and Horwitz, J. (1983). Immunocytochemical localization of the main intrinsic polypeptide (MIP) in ultrathin frozen sections of rat lens. J. Cell Biol. 97, 1491–9CrossRefGoogle ScholarPubMed
FitzGerald, P. G. and Graham, D. (1991). Ultrastructural localization of alpha A-crystallin to the bovine lens fiber cell cytoskeleton. Curr. Eye Res. 10, 417–36CrossRefGoogle ScholarPubMed
Fleming, T. P., Song, Z. and Andley, U. P. (1998). Expression of growth control and differentiation genes in human lens epithelial cells with extended life span. Invest. Ophthalmol. Vis. Sci. 39, 1387–98Google ScholarPubMed
Flugel, C., Liebe, S., Voorter, C., Bloemendal, H. and Lutjen-Drecoll, E. (1993). Distribution of alpha B-crystallin in the anterior segment of primate and bovine eyes. Curr. Eye Res. 12, 871–6CrossRefGoogle ScholarPubMed
Fotiadis, D., Hasler, L., Müller, D. J., Stahlberg, H., Kistler, J. and Engel, A. (2000). Surface tongue-and-groove contours on lens MIP facilitate cell-to-cell adherence. J. Mol. Biol. 300, 779–89CrossRefGoogle ScholarPubMed
Franke, W. W., Kapprell, H. P. and Cowin, P. (1987). Plakoglobin is a component of the filamentous subplasmalemmal coat of lens cells. Eur. J. Cell Biol. 43, 301–15Google ScholarPubMed
Frederikse, P. H., Dubin, R. A., Haynes, J. I., 2nd and Piatigorsky, J. (1994). Structure and alternate tissue-preferred transcription initiation of the mouse alpha B-crystallin/small heat shock protein gene. Nucleic Acids Res. 22, 5686–94CrossRefGoogle ScholarPubMed
Freel, C. D., Gilliland, K. O., Lane, C. W., Giblin, F. J. and Costello, M. J. (2002). Fourier analysis of cytoplasmic texture in nuclear fiber cells from transparent and cataractous human and animal lenses. Exp. Eye Res. 74, 689–702CrossRefGoogle ScholarPubMed
Freeman, G. (1963). Lens regeneration from the cornea in Xenopus laevis. J. Exp. Zool. 154, 39–66CrossRefGoogle ScholarPubMed
Frenzel, E. M. and Johnson, R. G. (1996). Gap junction formation between cultured embryonic lens cells is inhibited by antibody to N-cadherin. Dev. Biol. 179, 1–16CrossRefGoogle Scholar
Freund, C., Horsford, D. J. and McInnes, R. R. (1996). Transcription factor genes and the developing eye: a genetic perspective. Hum. Mol. Genet. 5, 1471–88CrossRefGoogle ScholarPubMed
Frezzotti, R. (1990). Pathogenesis of posterior capsular opacification. Pt. IICrossRef
Frezzotti, R.Caporossi, A., Mastrangelo, D., Hadjistilianou, T., Tosi, P., Cintrorino, M., and Minacci, C. (1990). Pathogenesis of posterior capsular opacification. Part II: Histopathological and in vitro culture findings. J. Cataract. Refract. Surg. 16, 353–60CrossRefGoogle ScholarPubMed
Friend, S. H., Bernards, R., Rogeli, S., Weinberg, R. A., Rapaport, J. M., Albert, D. M. and Dryja, T. P. (1986). A human DNA segment with properties of the gene that predispose to retinoblastoma and osteosarcoma. Nature 323, 643–6CrossRefGoogle Scholar
Fromm, L. and Overbeek, P. A. (1996). Regulation of cyclin and cyclin-dependent kinase gene expression during lens differentiation requires the retinoblastoma protein. Oncogene 12, 69–75Google ScholarPubMed
Fromm, L., Shawlot, W., Gunning, K., Butel, J. S. and Overbeek, P. A. (1994). The retinoblastoma protein-binding region of simian virus 40 large T antigen alters cell cycle regulation in lenses of transgenic mice. Mol. Cell Biol. 14, 6743–54CrossRefGoogle ScholarPubMed
Fuchs, E. and Cleveland, D. W. (1998). A structural scaffolding of intermediate filaments in health and disease. Science 279, 514–9CrossRefGoogle ScholarPubMed
Fuchs, P., Zorer, M., Rezniczek, G. A., Spazierer, D., Oehler, S., Castanon, M. J., Hauptmann, R. and Wiche, G. (1999). Unusual 5; transcript complexity of plectin isoforms: novel tissue-specific exons modulate actin binding activity. Hum. Mol. Genet. 8, 2461–72CrossRefGoogle ScholarPubMed
Fujiwara, M., Uchida, T., Osumi-Yamashita, N. and Eto, K. (1994). Uchida rat (rSey): A new mutant with craniofacial abnormalities resembling those of the mouse Sey mutant. Differentiation 57, 31–8CrossRefGoogle ScholarPubMed
Funahashi, J., Sekido, R., Murai, K., Kamachi, Y. and Kondoh, H. (1993). Delta-crystallin enhancer binding protein delta EF1 is a zinc finger—homeodomain protein implicated in postgastrulation embryogenesis. Development 119, 433–46Google ScholarPubMed
Fung, Y.-K. T., Murphee, A. L., T'Ang, A., Qian, J., Hinrichs, S. H. and Benedict, W. F. (1987). Structural evidence for the authenticity of the human retinoblastoma gene. Science 236, 1657–61CrossRefGoogle ScholarPubMed
Furukawa, T., Morrow, E. M. and Cepko, C. L. (1997). Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–41CrossRefGoogle ScholarPubMed
Furuta, Y. and Hogan, B. L. M. (1998). bMP4 is essential for lens induction in the mouse embryo. Genes Dev. 12, 3764–75CrossRefGoogle ScholarPubMed
Gabella, G. (1979). Hypertonic smooth muscle. III. Increase in number and size of gap junctions. Cell Tiss. Res. 201, 263–76CrossRefGoogle Scholar
Gallardo, M. E., Lopez-Rios, J., Fernaud-Espinosa, I., Granadino, B., Sanz, R., Ramos, C., Ayuso, C., Seller, M. J., Brunner, H. G., Bovolenta, P., et al. (1999). Genomic cloning and characterization of the human homeobox gene SIX6 reveals a cluster of SIX genes in chromosome 14 and associates SIX6 hemizygosity with bilateral anophthalmia and pituitary anomalies. Genomics 61, 82–91CrossRefGoogle ScholarPubMed
Galvan, A., Lampe, P. D., Hur, K. C., Howard, J. B., Eccleston, E. D., Arneson, M. and Louis, C. F. (1989). Structural organization of the lens fiber cell plasma membrane protein MP18. J. Biol. Chem. 264, 19974–8Google ScholarPubMed
Gao, C. Y., Bassnett, S. and Zelenka, P. S. (1995). Cyclin B, p34cdc2, and H1-kinase activity in terminally differentiating lens fiber cells. Dev. Biol. 169, 185–94CrossRefGoogle ScholarPubMed
Gao, C. Y.Rampalli, A. M., Cai, H., He, H. and Zelenka, P. S. (1999). Changes in cyclin dependent kinase expression and activity accompanying lens fiber cell differentiation. Exp. Eye Res. 69, 695–703CrossRefGoogle ScholarPubMed
Gao, C. Y. and Zelenka, P. S. (1997). Cyclins, cyclin-dependent kinases and differentiation. BioEssays 19, 307–15CrossRefGoogle Scholar
Gao, J., Sun, X., Yatsula, V., Wymore, R. S. and Mathias, R. T. (2000). Isoform-specific function and distribution of Na/K pumps in the frog lens epithelium. J. Memb. Biol. 178, 89–101CrossRefGoogle ScholarPubMed
Gao, Y. and Spray, D. C. (1998). Structural changes in lenses of mice lacking the gap junction protein connexin43. Invest. Ophthalmol. Vis. Sci. 39, 1198–209Google ScholarPubMed
Garland, D. L., Duglas-Tabor, Y., Jimenez-Asensio, J., Datiles, M. B. and Magno, B. (1996). The nucleus of the human lens: demonstration of a highly characteristic protein pattern by two-dimensional electrophoresis and introduction of a new method of lens dissection. Exp. Eye Res. 62, 285–91CrossRefGoogle ScholarPubMed
Garner, M. H. and Kong, Y. (1999). Lens epithelium and fiber Na,K-ATPases: distribution and localization by immunocytochemistry. Invest. Ophthalmol. Vis. Sci. 40, 2291–8Google ScholarPubMed
Gaston, K., Bell, A., Busby, S. and Fried, M. (1992). A comparison of the DNA bending activities of the DNA binding proteins CRP and TFIID. Nucleic Acids Res. 20, 3391–6CrossRefGoogle ScholarPubMed
Gavrieli, Y., Sherman, Y. and Ben-Sasson, S. A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501CrossRefGoogle ScholarPubMed
Gehring, W. J., Affolter, M. and Burglin, T. (1994). Homeodomain proteins. Ann. Rev. Biochem. 63, 487–526CrossRefGoogle ScholarPubMed
Gehring, W. J. and Ikeo, K. (1999). Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet. 15, 371–7CrossRefGoogle ScholarPubMed
Geng, Y., Whoriskey, W., Park, M. Y., Bronson, R. T., Medema, R. H., Li, T., Weinberg, R. A. and Sicinski, P. (1999). Rescue of cyclin D1 deficiency by knockin cyclin E. Cell 97, 767–77CrossRefGoogle ScholarPubMed
Génis-Gálvez, J. M. (1962). The results of the total and partial removal of the lens primordium in the chick embryo: contribution to the study of lens regeneration. An. Desarr. 10, 249–67Google Scholar
Georgatos, S. D., Gounari, F. and Remington, S. (1994). The beaded intermediate filaments and their potential functions in eye lens. BioEssays 16, 413–18CrossRefGoogle ScholarPubMed
Georgatos, S. D. and Marchesi, V. T. (1985). The binding of vimentin to human erythrocyte membranes: a model system for the study of intermediate filament—membrane interactions. J. Cell Biol. 100, 1955–61CrossRefGoogle Scholar
Georges-Labouesse, E., Messaddeq, N., Yehia, G., Cadalbert, L., Dierich, A. and Meur, M. (1996). Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice. Nat. Genet. 13, 370–3CrossRefGoogle ScholarPubMed
Giancotti, F. G. and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028–32CrossRefGoogle ScholarPubMed
Gilbert, R. E., Cox, A. J., Kelly, D. J., Wilkinson-Berka, J. L., Sage, E. H., Jerums, G. and Cooper, M. E. (1999). Localization of secreted protein acidic and rich in cysteine (SPARC) expression in the rat eye. Connect. Tissue Res. 40, 295–303CrossRefGoogle Scholar
Giles, K. M. and Harris, J. E. (1959). The accumulation of 14C from uniformly labelled glucose by the normal and diabetic rabbit lens. Am. J. Ophthalmol. 48, 508–17CrossRefGoogle Scholar
Gill, D., Klose, R., Munier, F. L., McFadden, M., Priston, M., Billingsley, G., Ducrey, N., Schorderet, D. F. and Heon, E. (2000). Genetic heterogeneity of the Coppock-like cataract: a mutation in CRYBB2 on chromosome 22q11.2. Invest. Ophthalmol. Vis. Sci. 41, 159–65Google ScholarPubMed
Gilliland, K. O., Freel, C. D., Lane, C. W., Fowler, W. C. and Costello, M. J. (2001). Multilameliar bodies as potential scattering particles in human age-related nuclear cataracts. Mol. Vis. 7, 120–30Google ScholarPubMed
Gilmour, D. T., Lyon, G. J., Carlton, M. B. L., Sanes, J. R., Cunningham, J. M., Anderson, J. R., Hogan, B. L. M., Evans, M. J. and Colledge, W. H. (1998). Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO J. 17, 1860–70CrossRefGoogle Scholar
Girard, F., Strausfeld, U., Fernandez, A. and Lamb, N. J. (1991). Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67, 1169–79CrossRefGoogle ScholarPubMed
Gjerset, R., Gorka, C., Hasthorpe, S., Lawrence, J. J. and Eisen, H. (1982). Developmental and hormonal regulation of protein H1 degrees in rodents. Proc. Natl. Acad. Sci. USA 79, 2333–7CrossRefGoogle ScholarPubMed
Glasgow, E. and Tomarev, S. I. (1998). Restricted expression of the homeobox gene prox 1 in developing zebrafish. Mech. Dev. 76, 175–8CrossRefGoogle ScholarPubMed
Gonen, T., Donaldson, P. J. and Kistler, J. (2000). Galectin-3 is associated with the plasma membrane of lens fiber cells. Invest. Ophthalmol. Vis. Sci. 41, 199–203Google ScholarPubMed
Gong, X., Baldo, G. J., Kumar, N. M., Gilula, N. B. and Mathias, R. T. (1998). Gap junctional coupling in lenses lacking α3 connexin. Proc. Natl. Acad. Sci. USA 95, 15303–8CrossRefGoogle ScholarPubMed
Gong, X., Li, E., Klier, G., Huang, Q., Wu, Y., Lei, H., Kumar, N. M., Horwitz, J. and Gilula, N. B. (1997). Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91, 833–43CrossRefGoogle ScholarPubMed
Gonzales, M., Haan, K., Baker, S. E., Fitchmun, M., Todorov, I., Weitzman, S. and Jones, J. C. (1999). A cell signal pathway involving laminin-5, alpha3beta1 integrin, and mitogen-activated protein kinase can regulate epithelial cell proliferation. Mol. Biol. Cell 10, 259–70CrossRefGoogle ScholarPubMed
Gonzalez, P., Hernandez-Calzadilla, C., Rao, P. V., Rodriguez, I. R., Zigler, J. S. Jr. and Borras, T. (1994). Comparative analysis of the zeta-crystallin/quinone reductase gene in guinea pig and mouse. Mol. Biol. Evol. 11, 305–15Google Scholar
Goodenough, D. A. (1979). Lens gap junctions: a structural hypothesis for non-regulated low-resistance intercellular pathways. Invest. Ophthalmol. Vis. Sci. 11, 1104–22Google Scholar
Goodenough, D. A., Dick, J. S. B. and Lyons, J. E. (1980). Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J. Cell Biol. 86, 576–89CrossRefGoogle ScholarPubMed
Gopal-Srivastava, R., Cvekl, A. and Piatigorsky, J. (1996). Pax-6 and αB-crystallin/small heat shock protein gene regulation in the murine lens: interaction with the lens-specific regions, LSR1 and LSR2. J. Biol. Chem. 271, 23029–36CrossRefGoogle ScholarPubMed
Gopal-Srivastava, R., Cvekl, A. and Piatigorsky, J. (1998). Involvement of retinoic acid/retinoid receptors in the regulation of murine αB-crystallin/small heat shock protein gene expression in the lens. J. Biol. Chem. 273, 17954–61CrossRefGoogle ScholarPubMed
Gopal-Srivastava, R., Haynes, J. I. and Piatigorksy, J. (1995). Regulation of the murine αB-crystallin/small heat shock protein gene in cardiac muscle. Mol. Cell. Biol. 15, 7081–90CrossRefGoogle Scholar
Gopal-Srivastava, R., Kays, W. T. and Piatigorsky, J. (2000). Enhancer-independent promoter activity of the mouse alphaB-crystallin/small heat shock protein gene in the lens and cornea of transgenic mice. Mech. Dev. 92, 125–34CrossRefGoogle ScholarPubMed
Gopal-Srivastava, R. and Piatigorsky, J. (1994). Identification of a lens-specific regulatory region (LSR) of the murine alpha B-crystallin gene. Nucleic Acids Res. 22, 1281–6CrossRefGoogle ScholarPubMed
Gordon-Thomson, C., Iongh, R. U., Hales, A. M., Chamberlain, C. G. and McAvoy, J. W. (1998). Differential cataractogenic potency of TGF-beta1, -beta2, and -beta3 and their expression in the postnatal rat eye. Invest. Ophthalmol. Vis. Sci. 39, 1399–409Google ScholarPubMed
Gorin, M. B., Yancey, S. B., Cline, J., Revel, J. P. and Horwitz, J. (1984). The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39, 49–59CrossRefGoogle ScholarPubMed
Goring, D. R., Bryce, D. M., Tsui, L. C., Breitman, M. L. and Liu, Q. (1993). Developmental regulation and cell type—specific expression of the murine gamma F-crystallin gene is mediated through a lens-specific element containing the gamma F-1 binding site. Dev. Dyn. 196, 143–52CrossRefGoogle ScholarPubMed
Gorthy, W. C. and Anderson, J. W. (1980). Special characteristics of the polar regions of the rat lens: morphology and phosphatase histochemistry. Invest. Ophthalmol. Vis. Sci. 19, 1038–52Google ScholarPubMed
Goto, K., Hayashi, S., Shirayoshi, Y., Takeichi, M. and Kondoh, H. (1988). Exogenous delta-crystallin gene expression as probe for differentiation of teratocarcinoma stem cells. Cell Diff. 24, 139–47CrossRefGoogle ScholarPubMed
Goto, K., Okada, T. S. and Kondoh, H. (1990). Functional cooperation of lens-specific and nonspecific elements in the delta 1-crystallin enhancer. Mol. Cell. Biol. 10, 958–64CrossRefGoogle ScholarPubMed
Götz, M., Stoykova, A. and Gruss, P. (1998). Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031–44CrossRefGoogle ScholarPubMed
Gould, G. W. and Holman, G. D. (1993). The glucose transporter family: structure function and tissue specific expression. Biochem. J. 295, 329–41CrossRefGoogle ScholarPubMed
Gould, S. E., Upholt, W. B. and Kosher, R. A. (1995). Characterization of chicken syndecan-3 as a heparan sulfate proteoglycan and its expression during embryogenesis. Dev. Biol. 168, 438–51CrossRefGoogle ScholarPubMed
Gounari, F., Merdes, A., Quinlan, R., Hess, J., FitzGerald, P. G., Ouzounis, C. A. and Georgatos, S. D. (1993). Bovine filensin possesses primary and secondary structure similarity to intermediate filament proteins. J. Cell Biol. 121, 847–53CrossRefGoogle ScholarPubMed
Govindarajan, V. and Overbeek, P. A. (2001). Secreted FGFR3, but not FGFR1, inhibits lens fiber differentiation. Development 128, 1617–27Google Scholar
Graham, C., Hodin, J. and Wistow, G. (1996). A retinaldehyde dehydrogenase as a structural protein in a mammalian eye lens: gene recruitment of η-crystallin. J. Biol. Chem. 271, 15623–8CrossRefGoogle Scholar
Grainger, R. M. (1992). Embryonic lens induction: shedding light on vertebrate tissue determination. T.I.G. 8, 349–55Google ScholarPubMed
Grainger, R. M. (1996). New perspectives on embryonic lens induction. Sem. in Cell Devel. Biol. 7, 149–55CrossRefGoogle Scholar
Grainger, R. M. and Gurdon, J. B. (1989). Loss of competence in amphibian induction can take place in single nondividing cells. Proc. Natl. Acad. Sci. USA 86, 1900–4CrossRefGoogle ScholarPubMed
Grainger, R. M., Henry, J. J. and Henderson, R. A. (1988). Reinvestigation of the role of the optic vesicle in embryonic lens induction. Development 102, 517–26Google ScholarPubMed
Grainger, R. M., Henry, J. J., Saha, M. S. and Servetnick, M. (1992). Recent progress on the mechanisms of embryonic lens formation. Eye, 117–22CrossRefGoogle ScholarPubMed
Grainger, R. M., Mannion, J. E., Cook, T. L. Jr. and Zygar, C. A. (1997). Defining intermediate stages in cell determination: acquisition of a lens-forming bias in head ectoderm during lens determination. Dev. Genetics 20, 246–573.0.CO;2-7>CrossRefGoogle ScholarPubMed
Granger, B. L. and Lazarides, E. (1984). Expression of the intermediate-filament-associated protein synemin in chicken lens cells. Mol. Cell. Biol. 4, 1943–50CrossRefGoogle ScholarPubMed
Granger, B. L. and Lazarides, E. (1985). Appearance of new variants of membrane skeletal protein 4.1 during terminal differentiation of avian erythroid and lenticular cells. Nature 313, 238–41CrossRefGoogle ScholarPubMed
Graw, J. (1997). The crystallins: genes, proteins and diseases. Biol. Chem. 378, 1331–48Google ScholarPubMed
Graw, J. (2000). Mouse mutants for eye development. Results Probl. Cell Differ. 31, 219–56CrossRefGoogle ScholarPubMed
Graw, J., Jung, M., Loster, J., Klopp, N., Soewarto, D., Fella, C., Fuchs, H., Reis, A., Wolf, E., Balling, R. et al. (1999). Mutation in the betaA3/A1-crystallin encoding gene Cryba1 causes a dominant cataract in the mouse. Genomics 62, 67–73CrossRefGoogle ScholarPubMed
Grindley, J. C., Davidson, D. R. and Hill, R. E. (1995). The role of Pax-6 in eye and nasal development. Development 121, 1433–42Google ScholarPubMed
Grindley, J. C., Hargett, L. K., Hill, R. E., Ross, A. and Hogan, B. L. (1997). Disruption of PAX6 function in mice homozygous for the Pax6Sey-1Neu mutation produces abnormalities in the early development and regionalization of the diencephalon. Mech. Dev. 64, 111–26CrossRefGoogle ScholarPubMed
Groenen, P. J., Merck, K. B., Jong, W. W. and Bloemendal, H. (1994). Structure and modifications of the junior chaperone alpha-crystallin: from lens transparency to molecular pathology. Eur. J. Biochem. 225, 1–19CrossRefGoogle ScholarPubMed
Grondona, J. M., Kastner, P., Gansmuller, A., Decimo, D., Chambon, P. and Mark, M. (1996). Retinal dysplasia and degeneration in RARβ2/RARγ2 compound mutant mice. Development 122, 2173–88Google ScholarPubMed
Gruijters, W. T. M., Kistler, J. and Bullivant, S. (1987a). Formation, distribution, and dissociation of intercellular junctions in the lens. J. Cell Sci. 88, 351–59Google Scholar
Gruijters, W. T. M., Kistler, J., Bullivant, S. and Goodenough, D. A. (1987b). Immunolocalization of MP70 in lens fiber 16–17nm intercellular junctions. J. Cell Biol. 104, 565–72CrossRefGoogle Scholar
Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389, 349–52CrossRefGoogle ScholarPubMed
Gu, W., Schneider, J. W., Condorelli, G., Kaushal, S., Mahdavi, V. and Nadal-Ginard, B. (1993). Interaction of myogenic factors and the retinoblastoma protein mediates muscle commitment and differentiation. Cell 72, 309–24CrossRefGoogle Scholar
Gumbiner, B. M. and McCrea, P. D. (1993). Catenins as mediators of the cytoplasmic functions of cadherins [review]. J. Cell Sci. 17 (Suppl), 155–8CrossRefGoogle Scholar
Gupta, V. K., Berthoud, V. M., Atal, N., Jarillo, J. A., Barrio, L. C. and Beyer, E. C. (1994a). Bovine connexin44, a lens gap junction protein: molecular cloning, immunologic characterization, and functional expression. Invest. Ophthalmol. Vis. Sci. 35, 3747–58Google Scholar
Gupta, N., Drance, S. M., McAllister, R., Prasad, S., Rootman, J. and Cynader, M. S. (1994b). Localization of M3 muscarinic receptor subtype and mRNA in the human eye. Ophthalmic Res. 26, 207–13CrossRefGoogle Scholar
Gurland, G. and Gundersen, G. G. (1995). Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J. Cell Biol. 131, 1275–90CrossRefGoogle ScholarPubMed
Gwon, A., Enomoto, H., Horowitz, J. and Garner, M. H. (1989). Induction of de novo synthesis of crystalline lenses in aphakic rabbits. Exp. Eye Res. 49, 913–26CrossRefGoogle ScholarPubMed
Gwon, A., Gruber, L. J. and Mantras, C. (1993a). Restoring lens capsule integrity enhances lens regeneration in New Zealand albino rabbits and cats. J. Cataract Refract. Surg. 19, 735–46CrossRefGoogle Scholar
Gwon, A., Gruber, L. J., Mantras, C. and Cunanan, C. (1993b). Lens regeneration in New Zealand albino rabbits after endocapsular cataract extraction. Invest. Ophthalmol. Vis. Sci. 34, 2124–9Google Scholar
Gwon, A. E., Gruber, L. J. and Mundwiler, K. E. (1990). A histologic study of lens regeneration in aphakic rabbits. Invest. Ophthalmol. Vis. Sci. 31, 540–7Google ScholarPubMed
Gwon, A. E., Jones, R. L., Gruber, L. J. and Mantras, C. (1992). Lens regeneration in juvenile and adult rabbits measured by image analysis. Invest. Ophthalmol. Vis. Sci. 33, 2279–83Google ScholarPubMed
Haddad, A. and Bennett, G. (1988). Synthesis of lens capsule and plasma membrane glycoproteins by lens epithelial cells and fibers in the rat. Am. J. Anat. 183, 212–25CrossRefGoogle ScholarPubMed
Hai, T. W., Liu, F., Coukos, W. J. and Green, M. R. (1989). Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3, 2083–90CrossRefGoogle ScholarPubMed
Halder, G., Callaerts, P., Flister, S., Walldorf, U., Kloter, U. and Gehring, W. J. (1998). Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development 125, 2181–91Google ScholarPubMed
Halder, G., Callaerts, P. and Gehring, W. J. (1995). Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–92CrossRefGoogle ScholarPubMed
Hales, A. M., Chamberlain, C. G. and McAvoy, J. W. (1995). Cataract induction in lenses cultured with transforming growth factor-beta. Invest. Ophthalmol. Vis. Sci. 36, 1709–13Google ScholarPubMed
Hales, A. M., Chamberlain, C. G. and McAvoy, J. W. (1997). Estrogen protects lenses against cataract induced by transforming growth factor-B (TGFB). J. Exp. Med. 185, 273–80CrossRefGoogle Scholar
Hales, A. M., Chamberlain, C. G. and McAvoy, J. W. (2000). Susceptibility to TGFbeta2-induced cataract increases with aging in the rat. Invest. Ophthalmol. Vis. Sci. 41, 3544–51Google ScholarPubMed
Hales, A. M., Schulz, M. W., Chamberlain, C. G. and McAvoy, J. W. (1994). TGF-beta-1 induces lens cells to accumulate alpha-smooth muscle actin, a marker for subcapsular cataracts. Curr. Eye Res. 13, 885–90CrossRefGoogle ScholarPubMed
Haley, D. A., Horwitz, J. and Stewart, P. L. (1998). The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27–35CrossRefGoogle Scholar
Haloui, Z., Jeanny, J. C., Jonet, L., Courtois, Y. and Laurent, M. (1988). Immunochemical analysis of extracellular matrix during embryonic lens development of the Cat Fraser mouse. Exp. Eye Res. 46, 463–74CrossRefGoogle ScholarPubMed
Haloui, Z., Pujol, J. P., Galera, P., Courtois, Y. and Laurent, M. (1990). Analysis of lens protein synthesis in a cataractous mutant mouse: the Cat Fraser. Exp. Eye Res. 51, 487–94CrossRefGoogle Scholar
Hamann, S., Zeuthen, T., Cour, M., Nagelhus, E. A., Ottersen, O. P., Agre, P. and Nielsen, S. (1998). Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye. Am. J. Physiol. 274, C1332–45CrossRefGoogle ScholarPubMed
Hamburger, V. and Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. J. Morph. 88, 49–92CrossRefGoogle ScholarPubMed
Hammond, K. L., Hanson, I. M., Brown, A. G., Lettice, L. A. and Hill, R. E. (1998). Mammalian and Drosophila dachshund genes are related to the Ski proto-oncogene and are expressed in eye and limb. Mech. Dev. 74, 121–31CrossRefGoogle ScholarPubMed
Hanna, C. and O'Brien, J. E. (1961). Cell production and migration in the epithelial layer of the lens. Arch. Ophthalmol. 66, 103–7CrossRefGoogle Scholar
Hanson, I. M., Fletcher, J. M., Jordan, T., Brown, A., Taylor, D., Adams, R. J., Punnett, H. H. and Heyningen, V. (1994). Mutations at the PAX6 locus are found in heterogeneous anterior seqment malformations including Peters' anomaly. Nat. Genet. 6, 168–73CrossRefGoogle Scholar
Harding, C. V., Reddan, J. R., Unakar, N. J. and Bagchi, M. (1971). The control of cell division in the ocular lens. Int. Rev. Cytol. 31, 215–300CrossRefGoogle ScholarPubMed
Harocopos, G. J., Kolker, A. E. and Beebe, D. C. (1996). Is apoptosis associated with cataract formation in humans?Invest. Ophthalmol. Vis. Sci. 37, s651Google Scholar
Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. and Elledge, S. J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinase. Cell 75, 805–16CrossRefGoogle Scholar
Harper, J. W. and Elledge, S. J. (1996). Cdk inhibitors in development and cancer. Curr. Opin. Genet. Dev. 6, 56–64CrossRefGoogle ScholarPubMed
Harper, J. W. and Elledge, S. J. (1999). Skipping into the E2F1-destruction pathway. Nat. Cell. Biol. 1, E5–7CrossRefGoogle ScholarPubMed
Hartung, H., Feldman, B., Lovec, H., Coulier, F., Birnbaum, D. and Goldfarb, M. (1997). Murine FGF-12 and FGF-13: expression in embryonic nervous system, connective tissue and heart. Mech. Dev. 64, 31–9CrossRefGoogle ScholarPubMed
Hasler, L., Walz, T., Tittmann, P., Gross, H., Kistler, J. and Engel, A. (1998). Purified lens major intrinsic protein (MIP) forms highly ordered tetragonal two-dimensional arrays by reconstitution. J. Mol. Biol. 279, 855–64CrossRefGoogle ScholarPubMed
Hassan, B., Li, L., Bremer, K. A., Chang, W., Pinsonneault, J. and Vaessin, H. (1997). Prospero is a panneural transcription factor that modulates homeodomain protein activity. Proc. Natl. Acad, Sci. USA 94, 10991–6CrossRefGoogle ScholarPubMed
Hatae, T., Ishibashi, T., Yoshitomo, F. and Shibata, Y. (1993). Immunocytochemistry of type I–IV collagen in human anterior subcapsular cataracts. Graefes Arch. Clin. Exp. Ophthalmol. 231, 586–90CrossRefGoogle ScholarPubMed
Hatfield, J. S., Skoff, R. P., Maisel, H., Eng, L. and Bigner, D. D. (1985). The lens epithelium contains glial fibrillary acidic protein (GFAP). J. Neuroimmunol. 8, 347–57CrossRefGoogle Scholar
Hattori, M., Fujiyama, A., Taylor, T. D., Watanabe, H., Yada, T., Park, H. S., Toyoda, A., Ishii, K., Totoki, Y., Choi, D. K., et al. (2000). The DNA sequence of human chromosome 21: the chromosome 21 mapping and sequencing consortium [see comments]. Nature 405, 311–9CrossRefGoogle Scholar
Hauck, B., Gehring, W. J. and Walldorf, U. (1999). Functional analysis of an eye specific enhancer of the eyeless gene in Drosophila. Proc. Natl. Acad. Sci. USA 96, 564–9CrossRefGoogle ScholarPubMed
Hawkins, J. W., Nickerson, J. M., Sullivan, M. A. and Piatigorsky, J. (1984). The chicken delta-crystallin gene family: two genes of similar structure in close chromosomal approximation. J. Biol. Chem. 259, 9821–5Google ScholarPubMed
Hayashi, S., Goto, K., Okada, T. S. and Kondoh, H. (1987). Lens-specific enhancer in the third intron regulates expression of the chicken delta 1-crystallin gene. Genes Dev. 1, 818–28CrossRefGoogle ScholarPubMed
Hayashi, T., Mizuno, N., Owaribe, K., Kuroiwa, A. and Okamoto, M. (2002). Regulated lens regeneration from isolated pigmented epithelial cells of newt iris in culture in response to FGF2/4. Differentiation 70, 101–8CrossRefGoogle ScholarPubMed
Hayashi, T., Yamagishi, A., Kuroiwa, A., Mizuno, N., Kondoh, H. and Okamoto, M. (2001). Highly efficient transfection system for functional gene analysis in adult amphibian lens regeneration. Dev. Growth Differ. 43, 361–70CrossRefGoogle ScholarPubMed
Hayden, J. H. and Rothstein, H. (1979). Complete elimination of mitosis and DNA synthesis in the lens of the hypophysectomized frog: effects on cell migration and fiber growth. Differentiation 15, 153–60CrossRefGoogle ScholarPubMed
Haynes, J. I., Duncan, M. K. and Piatigorsky, J. (1996). Spatial and temporal activity of the αB-crystallin/small heat shock protein gene promoter in transgenic mice. Dev. Dyn. 207, 75–883.0.CO;2-T>CrossRefGoogle Scholar
Haynes, J. I. 2nd, Gopal-Srivastava, R., Frederikse, P. H. and Piatigorsky, J. (1995). Differential use of the regulatory elements of the alpha B-crystallin enhancer in cultured murine lung (MLg), lens (alpha TN4-1) and muscle (C2C12) cells. Gene 155, 151–8CrossRefGoogle ScholarPubMed
Haynes, J. I. 2nd, Gopal-Srivastava, R. and Piatigorsky, J. (1997). Alpha B-crystallin TATA sequence mutations: lens-preference for the proximal TATA box and the distal TATA-like sequence in transgenic mice. Biochem. Biophys. Res. Commun. 241, 407–13CrossRefGoogle ScholarPubMed
He, H., Gao, C., Vrensen, G. and Zelenka, P. S. (1998). Transient activation of cyclin B/cdc2 during terminal differentiation of lens fiber cells. Dev. Dyn. 211, 26–343.0.CO;2-9>CrossRefGoogle ScholarPubMed
Head, M. W. and Goldman, J. E. (2000). Small heat shock proteins, the cytoskeleton, and inclusion body formation. Neuropathol. Appl. Neurobiol. 26, 304–12CrossRefGoogle ScholarPubMed
Head, M. W., Peter, A. and Clayton, R. M. (1991). Extralenticular expression of members of the β-crystallin gene family in the chick and comparison with δ-crystallin during differentiation and transdifferentiation. Differentiation 48, 147–56CrossRefGoogle ScholarPubMed
Head, M. W., Sedowofia, K. and Clayton, R. M. (1995). Beta B2-crystallin in the mammalian retina. Exp. Eye Res. 61, 423–8CrossRefGoogle ScholarPubMed
Heanue, T. A., Reshef, R., Davis, R. J., Mardon, G., Oliver, G., Tomarev, S., Lassar, A. B. and Tabin, C. J. (1999). Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev. 13, 3231–43CrossRefGoogle ScholarPubMed
Heasman, J. 2002. Morpholino oligos: making sense of antisense?Dev. Biol. 243, 209–14CrossRefGoogle ScholarPubMed
Heid, H. W., Schmidt, A., Zimbelmann, R., Schafer, S., Winter, Simanowski S., Stumpp, S., Keith, M., Figge, U., Schnolzer, M. and Franke, W. W. (1994). Cell type-specific desmosomal plaque proteins of the plakoglobin family: plakophilin 1 (band 6 protein). Differentiation 58, 113–31CrossRefGoogle Scholar
Hejtmancik, J. F., Beebe, D. C., Ostrer, H. and Piatigorsky, J. (1985). δ- and β-crystallin mRNA levels in the embryonic and posthatched chicken lens: temporal and spatial changes during development. Dev. Biol. 109, 72–81CrossRefGoogle ScholarPubMed
Henderson, C. G., Tucker, J. B., Mogensen, M. M., Mackie, J. B., Chaplin, M. A., Slepecky, N. B. and Leckie, L. M. (1995). Three microtubule-organizing centres collaborate in a mouse cochlear epithelial cell during supracellularly coordinated control of microtubule positioning. J. Cell Sci. 108, 37–50Google Scholar
Henry, J. J. and Grainger, R. M. (1987). Inductive interactions in the spatial and temporal restriction of lens-forming potential in embryonic ectoderm of Xenopus laevis. Dev. Biol. 124, 200–14CrossRefGoogle ScholarPubMed
Henry, J. J. and Grainger, R. M. (1990). Early tissue interactions leading to embryonic lens formation in Xenopus laevis. Dev. Biol. 141, 149–63CrossRefGoogle ScholarPubMed
Heon, E., Priston, M., Schorderet, D. F., Billingsley, G. D., Girard, P. O., Lubsen, N. and Munier, F. L. (1999). The gamma-crystallins and human cataracts: a puzzle made clearer. Am. J. Hum. Genet. 65, 1261–7CrossRefGoogle ScholarPubMed
Herber, R., Liem, A., Pitot, H. and Lambert, P. F. (1996). Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J. Virol. 70, 1873–81Google ScholarPubMed
Herrmann, H. and Aebi, U. (2000). Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr. Opin. Cell Biol. 12, 79–90CrossRefGoogle ScholarPubMed
Hess, J. F., Casselman, J. T. and FitzGerald, P. G. (1993). cDNA analysis of the 49 kDa lens fiber cell cytoskeletal protein: a new, lens-specific member of the intermediate filament family?Curr. Eye Res. 12, 77–88CrossRefGoogle ScholarPubMed
Hess, J. F. and FitzGerald, P. (1996). Lack of DNase I mRNA sequences in murine lenses. Mol. Vis. 2, 8Google ScholarPubMed
Hettmann, T., Barton, K. and Leiden, J. M. (2000). Microphthalmia due to p53-mediated apoptosis of anterior lens epithelial cells in mice lacking the CREB-2 transcription factor. Dev. Biol. 222, 110–23CrossRefGoogle ScholarPubMed
Heymann, J. B. and Engel, A. (1999). Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol. Sci. 14, 187–93Google ScholarPubMed
Hilfer, S. R. and Randolph, G. J. (1993). Immunolocalization of basal lamina components during development of chick otic and optic primordia. Anat. Rec. 235, 443–52CrossRefGoogle ScholarPubMed
Hill, R., Favor, J., Hogan, B., Ton, C., Saunders, G., Hanson, I. M., Prosser, J., Jordan, T., Hastie, N. and Heyningen, V. (1991). Mouse Small-eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–5CrossRefGoogle Scholar
Hinchcliffe, E. H., Li, C., Thompson, E. A., Maller, J. L. and Sluder, G. (1999). Requirement of Cdk2—cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283, 851–4CrossRefGoogle Scholar
Hinds, P. W., Mittnacht, S., Dulic, V., Arnold, A., Reed, S. I. and Weinberg, R. A. (1992). Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70, 993–1006CrossRefGoogle ScholarPubMed
Hirsch, N. and Grainger, R. M. (2000). Induction of the lens. Results Probl. Cell Differ. 31, 51–68CrossRefGoogle Scholar
Hirschberg, J. (1982). Antiquity, Vol. X in The History of Ophthalmology (F. C. Blodi, Trans.). Bonn: Wayenborgh
Hobert, O. and Westphal, H. (2000). Functions of LIM-homeobox genes. Trends Genet. 16, 75–83CrossRefGoogle ScholarPubMed
Hodivala-Dilke, K. M., DiPersio, C. M., Kreidberg, J. A. and Hynes, R. O. (1998). Novel roles for alpha3beta1 integrin as a regulator of cytoskeletal assembly and as a trans-dominant inhibitor of integrin receptor function in mouse keratinocytes. J. Cell Biol. 142, 1357–69CrossRefGoogle ScholarPubMed
Hoenders, H. J. and Bloemendal, H. (1981). Aging of lens proteins. In Molecular and Cellular Biology of the Eye Lens, ed. H. Bloemendal. New York: Wiley, pp. 279–326
Hogan, B. L., Hirst, E. M., Horsburgh, G. and Hetherington, C. M. (1988). Small eye (Sey): a mouse model for the genetic analysis of craniofacial abnormalities. Development 103 (Suppl), 115–19Google ScholarPubMed
Hogan, B. L., Horsburgh, G., Cohen, J., Hetherington, C. M., Fisher, G. and Lyon, M. F. (1986). Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. Exp. Morphol. 97, 95–110Google ScholarPubMed
Hongo, M., Itoi, M., Yamamura, Y. and Imanishi, J. (1993). Distribution of epidermal growth factor receptors in rabbit lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 34, 401–4Google ScholarPubMed
Horowitz, A., Tkachenko, E. and Simons, M. (2002). Fibroblast growth factor—specific modulation of cellular response by syndecan-4. J. Cell Biol. 157, 715–25CrossRefGoogle ScholarPubMed
Horstman, L. P. and Zalik, S. E. (1974). Growth of newt iris epithelial cells in vitro: a study of the cell cycle. Exp. Cell Res. 84, 1–14CrossRefGoogle ScholarPubMed
Horwitz, J. (1992). Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89, 10449–53CrossRefGoogle ScholarPubMed
Horwitz, J. (1993). The function of alpha-crystallin. Invest. Ophthalmol. Vis. Sci. 34, 10–22Google ScholarPubMed
Horwitz, J. (2003). Alpha crystallin. Exp. Eye Res. 76, 145–53CrossRefGoogle ScholarPubMed
Horwitz, J., Bova, M. P., Ding, L. L., Haley, D. A. and Stewart, P. L. (1999). Lens alpha-crystallin: function and structure. Eye 13, 403–8CrossRefGoogle ScholarPubMed
Horwitz, J., Huang, Q. L., Ding, L. and Bova, M. P. (1998). Lens alpha-crystallin: chaperone-like properties. Methods Enzymol. 290, 365–83CrossRefGoogle ScholarPubMed
Hough, R. B., Avivi, A., Davis, J., Joel, A., Nevo, E. and Piatigorsky, J. (2002). Adaptive evolution of small heat shock protein/alpha B-crystallin promoter activity of the blind subterranean mole rat, Spalax ehrenbergi. Proc. Natl. Acad. Sci. USA 99, 8145–50CrossRefGoogle ScholarPubMed
Howlett, A. R. and Bissell, M. J. (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biol. 2, 79–89Google ScholarPubMed
Huibregtse, J. M., Scheffner, M. and Howley, P. M. (1991). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 and 18. EMBO J. 10, 4129–35Google Scholar
Huizinga, A., Bot, A. C. C., deMul, F. F. M., Vrensen, G. F. J. M. and Greve, J. (1989). Local variation in absolute water content of human and rabbit eye lenses measured by Raman microspectroscopy. Exp. Eye Res. 48, 487–96CrossRefGoogle ScholarPubMed
Hummler, E., Cole, T. J., Blendy, J. A., Ganss, R., Aguzzi, A., Schmid, W., Beermann, F. and Schutz, G. (1994). Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl. Acad. Sci. USA 91, 5647–51CrossRefGoogle ScholarPubMed
Hung, F. C., Zhao, S., Chen, Q. and Overbeek, P. A. (2002). Retinal ablation and altered lens differentiation induced by ocular overexpression of bMP7. Vision Res. 42, 427–38CrossRefGoogle ScholarPubMed
Hunter, T. and Pines, J. (1994). Cyclins and cancer. II. Cyclin D and CDK inhibitors come of age. Cell 79, 573–82CrossRefGoogle ScholarPubMed
Hurford, R. K. J., Cobrinik, D., Lee, M.-H. and Dyson, N. (1997). pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11, 1447–63CrossRefGoogle ScholarPubMed
Hussain, M. A. and Habener, J. F. (1999). Glucagon gene transcription activation mediated by synergistic interactions of pax-6 and cdx-2 with the p300 co-activator. J. Biol. Chem. 274, 28950–7CrossRefGoogle ScholarPubMed
Hyatt, G. A., and Beebe, D. C. (1993). Regulation of lens cell growth and polarity by an embryo-specific growth factor and by inhibitors of lens cell proliferation and differentiation. Development 117, 701–9Google ScholarPubMed
Hyatt, G. A., Schmitt, E. A., Fadool, J. M. and Dowling, J. E. (1996a). Retinoic acid alters photoreceptor development in vivo. Proc. Natl. Acad. Sci. USA 93, 13298–303CrossRefGoogle Scholar
Hyatt, G. A., Schmitt, E. A., Marsh-Armstrong, N., McCaffery, P., Drager, U. C. and Dowling, J. E. (1996b). Retinoic acid establishes ventral retinal characteristics. Development 122, 195–204Google Scholar
Hyde, R. K. and Griep, A. E. (2002). Unique roles for E2f1 in the mouse lens in the absence of functional pRB proteins. Invest. Ophthalmol. Vis. Sci. 43, 1509–16Google ScholarPubMed
Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion [review]. Cell 69, 11–25CrossRefGoogle Scholar
Hyuga, M., Kodama, R. and Eguchi, G. (1993). Basic fibroblast growth factor as one of the essential factors regulating lens transdifferentiation of pigmented epithelial cells. Int. J. Dev. Biol. 37, 319–26Google ScholarPubMed
Ibaraki, N., Lin, L. R. and Reddy, V. N. (1995). Effects of growth factors on proliferation and differentiation in human lens epithelial cells in early subculture. Invest. Ophthalmol. Vis. Sci. 36, 2304–12Google ScholarPubMed
Ibaraki, N., Lin, L. R. and Reddy, V. N. (1996). A study of growth factor receptors in human lens epithelial cells and their relationship to fiber differentiation. Exp. Eye Res. 63, 683–92CrossRefGoogle ScholarPubMed
IHGS Consortium. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921CrossRef
Iio, A., Mochii, M., Agata, K., Kodama, R. and Eguchi, G. (1994). Expression of the retinal pigmented epithelial cell—specific pP344 gene during development of the chicken eye and identification of its product. Dev. Growth Differ. 36, 155–64Google Scholar
Ikeda, Y. (1934). Beitrage zur Analyse der Wolffschen Linsenregeneration durch xenoplastische Implantation der Iris in das entlinste Auge bei Triton und Hynobius. Arb. Anat. Inst. Sendai 16, 69–82Google Scholar
Ikeda, Y. (1935). Uber die Regeneration von Augenbechern an verschiedenen Korperstellen durch isolierte Irisstucke. Arb. Anat. Inst. Sendai 17, 11–54Google Scholar
Ikeda, Y. (1936). Neue Versuche zur Analyse deer Wolffschen Linsenregeneration. Arb. Anat. Inst. Sendai 18, 1–16Google Scholar
Ikeda, Y. and Amatatu, H. (1941). Uber den Unterschied der Erhaltungsmoglich-keit der Linse bei zwei Urodelenarten (Triturus pyrrhogaster and Hynobius nebulosus), die sich bezuglich der Fahigkeit zur Wolffschen Linsenregeneration voneinander wesentlich verschieden verhalten. Jpn. J. Med. Sci. I. Anat. 8, 205–26Google Scholar
Ikeda, Y. and Kojima, T. (1940). Zur Frage der paralysierenden Wirkung der Linse auf die auslosenden Faktoren fur die Wolffsche Linsenregeneration. Jpn. J. Med. Sci. I. Anat. 8, 51–73Google Scholar
Ikeda, A. and Zwaan, J. (1966). Immunofluorescence studies on induction and differentiation of the chicken eye lens. Invest. Ophthalmol. 5, 402–12Google ScholarPubMed
Ikeda, A. and Zwaan, J. (1967). The changing cellular localization of alpha-crystallin in the lens of the chicken embryo, studied by immunofluorescence. Dev. Biol. 15, 348–67CrossRefGoogle ScholarPubMed
Imokawa, Y. and Eguchi, G. (1992). Expression and distribution of regeneration responsive molecule during normal development of the newt, Cynops pyrrhogaster. Int. J. Dev. Biol. 36, 407–12Google ScholarPubMed
Imokawa, Y., Ono, S., Takeuchi, T. and Eguchi, G. (1992). Analysis of a unique molecule responsible for regeneration and stabilization of differentiated state of tissue cells. Int. J. Dev. Biol. 36, 399–405Google ScholarPubMed
Inagaki, M., Matsuoka, Y., Tsujimura, K., Ando, S., Tokui, T., Takahashi, T. and Inagaki, N. (1996). Dynamic property of intermediate filaments: regulation by phosphorylation. BioEssays 18, 481–7CrossRefGoogle Scholar
Infante, A. S., Stein, M. S., Zhai, Y., Borisy, G. G. and Gundersen, G. G. (2000). Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J. Cell Sci. 113, 3907–19Google ScholarPubMed
Ingolia, T. D. and Craig, E. A. (1982). Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc. Natl. Acad. Sci. USA 79, 2360–4CrossRefGoogle ScholarPubMed
Inoue, T., Nakamura, S. and Osumi, N. (2000). Fate mapping of the mouse prosencephalic neural plate. Dev. Biol. 219, 373–83CrossRefGoogle ScholarPubMed
Ireland, M. and Mrock, L. (2000). Differentiation of chick lens epithelial cells: involvement of the epidermal growth factor receptor and endogenous ligand. Invest. Ophthalmol. Vis. Sci. 41, 183–90Google ScholarPubMed
Ireland, M. E., Goebel, D. J., Maisel, H., Kiner, D. and Poosch, M. S. (1997). Quantification and regulation of mRNAs encoding beaded filament proteins in the chick lens. Curr. Eye Res. 16, 838–46CrossRefGoogle ScholarPubMed
Ireland, M. E. and Jacks, L. A. (1989). Initial characterization of lens beta-adrenergic receptors. Invest. Ophthalmol. Vis. Sci. 30, 2190–4Google ScholarPubMed
Ireland, M. E., Klettner, C. and Nunlee, W. (1993). Cyclic AMP-mediated phosphorylation and insolubilization of a 49-kDa cytoskeletal marker protein of lens fiber terminal differentiation. Exp. Eye Res. 56, 453–61CrossRefGoogle ScholarPubMed
Ireland, M. E. and Shanbom, S. (1991). Lens beta-adrenergic receptors: functional coupling to adenylate cyclase and photoaffinity labeling. Invest. Ophthalmol. Vis. Sci. 32, 541–8Google ScholarPubMed
Ireland, M. E., Wallace, P., Sandilands, A., Poosch, M., Kasper, M., Graw, J., Liu, A., Maisel, H., Prescott, A. R., Hutcheson, A. M., et al. (2000). Up-regulation of novel intermediate filament proteins in primary fiber cells: an indicator of all vertebrate lens fiber differentiation?Anat. Rec. 258, 25–333.0.CO;2-C>CrossRefGoogle ScholarPubMed
Irvine, A. D. and McLean, W. H. I. (1999). Human keratin diseases: increasing spectrum of disease and subtlety of phenotype-genotype correlation. Brit. J. Dermatol. 140, 815–28CrossRefGoogle ScholarPubMed
Irwin, M., Marin, M. C., Phillips, A. C., Seelan, R. S., Smith, D. I., Liu, W., Flores, E. R., Tsai, K. Y., Jacks, T., Vousden, K. H., et al. (2000). Role for the p53 homologue p73 in E2F-1—induced apoptosis. Nature 407, 645–8Google ScholarPubMed
Isaacs, H. V. (1997). New perspectives on the role of the fibroblast growth factor family in amphibian development. Cell Mol. Life Sci. 53, 350–61CrossRefGoogle ScholarPubMed
Ishibashi, T., Hatae, T. and Inomata, H. (1994). Collagen types in human posterior capsule opacification. J. Cat. Refract. Surg. 20, 643–6CrossRefGoogle ScholarPubMed
Ishibashi, S. and Yasuda, K. (2001). Distinct roles of maf genes during Xenopus lens development. Mech. Dev. 101, 155–66CrossRefGoogle ScholarPubMed
Ishida-Yamamoto, A., McGrath, J. A., Chapman, S. J., Leigh, I. M., Lane, E. B. and Eady, R. A. (1991). Epidermolysis bullosa simplex (Dowling-Meara type) is a genetic disease characterized by an abnormal keratin-filament network involving keratins K5 and K14. J. Invest. Dermatol. 97, 959–68CrossRefGoogle ScholarPubMed
Ishizaki, Y., Jacobson, M. D. and Raff, M. C. (1998). A role for caspases in lens fiber differentiation. J. Cell Biol. 140, 153–8CrossRefGoogle ScholarPubMed
Ishizaki, Y., Voyvodic, J. T., Burne, J. F. and Raff, M. C. (1993). Control of lens epithelial survival. J. Cell Biol. 121, 899–908CrossRefGoogle Scholar
Itaranta, P., Lin, Y., Perasaari, J., Roel, G., Destree, O. and Vainio, S. (2002). Wnt-6 is expressed in the ureter bud and induces kidney tubule development in vitro. Genesis 32, 259–68CrossRefGoogle ScholarPubMed
Ito, M., Hayashi, T., Kuroiwa, A. and Okamoto, M. (1999). Lens formation by pigmented epithelial cell reaggregate from dorsal iris implanted into limb blastema in the adult newt. Dev. Growth Differ. 41, 429–40CrossRefGoogle ScholarPubMed
Itoh, Y. (1976). Enhancement of differentiation of lens and pigment cells by ascorbic acid in cultures of neural retinal cells of chick embryos. Dev. Biol. 54, 157–62CrossRefGoogle ScholarPubMed
Itoh, Y. and Eguchi, G. (1982). Characterization of various cell states in transdifferentiation of pigmented epithelial cells. Dev. Growth Differ. 24, 369 (B38)Google Scholar
Itoh, Y. and Eguchi, G. (1986a). In vitro analysis of cellular metaplasia from pigmented epithelial cells to lens phenotypes: a unique model system for studying cellular and molecular mechanisms of “transdifferentiation.”Dev. Biol. 115, 353–62CrossRefGoogle Scholar
Itoh, Y. and Eguchi, G. (1986b). Enhancement of expression of lens phenotype in cultures of pigmented epithelial cells by hyaluronidase in the presence of phenylthiourea. Cell Differ. 18, 173–82CrossRefGoogle Scholar
Ivashkiv, L. B., Liou, H. C., Kara, C. J., Lamph, W. W., Verma, I. M. and Glimcher, L. H. (1990). mXBP/CRE-BP2 and c-Jun form a complex which binds to the cyclic AMP, but not to the 12-O-tetradecanoylphorbol-13-acetate response element. Mol. Cell. Biol. 10, 1609–21CrossRefGoogle Scholar
Iwaki, A., Nagano, T., Nakagawa, M., Iwaki, T. and Fukumaki, Y. (1997). Identification and characterization of the gene encoding a new member of the alpha-crystallin/small hsp family, closely linked to the alphaB-crystallin gene in a head-to-head manner. Genomics 45, 386–94CrossRefGoogle Scholar
Iwaki, T., Kume-Iwaki, A., Liem, R. K. and Goldman, J. E. (1989). Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell 57, 71–8CrossRefGoogle ScholarPubMed
Iwaki, T., Wisniewski, T., Iwaki, A., Corbin, E., Tomokane, N., Tateishi, J. and Goldman, J. E. (1992). Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am. J. Pathol. 140, 345–56Google ScholarPubMed
Jacks, T., Fazeli, A., Schmitt, E. M., Bronson, R. T., Goodell, M. A. and Weinberg, R. A. (1992). Effects of an Rb mutation in the mouse. Nature 359, 295–300CrossRefGoogle Scholar
Jacobs, D. B., Ireland, M., Pickett, T., Maisel, H. and Grunberger, G. (1992). Functional characterization of insulin and IGF-1 receptors in chicken lens epithelial and fiber cells. Curr. Eye Res. 11, 1137–45CrossRefGoogle ScholarPubMed
Jacobson, A. (1958). The roles of neural and non-neural tissues in lens induction. J. Exp. Zool. 139, 525–57CrossRefGoogle Scholar
Jacobson, A. (1966). Inductive processes in embryonic development. Science 152, 25–52CrossRefGoogle ScholarPubMed
Jacobson, A. and Sater, A. (1988). Features of embryonic induction. Development 104, 341–58Google ScholarPubMed
Jacobson, A. G. (1963a). The determination and positioning of the nose, lens and ear. I. Interactions within the ectoderm, and between the ectoderm and underlying tissues. J. Exp. Zool. 154, 273–84CrossRefGoogle Scholar
Jacobson, A. G. (1963b). The determination and positioning of the nose, lens and ear. II. The role of the endoderm. J. Exp. Zool. 154, 285–92CrossRefGoogle Scholar
Jacobson, A. G. (1963c). The determination and positioning of the nose, lens and ear. III. Effects of reversing the antero-posterior axis of epidermis, neural plate and neural fold. J. Exp. Zool. 154, 293–303CrossRefGoogle Scholar
Jacobson, M. and Hirose, G. (1978). Origin of the retina from both sides of the embryonic brain: a contribution to the problem of crossing at the optic chiasma. Science 202, 637–39CrossRefGoogle ScholarPubMed
Jakob, U., Gaestel, M., Engel, K. and Buchner, J. (1993). Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517–20Google ScholarPubMed
Jakobiec, F. A., ed. (1982). Ocular Anatomy, Embryology, and Teratology. Philadelphia: Harper & Row
Jakobs, P. M., Hess, J. F., FitzGerald, P. G., Kramer, P., Weleber, R. G. and Litt, M. (2000). Autosomal-dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene bFSP2. Am. J. Hum. Genet. 66, 1432–6CrossRefGoogle ScholarPubMed
Janicke, R. U., Ng, P., Sprengart, M. L. and Porter, A. G. (1998). Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem. 273, 15540–5CrossRefGoogle ScholarPubMed
Jansen, G., Groenen, P., Bachner, D., Jap, P. H. K., Coerwinkel, M., Oerlemans, F., Vandenbroek, W., Gohlsch, B., Pette, D., Plomp, J. J., et al. (1996). Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat. Genet. 13, 316–24CrossRefGoogle ScholarPubMed
Janssens, H. and Gehring, W. J. (1999). Isolation and characterization of drosocrystallin, a lens crystallin gene of Drosophila melanogaster. Dev. Biol. 207, 204–14CrossRefGoogle ScholarPubMed
Jasoni, C., Hendrickson, A. and Roelink, H. (1999). Analysis of chicken Wnt-13 expression demonstrates coincidence with cell division in the developing eye and is consistent with a role in induction. Dev. Dyn. 215, 215–243.0.CO;2-W>CrossRefGoogle ScholarPubMed
Jean, D., Ewan, K. and Gruss, P. (1998). Molecular regulators involved in vertebrate eye development. Mech. Dev. 76, 3–18CrossRefGoogle ScholarPubMed
Ji, X., Rosenvinge, E. C. v., Johnson, W. W., Tomarev, S. I., Piatigorsky, J., Armstrong, R. N. and Gilliland, G. L. (1995). Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods. Biochemistry 34, 5317–28CrossRefGoogle ScholarPubMed
Jiang, Z., Chung, S. K., Zhou, C., Cammarata, P. R. and Chung, S. S. M. (2000). Overexpression of Na+-dependent myo-inositol transporter gene in mouse lens led to congenital cataract. Invest. Ophthalmol. Vis. Sci. 41, 1467–72Google ScholarPubMed
Jiang, J. X. and Goodenough, D. A. (1996). Heteromeric connexons in lens gap junction channels. Proc. Natl. Acad. Sci. USA. 93, 1287–91CrossRefGoogle ScholarPubMed
Jiang, J. X. and Goodenough, D. A. (1998). Phosphorylation of lens fiber connexins in lens organ cultures. Eur. J. Biochem. 255, 37–44CrossRefGoogle ScholarPubMed
Jiang, J. X., White, T. W., Goodenough, D. A. and Paul, D. L. (1994). Molecular cloning and functional characterization of chick lens fiber connexin45.6. Mol. Biol. Cell 5, 363–73CrossRefGoogle Scholar
Jiang, R. and Grabel, L. B. (1995). Function and differential regulation of the alpha 6 integrin isoforms during parietal endoderm differentiation. Exp. Cell Res. 217, 195–204CrossRefGoogle ScholarPubMed
Jimenez-Asensio, J. and Garland, D. (2000). A lens glutathione S-transferase, class mu, with thiol-specific antioxidant activity. Exp. Eye Res. 71, 255–65CrossRefGoogle ScholarPubMed
Jin, S., Shimizu, M., Balasubramanyam, A. and Epstein, H. F. (2000). Myotonic dystrophy protein kinase (DMPK) induces actin cytoskeletal reorganization and apoptotic-like blebbing in lens cells. Cell Motil. Cytoskeleton 45, 133–483.0.CO;2-S>CrossRefGoogle ScholarPubMed
Johnson, M. C. and Beebe, D. C. (1984). Growth, synthesis and regional specialization of the embryonic chicken lens capsule. Exp. Eye Res. 38, 579–92CrossRefGoogle ScholarPubMed
Jones, S. E., Jomary, C., Grist, J., Makwana, J. and Neal, M. J. (1999). Retinal expression of γ-crystallins in the mouse. Invest. Opthalmol. Vis. Sci. 40, 3017–20Google ScholarPubMed
Jordan, T., Hanson, I., Zaletayev, D., Hodgson, S., Prosser, J., Seawright, A., Hastie, N. and Heyningen, V. (1992). The human PAX6 gene is mutated in two patients with aniridia. Nat. Genet. 1, 328–32CrossRefGoogle ScholarPubMed
Joshi, H. C. (1994). Microtubule organising centres and γ-tubulin. Curr. Opin. Cell Biol. 6, 55–62CrossRefGoogle Scholar
Jurand, A. and Yamada, T. (1967). Elimination of mitochondria during Wolffian lens degeneration. Exp. Cell Res. 46, 636–8CrossRefGoogle Scholar
Kaestner, K. H., Knochel, W. and Martinez, D. E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14, 142–6Google ScholarPubMed
Kaiser, H. W., O'Keefe, E. and Bennett, V. (1989). Adducin: Ca++-dependent association with sites of cell-cell contact. J. Cell Biol. 109, 557–69CrossRefGoogle ScholarPubMed
Kaiser-Kupfer, M. I., Freidlin, V., Datiles, M. B., Edwards, P. A., Sherman, J. L., Parry, D., McCain, L. M. and Eldridge, R. (1989). The association of posterior capsular lens opacities with bilateral acoustic neuromas in patients with neurofibromatosis type 2. Arch. Ophthalmol. 107, 541–4CrossRefGoogle ScholarPubMed
Kaltner, H. and Stiersdorfer, B. (1998). Animal lectins as cell adhesion molecules. Acta Anat. 161, 162–79CrossRefGoogle ScholarPubMed
Kamachi, Y. (1996). Involvement of SOX proteins in activation of crystallin genes and lens development [in Japanese]. Tanpakushitsu Kakusan Koso 41, 1113–23Google Scholar
Kamachi, Y., Cheah, K. S. E. and Kondoh, H. (1999). Mechanism of regulatory target selection by the SOX high-mobility group domain proteins as revealed by comparison of SOX1/2/3 and SOX9. Mol. Cell. Biol. 19, 107–20CrossRefGoogle ScholarPubMed
Kamachi, Y. and Kondoh, H. (1993). Overlapping positive and negative regulatory elements determine lens-specific activity of the δ1-crystallin enhancer. Mol. Cell. Biol. 13, 5206–15CrossRefGoogle Scholar
Kamachi, Y., Sockanathan, S., Liu, Q., Breitman, M., Lovell-Badge, R. and Kondoh, H. (1995). Involvement of SOX proteins in lens-specific activation of crystallin genes. EMBO J. 14, 3510–19Google ScholarPubMed
Kamachi, Y., Uchikawa, M., Collignon, J., Lovell-Badge, R. and Kondoh, H. (1998). Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 125, 2521–32Google ScholarPubMed
Kamachi, Y., Uchikawa, M. and Kondoh, H. (2000). Pairing SOX off with partners in the regulation of embryonic development. Trends Genet. 16, 182–7CrossRefGoogle ScholarPubMed
Kamachi, Y., Uchikawa, M., Tanouchi, A., Sekido, R. and Kondoh, H. (2001). Pax6 and SOX2 form a co-DNA—binding partner complex that regulates initiation of lens development. Genes Dev. 15, 1272–86CrossRefGoogle Scholar
Kamijo, T., Zindy, F., Roussel, M. F., Quelle, D. E., Downing, J. R., Ashmun, R. A., Grosveld, G. and Sherr, C. J. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–59CrossRefGoogle ScholarPubMed
Kammandel, B., Chowdhury, K., Stoykova, A., Aparicio, S., Brenner, S. and Gruss, P. (1999). Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Dev. Biol. 205, 79–97CrossRefGoogle ScholarPubMed
Kannabiran, C., Rogan, P. K., Olmos, L., Basti, S., Rao, G. N., Kaiser-Kupfer, M. and Hejtmancik, J. F. (1998). Autosomal dominant zonular cataract with sutural opacities is associated with a splice mutation in the betaA3/A1-crystallin gene. Mol. Vis. 4, 21Google ScholarPubMed
Kannan, R., Yi, J. R., Tang, D., Zlokovic, B. V. and Kaplowitz, N. (1996). Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium. Invest. Ophthalmol. Vis. Sci. 37, 2269–75Google ScholarPubMed
Kantorow, M., Becker, K., Sax, C. M., Ozato, K. and Piatigorsky, J. (1993a). Binding of tissue-specific forms of alpha A-CRYBP1 to their regulatory sequence in the mouse alpha A-crystallin-encoding gene: double-label immunoblotting of UV-crosslinked complexes. Gene 131, 159–65CrossRefGoogle Scholar
Kantorow, M., Cvekl, A., Sax, C. M. and Piatigorsky, J. (1993b). Protein-DNA interactions of the mouse alpha A-crystallin control regions: differences between expressing and non-expressing cells. J. Mol. Biol. 230, 425–35CrossRefGoogle Scholar
Kantorow, M., Horwitz, J. and Carper, D. (1998). Up-regulation of osteonectin/SPARC in age-related cataractous human lens epithelia. Mol. Vis. 4, 17Google ScholarPubMed
Kantorow, M., Horwitz, J., Sergeev, Y., Hejtmancik, J. F. and Piatigorsky, J. (1997). Extralenticular expression, cAMP-dependent kinase phosphorylation and autophosphorylation of βB2-crystallin. Invest. Opthalmol. Vis. Sci. 38, S205Google Scholar
Kantorow, M., Horwitz, J., Boekel, M. A., Jong, W. W. and Piatigorsky, J. (1995). Conversion from oligomers to tetramers enhances autophosphorylation by lens alpha A-crystallin: specificity between alpha A- and alpha B-crystallin subunits. J. Biol. Chem. 270, 17215–20CrossRefGoogle ScholarPubMed
Kantorow, M., Huang, Q., Yang, K. J., Sage, E. H., Magabo, K. S., Miller, K. M. and Horwitz, J. (2000). Increased expression of osteonectin/SPARC mRNA and protein in age-related human cataracts and spatial expression in the normal human lens. Mol. Vis. 6, 24–9Google ScholarPubMed
Kantorow, M. and Piatigorsky, J. (1994). Alpha-crystallin/small heat shock protein has autokinase activity. Proc. Natl. Acad. Sci. USA 91, 3112–6CrossRefGoogle ScholarPubMed
Kappelhof, J. P. and Vrensen, G. F. (1992). The pathology of after- cataract: a minireview. Acta Ophthalmol. Suppl. 205, 13–24Google Scholar
Kappelhof, J. P., Vrensen, G. F., Jong, P. T., Pameyer, J. and Willekens, B. (1986). An ultrastructural study of Elschnig's pearls in the pseudophakic eye. Am. J. Ophthalmol. 101, 58–69CrossRefGoogle ScholarPubMed
Karasaki, S. (1964). An electron microscopic study of Wolffian lens regeneration in the adult newt. J. Ultrastruc. Res. 11, 246–73CrossRefGoogle ScholarPubMed
Karim, A. K. A., Jacob, T. J. C. and Thompson, G. M. (1987). The human anterior lens capsule: cell density, morphology and mitotic index in normal and cataractous lenses. Exp. Eye Res. 45, 865–74CrossRefGoogle ScholarPubMed
Karkinen-Jääskeläinen, M. (1978a). Permissive and directive interactions in lens induction. J. Embryol. Exp. Morph. 44, 167–79Google Scholar
Karkinen-Jääskeläinen, M. (1978b). Transfilter lens induction in avian embryos. Differentiation 12, 31–7CrossRefGoogle Scholar
Karpinski, B. A., Morle, G. D., Huggenvik, J., Uhler, M. D. and Leiden, J. M. (1992). Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc. Natl. Acad. Sci. USA 89, 4820–4CrossRefGoogle ScholarPubMed
Kasper, M., Moll, R., Stosiek, P. and Karsten, U. (1988). Patterns of cytokeratin and vimentin expression in the human eye. Histochemistry 89, 369–77CrossRefGoogle ScholarPubMed
Kasper, M. and Viebahn, C. (1992). Cytokeratin expression and early lens development. Anat. Embryol (Berlin) 186, 285–90CrossRefGoogle ScholarPubMed
Kastner, P., Grondona, J. M., Mark, M., Gansmuller, A., LeMeur, M., Decimo, D., Vonesch, J. L., Dolle, P. and Chambon, P. (1994). Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78, 987–1003CrossRefGoogle ScholarPubMed
Kataoka, K., Fujiwara, K. T., Noda, M. and Nishizawa, M. (1994a). MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol. Cell. Biol. 14, 7581–91CrossRefGoogle Scholar
Kataoka, K., Han, S. I., Shioda, S., Hirai, M., Nishizawa, M. and Handa, H. (2002). MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene. J. Biol. Chem. 277, 49903–10CrossRefGoogle ScholarPubMed
Kataoka, K., Nishizawa, M. and Kawai, S. (1993). Structure-function analysis of the maf oncogene product, a member of the b-Zip protein family. J. Virol. 67, 2133–41Google ScholarPubMed
Kataoka, K., Noda, M. and Nishizawa, M. (1994b). Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol. Cell. Biol. 14, 700–12CrossRefGoogle Scholar
Katar, M., Alcala, J. and Maisel, H. (1993). NCAM of the mammalian lens. Curr. Eye Res. 12, 191–6CrossRefGoogle ScholarPubMed
Kato, J., Matsushime, H., Hiebert, S. W., Ewen, M. E. and Sherr, C. J. (1993). Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 7, 331–42Google ScholarPubMed
Kato, K., Shinohara, H., Kurobe, N., Goto, S., Inaguma, Y. and Ohshima, K. (1991). Immunoreactive alpha A crystallin in rat non-lenticular tissues detected with a sensitive immunoassay method. Biochim. Biophys. Acta 1080, 173–80CrossRefGoogle ScholarPubMed
Katoh, A. and Yashida, K. (1973). Delta crystallin synthesis during chick lens differentiation. Exp. Eye Res. 15, 353–60CrossRefGoogle ScholarPubMed
Kaufmann, E. and Knochel, W. (1996). Five years on the wings of fork head. Mech. Dev. 57, 3–20CrossRefGoogle ScholarPubMed
Kaulen, P., Kahie, G., Keller, K. and Wlooensak, J. (1991). Autoradiographic mapping of the glucose transporter with cytochalasin B in the mammalian eye. Invest. Ophthalmol. Vis. Sci. 32, 1903–11Google ScholarPubMed
Kaverina, I., Rottner, K. and Small, J. V. (1998). Targeting, capture, and stabilization of microtubules at early focal adhesions. J. Cell Biol. 142, 181–90CrossRefGoogle ScholarPubMed
Kawakami, K., Ohto, H., Takizawa, T. and Saito, T. (1996). Identification and expression of Six family genes in mouse retina. FEBS Lett. 393, 259–63CrossRefGoogle ScholarPubMed
Kawakami, K., Sato, S., Ozaki, H. and Ikeda, K. (2000). Six family genes-structure and function as transcription factors and their roles in development. BioEssays 22, 616–263.0.CO;2-R>CrossRefGoogle ScholarPubMed
Kawauchi, S., Takahashi, S., Nakajima, O., Ogino, H., Morita, M., Nishizawa, M., Yasuda, K. and Yamamoto, M. (1999). Regulation of lens fiber cell differentiation by transcription factor c-Maf. J. Biol. Chem. 274, 19254–60CrossRefGoogle ScholarPubMed
Kelley, P., Sado, Y. and Duncan, M. (2002). Collagen IV in the developing lens capsule. Matrix Biol. 21, 415–23CrossRefGoogle ScholarPubMed
Kenworthy, A. K., Magid, A. D., Oliver, T. N. and McIntosh, T. J. (1994). Colloid osmotic pressure of steer alpha- and beta-crystallins: possible functional roles for lens crystallin distribution and structural diversity. Exp. Eye Res. 59, 11–30CrossRefGoogle ScholarPubMed
Kenyon, K. L., Moody, S. A. and Jamrich, M. (1999). A novel forkhead gene mediates early steps during Xenopus lens formation. Development 126, 5107–16Google ScholarPubMed
Kern, H. L. and Ho, C. K. (1973). Localization and specificity of the transport system for sugars in the calf lens. Exp. Eye Res. 15, 751–65CrossRefGoogle ScholarPubMed
Kerppola, T. K. and Curran, T. (1994a). A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene 9, 3149–58Google Scholar
Kerppola, T. K. and Curran, T. (1994b). Maf and Nrl can bind to AP-1 sites and form heterodimers with Fos and Jun. Oncogene 9, 675–84Google Scholar
Kibbelaar, M. A., Ramaekers, F. C., Ringens, P. J., Selten-Versteegen, A. M., Poels, L. G., Jap, P. H., Rossum, A. L., Feltkamp, T. E. and Bloemendal, H. (1980). Is actin in eye lens a possible factor in visual accommodation?Nature 285, 506–8CrossRefGoogle Scholar
Kibbelaar, M. A., Selten-Versteegen, A. M., Dunia, I., Benedetti, E. L. and Bloemendal, H. (1979). Actin in mammalian lens. Eur. J. Biochem. 95, 543–9CrossRefGoogle ScholarPubMed
Kim, A. S., Anderson, S. A., Rubenstein, J. L., Lowenstein, D. H. and Pleasure, S. J. (2001). Pax-6 regulates expression of SFRP-2 and Wnt-7b in the developing CNS. J. Neurosc. 21, RC132CrossRefGoogle ScholarPubMed
Kim, J. I., Li, T. S., Ho, I. C., Grusby, M. J. and Glimcher, L. H. (1999). Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc. Natl. Acad. Sci. USA 96, 3781–5CrossRefGoogle ScholarPubMed
Kim, R. Y., Lietman, T., Piatigorsky, J. and Wistow, G. J. (1991). Structure and expression of the duck α-enolase/τ-crystallin—encoding gene. Gene 103, 193–200CrossRefGoogle ScholarPubMed
King, H. (1905). Experimental studies on the eye of the frog embryo. Arch. Entw.-Mech. 19, 85–107Google Scholar
King, R. W., Jackson, P. K. and Kirschner, M. W. (1994). Mitosis in transition. Cell 79, 563–71CrossRefGoogle ScholarPubMed
Kioussi, C., O'Connell, S., St-Onge, L., Treier, M., Gleiberman, A. S., Gruss, P. and Rosenfeld, M. G. (1999). Pax6 is essential for establishing ventral-dorsal cell boundaries in pituitary gland development. Proc. Natl. Acad. Sci. USA 96, 14378–82CrossRefGoogle ScholarPubMed
Kirsch, T., Koyama, E., Liu, M., Golub, E. E. and Pacifici, M. (2002). Syndecan-3 is a selective regulator of chondrocyte proliferation. J. Biol. Chem. 277, 42171–7CrossRefGoogle ScholarPubMed
Kishi, M., Mizuseki, K., Sasai, N., Yamazaki, H., Shiota, K., Nakanishi, S. and Sasai, Y. (2000). Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm. Development 127, 791–800Google ScholarPubMed
Kistler, J. and Bullivant, S. (1987). Protein processing in lens intercellular junctions: cleavage of MP70 to MP38. Invest. Ophthalmol. Vis. Sci. 28, 1687–92Google ScholarPubMed
Kistler, J. and Bullivant, S. (1988). Dissociation of lens fibre gap junctions releases MP70. J. Cell Sci. 91, 415–21Google ScholarPubMed
Kistler, J., Christie, D. and Bullivant, S. (1988). Homologies between gap junction proteins in lens, heart, and liver. Nature 331, 721–3CrossRefGoogle ScholarPubMed
Kistler, J., Goldie, K., Donaldson, P. and Engel, A. (1994). Reconstitution of native-type noncrystalline lens fiber gap junctions from isolated hemichannels. J. Cell Biol. 126, 1047–58CrossRefGoogle ScholarPubMed
Kistler, J., Kirkland, B. and Bullivant, S. (1985). Identification of a 70,000-D protein in lens membrane junctional domains. J. Cell Biol. 101, 28–35CrossRefGoogle ScholarPubMed
Kistler, J., Schaller, J. and Sigrist, H. (1990). MP38 contains the membrane-embedded domain of the lens fiber gap junction protein MP70. J. Biol. Chem. 265, 13357–61Google ScholarPubMed
Kleiman, N. J., Chiesa, R., Gawinowicz-Kolks, M. A. and Spector, A. (1988). Phosphorylation of β-crystallin B2 (βBp) in the bovine lens. J. Biol. Chem. 263, 14978–83Google Scholar
Klein, M., Moore, B., Rothstein, H., Hayden, J., Gordon, S., Holsclaw, D. and Sobrin, J. (1989). A comparison of growth regulation of mammalian with amphibian lens epithelium. Lens Eye Toxic Res. 6, 675–86Google ScholarPubMed
Kleinjan, D. A., Seawright, A., Schedl, A., Quinlan, R. A., Danes, S. and Heyningen, V. (2001). Aniridia-associated translocations, DNase hypersensitivity, sequence comparison and transgenic analysis redefine the functional domain of PAX6. Hum. Mol. Genet. 10, 2049–59CrossRefGoogle ScholarPubMed
Klement, J. F., Cvekl, A. and Piatigorsky, J. (1993). Functional elements DE2A, DE2B, and DE1A and the TATA box are required for activity of the chicken alpha A-crystallin gene in transfected lens epithelial cells. J. Biol. Chem. 268, 6777–84Google ScholarPubMed
Klement, J. F., Wawrousek, E. F. and Piatigorsky, J. (1989). Tissue-specific expression of the chicken αA-crystallin gene in cultured lens epithelia and transgenic mice. J. Biol. Chem. 264, 19837–44Google Scholar
Klemenz, R., Frohli, E., Steiger, R. H., Schafer, R. and Aoyama, A. (1991). Alpha B-crystallin is a small heat shock protein. Proc. Natl. Acad. Sci. USA 88, 3652–6CrossRefGoogle ScholarPubMed
Klesert, T. R., Cho, D. H., Clark, J. I., Maylie, J., Adelman, J., Snider, L., Yuen, E. C., Soriano, P. and Tapscott, S. J. (2000). Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nat. Genet. 25, 105–9CrossRefGoogle ScholarPubMed
Klok, E., Lubsen, N. H., Chamberlain, C. G. and McAvoy, J. W. (1998). Induction and maintenance of differentiation of rat lens epithelium by FGF-2, insulin and IGF-1. Exp. Eye Res. 67, 425–31CrossRefGoogle ScholarPubMed
Klok, E. J., Genesen, S. T., Civil, A., Schoenmakers, J. G. and Lubsen, N. H. (1998). Regulation of expression within a gene family: the case of the rat gammaB- and gammaD-crystallin promoters. J. Biol. Chem. 273, 17206–15CrossRefGoogle ScholarPubMed
Klopp, N., Favor, J., Loster, J., Lutz, R. B., Neuhauser-Klaus, A., Prescott, A., Pretsch, W., Quinlan, R. A., Sandilands, A., Vrensen, G. F., et al. (1998). Three murine cataract mutants (Cat2) are defective in different gamma-crystallin genes. Genomics 52, 152–8CrossRefGoogle ScholarPubMed
Klopp, N., Loster, J. and Graw, J. (2001). Characterization of a 1-bp deletion in the gammaE-crystallin gene leading to a nuclear and zonular cataract in the mouse [in process citation]. Invest. Ophthalmol. Vis. Sci. 42, 183–7Google Scholar
Kluwe, L., Pulst, S. M., Koppen, J. and Mautner, V. F. (1995). A 163-bp deletion in the neurofibromatosis 2 (NF2) gene associated with variant phenotypes [corrected; published erratum appears in Hum. Genet.96, 254]. Hum. Genet. 95, 443–6CrossRefGoogle Scholar
Kobayashi, M., Toyama, R., Takeda, H., Dawid, I. B. and Kawakami, K. (1998). Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125, 2973–82Google ScholarPubMed
Koch, C. and Nasmyth, K. (1994). Cell cycle regulated transcription in yeast. Curr. Opin. Cell Biol. 6, 451–9CrossRefGoogle Scholar
Koch, P. J., Goldschmidt, M. D., Zimbelmann, R., Troyanovsky, R. and Franke, W. W. (1992). Complexity and expression patterns of the desmosomal cadherins. Proc. Natl. Acad. Sci. USA 89, 353–7CrossRefGoogle ScholarPubMed
Kodama, R. and Eguchi, G. (1994). The loss of gap junctional cell-to-cell communication is coupled with dedifferentiation of retinal pigment epithelial cells in the course of transdifferentiation into lens. Int. J. Dev. Biol. 38, 357–64Google ScholarPubMed
Koff, A., Giordano, A., Desai, D., Yamashita, K., Harper, J. W., Elledge, S., Nishimoto, T., Morgan, D. O., Franza, B. R. and Roberts, J. M. (1992). Formation and activation of cyclin E—cdk2 complex during the G1 phase of the human cell cycle. Science 257, 1689–94CrossRefGoogle ScholarPubMed
Kohno, T., Sorgente, N., Ishibashi, T., Goodnight, R. and Ryan, S. J. (1987). Immunofluorescent studies of fibronectin and laminin in the human eye. Invest. Ophthalmol. Vis. Sci. 28, 506–14Google ScholarPubMed
Kok, A., Lovicu, F. J., Chamberlain, C. G. and McAvoy, J. W. (2002). Influence of platelet-derived growth factor on lens epithelial cell proliferation and differentiation. Growth Factors 20, 27–34CrossRefGoogle ScholarPubMed
Kolkova, K., Novitskaya, V., Pedersen, N., Berezin, V. and Bock, E. (2000). Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway. J. Neurosci. 20, 2238–46CrossRefGoogle ScholarPubMed
Komori, N., Usukura, J. and Matsumoto, H. (1992). Drosocrystallin, a major 52 kDa glycoprotein of the Drosophila melanogaster corneal lens: purification, biochemical characterization, and subcellular localization. J. Cell Sci. 102, 191–201Google Scholar
Kondoh, H. (1999). Transcription factors for lens development assessed in vivo. Curr. Opin. Genet. Dev. 9, 301–8CrossRefGoogle ScholarPubMed
Kondoh, H., Araki, I., Yasuda, K., Matsubasa, T. and Mori, M. (1991). Expression of the chicken “delta 2-crystallin” gene in mouse cells: evidence for encoding of argininosuccinate lyase. Gene 99, 267–71Google Scholar
Kondoh, H., Katoh, K., Takahashi, Y., Fujisawa, H., Yokoyama, M., Kimura, S., Katsuki, M., Saito, M., Nomura, T., Hiramoto, Y., et al. (1987). Specific expression of the chicken δ-crystallin gene in the lens and the pyramidal neurons of the piriform cortex in transgenic mice. Dev. Biol. 120, 177–85CrossRefGoogle ScholarPubMed
Kondoh, H., Uchikawa, M., Yoda, H., Takeda, H., Furutani-Seiki, M. and Karlstrom, R. O. (2000). Zebrafish mutations in gli-mediated hedgehog signaling lead to lens transdifferentiation from the adenohypophysis anlage. Mech. Dev. 96, 165–74CrossRefGoogle ScholarPubMed
Kondoh, H., Yasuda, K. and Okada, T. S. (1983). Tissue-specific expression of a cloned chick delta-crystallin gene in mouse cells. Nature 301, 440–2CrossRefGoogle ScholarPubMed
Konig, N., Zampighi, G. A. and Butler, P. J. (1997). Characterisation of the major intrinsic protein (MIP) from bovine lens fibre membranes by electron microscopy and hydrodynamics. J. Mol. Biol. 265, 590–602CrossRefGoogle ScholarPubMed
Korchynskyi, O., Landstrom, M., Stoika, R., Funa, K., Heldin, C. H., ten Dijke, P. and Souchelnytskyi, S. (1999). Expression of Smad proteins in human colorectal cancer. Int. J. Cancer 82, 197–2023.0.CO;2-V>CrossRefGoogle ScholarPubMed
Koretz, J. F., Doss, E. W. and LaButti, J. N. (1998). Environmental factors influencing the chaperone-like activity of alpha-crystallin. Int. J. Biol. Macromol. 22, 283–94CrossRefGoogle ScholarPubMed
Koroma, B. M., Yang, J. M. and Sundin, O. H. (1997). The Pax-6 homeobox gene is expressed throughout the corneal and conjunctival epithelia. Invest. Ophthalmol. Vis. Sci. 38, 108–20Google ScholarPubMed
Kosaka, M., Kodama, R. and Eguchi, G. (1998). In vitro culture system for iris-pigmented epithelial cells for molecular analysis of transdifferentiation. Exp. Cell Res. 245, 245–51CrossRefGoogle ScholarPubMed
Koster, R. W., Kuhnlein, R. P. and Wittbrodt, J. (2000). Ectopic Sox3 activity elicits sensory placode formation. Mech. Dev. 95, 175–87CrossRefGoogle ScholarPubMed
Kostrouch, Z., Kostrouchova, M., Love, W., Jannini, E., Piatigorsky, J. and Rall, J. E. (1998). Retinoic acid X receptor in the diploblast, Tripedalia cystophora. Proc. Natl. Acad. Sci. USA 95, 13442–7CrossRefGoogle ScholarPubMed
Kowalik, T. F., DeGregori, J., Schwarz, J. K. and Nevins, J. R. (1995). E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J. Virol. 69, 2491–500Google ScholarPubMed
Kozmik, Z., Czerny, T. and Busslinger, M. (1997). Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8. EMBO J. 16, 6793–803CrossRefGoogle ScholarPubMed
Kozmik, Z., Daube, M., Frei, E., Norman, B., Kos, L., Dishaw, L. J., Noll, M. and Piatigorsky, J. (2003). Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev. Cell. 5, 773–85CrossRefGoogle ScholarPubMed
Kralova, J., Czerny, T., Spanielova, H., Ratajova, V., and Kozmik, Z. (2002). Complex regulatory element within the gammaE- and gammaF-crystallin enhancers mediates Pax6 regulation and is required for induction by retinoic acid. Gene 286, 271–82CrossRefGoogle ScholarPubMed
Kramer, P. L., LaMorticella, D., Schilling, K., Billingslea, A. M., Weleber, R. G. and Litt, M. (2000). A new locus for autosomal dominant congenital cataracts maps to chromosome 3. Invest. Ophthalmol. Vis. Sci. 41, 36–9Google ScholarPubMed
Krek, W. G., Ewan, M., Shirodkar, S., Arany, Z. Z., Kaelin, W. G. and Livingston, D. (1994). Negative regulation of the growth-promoting transcription factor E2F-1 by stably bound cyclin A—dependent protein kinase. Cell 78, 161–72CrossRefGoogle ScholarPubMed
Krek, W. G., Xu, G. and Livingston, D. M. (1995). Cyclin A kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 83, 1149–58CrossRefGoogle ScholarPubMed
Kreutziger, G. O. (1968). Freeze etching of intercellular junctions of mouse liver. In Proceedings of the 26th Annual Meeting of the Electron Microscopy Society of America, ed. C. J. Arcenaux. New Orleans and Baton Rouge: Clator's Publishing Division, pp. 234–5
Kubota, Y., Kleinman, H. K., Martin, G. R. and Lavoley, T. J. (1988). Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-1 structures. J. Cell Biol. 107, 1589–98CrossRefGoogle ScholarPubMed
Kulyk, W. M., Zalik, S. E. and Dimitrov, E. (1987). Hyaluronic acid production and hyaluronidase activity in the newt iris during lens regeneration. Exp. Cell Res. 172, 180–91CrossRefGoogle ScholarPubMed
Kumagai, A. and Dunphy, W. G. (1992). Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70, 139–51CrossRefGoogle ScholarPubMed
Kumagai, A. K., Glasgow, B. J. and Pardridge, W. M. (1994). GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. Invest. Ophthalmol. Vis. Sci. 35, 2887–94Google ScholarPubMed
Kumar, L. V., Ramakrishna, T. and Rao, C. M. (1999). Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J. Biol. Chem. 274, 24137–41CrossRefGoogle ScholarPubMed
Kumar, N. M., Jarvis, L. J., TenBroek, E. and Louis, C. F. (1993). Cloning and expression of a major rat lens membrane protein, MP20. Exp. Eye Res. 56, 35–43CrossRefGoogle Scholar
Kumar, J. P. and Moses, K. (2001). EGF receptor and notch signaling act upstream of eyeless/Pax6 to control eye specification. Cell 104, 687–97CrossRefGoogle ScholarPubMed
Kurosaka, D., Kato, K., Nagamoto, T. and Negishi, K. (1995). Growth factors influence contractility and alpha-smooth muscle actin expression in bovine lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 36, 1701–8Google ScholarPubMed
Kurosaka, D. and Nagamoto, T. (1994). Inhibitory effect of TGF-beta 2 in human aqueous humor on bovine lens epithelial cell proliferation. Invest. Ophthalmol. Vis. Sci. 35, 3408–12Google ScholarPubMed
Kushmerick, C., Rice, S. J., Baldo, G. J., Haspel, H. C. and Mathias, R. T. (1995). Ion, water and neutral solute transport in Xenopus oocytes expressing frog lens MIP. Exp. Eye Res. 61, 351–62CrossRefGoogle ScholarPubMed
Kuszak, J. R. (1995a). Development of lens sutures. Prog. Ret. Eye Res. 14, 567–91CrossRefGoogle Scholar
Kuszak, J. R. (1995b). Ultrastructure of epithelial and fiber cells in the crystalline lens. In International Review of Cytology: A Survey of Cell Biology, ed. K. W. Jeon. San Diego: Academic Press, pp. 305–50
Kuszak, J. R. (1997). A re-examination of primate lens epithelial cell size, density and structure as a function of development, growth and age. Nova Acta Leopoldina NF 75, 45–66Google Scholar
Kuszak, J., Alcala, J. and Maisel, H. (1980). The surface morphology of embryonic adult chick lens-fiber cells. Am. J. Anat. 159, 395–410CrossRefGoogle ScholarPubMed
Kuszak, J. R., Al-Ghoul, K. J. and Costello, M. J. (1998). Pathology of age-related human cataracts. In Duane's Clinical Ophthalmology, ed. W. Tasman and E. A. Jaeger. Philadelphia: Lippincott, Williams & Wilkins, pp. 1–14
Kuszak, J. R., Bertram, B. A. and Rae, J. L. (1986). The ordered structure of the crystalline lens. In Cell and Developmental Biology of the Eye: Development of Order in the Visual System, ed. S. R. Hilfer and J. B. Sheffield. New York: Springer-Verlag, pp. 35–60CrossRef
Kuszak, J. R. and Brown, H. G. (1994). Embryology and anatomy of the lens. In Principles and practice of ophthalmology: Basic Sciences, ed. D. M. Albert and F. A. Jakobiec. Philadelphia: Saunders, pp. 82–96
Kuszak, J. R. and Costello, M. J. (2003). Embryology and anatomy of human lenses. In Duane's Clinical Ophthalmology (on CD-ROM), ed. W. Tasman and E. A. Jaeger. Philadelphia: Lippincott, Williams & Wilkins
Kuszak, J. R., Ennesser, C. A., Bertram, B. A., Imherr-McMannis, S., Jones-Rufer, L. S. and Weinstein, R. S. (1989). The contribution of cell-to-cell fusion to the ordered structure of the crystalline lens. Lens Eye Toxic Res. 6, 639–73Google ScholarPubMed
Kuszak, J. R., Ennesser, C. A., Umlas, J., Macsai-Kaplan, M. S. and Weinstein, R. S. (1988). The ultrastructure of fiber cells in primate lenses: a model for studying membrane senescence. J. Ultrastruct. Mol. Struct. Res. 100, 60–74CrossRefGoogle ScholarPubMed
Kuszak, J. R., Macsai-Kaplan, M., Bloom, K. J., Rae, J. L. and Weinstein, R. S. (1985). Cell-to-cell fusion of lens fiber cells in situ: correlative light, scanning electron microscopic and freeze-fracture evidence. J. Ultrastruct. Res. 93, 144–60CrossRefGoogle Scholar
Kuszak, J. R., Maisel, H. and Harding, C. V. (1978). Gap junctions of chick lens fiber cells. Exp. Eye Res. 27, 495–8CrossRefGoogle ScholarPubMed
Kuszak, J. R., Novak, L. A. and Brown, H. G. (1995). An ultrastructural analysis of the epithelial-fiber interface (EFI) in primate lenses. Exp. Eye Res. 61, 579–97CrossRefGoogle Scholar
Kuszak, J. R., Peterson, K. L. and Brown, H. G. (1996). Electron microscopic observations of the crystalline lens. Microsc. Res. Tech. 33, 441–793.0.CO;2-O>CrossRefGoogle ScholarPubMed
Kuszak, J. R. and Rae, J. L. (1982). Scanning electron microscopy of the frog lens. Exp. Eye Res. 35, 499–519CrossRefGoogle ScholarPubMed
Kuszak, J. R., Rae, J. L., Pauli, B. U. and Weinstein, R. S. (1982). Rotary replication of lens gap junctions. J. Ultrastruct. Res. 81, 249–56CrossRefGoogle Scholar
Kuszak, J. R., Shek, Y. H., Carney, K. C. and Rae, J. L. (1985). A correlative freeze-etch and electrophysiological study of communicating junctions in crystalline lenses. Curr. Eye Res. 4, 1145–53CrossRefGoogle ScholarPubMed
Kuszak, J. R., Sivak, J. G. and Weerheim, J. A. (1991). Lens optical quality is a direct function of lens sutural architecture. Invest. Ophthalmol. Visual Sci. 32, 2119–29Google ScholarPubMed
Kuwabara, T. (1968). Microtubules in the lens. Arch. Ophthalmol. 79, 189–95CrossRefGoogle ScholarPubMed
Kuwabara, T. (1975). The maturation of the lens cell: a morphological study. Exp. Eye Res. 20, 427–43CrossRefGoogle Scholar
Kuwabara, T. and Imaizumi, M. (1974). Denucleation process of the lens. Invest. Ophthalmol. Vis. Sci. 13, 973–81Google Scholar
Kuwada, S. K. and Li, X. (2000). Integrin alpha5/beta1 mediates fibronectin-dependent epithelial cell proliferation through epidermal growth factor receptor activation [in process citation]. Mol. Biol. Cell 11, 2485–96CrossRefGoogle Scholar
Lacy, K. R., Jackson, P. K. and Stearns, T. (1999). Cyclin-dependent kinase control of centrosome duplication. Proc. Natl. Acad. Sci. USA 96, 2817–22CrossRefGoogle Scholar
Lagunowich, L. A. and Grunwald, G. B. (1989). Expression of calcium-dependent cell adhesion during ocular development: a biochemical, histochemical and functional analysis. Dev. Biol. 135, 158–71CrossRefGoogle ScholarPubMed
Lagunowich, L. A. and Grunwald, G. B. (1991). Tissue and age-specificity of post-translational modifications of N-cadherin during chick embryo development. Differentiation 47, 19–27CrossRefGoogle ScholarPubMed
Lagutin, O., Zhu, C. Q. C., Furuta, Y., Rowitch, D. H., McMahon, A. P. and Oliver, G. (2001). Six3 promotes the formation of ectopic optic vesicle—like structures in mouse embryos. Dev. Dyn. 221, 342–9CrossRefGoogle ScholarPubMed
Lahoz, E. G., Liegeois, N. J., Zhang, P., Engelman, J. A., Horner, J., Silverman, A., Burde, R., Roussel, M. F., Sherr, C. J., Elledge, S. J., et al. (1999). Cyclin D- and E-dependent kinases and the p57KIP2 inhibitor: cooperative interactions in vivo. Mol. Cell Biol. 19, 353–63CrossRefGoogle Scholar
Lampi, K. J., Ma, Z., Hanson, S. R., Azuma, M., Shih, M., Shearer, T. R., Smith, D. L., Smith, J. B. and David, L. L. (1998). Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry. Exp. Eye Res. 67, 31–43CrossRefGoogle ScholarPubMed
Lampi, K. J., Ma, Z., Shih, M., Shearer, T. R., Smith, J. B., Smith, D. L. and David, L. L. (1997). Sequence analysis of βA3, βB3 and βA4 crystallins completes the identification of the major proteins in young human lens. J. Biol. Chem. 272, 2268–75CrossRefGoogle ScholarPubMed
Lampi, K. J., Shih, M., Ueda, Y., Shearer, T. R. and David, L. L. (2002). Lens proteomics: analysis of rat crystallin sequences and two-dimensional electrophoresis map. Invest. Opthalmol. Vis. Sci. 43, 216–24Google ScholarPubMed
Land, M. F. (1988). The optics of animal eyes. Contemp. Phys. 29, 435–55CrossRefGoogle Scholar
Landel, C. P., Zhao, J., Bok, D. and Evans, G. A. (1988). Lens-specific expression of recombinant ricin induces developmental defects in the eyes of transgenic mice. Genes Dev. 2, 1168–78CrossRefGoogle ScholarPubMed
Lang, R. A. (1999). Which factors stimulate lens fiber cell differentiation in vivo?Invest. Ophthalmol. Vis. Sci. 40, 3075–8Google ScholarPubMed
Lawson, K. A., Meneses, J. J. and Pedersen, R. A. (1991). Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911Google ScholarPubMed
Lazarides, E. (1980). Intermediate filaments as mechanical integrators of cellular space. Nature 283, 249–56CrossRefGoogle ScholarPubMed
Le, A. C. and Musil, L. S. (2001). FGF signaling in chick lens development. Dev. Biol. 233, 394–411CrossRefGoogle ScholarPubMed
Lecoin, L., Sii-Felice, K., Pouponnot, C., Eychene, A. and Felder-Schmittbuhl, M. P. (2004). Comparison of maf gene expression patterns during chick embryo development. Gene Expr. Patterns 4, 35–46CrossRefGoogle ScholarPubMed
LeCron, W. (1907). Experiments on the origin and differentiation of the lens in Amblystoma. Am. J. Anat. 6, 245–57CrossRefGoogle Scholar
Douarin, N. (1969). Particularités du noyau interphasique chez la caille japonique (Coturnix coturnix japonica): utilasation de ces particularités comme “marquage biologique” dans les recherches sur les interactions tissulaires et les migrations cellulaires au cours de l'ontogenèse. Bull. Biol. Fr. Belg. 103, 435–52Google Scholar
Lee, A., Fischer, R. S. and Fowler, V. M. (2000). Stabilization and remodeling of the membrane skeleton during lens fiber cell differentiation and maturation. Dev. Dyn. 217, 257–703.0.CO;2-5>CrossRefGoogle ScholarPubMed
Lee, A. Y. W., Chung, S. K. and Chung, S. S. M. (1995). Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc. Natl. Acad. Sci. USA 92, 2780–4CrossRefGoogle ScholarPubMed
Lee, A., Morrow, J. and Fowler, V. (2001). Caspase remodeling of the spectrin membrane skeleton during lens development and aging. J. Biol. Chem. 276, 20735–42CrossRefGoogle ScholarPubMed
Lee, D. C., Gonzalez, P. and Wistow, G. (1994). Zeta-crystallin: a lens-specific promoter and the gene recruitment of an enzyme as a crystallin. J. Mol. Biol. 236, 669–78CrossRefGoogle ScholarPubMed
Lee, E. H. and Joo, C. K. (1999). Role of transforming growth factor-beta in transdifferentiation and fibrosis of lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 40, 2025–32Google ScholarPubMed
Lee, E. H., Seomun, Y., Hwang, K., Kim, J., Kim, J. and Joo, C. (2000). Overexpression of the transforming growth factor-beta—inducible gene betais-h3 in anterior polar cataracts. Invest. Ophthalmol. Vis. Sci. 41, 1840–5Google ScholarPubMed
Lee, E. Y., Chang, C. Y., Hu, N., Wang, Y. C., Lai, C. C., Herrup, K., Lee, W. H. and Bradley, A. (1992). Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–94CrossRefGoogle ScholarPubMed
Lee, G. J., Roseman, A. M., Saibil, H. R. and Vierling, E. (1997). A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO. J. 16, 659–71CrossRefGoogle Scholar
Lee, M. D., King, L. S. and Agre, P. (1998). Aquaporin water channels in eye and other tissues. Curr. Topics Membr. 45, 105–34Google Scholar
Lee, M.-H., Williams, B. O., Mulligan, G., Mukai, S., Bronson, R. T., Dyson, N., Harlow, E. and Jacks, T. (1996). Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev. 10, 1621–32CrossRefGoogle ScholarPubMed
Lee, M. M., Fink, B. D. and Grunwald, G. B. (1997). Evidence that tyrosine phosphorylation regulates N-cadherin turnover during retinal development. Dev. Genet. 20, 224–343.0.CO;2-9>CrossRefGoogle ScholarPubMed
Lee, W.-H., Bookstein, R., Hong, F., Young, L.-J., Shew, J.-Y. and Lee, E. Y.-H. P. (1987). Human retinoblastoma susceptibility gene: cloning, identification and sequence. Science 235, 1394–9CrossRefGoogle Scholar
Leenders, W. P., Genesen, S. T., Schoenmakers, J. G., Zoelen, E. J. and Lubsen, N. H. (1997). Synergism between temporally distinct growth factors: bFGF, insulin and lens cell differentiation. Mech. Dev. 67, 193–201CrossRefGoogle ScholarPubMed
Leimeister, C., Bach, A. and Gessler, M. (1998). Developmental expression patterns of mouse sFRP genes encoding members of the secreted frizzled related protein family. Mech. Dev. 75, 29–42CrossRefGoogle ScholarPubMed
Lengler, J., Krausz, E., Tomarev, S., Prescott, A., Quinlan, R. A. and Graw, J. (2001). Antagonistic action of Six3 and Prox1 at the γ-crystallin promoter. Nucleic Acids Res. 29, 515–26CrossRefGoogle ScholarPubMed
Leone, G., DeGregori, J., Sears, R., Jakoi, L. and Nevins, J. R. (1997). Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387, 422–6CrossRefGoogle ScholarPubMed
Leong, L., Menko, A. S. and Grunwald, G. B. (2000). Differential expression of N- and B-cadherin during lens development. Invest. Ophthalmol. Vis. Sci. 41, 3503–10Google ScholarPubMed
Lewis, G. P., Erickson, P. A., Kaska, D. D. and Fisher, S. K. (1988). An immunocytochemical comparison of Müller cells and astrocytes in the cat retina. Exp. Eye Res. 47, 839–53CrossRefGoogle ScholarPubMed
Lewis, K. E., Drossopoulou, O., Paton, I. R., Morice, D. R., Robertson, K. E., Burt, D. W., Ingham, P. W. and Tickle, C. (1999). Expression of ptc and gli genes in talpid3 suggests bifurcation in Shh pathway. Development 125, 2397–407Google Scholar
Lewis, S. A. and Donaldson, P. J. (1990). Ion channels and cell volume regulation: chaos in an organized system. NIPS 5, 112–19Google Scholar
Lewis, W. (1904). Experimental studies on the development of the eye in amphibia. I. On the origin of the lens. Rana palustris. Am. J. Anat. 3, 505–36CrossRefGoogle Scholar
Lewis, W. H. (1909). The experimental production of cyclopia in the fish embryo (Fundulus heteroclitus). Anat. Rec. 3, 175–81CrossRefGoogle Scholar
Li, H. S., Yang, J. M., Jacobson, R. D., Pasko, D. and Sundin, O. (1994). Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev. Biol. 162, 181–94CrossRefGoogle Scholar
Li, W. C., Kuszak, J. R., Dunn, K., Wang, R.-R., Ma, W., Wang, G.-M., Spector, A., Leib, M., Cotliar, A. M., Weiss, M., et al. (1995). Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals. J. Cell Biol. 130, 169–81CrossRefGoogle ScholarPubMed
Li, X., Cvekl, A., Bassnett, S. and Piatigorsky, J. (1997). Lens-preferred activity of chicken δ1- and δ2-crystallin enhancers in transgenic mice and evidence for retinoic acid—responsive regulation of the δ1-crystallin gene. Dev. Genet. 20, 258–663.0.CO;2-6>CrossRefGoogle Scholar
Li, X., Zelenka, P. S. and Piatigorsky, J. (1993). Differential expression of the two delta-crystallin genes in lens and non-lens tissues: shift favoring delta 2 expression from embryonic to adult chickens. Dev. Dyn. 196, 114–23CrossRefGoogle ScholarPubMed
Liao, G. and Gundersen, G. G. (1998). Kinesin is a candidate for cross-bridging microtubules and intermediate filaments: selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 273, 9797–803CrossRefGoogle ScholarPubMed
Liegeois, N. J., Horner, J. W. and DePinho, R. A. (1996). Lens complementation system for the genetic analysis of growth, differentiation, and apoptosis in vivo. Proc. Natl. Acad. Sci. USA 93, 1303–7CrossRefGoogle ScholarPubMed
Lieska, N., Shao, D., Kriho, V. and Yang, H. Y. (1991). Expression and distribution of cytoskeletal IFAP-300kD as an index of lens cell differentiation. Curr. Eye Res. 10, 1165–74CrossRefGoogle ScholarPubMed
Lillien, L. and Wancio, D. (1998). Changes in epidermal growth factor receptor expression and competence to generate glia regulate timing and choice of differentiation in the retina. Mol. Cell. Neurosci. 10, 296–308CrossRefGoogle ScholarPubMed
Lim, D. J., Rubenstein, A. E., Evans, D. G., Jacks, T., Seizinger, B. G., Baser, M. E., Beebe, D., Brackmann, D. E., Chiocca, E. A., Fehon, R. G., et al. (2000). Advances in neurofibromatosis 2 (NF2): a workshop report. J. Neurogenet. 14, 63–106CrossRefGoogle ScholarPubMed
Lin, J. S., Eckert, R., Kistler, J. and Donaldson, P. J. (1998). Spatial differences in gap junction gating in the lens are a consequence of connexin cleavage. Eur. J. Cell Biol. 76, 246–50Google ScholarPubMed
Lin, J. S., Fitzgerald, S., Dong, Y., Knight, C., Donaldson, P. J. and Kistler, J. (1997). Processing of the gap junction protein connexin50 in the ocular lens is accomplished by calpain. Eur. J. Cell Biol. 73, 141–9Google ScholarPubMed
Liou, W. (1990). Whole-mount preparations of mouse lens epithelium for the fluorescent cytological study of actin. J. Microsc. 157, 239–45CrossRefGoogle ScholarPubMed
Litt, M., Carrero-Valenzuela, R., LaMorticella, D. M., Schultz, D. W., Mitchell, T. N., Kramer, P. and Maumenee, I. H. (1997). Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human β-crystallin gene CRYBB2. Hum. Mol. Genet. 6, 665–8CrossRefGoogle ScholarPubMed
Litt, M., Kramer, P., LaMorticella, D. M., Murphey, W., Lovrien, E. W. and Weleber, R. G. (1998). Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum. Mol. Genet. 7, 471–4CrossRefGoogle ScholarPubMed
Liu, D., Matzuk, M. M., Sung, W. K., Guo, Q., Wang, P. and Wolgemuth, D. J. (1998). Cyclin A1 is required for meiosis in the male mouse. Nat. Genet. 20, 377–80CrossRefGoogle ScholarPubMed
Liu, J., Chamberlain, C. G. and McAvoy, J. W. (1996). IGF enhancement of FGF-induced fiber differentiation and DNA synthesis in lens explants. Exp. Eye Res. 63, 621–9CrossRefGoogle Scholar
Liu, J., Hales, A. M., Chamberlain, C. G. and McAvoy, J. W. (1994). Induction of cataract-like changes in rat lens epithelial explants by transforming growth factor beta. Invest. Ophthalmol. Vis. Sci. 35, 388–401Google ScholarPubMed
Liu, Q., Ji, X., Breitman, M. L., Hitchcock, P. F. and Swaroop, A. (1996). Expression of the bZIP transcription factor gene Nrl in the developing nervous system. Oncogene 12, 207–11Google ScholarPubMed
Liu, X., Zou, H., Slaughter, C. and Wang, X. (1997). DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175–84CrossRefGoogle ScholarPubMed
Liu, Y. and Zacksenhaus, E. (2000). E2F1 mediates ectopic proliferation and stage-specific p53-dependent apoptosis but not aberrant differentiation in the ocular lens of Rb deficient fetuses. Oncogene 19, 6065–73CrossRefGoogle Scholar
Lo, W. (1988). Adherens junctions in the ocular lens of various species: ultrastructural analysis with an improved fixation. Cell Tissue Res. 254, 31–40CrossRefGoogle ScholarPubMed
Lo, W. K. and Harding, C. V. (1983). Tight junctions in the lens epithelia of human and frog: freeze-fracture and protein tracer studies. Invest. Ophthalmol. Vis. Sci. 24, 396–402Google ScholarPubMed
Lo, W. K. and Harding, C. V. (1984). Square arrays and their role in ridge formation in human lens fibers. J. Ultrastruct. Res. 86, 228–45CrossRefGoogle ScholarPubMed
Lo, W. K. and Harding, C. V. (1986). Structure and distribution of gap junctions in lens epithelium and fiber cells. Cell Tissue Res. 244, 253–63CrossRefGoogle ScholarPubMed
Lo, W. K., Shaw, A. P., Paulsen, D. F. and Mills, A. (2000). Spatiotemporal distribution of zonulae adherens and associated actin bundles in both epithelium and fiber cells during chicken lens development. Exp. Eye Res. 71, 45–55CrossRefGoogle ScholarPubMed
Lo, W. K., Shaw, A. P. and Wen, X. J. (1997). Actin filament bundles in cortical fiber cells of the rat lens. Exp. Eye Res. 65, 691–701CrossRefGoogle ScholarPubMed
Lo, W. K. and Wen, X. J. (1999). Microtubule polarity and molecular motors associated with organelle/proteins transport during lens differentiation. Invest. Ophthalmol. Vis. Sci. 40, S881Google Scholar
Lobsiger, C. S., Magyar, J. P., Taylor, V., Wulf, P., Welcher, A. A., Program, A. E. and Suter, U. (1996). Identification and characterization of a cDNA and the structural gene encoding the mouse epithelial membrane protein-1. Genomics 36, 379–87CrossRefGoogle ScholarPubMed
Lohka, M. J., Hayes, M. K. and Maller, J. L. (1988). Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Natl. Acad. Sci. USA 85, 3009–13CrossRefGoogle ScholarPubMed
Lohnes, D., Kastner, P., Dierich, A., Mark, M., LeMeur, M. and Chambon, P. (1993). Function of retinoic acid receptor gamma in the mouse. Cell 73, 643–58CrossRefGoogle ScholarPubMed
Lohnes, D., Mark, M., Mendelsohn, C., Dolle, P., Dierich, A., Gorry, P., Gansmuller, A. and Chambon, P. (1994). Function of the retinoic acid receptors (RARs) during development. I. Craniofacial and skeletal abnormalities in RAR double mutants. Development 120, 2723–48Google ScholarPubMed
Lois, N., Dawson, R., McKinnon, A. D. and Forrester, J. V. (2003). A new model of posterior capsule opacification in rodents. Invest. Ophthalmol. Vis. Sci. 44(8), 3450–7CrossRefGoogle ScholarPubMed
Lok, S., Stevens, W., Breitman, M. L. and Tsui, L. C. (1989). Multiple regulatory elements of the murine gamma 2-crystallin promoter. Nucleic Acids Res. 17, 3563–82CrossRefGoogle ScholarPubMed
Lonchampt, M. O., Laurent, M., Courtois, Y., Trenchev, P. and Hughes, R. C. (1976). Microtubules and microfilaments of bovine lens epithelial cells: electron microscopy and immunofluorescence staining with specific antibodies. Exp. Eye Res. 23, 505–18CrossRefGoogle ScholarPubMed
Loosli, F., Winkler, S. and Wittbrodt, J. (1999). Six3 overexpression initiates the formation of ectopic retina. Genes Dev. 13, 649–54CrossRefGoogle ScholarPubMed
Louis, C. F., Hur, K. C., Galvan, A. C., TenBroek, E. M., Jarvis, L. J., Eccleston, E. D. and Howard, J. B. (1989). Identification of an 18,000-dalton protein in mammalian lens fiber cell membranes. J. Biol. Chem. 264, 19967–73Google ScholarPubMed
Lovicu, F. J., Chamberlain, C. G. and McAvoy, J. W. (1995). Differential effects of aqueous and vitreous on fiber differentiation and extracellular matrix accumulation in lens epithelial explants. Invest. Ophthalmol. Vis. Sci. 36, 1459–69Google ScholarPubMed
Lovicu, F. J., Iongh, R. U. and McAvoy, J. W. (1997). Expression of FGF-1 and FGF-2 mRNA during lens morphogenesis, differentiation and growth. Curr. Eye Res. 16, 222–30CrossRefGoogle Scholar
Lovicu, F. J. and McAvoy, J. W. (1989). Structural analysis of lens epithelial explants induced to differentiate into fibers by fibroblast growth factor (FGF). Exp. Eye Res. 49, 479–94CrossRefGoogle Scholar
Lovicu, F. J. and McAvoy, J. W. (1993). Localization of acidic fibroblast growth factor, basic fibroblast growth factor, and heparan sulphate proteoglycan in rat lens: implications for lens polarity and growth patterns. Invest. Ophthalmol. Vis. Sci. 34, 3355–65Google ScholarPubMed
Lovicu, F. J. and McAvoy, J. W. (1999). Spatial and temporal expression of p57(KIP2) during murine lens development. Mech. Dev. 86, 165–9CrossRefGoogle ScholarPubMed
Lovicu, F. J. and McAvoy, J. W. (2001). FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signaling. Development 128, 5075–84Google Scholar
Lovicu, F. J. and Overbeek, P. A. (1998). Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice. Development 125, 3365–77Google ScholarPubMed
Lovicu, F. J., Schulz, M. W., Hales, A. M., Vincent, L. N., Overbeek, P. A., Chamberlain, C. G. and McAvoy, J. W. (2002). TGFbeta induces morphological and molecular changes similar to human anterior subcapsular cataract. Br. J. Ophthalmol. 86, 220–6CrossRefGoogle ScholarPubMed
Lu, S. F., Pan, F. M. and Chiou, S. H. (1996a). Characterization of gamma-crystallin from the eye lens of bullfrog: complexity of gamma-crystallin multigene family as revealed by sequence comparison among different amphibian species. J. Protein Chem. 15, 103–13CrossRefGoogle Scholar
Lu, S. F., Pan, F. M. and Chiou, S. H. (1996b). Sequence analysis of four acidic beta-crystallin subunits of amphibian lenses: phylogenetic comparison between beta- and gamma-crystallins. Biochem. Biophys. Res. Commun. 221, 219–28CrossRefGoogle Scholar
Lubsen, N. H., Aarts, H. J. M. and Schoenmakers, J. G. G. (1988). The evolution of lenticular proteins: the β- and γ-crystallin super gene family. Prog. Biophys. Mol. Biol. 51, 47–76CrossRefGoogle ScholarPubMed
Lucas, V. A. and Zigler, J. S. (1987). Transmembrane glucose carriers in the monkey lens: quantitation and regional distribution as determined by cytochalasin B binding to lens membranes. Invest. Ophthalmol. Vis. Sci. 28, 1404–12Google ScholarPubMed
Lucas, V. A. and Zigler, J. S. (1988). Identification of the monkey lens glucose transporter by photoaffinity labelling with cytochalasin B. Invest. Ophthalmol. Vis. Sci. 29, 630–5Google ScholarPubMed
Lukas, J., Parry, D., Aagaard, L., Mann, D. J., Bartkova, J., Strauss, M., Peters, G. and Bartek, J. (1995). Retinoblastoma-protein—dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375, 503–6CrossRefGoogle ScholarPubMed
Lukas, J. T., Herzinger, K., Hansen, M. C., Moroni, D., Resnitzky, K., Helin, K., Reed, S. I. and Bartek, J. (1997). Cyclin E—induced S phase without activation of the pRb/E2F pathway. Genes Dev. 11, 1479–92CrossRefGoogle ScholarPubMed
Lundberg, A. S. and Weinberg, R. A. (1999). Control of the cell cycle and apoptosis. Eur. J. Cancer 35, 1886–94CrossRefGoogle ScholarPubMed
Luo, R. X., Postigo, A. A. and Dean, D. C. (1998). Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–73CrossRefGoogle ScholarPubMed
Lux, S. E., Tse, W. T., Menninger, J. C., John, K. M., Harris, P., Shalev, O., Chilcote, R. R., Marchesi, S. L., Watkins, P. C., Bennett, V., et al. (1990). Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8. Nature 345, 736–9CrossRefGoogle ScholarPubMed
Ma, T., Tine, B. A., Wei, Y., Garrett, M. D., Nelson, D., Adams, P. D., Wang, J., Qin, J., Chow, L. T. and Harper, J. W. (2000). Cell cycle-regulated phosphorylation of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes Dev. 14, 2298–313CrossRefGoogle ScholarPubMed
Maandag, E. C., Valk, M., Vlaar, M., Feltkamp, C., O'Brien, J., Roon, M., Lugt, N., Berns, A. and te Riele, H. (1994). Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J. 13, 4260–8Google ScholarPubMed
Mackay, D., Ionides, A., Berry, V., Moore, A., Bhattacharya, S. and Shiels, A. (1997). A new locus for dominant “zonular pulverent” cataract, on chromosome 13. Am. J. Hum. Genet. 60, 1474–8CrossRefGoogle Scholar
Mackay, D., Ionides, A., Kibar, Z., Rouleau, G., Berry, V., Moore, A., Shiels, A. and Bhattacharya, S. (1999). Connexin46 mutations in autosomal dominant congenital cataract. Am. J. Hum. Genet. 64, 1357–64CrossRefGoogle ScholarPubMed
Macioce, P., Gandolfi, N., Leung, C. L., Chin, S. S., Malchiodi-Albedi, F., Ceccarini, M., Petrucci, T. C. and Liem, R. K. (1999). Characterization of NF-L and beta II Sigma1-spectrin interaction in live cells. Exp. Cell Res. 250, 142–54CrossRefGoogle Scholar
Mackic, J. B., Jinagouda, S., McComb, J. G., Weiss, M. H., Kannan, R., Kaplowitz, N. and Zlokovic, B. V. (1996). Transport of circulating glutathione at the basolateral side of the anterior lens epithelium: physiological importance and manipulations. Exp. Eye Res. 62, 29–37CrossRefGoogle Scholar
Macleod, K. F., Hu, Y. and Jacks, T. (1996). Loss of RB activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J. 15, 6178–88Google ScholarPubMed
Maden, M. (1997). Retinoic acid and its receptors in limb regeneration. Cell. Dev. Biol. 8, 445–52CrossRefGoogle ScholarPubMed
Magabo, K. S., Horwitz, J., Piatigorsky, J. and Kantorow, M. (2000). Expression of betaB(2)-crystallin mRNA and protein in retina, brain, and testis. Invest. Ophthalmol. Vis. Sci. 41, 3056–60Google ScholarPubMed
Magnaghi-Jaulin, L., Groisman, R., Naguibneva, I., Robin, P., Lorain, S., Villain, J. P., Troalen, F., Trouche, D. and Harel-Bellan, A. (1998). Retinoblastoma protein represses transcription by recruiting a histone deactylase. Nature 391, 601–5Google Scholar
Magnus, H. (1998). Ophthalmology of the ancients. In J. Hirschberg (Ed.), The History of Ophthalmology: The Monographs, Vol. 4, Part 1 (F. C. Blodi, Trans.). Bonn: Wayenborgh
Maillard, C., Malaval, L. and Delmas, P. D. (1992). Immunological screening of SPARC/osteonectin in nonmineralized tissues. Bone 13, 257–64CrossRefGoogle ScholarPubMed
Maisel, H. and Atreya, P. (1990). N-cadherin detected in the membrane fraction of lens fiber cells. Experientia 46, 222–3CrossRefGoogle ScholarPubMed
Maness, P. F., Beggs, H. E., Klinz, S. G. and Morse, W. R. (1996). Selective neural cell adhesion molecule signaling by Src family tyrosine kinases and tyrosine phosphatases. Perspect. Dev. Neurobiol. 4, 169–81Google ScholarPubMed
Mann, I. C., ed. (1928). The Development of the Human Eye. Cambridge: Cambridge University Press
Mann, I. (1950). The Development of the Human Eye. 2nd edition. Grune and Stratton, Inc. New York
Mann, I. C., ed. (1964). The Development of the Human Eye, 3rd ed. London: British Medical Association
Manns, M. and Fritzsch, B. (1991). The eye in the brain: retinoic acid effects morphogenesis of the eye and pathway selection of axons but not differentiation of the retina in Xenopus laevis. Neurosci. Lett. 127, 150–4CrossRefGoogle Scholar
Mansouri, A., Goudreau, G. and Gruss, P. (1999. Pax genes and their role in organogenesis. Cancer Res. 59 (Suppl), 1707–9Google ScholarPubMed
Mantych, G. J., Hageman, G. S. and Devaskar, S. U. (1993). Characterization of glucose transporter isoforms in the adult and developing human eye. Endocrinology 133, 600–7CrossRefGoogle ScholarPubMed
Marcantonio, J. M. and Vrensen, G. F. (1999). Cell biology of posterior capsular opacification. Eye 13, 484–8CrossRefGoogle ScholarPubMed
Mardon, G., Solomon, N. M. and Rubin, G. M. (1994). Dachshund encodes a nuclear protein required for normal eye and leg formation in Drosophila. Development 120, 3473–86Google Scholar
Marquardt, T., Ashery-Padan, R., Andrejewski, N., Scardigli, R., Guillemot, F. and Gruss, P. (2001). Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105, 43–55CrossRefGoogle ScholarPubMed
Martinez-Morales, J. R., Signore, M., Acampora, D., Simeone, A. and Bovolenta, P. (2001). Otx genes are required for tissue specification in the developing eye. Development 128, 2019–30Google ScholarPubMed
Maruno, K. A., Lovicu, F. J., Chamberlain, C. G. and McAvoy, J. W. (2002). Apoptosis is a feature of TGF beta—induced cataract. Clin. Exp. Optom. 85, 76–82CrossRefGoogle ScholarPubMed
Massague, J. (1998). TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753–91CrossRefGoogle ScholarPubMed
Masuda, A. and Eguchi, G. (1982). Effects of thioureas, inhibitors of melanogenesis on lens transdifferentiation of cultured chick embryonic retinal pigment cells. Dev. Growth Differ. 24, 589–99CrossRefGoogle Scholar
Masui, Y. and Markert, C. L. (1971). Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177, 129–45CrossRefGoogle ScholarPubMed
Mathers, P. H., Grinberg, A., Mahon, K. A. and Jamrich, M. (1997). The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–7CrossRefGoogle ScholarPubMed
Mathers, P. H. and Jamrich, M. (2000). Regulation of eye formation by the Rx and Pax6 homeobox genes. Cell. Mol. Life Sci. 57, 186–94CrossRefGoogle ScholarPubMed
Mathias, R. T. and Rae, J. L. (1985). Steady-state voltages in the frog lens. Curr. Eye Res. 4, 421–30CrossRefGoogle ScholarPubMed
Mathias, R. T., Rae, J. L. and Baldo, G. J. (1997). Physiological properties of the normal lens. Physiol. Rev. 77, 21–50CrossRefGoogle ScholarPubMed
Mathias, R. T., Rae, J. L. and Ebihara, L. and McCarthy, R. T. (1985). The localization of transport properties in the frog lens. Biophys. J. 48, 423–34CrossRefGoogle ScholarPubMed
Mathias, R. T., Rae, J. L. and Eisenberg, R. S. (1979). Electrical properties of structural components of the crystalline lens. Biophys. J. 25, 181–201CrossRefGoogle ScholarPubMed
Mathias, R. T., Rae, J. L. and Eisenberg, R. S. (1981). The lens as a nonuniform spherical syncytium. Biophys. J. 34, 61–83CrossRefGoogle ScholarPubMed
Mathias, R. T., Riquelme, G. and Rae, J. L. (1991). Cell to cell communication and pH in the frog lens. J. Gen. Physiol. 98, 1085–103CrossRefGoogle ScholarPubMed
Mathias, R. T., Sun, X., Gao, J., Baldo, G. J. and Kushmerick, C. (1999). Intercellular pH of the normal lens. Invest. Ophthalmol. Vis. Sci. 40, S885Google Scholar
Matsumoto, Y., Hayashi, K. and Nishida, E. (1999). Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9, 429–32CrossRefGoogle ScholarPubMed
Matsuo, I., Kitamura, M., Okazaki, K. and Yasuda, K. (1991). Binding of a factor to an enhancer element responsible for the tissue-specific expression of the chicken alpha A-crystallin gene. Development 113, 539–50Google Scholar
Matsuo, I., Kuratani, S., Kimura, C., Takeda, N. and Aizawa, S. (1995). Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev. 9, 2646–58CrossRefGoogle ScholarPubMed
Matsuo, I., Takeuchi, M. and Yasuda, K. (1992). Identification of the contact sites of a factor that interacts with motif I (alpha CE1) of the chicken alpha A-crystallin lens-specific enhancer. Biochem. Biophys. Res. Commun. 184, 24–30CrossRefGoogle ScholarPubMed
Matsuo, I. and Yasuda, K. (1992). The cooperative interaction between two motifs of an enhancer element of the chicken alpha A-crystallin gene, alpha CE1 and alpha CE2, confers lens-specific expression. Nucleic Acids Res. 20, 3701–12CrossRefGoogle ScholarPubMed
Matsuoka, S., Edwards, M. C., Bai, C., Parker, S., Zhang, P., Baldini, A., Harper, J. W. and Elledge, S. J. (1995). p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650–62CrossRefGoogle ScholarPubMed
Matsushima-Hibiya, Y., Nishi, S. and Sakai, M. (1998). Rat Maf-related factors: the specificities of DNA binding and heterodimer formation
Matsushime, H., Roussel, M. F., Ashmun, R. A. and Sherr, C. J. (1991). Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65, 701–13CrossRefGoogle ScholarPubMed
Mattern, R. M., Zuk, A. and Hay, E. D. (1993). Retinoic acid inhibits formation of mesenchyme from lens epithelium in collagen gels. Invest. Ophthalmol. Vis. Sci. 34, 2526–37Google ScholarPubMed
Mazaki, Y., Mochii, M., Kodama, R. and Eguchi, G. (1996). Role of integrins in differentiation of chick retinal pigmented epithelial cells in vitro. Dev. Growth Differ. 38, 429–37CrossRefGoogle Scholar
McAvoy, J. W. (1978). Cell division, cell elongation and the co-ordination of crystallin gene expression during lens morphogenesis in the rat. J. Embryol. Exp. Morphol. 45, 271–81Google ScholarPubMed
McAvoy, J. (1978a). Cell division, cell elongation and distribution of α, β, and γ-crystallins in the rat lens. J. Embryol. Exp. Morph. 44, 149–65Google Scholar
McAvoy, J. W. (1978b). Cell division, cell elongation and the co-ordination of crystallin gene expression during lens morphogenesis in the rat. J. Embryol. Exp. Morphol. 45, 271–81Google Scholar
McAvoy, J. W. (1980). Cytoplasmic processes interconnect lens placode and optic vesicle during eye morphogenesis. Exp. Eye Res. 31, 527–34CrossRefGoogle ScholarPubMed
McAvoy, J. (1988). Cell lineage analysis of lens epithelial cells induced to differentiate into fibres. Exp. Eye Res. 47, 869–83CrossRefGoogle ScholarPubMed
McAvoy, J. W. and Chamberlain, C. G. (1989). Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development 107, 221–8Google ScholarPubMed
McAvoy, J. W. and Chamberlain, C. G. (1990). Growth factors in the eye. Prog. Growth Factor Res. 2, 29–43CrossRefGoogle Scholar
McAvoy, J. W., Chamberlain, C. G., Iongh, R. U., Hales, A. M., Lovicu, F. J. (2000). Peter Bishop Lecture: growth factors in lens development and cataract: key roles for fibroblast growth factor and TGF-beta. Clin. Experiment. Ophthalmol. 28 133–9CrossRefGoogle Scholar
McAvoy, J. W., Chamberlain, C. G., Iongh, R. U., Hales, A. M. and Lovicu, F. J. (1999). Lens development. Eye 13, 425–37CrossRefGoogle ScholarPubMed
McAvoy, J. W., Chamberlain, C. G., Iongh, R. U., Hales, A. M. and Lovicu, F. J. (2000). Growth factors in lens development and cataract: key roles for fibroblast growth factor and TGF-β. Clin. Experiment. Ophthalmol. 28, 133–9CrossRefGoogle ScholarPubMed
McAvoy, J. W., Chamberlain, C. G., Iongh, R. U., Richardson, N. A. and Lovicu, F. J. (1991). The role of fibroblast growth factor in eye lens development. Ann. NY Acad. Sci. 638, 256–74CrossRefGoogle ScholarPubMed
McAvoy, J. W. and McDonald, J. (1984). Proliferation of lens epithelial explants in culture increases with age of donor rat. Curr. Eye Res. 3, 1151–3CrossRefGoogle ScholarPubMed
McAvoy, J. and Richardson, N. (1986). Nuclear pyknosis during lens fibre differentiation in epithelial explants. Curr. Eye Res. 5, 711–5CrossRefGoogle ScholarPubMed
McAvoy, J. W., Schulz, M. W., Maruno, K. A., Chamberlain, C. G. and Lovicu, F. J. (1998). TGF-β-induced cataract is characterised by epithelial-mesenchymal transition and apoptosis. IVOS 39, S7Google Scholar
McCaffery, P., Lee, M., Wagner, M. A., Sladek, N. E. and Drager, U. C. (1992). Asymmetrical retinoic acid synthesis in the dorsoventral axis of the retina. Development 115, 371–82Google ScholarPubMed
McCaffery, P., Posch, K. C., Napoli, J. L., Gudas, L. and Drager, U. C. (1993). Changing patterns of the retinoic acid system in the developing retina. Dev. Biol. 158, 390–9CrossRefGoogle Scholar
McCaffrey, J., Yamasaki, L., Dyson, N. J., Harolw, E. and Griep, A. E. (1999). Disruption of retinoblastoma protein family function by human papillomavirus type 16 E7 oncoprotein inhibits lens development in part throughE2F-1. Mol. Cell Biol. 19, 6458–68CrossRefGoogle Scholar
McCartney, B. M., Kulikauskas, R. M., LaJeunesse, D. R. and Fehon, R. G. (2000). The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development 127, 1315–24Google ScholarPubMed
McDermott, J. B., Cvekl, A. and Piatigorsky, J. (1996). Lens-specific expression of a chicken beta A3/A1-crystallin promoter fragment in transgenic mice. Biochem. Biophys. Res. Commun. 221, 559–64CrossRefGoogle ScholarPubMed
McDermott, J. B., Cvekl, A. and Piatigorsky, J. (1997). A complex enhancer of the chicken beta A3/A1-crystallin gene depends on an AP-1-CRE element for activity. Invest. Ophthalmol. Vis. Sci. 38, 951–9Google ScholarPubMed
McDermott, J. B., Peterson, C. A. and Piatigorsky, J. (1992). Structure and lens expression of the gene encoding chicken beta A3/A1-crystallin. Gene 117, 193–200CrossRefGoogle ScholarPubMed
McDevitt, D. S. and Brahma, S. K. (1982). Alpha-, beta- and gamma-crystallins in the regenerating lens of Notophthalmus viridescens.Exp. Eye Res. 34, 587–94CrossRefGoogle ScholarPubMed
McDevitt, D. S. and Brahma, S. K. (1990). Ontogeny and localization of alpha A- and alpha B-crystallins during regeneration of the eye lens. Exp. Eye Res. 51, 625–30CrossRefGoogle ScholarPubMed
McDevitt, D. S., Brahma, S. K., Courtois, Y. and Jeanny, J. C. (1997). Fibroblast growth factor receptors and regeneration of the eye lens. Dev. Dyn. 208, 220–63.0.CO;2-K>CrossRefGoogle ScholarPubMed
McKeehan, M. S. (1951). Cytological aspects of embryonic lens induction in the chick. J. Exp. Zool. 117, 31–64CrossRefGoogle Scholar
McKeehan, M. S. (1958). Induction of portions of the chick lens without contact with the optic cup. Anat. Rec. 132, 297–305CrossRefGoogle ScholarPubMed
McKeehan, M. S. (1961). The capacity for lens regeneration in the chick embryo. Anat. Rec.141–3Google Scholar
McNutt, N. S. and Weinstein, R. S. (1970). The ultrastructure of the nexus: a correlated thin-section and freeze-cleave study. J. Cell Biol. 47, 666–88CrossRefGoogle ScholarPubMed
Meads, T. and Schroer, T. A. (1995). Polarity and nucleation of microtubules in polarized epithelial cells. Cell Motil. Cytoskeleton 32, 273–88CrossRefGoogle ScholarPubMed
Meakin, S. O., Du, R. P., Tsui, L.-C. and Breitman, M. L. (1987). γ-Crystallins of the human eye lens: expression analysis of five members of the gene family. Mol. Cell. Biol. 7, 2671–9CrossRefGoogle ScholarPubMed
Medema, R. H., Herrera, R. E., Lam, F. and Weinberg, R. A. (1995). Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc. Natl. Acad. Sci. USA 92, 6289–93CrossRefGoogle ScholarPubMed
Meech, R., Kallunki, P., Edelman, G. M. and Jones, F. S. (1999). A binding site for homeodomain and Pax proteins is necessary for L1 cell adhesion molecule gene expression by Pax-6 and bone morphogenetic proteins. Proc. Natl. Acad. Sci. USA 96, 2420–5CrossRefGoogle ScholarPubMed
Mehta, P. D. and Lerman, S. (1972). Alpha crystallin subunits in the bovine lens. Can. J. Ophthalmol. 7, 218–22Google ScholarPubMed
Mencl, E. (1903). Ein Fall von beiderseitiger Augenlinsenausbildung wahrend der Abwesenheit von Augenblasen. Arch. Entw.-Mech. 16, 328–39Google Scholar
Mendelsohn, C., Lohnes, D., Decimo, D., Lufkin, T., LeMeur, M., Chambon, P. and Mark, M. (1994). Function of the retinoic acid receptors (RARs) during development. II. Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120, 2749–71Google ScholarPubMed
Menko, A. S. and Boettiger, D. (1988). Inhibition of chicken embryo lens differentiation and lens junction formation in culture by pp60v-src. Mol. Cell Biol. 8, 1414–20CrossRefGoogle ScholarPubMed
Menko, A. S., Klukas, K. A. and Johnson, R. G. (1984). Chicken embryo lens culture mimic differentiation in the lens. Dev. Biol. 103, 129–41CrossRefGoogle ScholarPubMed
Menko, A. S., Kreidberg, J. A., Ryan, T. T., Bockstaele, E. and Kukuruzinska, M. A. (2001). Loss of 31 integrin function results in an altered differentiation program in the mouse submandibular gland. Dev. Dyn. 220, 337–49CrossRefGoogle Scholar
Menko, A. S. and Philp, N. J. (1995). Beta 1 integrins in epithelial tissues: a unique distribution in the lens. Exp. Cell Res. 218, 516–21CrossRefGoogle Scholar
Menko, S., Philp, N., Veneziale, B. and Walker, J. (1998). Integrins and development: how might these receptors regulate differentiation of the lens. Ann. NY Acad. Sci. 842, 36–41CrossRefGoogle Scholar
Mercader, N., Leonardo, E., Azpiazu, N., Serrano, A., Morata, G., Martinez, C. and Torres, M. (1999). Conserved regulation of proximodistal limb axis development by Meis1/Hth. Nature 402, 425–9CrossRefGoogle ScholarPubMed
Mercader, N., Leonardo, E., Piedra, M. E., Martinez, A. C., Ros, M. A. and Torres, M. (2000). Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development 127, 3961–70Google ScholarPubMed
Merdes, A., Brunkener, M., Horstmann, H. and Georgatos, S. D. (1991). Filensin: a new vimentin-binding, polymerization-competent, and membrane-associated protein of the lens fiber cell. J. Cell Biol. 115, 397–410CrossRefGoogle ScholarPubMed
Merdes, A., Gounari, F. and Georgatos, S. D. (1993). The 47-kD lens-specific protein phakinin is a tailless intermediate filament protein and an assembly partner of filensin. J. Cell Biol. 123, 1507–16CrossRefGoogle ScholarPubMed
Merriman-Smith, R., Donaldson, P. J. and Kistler, J. (1999). Differential expression of facilitative glucose transporters GLUT1 and GLUT3 in the lens. Invest. Ophthalmol. Vis. Sci. 40, 3224–30Google ScholarPubMed
Merriman-Smith, R., Tunstall, M., Kistler, J., Donaldson, P., Housley, G. and Eckert, R. (1998). Expression profiles of P2-receptor isoforms P2Y(1) and P2Y(2) in the rat lens. Invest. Ophthalmol. Vis. Sci. 39, 2791–6Google Scholar
Mertens, C., Kuhn, C., Moll, R., Schwetlick, I. and Franke, W. W. (1999). Desmosomal plakophilin 2 as a differentiation marker in normal and malignant tissues. Differentiation 64, 277–90CrossRefGoogle ScholarPubMed
Meyerson, M., Enders, G. H., Wu, C. L., Su, L. K., Gorka, C., Nelson, C., Harlow, E. and Tsai, L. H. (1992). A family of human cdc2-related protein kinases. EMBO J. 11, 2909–17Google ScholarPubMed
Mikami, Y. (1941). Experimental analysis of the Wolffian lens-regeneration in the adult newt, Triturus pyrrhogaster. Jpn. J. Zool. 9, 269–302Google Scholar
Miki, H., Setou, M., Kaneshiro, K. and Hirokawa, N. (2001). All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA 98, 7004–11CrossRefGoogle ScholarPubMed
Mikulicich, A. G. and Young, R. W. (1963). Cell proliferation and displacement in the lens epithelium of young rats injected with tritiated thymidine. Invest. Ophthalmol. Vis. Sci. 2, 344–54Google ScholarPubMed
Millar, A., Hooper, A., Copeland, L., Cummings, F. and Prescott, A. (1997). Reorganisation of the microtubule cytoskeleton and centrosomal loss during lens fibre cell differentiation. Nova Acta Leopoldiana 299, 169–83Google Scholar
Miller, C. and Sassoon, D. A. (1998). Wnt-7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract. Development 125, 3201–11Google ScholarPubMed
Miller, D. L., Ortega, S., Bashayan, O., Basch, R. and Basilico, C. (2000). Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice [published erratum appears in Mol. Cell. Biol. 2000;20:3752]. Mol. Cell. Biol. 20, 2260–8CrossRefGoogle Scholar
Miller, T. and Goodenough, D. A. (1986). Evidence for two physiologically distinct gap junctions expressed by the chick lens epithelial cell. J. Cell Biol. 102, 194–9CrossRefGoogle ScholarPubMed
Milstone, L. M. and Piatigorsky, J. (1975). Rates of protein synthesis in explanted embryonic chick lens epithelia: differential stimulation of crystallin synthesis. Dev. Biol. 43, 91–100CrossRefGoogle ScholarPubMed
Milstone, L. M., Zelenka, P. and Piatigorsky, J. (1976). Delta-crystallin mRNA in chick lens cells: mRNA accumulates during differential stimulation of delta-crystallin synthesis in cultured cells. Dev. Biol. 48, 197–204CrossRefGoogle ScholarPubMed
Mitashov, V. I. (1966). Comparative study of lens regeneration in Cobitid fishes [in Russian]. Dokl. Akad. Nauk. SSSR. 170, 1439–42Google Scholar
Mitashov, V. I., Kazanskaya, O. V., Luk'yanov, S. V., Dolgilevich, S. M., Zarayskii, A. G., Znoiko, S. L. and Gause, G. G. (1992). Activation of genes coding for gamma-crystallins during lens regeneration in the newt. Monogr. Dev. Biol. 23, 139–45Google ScholarPubMed
Miyashita, T. and Reed, J. C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–9Google ScholarPubMed
Mizuno, N., Agata, K., Sawada, K., Mochii, M. and Eguchi, G. (2002). Expression of crystallin genes in embryonic and regenerating newt lenses. Dev. Growth Differ. 44(3), 251–6CrossRefGoogle ScholarPubMed
Mizuno, N., Mochii, M., Yamamoto, T. S., Takahashi, T. C., Eguchi, G. and Okada, T. S. (1999). Pax-6 and Prox 1 expression during lens regeneration from Cynops iris and Xenopus cornea: evidence for a genetic program common to embryonic lens development. Differentiation 65, 141–9CrossRefGoogle ScholarPubMed
Mizuno, S., Ikeda, K. and Hirabayashi, Y. (1995). Histochemical studies of the separation of the lens vesicle in the mouse. Jpn. J. Ophthalmol. 39, 340–6Google ScholarPubMed
Mizuno, T. (1972). Lens differentiation in vitro in the absence of optic vesicle in the epiblast of chick blastoderm under the influence of skin dermis. J. Embryol. Exp. Morph. 28, 117–32Google ScholarPubMed
Mizuno, T. (1973). Induction de cristallin in vitro dans l'ectoblaste de tronc presomptif ou dans l'aire opaque chez le blastoderme de poulet en l'absence de la vésicule optique. CR. Acad. Sc. Paris, Ser. D. 277, 1229–32Google Scholar
Mizuno, T. and Katoh, Y. (1972a). Présence de protéines de cristallin dans des cristallins induits in vitro en l'absence de la vésicule optique chez l'embryon de poulet. CR Acad. Sci. Paris, Ser. D. 274, 1086–8Google Scholar
Mizuno, T. and Katoh, Y. (1972b). Immunohistological studies on lens differentiation experimentally induced in vitro in the epiblast of chick blastoderm. Proc. Jpn. Acad. 48, 522–7Google Scholar
Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S. and Sasai, Y. (1998). Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125, 579–87Google ScholarPubMed
Mochii, M., Agata, K. and Eguchi, G. (1991). Complete sequence and expression of a cDNA encoding a chick 115-kDa melanosomal matrix protein. Pigment Cell Res. 4, 41–7CrossRefGoogle Scholar
Mochii, M., Agata, K., Kobayashi, H., Yamamoto, T. S. and Eguchi, G. (1988b). Expression of gene coding for a melanosomal matrix protein transcriptionally regulated in the transdifferentiation of chick embryo pigmented epithelial cells. Cell Differ. 24, 67–74CrossRefGoogle Scholar
Mochii, M., Takeuchi, T., Kodama, R., Agata, K. and Eguchi, G. (1988a). The expression of melanosomal matrix protein in the transdifferentiation of pigmented epithelial cells into lens cells. Cell Differ. 23, 133–42CrossRefGoogle Scholar
Modak, S. P. and Bollum, F. J. (1972). Detection and measurement of single-strand breaks in nuclear DNA in fixed lens sections. Exp. Cell Res. 75, 544–61CrossRefGoogle ScholarPubMed
Modak, S. P., Morris, G. and Yamada, T. (1968). DNA synthesis and mitotic activity during early development of the chick lens. Dev. Biol. 17, 544–61CrossRefGoogle ScholarPubMed
Modesto, E., Lampe, P. D., Ribeiro, M. C., Spray, D. C. and Campos, Carvalho A. C. (1996). Properties of chicken lens MIP channels reconstituted into planar lipid bilayers. J. Membr. Biol. 154, 239–49CrossRefGoogle ScholarPubMed
Mogensen, M. M., Malik, A., Piel, M., Bouckson-Castaing, V. and Bornens, M. (2000). Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein [in process citation]. J. Cell Sci. 113, 3013–23Google Scholar
Montagnoli, A., Fiore, F., Eytan, E., Carrano, A. C., Draetta, G. F., Hershko, A. and Pagano, M. (1999). Ubiquitination of p27 is regulated by CDK-dependent phosphorylation and trimeric complex formation. Genes Dev. 13, 1181–9CrossRefGoogle ScholarPubMed
Montgomery, M. K. and McFall-Ngai, M. J. (1992). The muscle-derived lens of a squid bioluminescent organ is biochemically convergent with the ocular lens: evidence for recruitment of aldehyde dehydrogenase as a predominant structural protein. J. Biol. Chem. 267, 20999–1003Google ScholarPubMed
Morgenbesser, S. D., Williams, B. O., Jacks, T. and DePinho, R. A. (1994). p53-Dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371, 72–4CrossRefGoogle ScholarPubMed
Morimura, H., Shimada, S., Otori, Y., Saiahin, Y., Yamauchi, A., Minami, Y., Inoue, K., Ishimoto, I., Tano, Y. and Tohyama, M. (1997). The differential osmoregulation and localization of taurine transporter mRNA and Na+/myo-inositol cotransporter mRNA in rat eyes. Mol. Brain Res. 44, 245–52CrossRefGoogle ScholarPubMed
Morrow, E. M., Furukawa, T. and Cepko, C. L. (1998). Vertebrate photoreceptor cell development and disease. Trends Cell. Biol. 8, 353–8CrossRefGoogle ScholarPubMed
Moscona, A. A., Fox, L., Smith, J. and Degenstein, L. (1985). Antiserum to lens antigens immunostains Müller glia cells in the neural retina. Proc. Natl. Acad. Sci. USA 82, 5570–3CrossRefGoogle ScholarPubMed
Moseley, A. E., Dean, W. L. and Delamere, N. A. (1996). Isoforms of Na,K-ATPase in rat lens epithelium and fiber cells. Invest. Ophthalmol. Vis. Sci. 37, 1502–8Google ScholarPubMed
Moser, M., Imhof, A., Pscherer, A., Bauer, R., Amselgruber, W., Sinowatz, F., Hofstädter, F., Schüle, R. and Buettner, R. (1995). Cloning and characterization of a second AP-2 transcription factor: AP-2β. Development 121, 2779–88Google Scholar
Mousa, G. Y. and Trevithick, J. R. (1977). Differentiation of rat lens epithelial cells in tissue culture. II. Effects of cytochalasin B and D on actin organisation and differentiation. Dev. Biol. 60, 14–25CrossRefGoogle Scholar
Mukhopadhyay, P., Bhattacherjee, P., Andom, T., Geoghegan, T. E., Andley, U. P. and Paterson, C. A. (1999). Expression of prostaglandin receptors EP4 and FP in human lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 40, 105–12Google Scholar
Mulders, S. M., Preston, G. M., Deen, P. M. T., Guggino, W. B., Os, C. H. and Agre, P. (1995). Water channel properties of major intrinsic protein of lens. J. Biol. Chem. 270, 9010–16CrossRefGoogle ScholarPubMed
Mulders, J. W., Voorter, C. E., Lamers, C., Haard-Hoekman, W. A., Montecucco, C., Ven, W. J., Bloemendal, H. and Jong, W. W. (1988). MP17, a fiber-specific intrinsic membrane protein from mammalian eye lens. Curr. Eye Res. 7, 207–19CrossRefGoogle ScholarPubMed
Mullen, L. M., Bryant, S. V., Torok, M. A., Blumberg, B. and Gardiner, D. M. (1996). Nerve dependency of regeneration: the role of distal-less and FGF signaling in amphibia limb regeneration. Development 122, 3487–97Google ScholarPubMed
Mulligan, R. and Jacks, T. (1998). The retinoblastoma gene family: cousins with overlapping interests. Trends Genet. 14, 223–9CrossRefGoogle ScholarPubMed
Munger, K., Werness, B. A., Dyson, N., Phelps, W. C., Harlow, E. and Howley, P. M. (1989). Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099–105Google ScholarPubMed
Murphy, M., Stinnakre, M. G., Senamaud-Beaufort, C., Winston, N. J., Sweeney, C., Kubelka, M., Carrington, M., Brechot, C. and Sobczak-Thepot, J. (1997). Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nat. Genet. 15, 83–6CrossRefGoogle ScholarPubMed
Murphy-Erdosh, C., Napolitano, E. W. and Reichardt, L. F. (1994). The expression of B-cadherin during embryonic chick development. Dev. Biol. 161, 107–25CrossRefGoogle ScholarPubMed
Murray, A. W. and Marks, D. (2001). Can sequencing shed light on cell cycling?Nature 409, 844–6CrossRefGoogle ScholarPubMed
Muthukkaruppan, V. (1965). Inductive tissue interaction in the development of the mouse lens in vitro. J. Exp. Zool. 159, 269–88CrossRefGoogle ScholarPubMed
Nagamoto, T., Eguchi, G. and Beebe, D. C. (2000). Alpha-smooth muscle actin expression in cultured lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 41, 1122–9Google ScholarPubMed
Nakamura, T., Donovan, D. M., Hamada, K., Sax, C. M., Norman, B., Flanagan, J. R., Ozato, K., Westphal, H. and Piatigorsky, J. (1990). Regulation of the mouse alpha A-crystallin gene: isolation of a cDNA encoding a protein that binds to a cis sequence motif shared with the major histocompatibility complex class I gene and other genes. Mol. Cell. Biol. 10, 3700–8CrossRefGoogle ScholarPubMed
Nakamura, T., Mahon, K. A., Miskin, R., Dey, A., Kuwabara, T. and Westphal, H. (1989). Differentiation and oncogenesis: phenotypically distinct lens tumors in transgenic mice. New Biol. 1, 193–204Google ScholarPubMed
Nakayama, K., Nagahama, H., Minamishima, Y. A., Matsumoto, M., Nakamichi, I., Kitagawa, K., Shirane, M., Tsunematsu, R., Tsukiyama, T., Ishida, N., et al. (2000). Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 19, 2069–81CrossRefGoogle Scholar
Nantel, F., Monaco, L., Foulkes, N. S., Masquilier, D., LeMeur, M., Henriksen, K., Dierich, A., Parvinen, M. and Sassone-Corsi, P. (1996). Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380, 159–62CrossRefGoogle ScholarPubMed
Nead, M. A., Baglia, L. A., Antinore, M. J., Ludlow, J. W. and McCance, D. J. (1998). Rb binds c-Jun and activates transcription. EMBO J. 17, 2342–52CrossRefGoogle ScholarPubMed
Needham, J. (1959). A History of Embryology. New York: Abelard-Schuman
Neff, N. F., Thomas, J. H., Grisafi, P. and Botstein, D. (1983). Isolation of the beta-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33, 211–9CrossRefGoogle ScholarPubMed
Nemeth-Cahalan, K. L. and Hall, J. E. (2000). pH and calcium regulate the water permeability of aquaporin 0. J. Biol. Chem. 275, 6777–82CrossRefGoogle ScholarPubMed
Neumann, C. J. and Nuesslein-Volhard, C. (2000). Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 289, 2137–9CrossRefGoogle ScholarPubMed
Nevins, J. R. (1998). Towards an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 9, 585–93Google Scholar
Newport, J. W. and Kirschner, M. W. (1984). Regulation of the cell cycle during early Xenopus development. Cell 37, 731–42CrossRefGoogle ScholarPubMed
Nguyen, M. M., Nguyen, M. L., Caruana, G., Bernstein, A., Lambert, P. F. and Griep, A. E. (2003). Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol. Cell Biol. 23, 8970–81CrossRefGoogle ScholarPubMed
Nguyen, M. M., Potter, S. J. and Griep, A. E. (2002). Deregulated cell cycle control in lens epithelial cells by expression of inhibitors of tumor suppressor function. Mech. Dev. 112, 101–13CrossRefGoogle ScholarPubMed
Niazi, I. A. (1967). A contribution to the study of lens regeneration capacity in chick embryos. Experientia 23, 970–2CrossRefGoogle Scholar
Nickerson, J. M., Wawrousek, E. F., Borras, T., Hawkins, J. W., Norman, B. L., Filpula, D. R., Nagle, J. W., Ally, A. H. and Piatigorsky, J. (1986). Sequence of the chicken delta 2 crystallin gene and its intergenic spacer: extreme homology with the delta 1 crystallin gene. J. Biol. Chem. 261, 552–7Google ScholarPubMed
Nickerson, J. M., Wawrousek, E. F., Hawkins, J. W., Wakil, A. S., Wistow, G. J., Thomas, G., Norman, B. L. and Piatigorsky, J. (1985). The complete sequence of the chicken delta 1 crystallin gene and its 5ʹ flanking region. J. Biol. Chem. 260, 9100–5Google ScholarPubMed
Nieuwkoop, P. (1952). Activation and organization of the central nervous system in amphibians. J. Exp. Zool. 120, 1–108CrossRefGoogle Scholar
Nieuwkoop, P. (1963). Pattern formation in artificially activated ectoderm. Dev. Biol. 7, 255–79CrossRefGoogle Scholar
Nieuwkoop, P. D. and Faber, J. (1956). Normal Table of Xenopus Laevis. Amsterdam: North Holland
Niiya, A., Ohto, H., Kawakami, K. and Araki, M. (1998). Localization of Six4/AREC3 in the developing mouse retina: implications in mammalian retinal development. Exp. Eye Res. 67, 699–707CrossRefGoogle ScholarPubMed
Nilsson, D. E. (1990). From cornea to retinal image in invertebrate eyes. Trends Neurosci. 13, 55–64CrossRefGoogle ScholarPubMed
Nishiguchi, S., Wood, H., Kondoh, H., Lovell-Badge, R. and Episkopou, V. (1998). Sox1 directly regulates the γ-crystallin genes and is essential for lens development in mice. Genes Dev. 12, 776–81CrossRefGoogle ScholarPubMed
Nishikawa, S., Ishiguro, S., Kato, K. and Tamai, M. (1994). A transient expression of alpha B-crystallin in the developing rat retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 35, 4159–64Google ScholarPubMed
Nishizawa, M., Kataoka, K., Goto, N., Fujiwara, K. T. and Kawai, S. (1989). v-Maf, a viral oncogene that encodes a “leucine zipper” motif. Proc. Natl. Acad. Sci. USA 86, 7711–15CrossRefGoogle ScholarPubMed
Noll, M. (1993). Evolution and role of Pax genes. Curr. Opin. Genet. Dev. 3, 595–605CrossRefGoogle ScholarPubMed
Nornes, S., Clarkson, M., Mikkola, I., Pedersen, M., Bardsley, A., Martinez, J. P., Krauss, S. and Johansen, T. (1998). Zebrafish contains 2 Pax6 genes involved in eye development. Mech. Dev. 77, 185–96CrossRefGoogle ScholarPubMed
Norose, K., Clark, J. I., Syed, N. A., Basu, A., Heber-Katz, E., Sage, E. H. and Howe, C. C. (1998). SPARC deficiency leads to early-onset cataractogenesis. Invest. Ophthalmol. Vis. Sci. 39, 2674–80Google ScholarPubMed
Norose, K., Lo, W. K., Clark, J. I., Sage, E. H. and Howe, C. C. (2000). Lenses of SPARC-null mice exhibit an abnormal cell surface—basement membrane interface. Exp. Eye Res. 71, 295–307CrossRefGoogle ScholarPubMed
Nottoli, T., Hagopian-Donaldson, S., Zhang, J., Perkins, A. and Williams, T. (1998). AP-2-null cells disrupt morphogenesis of the eye, face, and limbs in chimeric mice. Proc. Natl. Acad. Sci. USA 95, 13714–19CrossRefGoogle ScholarPubMed
Novotny, G. E. and Pau, H. (1984). Myofibroblast-like cells in human anterior capsular cataract. Virchows. Arch. A. Pathol. Anat. Histopathol. 404, 393–401CrossRefGoogle ScholarPubMed
Nurse, P. (1994). Ordering S phase and M phase in the cell cycle. Cell 79, 547–50CrossRefGoogle Scholar
Nutt, S. L., Eberhard, D., Horcher, M., Rolink, A. G. and Busslinger, M. (2001). Pax5 determines the identity of B cells from the beginning to the end of B-lymphopoiesis. Int. Rev. Immunol. 20, 65–82CrossRefGoogle ScholarPubMed
Obata, H., Kaburaki, T., Kato, M. and Yamashita, H. (1996). Expression of TGF-beta type I and II receptors in rat eyes. Curr. Eye Res. 15, 335–40CrossRefGoogle ScholarPubMed
Oda, S.-I., Watanabe, K., Fujisawa, H. and Kameyama, Y. (1980). Impaired development of lens fibers in genetic micropthalmia eye lens obsolescence, Elo, of the mouse. Exp. Eye Res. 31, 673–81CrossRefGoogle Scholar
Offield, M. F., Hirsch, N. and Grainger, R. M. (2000). The development of Xenopus tropicalis transgenic lines and their use in studying lens developmental timing in living embryos. Development 127, 1789–97Google ScholarPubMed
Ogawa, M., Takabatake, T., Takahashi, T. C. and Takeshima, K. (1997). Metamorphic change in EP37 expression: members of the βγ-crystallin superfamily in newt. Dev. Genes Evol. 206, 417–24CrossRefGoogle ScholarPubMed
Ogden, A. T., Nunes, I., Ko, K., Wu, S., Hines, C. S., Wang, A. F., Hedge, R. S. and Lang, R. A. (1998). GRIFIN, a novel lens-specific protein related to the galectin family. J. Biol. Chem. 273, 28889–96CrossRefGoogle ScholarPubMed
Ogino, H. and Yasuda, K. (1996). Involvement of maf gene family in crystallin gene regulation [in Japanese]. Tanpakushitsu Kakusan Koso 41, 1050–7Google Scholar
Ogino, H. and Yasuda, K. (1998). Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 280, 115–8CrossRefGoogle ScholarPubMed
Ogino, H. and Yasuda, K. (2000). Sequential activation of transcription factors in lens induction. Develop. Growth Differ. 42, 437–48CrossRefGoogle ScholarPubMed
Oharazawa, H., Ibaraki, N., Lin, L. R. and Reddy, V. N. (1999). The effects of extracellular matrix on cell attachment, proliferation and migration in a human lens epithelial cell line. Exp. Eye Res. 69, 603–10CrossRefGoogle Scholar
Ohtaka-Maruyama, C., Hanaoka, F. and Chepelinsky, A. B. (1998a). A novel alternative spliced variant of the transcription factor AP2-α is expressed in the murine ocular lens. Dev. Biol. 202, 125–35CrossRefGoogle Scholar
Ohtaka-Maruyama, C., Wang, X., Ge, H. and Chepelinsky, A. B. (1998b). Overlapping Sp1 and AP2 binding sites in a promoter element of the lens-specific MIP gene. Nucl. Acids Res. 26, 407–14CrossRefGoogle Scholar
Ohto, H., Kamada, S., Tago, K., Tominaga, S., Ozaki, H., Sato, S. and Kawakami, K. (1999). Cooperation of Six and Eya in activation of their target genes through nuclear translocation of Eya. Mol. Cell. Biol. 19, 6815–24CrossRefGoogle ScholarPubMed
Ohto, H., Takizawa, T., Saito, T., Kobayashi, M., Ikeda, K. and Kawakami, K. (1998). Tissue and developmental distribution of Six family gene products. Int. J. Dev. Biol. 42, 141–8Google ScholarPubMed
Ohtsubo, M. and Roberts, J. M. (1993). Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259, 1908–12CrossRefGoogle ScholarPubMed
Ohtsubo, M., Theodoras, A. M., Schumacher, J., Roberts, J. M. and Pagano, M. (1995). Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol. Cell Biol. 15, 2612–24CrossRefGoogle ScholarPubMed
Okamoto, M. (1987). Induction of ocular tumor by nickel subsulfide in the Japanese common newt, Cynops pyrrhogaster. Cancer Res. 47, 5213–7Google ScholarPubMed
Okamoto, M. (1997). Simultaneous demonstration of lens regeneration from dorsal iris and tumour production from ventral iris in the same newt eye after carcinogen administration. Differentiation 61, 285–92CrossRefGoogle ScholarPubMed
Okladnova, O., Syagailo, Y. V., Mössner, R., Riederer, P. and Lesch, K.-P. (1998). Regulation of Pax6 gene transcription: alternate promoter usage in human brain. Mol. Brain Res. 60, 177–92CrossRefGoogle ScholarPubMed
Olitsky, S. E., Waz, W. R. and Wilson, M. E. (1999). Rupture of the anterior lens capsule in Alport syndrome. J. AAPOS 3, 381–2CrossRefGoogle ScholarPubMed
Oliver, G., Loosli, F., Koster, R., Wittbrodt, J. and Gruss, P. (1996). Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mech. Dev. 60, 233–9CrossRefGoogle ScholarPubMed
Oliver, G., Mailhos, A., Wehr, R., Copeland, N. G., Jenkins, N. A. and Gruss, P. (1995a). Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045–55Google Scholar
Oliver, G., Sosa-Pineda, B., Geisendorf, S., Spana, E. P., Doe, C. Q. and Gruss, P. (1993). Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev. 44, 3–16CrossRefGoogle ScholarPubMed
Oliver, G., Wehr, R., Jenkins, N. A., Copeland, N. G., Cheyette, B. N., Hartenstein, V., Zipursky, S. L. and Gruss, P. (1995b). Homeobox genes and connective tissue patterning. Development 121, 693–705Google Scholar
Olivero, D. K. and Furcht, L. T. (1993). Type IV collagen, laminin, and fibronectin promote the adhesion and migration of rabbit lens epithelial cells in vitro. Invest. Ophthalmol. Vis. Sci. 34, 2825–34Google ScholarPubMed
Ookata, K., Hisanaga, S., Okano, T., Tachibana, K. and Kishimoto, T. (1992). Relocation and distinct subcellular localization of p34cdc2—cyclin B complex at meiosis reinitiation in starfish oocytes. EMBO J. 11, 1763–72Google ScholarPubMed
Ornitz, D. M. and Itoh, N. (2001). Fibroblast growth factors. Genome Biol. 2(3): reviews 3005.1—reviews3005.12CrossRefGoogle ScholarPubMed
Ortiz, J. R., Vigny, M., Courtois, Y. and Jeanny, J. C. (1992). Immunocytochemical study of extracellular matrix components during lens and neural retina regeneration in the adult newt. Exp. Eye Res. 54, 861–70CrossRefGoogle ScholarPubMed
Ortwerth, B. J. and Byrnes, R. J. (1971). Properties of a ribonuclease inhibitor from bovine lens. Exp. Eye Res. 12, 120–7CrossRefGoogle ScholarPubMed
Ortwerth, B. J. and Byrnes, R. J. (1972). Further studies on the purification and properties of a ribonuclease inhibitor from lens cortex. Exp. Eye Res. 14, 114–22CrossRefGoogle ScholarPubMed
Ostrer, H. and Piatigorsky, J. (1980). Beta-crystallins of the adult chicken lens: relatedness of the polypeptides and their aggregates. Exp. Eye Res. 30, 679–89CrossRefGoogle ScholarPubMed
Overbeek, P. A., Chepelinsky, A. B., Khillan, J. S., Piatigorsky, J. and Westphal, H.. (1985). Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine alpha A-crystallin promoter in transgenic mice. Proc. Natl. Acad. Sci. USA 82, 7815–9CrossRefGoogle ScholarPubMed
Ozaki, L., Jap, P. and Bloemendal, H. (1985). Electron microscopic study of water-insoluble fractions in normal and cataractous human lens fibers. Ophthalmic Res. 17, 257–61CrossRefGoogle ScholarPubMed
Ozaki, H., Watanabe, Y., Takahashi, K., Kitamura, K., Tanaka, A., Urase, K., Momoi, T., Sudo, K., Sakagami, J., Asano, M., et al. (2001). Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development. Mol. Cell. Biol. 21, 3343–50CrossRefGoogle Scholar
Paffenholz, R., Kuhn, C., Grund, C., Stehr, S. and Franke, W. W. (1999). The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. Exp. Cell Res. 250, 452–64CrossRefGoogle ScholarPubMed
Pagano, M., Pepperkok, R., Lukas, J., Baldin, V., Ansorge, W., Bartek, J. and Draetta, G. (1993). Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J. Cell Biol. 121, 101–11CrossRefGoogle ScholarPubMed
Pagano, M., Pepperkok, R., Verde, F., Ansorge, W. and Draetta, G. (1992). Cyclin A is required at two points in the human cell cycle. EMBO J. 11, 961–71Google ScholarPubMed
Pal, J. D., Berthoud, V. M., Beyer, E. C., Mackay, D., Shiels, A. and Ebihara, L. (1999). Molecular mechanism underlying a Cx50-linked congenital cataract. Am. J. Physiol. 276, C1443–6CrossRefGoogle ScholarPubMed
Palmade, F., Sechoy-Chambon, O., Coquelet, C. and Bonne, C. (1994). Insulin-like growth factor-1 (IGF-1) specifically binds to bovine lens epithelial cells and increases the number of fibronectin binding sites. Curr. Eye Res. 13, 531–7CrossRefGoogle Scholar
Palmiter, R. D. and Carey, N. H. (1974). Rapid inactivation of ovalbumin messenger ribonucleic acid after acute withdrawal of estrogen. Proc. Natl. Acad. Sci. USA 71, 2357–61CrossRefGoogle ScholarPubMed
Pan, F. M., Chang, W. C., Chao, Y. K. and Chiou, S. H. (1994). Characterization of gamma-crystallins from a hybrid teleostean fish: multiplicity of isoforms as revealed by cDNA sequence analysis. Biochem. Biophys. Res. Commun. 202, 527–34CrossRefGoogle ScholarPubMed
Pan, H. (1995). Regulation of cell proliferation and cell death in the developing mouse lens by tumor suppressors Rb and p53. Unpublished doctoral dissertation. Madison: University of Wisconsin
Pan, H. and Griep, A. E. (1994). Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev. 8, 1285–99CrossRefGoogle ScholarPubMed
Pan, H. and Griep, A. E. (1995). Temporally distinct patterns of p53-dependent and p53-independent apoptosis during mouse lens development. Genes Dev. 9, 2157–69CrossRefGoogle ScholarPubMed
Papaconstantinou, J. (1967). Molecular aspects of lens cell differentiation. Science 156, 338–46CrossRefGoogle ScholarPubMed
Pardee, A. B. (1989). G1 events and regulation of cell proliferation. Science 246, 603–8CrossRefGoogle ScholarPubMed
Park, J. H. and Saier, M. H. (1996). Phylogenetic characterization of the MIP family of transmembrane channel proteins. J. Membr. Biol. 153, 171–80CrossRefGoogle ScholarPubMed
Parmelee, J. T. and Beebe, D. C. (1988). Decreased membrane permeability to potassium is responsible for the cell volume increase that drives lens fiber cell elongation. J. Cell. Physiol. 134, 491–6CrossRefGoogle ScholarPubMed
Parmigiani, C. and McAvoy, J. (1984). Localisation of laminin and fibronectin during rat lens morphogenesis. Differentiation 28, 53–61CrossRefGoogle ScholarPubMed
Parmigiani, C. M. and McAvoy, J. W. (1991). The roles of laminin and fibronectin in the development of the lens capsule. Curr. Eye Res. 10, 501–11CrossRefGoogle ScholarPubMed
Patek, C. E. and Clayton, R. M. (1990). Age-related changes in the response of chick lens cells during long-term culture to insulin, cyclic AMP, retinoic acid and a bovine retinal extract. Exp. Eye Res. 50, 345–54CrossRefGoogle Scholar
Patil, R. V., Saito, I., Yang, X. and Wax, M. B. (1997). Expression of aquaporins in the rat ocular tissue. Exp. Eye Res. 64, 203–9CrossRefGoogle ScholarPubMed
Pau, H., Novotny, G. E. and Arnold, G. (1985). Ultrastructural investigation of extracellular structures in subcapsular white corrugated cataract (anterior capsular cataract). Graefes. Arch. Clin. Exp. Ophthalmol. 223, 96–100CrossRefGoogle Scholar
Paul, D. L., Ebihara, L., Takemoto, L. J., Swenson, K. I. and Goodenough, D. A. (1991). Connexin46, a novel lens gap junction protein, induces voltage-gated currents in non-junctional plasma membrane of Xenopus oocytes. J. Cell Biol. 115, 1077–89CrossRefGoogle Scholar
Paul, D. L. and Goodenough, D. A. (1983). Preparation, characterization, and localization of antisera against bovine MIP26, an integral protein from lens fiber plasma membrane. J. Cell Biol. 96, 625–32CrossRefGoogle Scholar
Pearce, T. L. and Zwaan, J. (1970). A light and electron microscopic study of cell behavior and microtubules in the embryonic chicken lens using Colcemid. J. Embryol. Exp. Morphol. 23, 491–507Google ScholarPubMed
Peek, R., McAvoy, J. W., Lubsen, N. H. and Schoenmakers, J. G. G. (1992). Rise and fall of crystallin gene messenger levels during fibroblast growth factor induced terminal differentiation of lens cells. Dev. Biol. 152, 152–60CrossRefGoogle ScholarPubMed
Peek, R., Logt, P., Lubsen, N. H. and Schoenmakers, J. G. (1990). Tissue- and species-specific promoter elements of rat gamma-crystallin genes. Nucleic Acids Res. 18, 1189–97CrossRefGoogle ScholarPubMed
Pelton, R. W., Saxena, B., Jones, M., Moses, H. L. and Gold, L. I. (1991). Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J. Cell Biol. 115, 1091–105CrossRefGoogle ScholarPubMed
Pera, E. and Kessel, M. (1999). Expression of DLX3 in chick embryos. Mech. Devel. 89, 189–93CrossRefGoogle ScholarPubMed
Peracchia, C., Girsch, S. J., Bernardine, G. and Peracchia, L. L. (1985). Lens junctions are communicating junctions. Curr. Eye Res. 4, 1155–69CrossRefGoogle ScholarPubMed
Perez-Castro, A. V., Tran, V. T. and Nguyen-Huu, M. C. (1993). Defective lens fiber differentiation and pancreatic tumorigenesis caused by ectopic expression of the cellular retinoic acid-binding protein I. Development 119, 363–75Google ScholarPubMed
Perillo, N. L., Marcus, M. E. and Baum, L. G. (1998). Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J. Mol. Med. 76, 402–12CrossRefGoogle ScholarPubMed
Perng, M. D., Muchowski, P. J., Den, I. P., Wu, G. J., Hutcheson, A. M., Clark, J. I. and Quinlan, R. A. (1999). The cardiomyopathy and lens cataract mutation in alphaB-crystallin alters its protein structure, chaperone activity, and interaction with intermediate filaments in vitro. J. Biol. Chem. 274, 33235–43CrossRefGoogle ScholarPubMed
Perry, M. M., Tassin, J. and Courtois, Y. (1981). Fine structure of bovine lens epithelial cells in vitro in relation to modifications induced by a retinal extract (EDGF). Exp. Cell Res. 136, 379–90CrossRefGoogle Scholar
Peterson, C. A. and Piatigorsky, J. (1986). Preferential conservation of the globular domains of the beta A3/A1-crystallin polypeptide of the chicken eye lens. Gene 45, 139–47CrossRefGoogle ScholarPubMed
Petkovich, M., Brand, N. J., Krust, A. and Chambon, P. (1987). A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330, 444–50CrossRefGoogle ScholarPubMed
Pevny, L. H. and Lovell-Badge, R. (1997). Sox genes find their feet. Curr. Opin. Genet. Dev. 7, 338–44CrossRefGoogle ScholarPubMed
Pevny, L. H., Sockanathan, S., Placzek, M. and Lovell-Badge, R. (1998). A role for SOX1 in neural determination. Development 125, 1967–78Google ScholarPubMed
Philpott, G. W. and Coulombre, A. J. (1965). Lens development: the differentiation of embryonic chick lens epithelial cells in vitro and in vivo. Exp. Cell Res. 38, 635–44CrossRefGoogle ScholarPubMed
Piatigorsky, J. (1973). Insulin initiation of lens fiber differentiation in culture: elongation of embryonic lens epithelial cells. Dev. Biol. 30, 214–16CrossRefGoogle ScholarPubMed
Piatigorsky, J. (1975). Lens cell elongation in vitro and microtubules. Ann. NY Acad. Sci. 253, 333–47CrossRefGoogle ScholarPubMed
Piatigorsky, J. (1984). Lens crystallins and their gene families. Cell 38, 620–1CrossRefGoogle ScholarPubMed
Piatigorsky, J. (1993). Puzzle of crystallin diversity in eye lenses. Dev. Dyn. 196, 267–72CrossRefGoogle ScholarPubMed
Piatigorsky, J. (1998). Gene sharing in the lens and cornea: facts and implications. Prog. Ret. Eye Res. 17, 145–74CrossRefGoogle ScholarPubMed
Piatigorsky, J. and Horwitz, J. (1996). Characterization and enzyme activity of argininosuccinate lyase/delta-crystallin of the embryonic duck lens. Biochim. Biophys. Acta 1295, 158–64CrossRefGoogle ScholarPubMed
Piatigorsky, J., Horwitz, J., Kuwabara, T. and Cutress, C. E. (1989). The cellular eye lens and crystallins of cubomedusan jellyfish. J. Comp. Physiol. A 164, 577–87CrossRefGoogle ScholarPubMed
Piatigorsky, J., Horwitz, J. and Norman, B. L. (1993). J1-crystallins of the cubomedusan jellyfish lens constitute a novel family encoded in at least three intronless genes. J. Biol. Chem. 268, 11894–901Google ScholarPubMed
Piatigorsky, J., Kozmik, Z., Horwitz, J., Ding, L., Carosa, E., Robison, W. G., Steinbach, P. J. and Tamm, E. R. (2000). Ω-Crystallin of the scallop lens: a dimeric aldehyde dehydrogenase class 1/2 enzyme-crystallin. J. Biol. Chem. 275, 41064–73CrossRefGoogle ScholarPubMed
Piatigorsky, J., Norman, B. and Jones, R. E. (1987). Conservation of delta-crystallin gene structure between ducks and chickens. J. Mol. Evol. 25, 308–17CrossRefGoogle ScholarPubMed
Piatigorsky, J., Norman, B., Dishaw, L. J., Kos, L., Horwitz, J., Steinbach, P. J. and Kozmik, Z. (2001). J3-crystallin of the jellyfish lens: similarity to saposins. Proc. Natl. Acad. Sci. USA 98, 12362–7CrossRefGoogle ScholarPubMed
Piatigorsky, J., O'Brien, W. E., Norman, B. L., Kalumuck, K., Wistow, G. J., Borras, T., Nickerson, J. M. and Wawrousek, E. F. (1988). Gene sharing by δ-crystallin and argininosuccinate lyase. Proc. Natl. Acad. USA 85, 3479–83CrossRefGoogle ScholarPubMed
Piatigorsky, J., Rothschild, S. S. and Milstone, L. M. (1973a). Differentiation of lens fibers in explanted embryonic chick lens epithelia. Dev. Biol. 34, 334–45CrossRefGoogle Scholar
Piatigorsky, J., Rothschild, S. S. and Wollberg, M. (1973b). Stimulation by insulin of cell elongation and microtubule assembly in embryonic chick-lens epithelia. Proc. Natl. Acad. Sci. USA 70, 1195–8CrossRefGoogle Scholar
Piatigorsky, J., Webster, H. and Wollberg, M. (1972). Cell elongation in the cultured embryonic chick lens epithelium with and without protein synthesis: involvement of microtubules. J. Cell Biol. 55, 82–92CrossRefGoogle ScholarPubMed
Piatigorsky, J. and Wistow, G. J. (1989). Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell 57, 197–9CrossRefGoogle ScholarPubMed
Piatigorsky, J. and Wistow, G. (1991). The recruitment of crystallins: new functions precede gene duplication. Science 252, 1078–9CrossRefGoogle ScholarPubMed
Piatigorsky, J. and Zelenka, P. S. (1992). Transcriptional regulation of crystallin genes: cis elements, trans-factors and signal transduction systems in the lens. In Advances in Developmental Biochemistry, vol. 1, ed. P. M. Wasserman. JAI Press, pp. 211–56
Pichaud, F., Treisman, J. and Desplan, C. (2001). Reinventing a common strategy for patterning the eye. Cell 105, 9–12CrossRefGoogle ScholarPubMed
Pignoni, F., Hu, B., Zavitz, K. H., Xiao, J., Garrity, P. A. and Zipursky, S. L. (1997). The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91, 881–91CrossRefGoogle Scholar
Pignoni, F. and Zipursky, S. L. (1997). Induction of Drosophila eye development by decapentaplegic. Development 124, 271–8Google ScholarPubMed
Pineda, D., Gonzalez, J., Callarets, P., Ikeo, K., Gehring, W. J. and Salo, E. (2000). Searching for the prototypic eye genetic network: sine oculis is essential for eye regeneration in planarians. Proc. Natl. Acad. Sci. USA 97, 4525–9CrossRefGoogle ScholarPubMed
Pines, J. (1995). Cyclins and cyclin-dependent kinases: a biochemical view. Biochem. J. 308, 697–711CrossRefGoogle ScholarPubMed
Pines, J. and Hunter, T. (1991). Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J. Cell Biol. 115, 1–17CrossRefGoogle ScholarPubMed
Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J. and Skarnes, W. C. (2000). An LDL-receptor—related protein mediates Wnt signaling in mice. Nature 407, 535–8Google ScholarPubMed
Pizette, S., Coulier, F., Birnbaum, D. and DeLapeyriere, O. (1996). FGF6 modulates the expression of fibroblast growth factor receptors and myogenic genes in muscle cells. Exp. Cell Res. 224, 143–51CrossRefGoogle ScholarPubMed
Planque, N., Leconte, L., Coquelle, F. M., Benkhelifa, S., Martin, P., Felder-Schmittbuhl, M. P. and Saule, S. (2001). Interaction of Maf transcription factors with Pax-6 results in synergistic activation of the glucagon promoter. J. Biol. Chem. 276, 35751–60CrossRefGoogle ScholarPubMed
Plaza, S., Dozier, C. and Saule, S. (1993). Quail Pax-6 (Pax-QNR) encodes a transcription factor able to bind and trans-activate its own promoter. Cell Growth Differ. 4, 1041–50Google ScholarPubMed
Pomerantz, J., Schreiber-Agus, N., Liegois, N. J., Silverman, M. A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H. W., et al. (1998). The Ink4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92, 713–23CrossRefGoogle ScholarPubMed
Porter, F. D., Drago, J., Xu, Y., Cheema, S. S., Wassif, C., Huang, S.-P., Lee, E., Grinberg, A., Massalas, J. S., Bodine, D., et al. (1997). Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124, 2935–44Google ScholarPubMed
Potts, J. D., Bassnett, S., Kornacker, S. and Beebe, D. C. (1994). Expression of platelet-derived growth factor receptors in the developing chicken lens. Invest. Ophthalmol. Vis. Sci. 35, 3413–21Google ScholarPubMed
Potts, J. D., Kornacker, S. and Beebe, D. C. (1998). Activation of the Jak-STAT-signaling pathway in embryonic lens cells. Dev. Biol. 204, 277–92CrossRefGoogle ScholarPubMed
Pozzi, A., Wary, K. K., Giancotti, F. G. and Gardner, H. A. (1998). Integrin alpha1beta1 mediates a unique collagen-dependent proliferation pathway in vivo. J. Cell Biol. 142, 587–94CrossRefGoogle ScholarPubMed
Prahlad, V., Yoon, M., Moir, R. D., Vale, R. D. and Goldman, R. D. (1998). Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J. Cell Biol. 143, 159–70CrossRefGoogle ScholarPubMed
Pras, E., Frydman, M., Levy-Nissenbaum, E., Bakhan, T., Raz, J., Assia, E. I. and Goldman, B. (2000). A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Invest. Ophthalmol. Vis. Sci. 41, 3511–5Google Scholar
Prescott, A. R., Duncan, G., Rawlins, D. and Shaw, P. J. (1991). Dye communication properties in three regions of the intact frog lens. In Eye Lens Membrane and Aging, ed. G. F. J. M. Vrensen and J. Clauwert. Leiden: Eurage, pp. 59–71
Prescott, A., Duncan, G., Marle, J. and Vrensen, G. (1994). A correlated study of metabolic cell communication and gap junction distribution in the adult frog lens. Exp. Eye Res. 58, 737–46CrossRefGoogle ScholarPubMed
Prescott, A. R., Sandilands, A., Hutcheson, A. M., Carter, J. M. and Quinlan, R. A. (1996). The intermediate filament cytoskeleton of the lens: an ever changing network through development and differentiation [minireview]. Ophthalmic Res. 28, 58–61CrossRefGoogle Scholar
Prescott, A. R., Stewart, S., Duncan, G., Gowing, R. and Warn, R. M. (1991). Diamide induces reversible changes in morphology, cytoskeleton and cell-cell coupling in lens epithelial cells. Exp. Eye Res. 52, 83–92CrossRefGoogle ScholarPubMed
Price, L. S., Leng, J., Schwartz, M. A. and Bokoch, G. M. (1998). Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol, Cell 9, 1863–71CrossRefGoogle ScholarPubMed
Priolo, S., Sivak, J. G. and Kuszak, J. R. (1999a). Effect of age on the morphology and optical quality of the avian crystalline lens. Exp. Eye Res. 69, 629–40CrossRefGoogle Scholar
Priolo, S., Sivak, J. G. and Kuszak, J. R. (1999b). Effect of experimentally induced ametropia on the morphology and optical quality of the avian crystalline lens. Invest. Ophthalmol. Vis. Sci. 41, 3516–22Google Scholar
Prosser, J. and Heyningen, V. (1998). PAX6 mutations reviewed. Hum. Mutat. 11, 93–1083.0.CO;2-M>CrossRefGoogle ScholarPubMed
Pullan, S., Wilson, J., Metcalfe, A., Edwards, G. M., Goberdhan, N., Tilly, J., Hickman, J. A., Dive, C. and Streuli, C. H. (1996). Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J. Cell Sci. 109, 631–42Google ScholarPubMed
Qi, Y., Jia, H., Huang, S., Lin, H., Gu, J., Su, H., Zhang, T., Gao, Y., Qu, L., Li, D. et al. (2004). A deletion mutation in the betaA1/A3 crystallin gene (CRYBA1/A3) is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Hum. Genet. 114, 192–7CrossRefGoogle Scholar
Qin, X. Q., Livingston, D. M., Kaelin, W. G. J. and Adams, P. D. (1994). Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl. Acad. Sci. USA 91, 10918–22CrossRefGoogle ScholarPubMed
Quax-Jeuken, Y., Janssen, C., Quax, W., Heuvel, R. and Bloemendal, H. (1984). Bovine beta-crystallin complementary DNA clones: alternating proline/alanine sequence of beta B1 subunit originates from a repetitive DNA sequence. J. Mol. Biol. 180, 457–72CrossRefGoogle ScholarPubMed
Quelle, D. E., Ashmun, R. A., Shurtleff, S. A., Kato, J. Y., Bar-Sagi, D., Roussel, M. F. and Sherr, C. J. (1993). Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. 7, 1559–71CrossRefGoogle ScholarPubMed
Quelle, D. E., Zindy, F., Ashmun, R. A. and Sherr, C. J. (1995). Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000Google ScholarPubMed
Quinlan, G. A., Williams, E. A., Tan, S.-S. and Tam, P. P. L. (1995). Neuroectodermal fate of epiblast cells in the distal region of the mouse egg cylinder: implication for body plan organization during early embryogenesis. Development 121, 87–98Google ScholarPubMed
Quinlan, R., Hutchison, C. and Lane, B. (1995). Intermediate filament proteins. Protein Profile 2, 801–952Google ScholarPubMed
Quinlan, R. A. (1991). The soluble plasma membrane—cytoskeleton complexes and aging in the lens. In Eye Lens Membranes and Aging, vol. 15, ed. G. F. J. M. Vrensen and J. Clauwaert. Leiden: Eurage, pp. 171–84
Quinlan, R. A., Carter, J. M., Sandilands, A. and Prescott, A. R. (1996). The beaded filament of the eye lens: an unexpected key to intermediate filament structure and function. Trends Cell Biol. 6, 123–6CrossRefGoogle ScholarPubMed
Quinlan, R. A., Schiller, D. L., Hatzfeld, M., Achstatter, T., Moll, R., Jorcano, J. L., Magin, T. M. and Franke, W. W. (1985). Patterns of expression and organization of cytokeratin intermediate filaments. Ann. NY Acad. Sci. 455, 282–306CrossRefGoogle ScholarPubMed
Quinn, J. C., West, J. D. and Hill, R. E. (1996). Multiple functions for Pax6 in mouse eye and nasal development. Genes Dev. 10, 435–46CrossRefGoogle ScholarPubMed
Quiring, R., Walidorf, U., Kloter, U. and Gehring, W. J. (1994). Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265, 785–9CrossRefGoogle ScholarPubMed
Rabaey, M. (1962). Electrophoretic and immunoelectrophoretic studies on the soluble proteins in the developing lens of birds. Exp. Eye Res. 1, 310–6CrossRefGoogle Scholar
Rabl, C. (1899). Über den Bau und die Entwicklung der Linse. III. Die Linse der Säugetiere: Ruckblick und Schluss. Z. Wiss. Zool. 67, 1–138Google Scholar
Rae, J. L. (1994). Outwardly rectifying potassium currents in lens epithelial cell membranesCurr. Eye. Res. 13, 679–86CrossRefGoogle ScholarPubMed
Rae, J. L., Bartling, C., Rae, J. and Mathias, R. T. (1996). Dye transfer between cells of the lens. J. Membr. Biol. 150, 89–103CrossRefGoogle Scholar
Rae, J. L. and Cooper, K. (1990). New techniques for the study of lens electrophysiology. Exp. Eye Res. 50, 603–14CrossRefGoogle Scholar
Rae, J. L., Dewey, J., Rae, J. S. and Cooper, K. (1990). A maxi calcium-activated potassium channel from chick lens epithelium. Curr. Eye Res. 9, 847–61CrossRefGoogle ScholarPubMed
Rae, J. L. and Kuszak, J. R. (1983). The electrical coupling of epithelium and fibers in the frog lens. Exp. Eye Res. 36, 317–26CrossRefGoogle ScholarPubMed
Rae, J. L., Mathias, R. T., Cooper, K. and Baldo, G. (1992). Divalent cation effects on lens conductance and stretch-activated cation channels. Exp. Eye Res. 55, 135–44CrossRefGoogle ScholarPubMed
Rae, J. L. and Rae, J. S. (1992). Whole-cell currents from noncultured human lens epithelium. Invest. Ophthalmol. Vis. Sci. 33, 2262–8Google ScholarPubMed
Rae, J. L. and Shepard, A. R. (1998a). Identification of potassium channels in human lens epithelial cells. Curr. Top. Membr. Trans. 45, 69–104CrossRefGoogle Scholar
Rae, J. L. and Shepard, A. R. (1998b). Inwardly rectifying potassium channels in lens epithelium are from the IRK1 (Kir 2.1) family. Exp. Eye Res. 66, 347–59CrossRefGoogle Scholar
Rae, J. L. and Shepard, A. R. (1998c). Molecular biology electrophysiology of calcium-activated potassium channels from lens epithelium. Curr. Eye Res. 17, 264–75CrossRefGoogle Scholar
Rae, J. L. and Shepard, A. R. (2000). Kv3.3 potassium channels in lens epithelium and corneal endothelium. Exp. Eye Res. 70, 339–48CrossRefGoogle ScholarPubMed
Rae, J. L. and Stacey, T. R. (1979). Lanthanum and procion yellow as extracellular markers. Exp. Eye Res. 28, 1–21CrossRefGoogle ScholarPubMed
Rae, J. L., Truitt, K. D. and Kuszak, J. R. (1982). A simple fluorescence technique for light microscopy of the crystalline lens. Curr. Eye Res. 2, 1–5CrossRefGoogle ScholarPubMed
Rafferty, N. S. and Goossens, W. (1978). Cytoplasmic filaments in the crystalline lens of various species: functional correlations. Exp. Eye Res. 26, 177–90CrossRefGoogle ScholarPubMed
Rafferty, N. S. and Rafferty, K. A. Jr. (1981). Cell population kinetics of the mouse lens epithelium. J. Cell. Physiol. 107, 309–15CrossRefGoogle ScholarPubMed
Rafferty, N. S. and Scholz, D. L. (1984). Polygonal arrays of microfilaments in epithelial cells of the intact lens. Curr. Eye Res. 3, 1141–9CrossRefGoogle ScholarPubMed
Rafferty, N. S. and Scholz, D. L. (1985). Actin in polygonal arrays of microfilaments and sequestered actin bundles (SABs) in lens epithelial cells of rabbits and mice. Curr. Eye Res. 4, 713–18CrossRefGoogle ScholarPubMed
Rafferty, N. S. and Scholz, D. L. (1989). Comparative study of actin filament patterns in lens epithelial cells: are these determined by the mechanism of lens accommodation?Curr. Eye Res. 8, 569–79CrossRefGoogle ScholarPubMed
Rafferty, N. S., Zigman, S., McDaniel, T. and Scholz, D. L. (1993). Near-UV radiation disrupts filamentous actin in lens epithelial cells. Cell Motil. Cytoskeleton 26, 40–8CrossRefGoogle ScholarPubMed
Ramaekers, F. C. S., Boomkens, T. R. and Bloemendal, H. (1981). Cytoskeletal and contractile structures in bovine lens cell differentiation. Exp. Cell Res. 135, 454–61CrossRefGoogle ScholarPubMed
Ramaekers, F. C. S., Dunia, I., Dodemot, H. J., Bendetti, E. L. and Bloemendal, H. (1982). Lenticular intermediate-sized filaments: biosynthesis and interaction with plasma membrane. Proc. Natl. Acad. Sci. USA 79, 3208–12CrossRefGoogle ScholarPubMed
Ramaekers, F. C. S., Osborn, M., Schmid, E., Weber, K., Bloemendal, H. and Franke, W. W. (1980). Identification of the cytoskeletal proteins in lens-forming cells, a special epitheloid cell type. Exp. Cell Res. 127, 309–27CrossRefGoogle ScholarPubMed
Ramaekers, F. C., Selten-Versteegen, A. M. and Bloemendal, H. (1980). Interaction of newly synthesized alpha-crystallin with isolated lens plasma membranes. Biochim. Biophys. Acta. 596, 57–63CrossRefGoogle ScholarPubMed
Rampalli, A. M., Gao, C. Y., Chauthaiwale, V. M. and Zelenka, P. S. (1998). pRb and p107 regulate E2F activity during lens fiber cell differentiation. Oncogene 16, 399–408CrossRefGoogle ScholarPubMed
Rao, P. V., Robison, W. G. Jr., Bettelheim, F., Lin, L. R., Reddy, V. N. and Zigler, J. S. Jr. (1997). Role of small GTP-binding proteins in lovastatin-induced cataracts. Invest. Ophthalmol. Vis. Sci. 38, 2313–21Google ScholarPubMed
Rasmussen, J. T., Deardorff, M. A., Tan, C., Rao, M. S., Klein, P. S. and Vetter, M. L. (2001). Regulation of eye development by frizzled signaling in Xenopus. Proc. Natl. Acad. Sci. USA 98, 3861–6CrossRefGoogle ScholarPubMed
Rath, P. C. and Aggarwal, B. B. (1999). TNF-induced signaling in apoptosis. J. Clin. Immunol. 19, 350–64CrossRefGoogle ScholarPubMed
Ray, M. E., Wistow, G., Su, Y. A., Meltzer, P. S. and Trent, J. M. (1997). AIM1, a novel non-lens member of the betagamma-crystallin superfamily, is associated with the control of tumorigenicity in human malignant melanoma. Proc. Natl. Acad. Sci. USA 94, 3229–34CrossRefGoogle ScholarPubMed
Redden, J. R. and Dziedzic, D. C. (1982). Insulin-like growth factors, IGF-1, IGF-2 and somatomedin c trigger cell proliferation in mammalian epithelial cells cultured in a serum-free medium. Exp. Cell Res. 142, 293–300CrossRefGoogle Scholar
Redden, J. R. and Wilson-Dziedzic, D. C. (1983). Insulin growth factor and epidermal growth factor trigger mitoses in lenses cultured in a serum-free medium. Invest. Ophthalmol. Vis. Sci. 24, 409–16Google Scholar
Reddy, S., Smith, D. B. J., Rich, M. M., Leferovich, J. M., Reilly, P., Davis, B. M., Tran, K., Rayburn, H., Bronson, R., Cros, D., et al. (1996). Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat. Genet. 13, 325–35CrossRefGoogle ScholarPubMed
Reed, N. and Gutmann, D. H. (2001). Tumorigenesis in neurofibromatosis: new insights and potential therapies. Trends Mol. Med. 7, 157–62CrossRefGoogle ScholarPubMed
Reed, U. C., Tsanaclis, A. M., Vainzof, M., Marie, S. K., Carvalho, M. S., Roizenblatt, J., Pedreira, C. C., Diament, A. and Levy, J. A. (1999). Merosin-positive congenital muscular dystrophy in two siblings with cataract and slight mental retardation. Brain Dev. 21, 274–8CrossRefGoogle ScholarPubMed
Reese, D. H., Puccia, E. and Yamada, T. (1969). Activation of ribosomal RNA synthesis in initiation of Wolffian lens regeneration. J. Exp. Zool. 170, 259–68CrossRefGoogle ScholarPubMed
Relaix, F. and Buckingham, M. (1999). From insect eye to vertebrate muscle: redeployment of a regulatory network. Genes Dev. 13, 3171–8CrossRefGoogle ScholarPubMed
Ren, Z., Li, A., Shastry, B. S., Padma, T., Ayyagari, R., Scott, M. H., Parks, M. M., Kaiser-Kupfer, M. I. and Hejtmancik, J. F. (2000). A 5-base insertion in the gammaC-crystallin gene is associated with autosomal dominant variable zonular pulverulent cataract. Hum. Genet. 106, 531–7Google ScholarPubMed
Reneker, L. W. and Overbeek, P. A. (1996). Lens-specific expression of PDGF-A alters lens growth and development. Dev. Biol. 180, 554–65CrossRefGoogle ScholarPubMed
Renkawek, K., Jong, W. W., Merck, K. B., Frenken, C. W., Workum, F. P. and Bosman, G. J. (1992). Alpha B-crystallin is present in reactive glia in Creutzfeldt-Jakob disease. Acta Neuropathol. 83, 324–7CrossRefGoogle ScholarPubMed
Resnitsky, D., Hengst, L. and Reed, S. I. (1995). Cyclin A—associated kinase activity is rate limiting for entrance into S phase and is negatively regulated in G1 by p27Kip1. Mol. Cell Biol. 15, 4347–52CrossRefGoogle Scholar
Resnitsky, D. and Reed, S. I. (1995). Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol. Cell Biol. 15, 3463–9CrossRefGoogle Scholar
Revel, J. P., Yee, A. G. and Hudspeth, A. J. (1971). Gap junctions between electrotonically coupled cells in tissue culture and in brown fat. Proc. Natl. Acad. Sci., USA 68, 2924–7CrossRefGoogle ScholarPubMed
Reyer, R. W. (1962). Differentiation and growth of the embryonic nose, lens and corneal anlagen implanted into the larval eye or dorsal fin in Amblystoma punctatum. J. Exp. Zool. 151, 123–49CrossRefGoogle ScholarPubMed
Reyer, R. W. (1948). An experimental study of lens regeneration in Triturus viridescens. I. Regeneration of a lens after lens extirpation in embryos and larvae of different ages. J. Exp. Zool. 107, 217–68CrossRefGoogle ScholarPubMed
Reyer, R. W. (1953). Lens regeneration from heteroplastic iris grafts between Triturus viridescens and Amblystoma punctatum. Anat. Rec. 115, 362–3Google Scholar
Reyer, R. W. (1954). Regeneration of the lens in the amphibian eye. Q. Rev. Biol. 29, 1–46CrossRefGoogle ScholarPubMed
Reyer, R. W. (1956). Lens regeneration from homoplastic and heteroplastic implants of dorsal iris into the eye chamber of Triturus viridescens and Amblystoma punctatum. J. Exp. Zool. 133, 145–90CrossRefGoogle Scholar
Reyer, R. W. (1961). Lens regeneration from intra-ocular, iris implants in the presence of the host lens. Anat. Rec. 139, 267Google Scholar
Reyer, R. W. (1962). Regeneration in the amphibian eye. In Regeneration (20th Growth Symposium), ed. D. Rudnick. New York: Ronald Press, pp. 211–65
Reyer, R. W. (1966a). DNA synthesis and cell movement during lens regeneration in adult Triturus viridescens. Am. Zool. 6, 329Google Scholar
Reyer, R. W. (1966b). The influence of neural retina and lens regeneration from dorsal iris implants in Triturus viridescens larvae. Dev. Biol. 14, 214–45CrossRefGoogle Scholar
Reyer, R. W. (1971). DNA synthesis and the incorporation of labeled iris cells into the lens during lens regeneration in adult newts. Dev. Biol. 124, 533–58CrossRefGoogle Scholar
Reyer, R. W. (1977). The amphibian eye: development and regeneration. In Handbook of Sensory Physiology. Vol. 2. The Visual System in Vetrebrates, ed. F. Crescitelli. Berlin: Springer-Verlag, pp. 309–90CrossRef
Reyer, R. W. (1982). Dedifferentiation of iris epithelium during lens regeneration in newt larvae. Am. J. Anat. 163, 1–23CrossRefGoogle ScholarPubMed
Reyer, R. W. (1990a). Macrophage invasion and phagocytic activity during lens regeneration from the iris epithelium in newts. Am. J. Anat. 188, 329–44CrossRefGoogle Scholar
Reyer, R. W. (1990b). Macrophage mobilization and morphology during lens regeneration from the iris epithelium in newts: studies with correlated scanning and transmission electron microscopy. Am. J. Anat. 188, 345–65CrossRefGoogle Scholar
Reyer, R. W., Woolfitt, R. A. and Withersty, L. T. (1973). Stimulation of lens regeneration from the newt dorsal iris when implanted into the blastema of the regenerating limb. Dev. Biol. 32, 258–81CrossRefGoogle ScholarPubMed
Reynhout, J. K., Lampe, P. D., and Johnson, R. G. (1992). An activator of protein kinase C inhibits gap junction communication between cultured bovine lens cells. Exp. Eye Res. 198, 337–42Google ScholarPubMed
Riach, R. A., Duncan, G., Williams, M. R. and Webb, S. F. (1995). Histamine and ATP mobilize calcium by activation of H1 and P2U receptors in human epithelial cells. J. Physiol. 486, 273–82CrossRefGoogle Scholar
Richardson, J., Cvekl, A. and Wistow, G. (1995). Pax-6 is essential for lens-specific expression of ζ-crystallin. Proc. Natl. Acad. Sci. USA 92, 4676–80CrossRefGoogle ScholarPubMed
Richardson, N. A. and McAvoy, J. W. (1990). Age-related changes in fibre differentiation of rat lens epithelial explants exposed to fibroblast growth factor. Exp. Eye Res. 50, 203–11CrossRefGoogle ScholarPubMed
Richardson, N. A., McAvoy, J. W. and Chamberlain, C. G. (1992). Age of rats affects response of lens epithelial explants to fibroblast growth factor. Exp. Eye Res. 55, 649–56CrossRefGoogle ScholarPubMed
Richiert, D. M. and Ireland, M. E. (1999). TGF-beta elicits fibronectin secretion and proliferation in cultured chick lens epithelial cells. Curr. Eye Res. 18, 62–71CrossRefGoogle ScholarPubMed
Rieger, D. K., Reichenberger, E., McLean, W., Sidow, A. and Olsen, B. R. (2001). A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics 72, 61–72CrossRefGoogle ScholarPubMed
Ring, B. Z., Cordes, S. P., Overbeek, P. A. and Barsh, G. S. (2000). Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development 127, 307–17Google ScholarPubMed
Ritz-Laser, B., Estreicher, A., Klages, N., Saule, S. and Philippe, J. (1999). Pax-6 and Cdx-2/3 interact to activate glucagon gene expression on the G1 control element. J. Biol. Chem. 274, 4124–32CrossRefGoogle ScholarPubMed
Robanus-Maandag, E., Dekker, M., Valk, M., Carrozza, M. L., Jeanny, J. C., Dannenberg, J. H., Berns, A. and te Riele, H. (1998). p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev. 12, 1599–609CrossRefGoogle ScholarPubMed
Robinson, G. W. and Mahon, K. A. (1994). Differential and overlapping expression domains of Dlx-2 and Dlx-3 suggest distinct roles for Distal-less homeobox genes in craniofacial development. Mech. Dev. 48, 199–215CrossRefGoogle ScholarPubMed
Robinson, K. M., Taube, J. R., Reed, N. A. and Duncan, M. K. (2003). Role of betaB2-crystallin in fertility 44, [ARVO E-abstract 2136]Google Scholar
Robinson, K. R. and Patterson, J. W. (1983). Localization of steady-state currents in the lens. Curr. Eye Res. 2, 843–7CrossRefGoogle Scholar
Robinson, M. L., MacMillan-Crow, L. A., Thompson, J. A. and Overbeek, P. A. (1995b). Expression of a truncated FGF receptor results in defective lens development in transgenic mice. Development 121, 3959–67Google Scholar
Robinson, M. L., Ohtaka-Maruyama, C., Chan, C.-C., Jamieson, S., Dickson, C., Overveek, P. A. and Chepelinsky, A. B. (1998). Disregulation of ocular morphogenesis by lens-specific expression of FGF-3/Int-2 in transgenic mice. Dev. Biol. 198, 13–31CrossRefGoogle ScholarPubMed
Robinson, M. L. and Overbeek, P. A. (1996). Differential expression of αA- and αB-crystallin during murine ocular development. Invest. Ophthalmol. Vis. Sci. 37, 2276–84Google Scholar
Robinson, M. L., Overbeek, P. A., Verran, D. J., Grizzle, W. E., Stockard, C. R., Friesel, R., Maciag, T. and Thompson, J. A. (1995a). Extracellular FGF-1 acts as a lens differentiation factor in transgenic mice. Development 121, 505–14Google Scholar
Rodokanaki, A., Holmes, R. K. and Borras, T. (1989). Zeta-crystallin, a novel protein from the guinea pig lens is related to alcohol dehydrogenases. Gene 78, 215–24CrossRefGoogle ScholarPubMed
Rossant, J., Zirngibl, R., Cado, D., Shago, M. and Giguere, V. (1991). Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 5, 1333–44CrossRefGoogle ScholarPubMed
Roth, H. J., Das, G. C. and Piatigorsky, J. (1991). Chicken βB1-crystallin gene expression: presence of conserved functional polyomavirus enhancer—like and octamer binding—like promoter elements found in non-lens genes. Mol. Cell. Biol. 11, 1488–99CrossRefGoogle Scholar
Rothstein, H., Wyk, J. J., Hayden, J. H., Gordon, S. R. and Weinsieder, A. (1980). Somatomedin C: restoration in vivo of cycle traverse in G0/G1 blocked cells of hypophysectomized animals. Science 208, 410–2CrossRefGoogle ScholarPubMed
Rup, D. M., Veenstra, R. D., Wang, H.-Z., Brink, P. R. and Beyer, E. C. (1993). Chick connexin-56, a novel lens gap junction protein: molecular cloning and functional expression. J. Biol. Chem. 268, 706–12Google ScholarPubMed
Russell, P., Qin, C., Garland, D., Tabor, Y. and Zigler, J. S. (1996). RNA and protein synthesis in the primate lens. Exp. Eye Res. 63, 121–4CrossRefGoogle ScholarPubMed
Ryerse, J. S. and Nagel, B. A. (1991). Gap-junction quantification in biological tissues: freeze-fracture replicas versus thin sections. J. Microsc. 163, 65–78CrossRefGoogle ScholarPubMed
Saavedra, H. I., Wu, L., Bruin, A., Timmers, C., Rosol, T. J., Weinstein, M., Robinson, M. L. and Leone, G. (2002). Specificity of E2F1, E2F2, and E2F3 in mediating phenotypes induced by loss of Rb. Cell Growth Diff. 13, 215–25Google ScholarPubMed
Sage, J., Mulligan, G. J., Attardi, L. D., Miller, A., Chen, S., Williams, B., Theodorou, E. and Jacks, T. (2000). Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes Dev. 14, 3037–50CrossRefGoogle ScholarPubMed
Saha, M. S., Spann, C. L. and Grainger, R. M. (1989). Embryonic lens induction: more than meets the optic vesicle. Cell Diff. Dev. 28, 153–72CrossRefGoogle ScholarPubMed
Saika, S., Kawashima, Y., Miyamoto, T., Tanaka, S., Okada, Y., Yamanaka, O., Katoh, T., Ohnishi, Y., Ohini, S., Ooshima, A., and Yamanaka, A. (1998). Immunolocalization of prolyl 4-hydrolase subunits, alpha-smooth muscle actin, and extracellular matrix components in human lens capsules with lens implants. Exp. Eye Res. 66, 283–94CrossRefGoogle Scholar
Saika, S., Okada, Y., Miyamoto, T., Ohnishi, Y., Ooshima, A. and McAvoy, J. W. (2001). Smad translocation and growth suppression in lens epithelial cells by endogenous TGFbeta2 during wound repair. Exp. Eye Res. 72, 679–86CrossRefGoogle ScholarPubMed
Sakai, M., Imaki, J., Yoshida, K., Ogata, A., Matsushima-Hibiya, Y., Kuboki, Y., Nishizawa, M. and Nishi, S. (1997). Rat maf related gene: specific expression in chondrocytes, lens and spinal cord. Oncogene 14, 745–50CrossRefGoogle ScholarPubMed
Samejima, K. and Earnshaw, W. C. (2000). Differential localization of ICAD-L and ICAD-S in cells due to removal of a C-terminal NLS from ICAD-L by alternative splicing. Exp. Cell Res. 255, 314–20CrossRefGoogle ScholarPubMed
Sandilands, A., Hutcheson, A. M., Long, H. A., Prescott, A. R., Vrensen, G., Loster, J., Klopp, N., Lutz, R. B., Graw, J., Masaki, S., et al. (2002). Altered agregation properties of mutant gamma-crystallins cause inherited cataract. EMBO. J. 21, 6005–14CrossRefGoogle Scholar
Sandilands, A., Prescott, A. R., Carter, J. M., Hutcheson, A. M., Quinlan, R. A., Richards, J. and FitzGerald, P. G. (1995a). Vimentin and CP49/filensin form distinct networks in the lens which are independently modulated during lens fibre cell differentiation. J. Cell Sci. 108, 1397–406Google Scholar
Sandilands, A., Prescott, A. R., Hutcheson, A. M., Quinlan, R. A., Casselman, J. T. and FitzGerald, P. G. (1995b). Filensin is proteolytically processed during lens fiber cell differentiation by multiple independent pathways. Eur. J. Cell Biol. 67, 238–53Google Scholar
Sandilands, A., Prescott, A. R., Wegener, A., Zoltoski, R. K., Hutcheson, A. M., Masaki, S., Kuszak, J. R. and Quinlan, R. A. (2003). Knockout of the intermediate filament protein CP49 destabilises the lens fibre cell cytoskeleton and decreases lens optical quality, but does not induce cataract. Exp. Eye Res. 76, 385–91CrossRefGoogle Scholar
Sandilands, A., Wang, X., Hutcheson, A. M., James, J., Prescott, A. R., Wegener, A., Pekny, M., Gong, X. and Quinlan, R. A. (2004). Bfsp2 mutation found in mouse 129 strains causes the loss of CP49 and induces vimentin-dependent changes in the lens fibre cell cytoskeleton. Exp. Eye Res. 78, 109–23CrossRefGoogle ScholarPubMed
Sanyal, S. and Hawkins, R. K. (1979). Dysgenetic lens (dyl): a new gene in the mouse. Invest. Ophthalmol. Vis. Sci. 18, 642–5Google ScholarPubMed
Sardet, C., Vidal, M., Cobrinik, D., Geng, Y., Onufryk, C., Chen, A. and Weinberg, R. A. (1995). E2F-4 and E2F-5, two novel members of the E2F family, are expressed in the early phases of the cell cycle. Proc. Natl. Acad. Sci. USA 92, 2403–7CrossRefGoogle Scholar
Sarkar, P. S., Appukuttan, B., Han, J., Ito, Y., Ai, C. W., Tsai, W. L., Chai, Y., Stout, J. T. and Reddy, S. (2000). Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts. Nat. Genet. 25, 110–14CrossRefGoogle ScholarPubMed
Sas, D. F., Sas, J., Johnson, K. R., Menko, A. S. and Johnson, R. G. (1985). Junctions between lens fiber cells are labeled with a monoclonal antibody shown to be specific for MP26. J. Cell Biol. 100, 216–25CrossRefGoogle ScholarPubMed
Sasaki, K., Kojima, M., Nakaizumi, H., Kitagawa, K., Yamada, Y. and Ishizaki, H. (1998). Early lens changes seen in patients with atopic dermatitis applying image analysis processing of Scheimpflug and specular microscopic images. Ophthalmologica 212, 88–94CrossRefGoogle ScholarPubMed
Sato, T. (1930). Beitrage zur Analyse der Wolffschen Linssenregeneration. I. Wilhem Roux Arch. Entwickl.-Mech. Org. 122, 451–493CrossRefGoogle Scholar
Sato, T. (1935). Beitrage zur Analyse der Wolffschen Linssenregeneration. Pt. 3. Wilhem Roux Arch. Entwickl.-Mech. Org. 133, 323–48CrossRefGoogle Scholar
Sato, T. (1940). Vergleichende Studien uber die Geschwindigkeit der Wolffschen Linsenregeneration bei Triton taniatus und bei Diemyctylus pyrrhogaster. Wilhem Roux Arch. Entwickl.-Mech. Org. 140, 573–613Google Scholar
Sato, T. (1961). Uber die Linsen-Regeneration bei den Cobitiden Fischen Misgurnus Anguillicaudatus. Embryologia 6, 251–91CrossRefGoogle Scholar
Saunders J. B. de C. M (John Bertrand de Cusance Morant), and O'Malley, C. D. (1950). The Illustrations from the Works of Andreas Vesalius of Brussels. New York: World Publishing
Sawhney, R. S. (1995). Identification of SPARC in the anterior lens capsule and its expression by lens epithelial cells. Exp. Eye Res. 61, 645–8CrossRefGoogle ScholarPubMed
Sawhney, R. S., Wood, L. S. and Vogeli, G. (1997). Molecular cloning of the bovine 1 (IV) procollagen gene (COL4A1) and its use in investigating the regulation of expression of type IV procollagen by retinoic acid in bovine lens epithelial cells. Cell. Biol. Int. 21, 501–10CrossRefGoogle ScholarPubMed
Sax, C. M., Cvekl, A., Kantorow, M., Gopal-Srivastava, R., Ilagan, J. G.Ambulos, N. P. Jr. and Piatigorsky, J. (1995). Lens-specific activity of the mouse alpha A-crystallin promoter in the absence of a TATA box: functional and protein binding analysis of the mouse alpha A-crystallin PE1 region. Nucleic Acids Res. 23, 442–51CrossRefGoogle ScholarPubMed
Sax, C. M., Cvekl, A., Kantorow, M., Sommer, B., Chepelinsky, A. B. and Piatigorsky, J. (1994). Identification of negative-acting and protein-binding elements in the mouse alpha A-crystallin ˗1556/˗1165 region. Gene 144, 163–9CrossRefGoogle ScholarPubMed
Sax, C. M., Cvekl, A. and Piatigorsky, J. (1997). Transcriptional regulation of the mouse alpha A-crystallin gene: binding of USF to the ˗7/+5 region. Gene 185, 209–16CrossRefGoogle ScholarPubMed
Sax, C. M., Ilagan, J. G. and Haynes, J. I. II. (1996). Lens-preferred activity of the ˗1809/+46 mouse αA-crystallin promoter in stably integrated chromatin. Biochim. Biophys. Acta 1305, 49–53CrossRefGoogle Scholar
Sax, C. M., Ilagan, J. G. and Piatigorsky, J. (1993). Functional redundancy of the DE-1 and alpha A-CRYBP1 regulatory sites of the mouse alpha A-crystallin promoter. Nucleic Acids Res. 21, 2633–40CrossRefGoogle ScholarPubMed
Sax, C. M. and Piatigorsky, J. (1994). Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues. Adv. Enzymol. Relat. Areas Mol. Biol. 69, 155–201Google ScholarPubMed
Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. and Howley, P. M. (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–36CrossRefGoogle ScholarPubMed
Scheiner, C. (1619). Oculus hoc est fundamentum opticum Innsbruck, Austria: Agricola
Scherr, M., Morgan, M. A. and Eder, M. (2003). Gene silencing mediated by small interfering RNAs in mammalian cells. Curr. Med. Chem. 10, 245–56CrossRefGoogle ScholarPubMed
Schlotzer-Schrehardt, U. and Dorfler, S. (1993). Immunolocalization of growth factors in the human ciliary body epithelium. Curr. Eye Res. 12, 893–905CrossRefGoogle ScholarPubMed
Schmidt, A., Heid, H. W., Schafer, S., Nuber, U. A., Zimbelmann, R. and Franke, W. W. (1994). Desmosomes and cytoskeletal architecture in epithelial differentiation: cell type—specific plaque components and intermediate filament anchorage. Eur. J. Cell Biol. 65, 229–45Google ScholarPubMed
Schmitt, G. A., Pau, H., Spahr, R., Piper, H. M., Skalli, O. and Gabbiani, G. (1990). Appearance of alpha-smooth muscle actin in human eye lens cells of anterior capsular cataract and in cultured bovine lens-forming cells. Differentiation 43, 115–22CrossRefGoogle Scholar
Schorle, H., Meier, P., Buchert, M., Jaenisch, R. and Mitchell, P. J. (1996). Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235–8CrossRefGoogle ScholarPubMed
Schuetze, S. M. and Goodenough, D. A. (1982). Dye transfer between cells of the embryonic chick lens becomes less sensitive to CO2 treatment with development. J. Cell Biol. 92, 694–705CrossRefGoogle ScholarPubMed
Schulz, M. W., Chamberlain, C. G., Iongh, R. U. and McAvoy, J. W. (1993). Acidic and basic FGF in ocular media and lens: implications for lens polarity and growth patterns. Development 118, 117–26Google ScholarPubMed
Schulz, M. W., Chamberlain, C. G. and McAvoy, J. W. (1996). Inhibition of TGFB-induced cataractous changes in lens explants by ocular media and a2-macroglobulin. Invest. Ophthalmol. Vis. Sci. 37, 1509–19Google Scholar
Schulz, M. W., Chamberlain, C. G. and McAvoy, J. W. (1997). Binding of FGF-1 and FGF-2 to heparan sulphate proteoglycans of the mammalian lens capsule. Growth Factors 14, 1–13CrossRefGoogle ScholarPubMed
Schulze, E. and Kirschner, M. (1987). Dynamic and stable populations of microtubules in cells. J. Cell Biol. 104, 277–88CrossRefGoogle ScholarPubMed
Schwartz, J. S., Lee, D. A. and Isenberg, S. J. (1989). Ocular size and shape. In The Eye in Infancy, ed. S. J. Isenberg. Chicago: Year Book Medical Publishers, pp. 164–84
Seimiya, M. and Gehring, W. J. (2000). The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development 127, 1879–86Google ScholarPubMed
Sekido, R., Murai, K., Funahashi, J., Kamachi, Y., Fujisawa-Sehara, A., Nabeshima, Y. and Kondoh, H. (1994). The delta-crystallin enhancer-binding protein delta EF1 is a repressor of E2-box—mediated gene activation. Mol. Cell. Biol. 14, 5692–700CrossRefGoogle ScholarPubMed
Sekido, R., Murai, K., Kamachi, Y. and Kondoh, H. (1997). Two mechanisms in the action of repressor deltaEF1: binding site competition with an activator and active repression. Genes Cells 2, 771–83CrossRefGoogle ScholarPubMed
Sellers, W. R., Notvich, B. G., Miyake, S., Heith, A., Otterson, G. A., Kaye, F. J., Lassar, A. B. and Kaelin, W. G. Jr. (1998). Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev. 12, 95–106CrossRefGoogle Scholar
Semina, E. V., Brownell, I., Mintz-Hittner, H. A., Murray, J. C. and Jamrich, M. (2001). Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum. Mol. Genet. 10, 231–6CrossRefGoogle ScholarPubMed
Semina, E. V., Ferrell, R. E., Mintzhittner, H. A., Bitoun, P., Alward, W. L. M., Reiter, R. S., Funkhauser, C., Daackhirsch, S. and Murray, J. C. (1998). A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat. Genet. 19, 167–70CrossRefGoogle ScholarPubMed
Semina, E. V., Murray, J. C., Reiter, R., Hrstka, R. F. and Graw, J. (2000). Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum. Mol. Genet. 9, 1575–85CrossRefGoogle ScholarPubMed
Semina, E. V., Reiter, R. S. and Murray, J. C. (1997). Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum. Mol. Genet. 6, 2109–16CrossRefGoogle ScholarPubMed
Seo, H. C., Curtiss, J., Mlodzik, M. and Fjose, A. (1999). Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development. Mech. Dev. 83, 127–39CrossRefGoogle ScholarPubMed
Seto, Y., Nagawa, H., Mori, M., Tsuruo, T. and Muto, T. (1999). Effect of 5-fluorouracil on gastrointestinal carcinogenesis induced by N-methyl-Nʹ-nitro-N-nitrosoguanidine in rats. Dig. Dis. Sci. 44, 75–8CrossRefGoogle ScholarPubMed
Servetnick, M., Cook, T. L. Jr. and Grainger, R. M. (1996). Lens induction in axolotls: comparison with inductive signaling mechanisms in Xenopus laevis. Int. J. Dev. Biol. 40, 755–61Google ScholarPubMed
Servetnick, M. and Grainger, R. M. (1991). Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer. Development 112, 177–88Google ScholarPubMed
Shan, B. and Lee, W. H. (1994). Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell Biol. 14, 8166–73CrossRefGoogle Scholar
Sharma, Y., Rao, C. M., Narasu, M. L., Rao, S. C., Somasundaram, T., Gopalakrishna, A. and Balasubramanian, D. (1989). Calcium ion binding to δ- and to β-crystallins: the presence of the EF-hand motif in δ-crystallin that aids in calcium ion binding. J. Biol. Chem. 264, 12794–9Google ScholarPubMed
Sharon-Friling, R., Richardson, J., Sperbeck, S., Lee, D., Rauchman, M., Maas, R., Swaroop, A. and Wistow, G. (1998). Lens-specific gene recruitment of zeta-crystallin through Pax6, Nrl-Maf, and brain suppressor sites. Mol. Cell. Biol. 18, 2067–76CrossRefGoogle ScholarPubMed
Shaw, L. M., Lotz, M. M. and Mercurio, A. M. (1993). Inside-out integrin signaling in macrophages: analysis of the role of the alpha 6A beta 1 and alpha 6B beta 1 integrin variants in laminin adhesion by cDNA expression in an alpha 6 integrin—deficient macrophage cell line. J. Biol. Chem. 268, 11401–8Google Scholar
Shaw, L. M., Messier, J. M. and Mercurio, A. M. (1990). The activation dependent adhesion of macrophages to laminin involves cytoskeletal anchoring and phosphorylation of the alpha 6 beta 1 integrin. J. Cell Biol. 110, 2167–74CrossRefGoogle ScholarPubMed
Shen, L., Shrager, P., Girsch, S. J. and Peracchia, C. (1991). Channel reconstitution in liposomes and planar lipid bilayers with HPLC-purified MIP26 of bovine lens. J. Membr. Biol. 124, 21–32CrossRefGoogle ScholarPubMed
Shen, W. and Mardon, G. (1997). Ectopic eye development in Drosophila induced by directed dachshund expression. Development 124, 45–52Google ScholarPubMed
Sheng, G., Harris, E., Bertuccioli, C. and Desplan, C. (1997a). Modular organization of Pax/homeodomain proteins in transcriptional regulation. Biol. Chem. 378, 863–72CrossRefGoogle Scholar
Sheng, G., Thouvenot, E., Schmucker, D., Wilson, D. S. and Desplan, C. (1997b). Direct regulation of rhodopsin 1 by Pax-6/eyeless in Drosophila: evidence for a conserved function in photoreceptors. Genes Dev. 11, 1122–31CrossRefGoogle Scholar
Shepard, A. R. and Rae, J. L. (1998). Ion transporters and receptors in cDNA libraries from lens and cornea epithelia. Curr. Eye Res. 17, 708–19CrossRefGoogle ScholarPubMed
Shepard, A. R. and Rae, J. L. (1999). Electrically silent potassium channel subunits from human lens epithelium. Am. J. Physiol. 46, C412–24CrossRefGoogle Scholar
Sherr, C. J. (1993). Mammalian G1 cyclins. Cell 73, 1059–65CrossRefGoogle ScholarPubMed
Sherr, C. J. (1994). G1 phase progression: cycling on cue. Cell 79, 551–5CrossRefGoogle Scholar
Sherr, C. J. (1996). Cancer cell cycles. Science 274, 1672–7CrossRefGoogle ScholarPubMed
Sherr, C. J. and Roberts, J. M. (1995). Inhibitors of mammalian G1 cyclin—dependent kinases. Genes Dev. 9, 1149–63CrossRefGoogle ScholarPubMed
Shestopalov, V. I. and Bassnett, S. (1999). Exogenous gene expression and protein targeting in lens fiber cells. Invest. Ophthalmol. Vis. Sci. 40, 1435–43Google ScholarPubMed
Shestopalov, V. I. and Bassnett, S. (2000a). Expression of autofluorescent proteins reveals a novel protein permeable pathway between cells in the lens core. J. Cell Sci. 113, 1913–21Google Scholar
Shestopalov, V. I. and Bassnett, S. (2000b). Three-dimensional organization of primary lens fiber cells. Invest. Ophthalmol. Vis. Sci. 41, 859–63Google Scholar
Sheterline, P., Clayton, J. and Sparrow, J. (1995). Actin. Protein Profile 2, 1–103Google ScholarPubMed
Shiels, A. and Bassnett, S. (1996). Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat. Genet. 12, 212–15CrossRefGoogle ScholarPubMed
Shiels, A., Mackay, D., Ionides, A., Berry, V., Moore, A. and Bhattacharya, S. (1998). A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverent” cataract, on chromosome 1q. Am. J. Hum. Genet. 62, 526–32CrossRefGoogle Scholar
Shiloh, Y., Donlon, T., Bruns, G., Breitman, M. L. and Tsui, L. C. (1986). Assignment of the human gamma-crystallin gene cluster (CRYG) to the long arm of chromosome 2, region q33–36. Hum. Genet. 73, 17–9CrossRefGoogle Scholar
Shimada, N., Aya-Murata, T., Reza, H. M. and Yasuda, K. (2003). Coorperative action between L-Maf and Sox2 on delta-crystallin gene expression during chick lens development. Mech. Dev. 120, 455–65CrossRefGoogle Scholar
Shinohara, T. and Piatigorsky, J. (1976). Quantitation of delta-crystallin messenger RNA during lens induction in chick embryos. Proc. Natl. Acad. Sci. USA 73, 2808–12CrossRefGoogle ScholarPubMed
Shinohara, T., Singh, D. P. and Fatma, N. (2002). LEDGF, a survival factor, activates stress-related genes. Prog. Retin. Eye Res. 21, 341–58CrossRefGoogle ScholarPubMed
Shirke, S., Faber, S. C., Hallem, E., Makarenkova, H. P., Robinson, M. L., Overbeek, P. A. and Lang, R. A. (2001). Misexpression of IGF-I in the mouse lens expands the transitional zone and perturbs lens polarization. Mech. Dev. 101, 167–74CrossRefGoogle ScholarPubMed
Shirodkar, S., Ewen, M., DeCaprio, J. A., Morgan, J. and Livingston, D. M. (1992). The transcription factor E2F interacts with the retinoblastoma product and a p107—cyclin A complex in a cell cycle-regulated manner. Cell 68, 157–66CrossRefGoogle Scholar
Shroff, N. P., Cherian-Shaw, M., Bera, S. and Abraham, E. C. (2000). Mutation of R116C results in highly oligomerized alpha A-crystallin with modified structure and defective chaperone-like function. Biochemistry 39, 1420–6CrossRefGoogle ScholarPubMed
Siegner, A., May, C. A., Welge-Lussen, U. W., Bloemendal, H. and Lutjen-Drecoll, E. (1996). Alpha B-crystallin in the primate ciliary muscle and trabecular meshwork. Eur. J. Cell Biol. 71, 165–9Google ScholarPubMed
Siezen, R. J., Bindels, J. G. and Hoenders, H. J. (1978). The quaternary structure of bovine alpha-crystallin: size and charge microheterogeneity: more than 1000 different hybrids?Eur. J. Biochem. 91, 387–96CrossRefGoogle ScholarPubMed
Siezen, R. J. and Shaw, D. C. (1982). Physicochemical characterization of lens proteins of the squid Nototodarus gouldi and comparison with vertebrate crystallins. Biochim. Biophys. Acta 704, 304–20CrossRefGoogle ScholarPubMed
Siezen, R. J., Wu, E., Kaplan, E. D., Thomson, J. A. and Benedek, G. B. (1988). Rat lens γ-crystallin: characterization of the six gene products and their spatial and temporal distribution resulting from differential synthesis. J. Mol. Bio. 199, 475–90CrossRefGoogle ScholarPubMed
Simeone, A., Acampora, D., Gulisano, M., Stornaiuolo, A. and Boncinelli, E. (1992). Nested expression domains of four homeobox genes in developing rostral brain. Nature 358, 687–90CrossRefGoogle ScholarPubMed
Simeone, A., Acampora, D., Mallamaci, A., Stornaiuolo, A., D'Apice, M. R., Nigro, V. and Boncinelli, E. (1993). A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 12, 2735–47Google ScholarPubMed
Singer, C. (1921). Steps leading to the invention of first optical apparatus. In C. Singer, ed., Studies in the History and Method of Science. Oxford: Clarendon, pp. 385–413
Singer, B. and Grunberger, D. (1983). Molecular Biology of Mutagens and Carcinogens. New York: Plenum, pp. 55–78CrossRef
Sinha, D., Esumi, N., Jaworski, C., Kozak, C. A., Pierce, E. and Wistow, G. (1998). Cloning and mapping the mouse Crygs gene and non-lens expression of [gamma]S-crystallin. Mol. Vis. 4, 8Google ScholarPubMed
Sirotkin, A. M., Edelmann, W., Cheng, G., Klein-Szanto, A., Kucherlapati, R. and Skoultchi, A. I. (1995). Mice develop normally without the H1(0) linker histone. Proc. Natl. Acad. Sci. USA 92, 6434–8CrossRefGoogle Scholar
Sivak, J. G., Gershon, D., Dovrat, A. and Weerheim, J. (1986). Computer assisted scanning laser monitor of optical quality of the excised crystalline lens. Vision Res. 26, 1873–9CrossRefGoogle ScholarPubMed
Sivak, J. G., Herbert, K. L., Peterson, K. L. and Kuszak, J. R. (1994). The inter-relationship of lens anatomy and optical quality. I. Non-primate lenses. Exp. Eye Res. 59, 505–20CrossRefGoogle Scholar
Skow, L. C., Donner, M. E., Huang, S. M., Gardner, J. M., Taylor, B. A., Beamer, W. G. and Lalley, P. A. (1988). Mapping of mouse gamma crystallin genes on chromosome 1. Biochem. Genet. 26, 557–70CrossRefGoogle ScholarPubMed
Slack, J. M., Isaacs, H. V., Song, J., Durbin, L. and Pownall, M. E. (1996). The role of fibroblast growth factors in early Xenopus development. Biochem. Soc. Symp. 62, 1–12Google ScholarPubMed
Slee, E. A., Adrain, C. and Martin, S. J. (2000). Executioner caspase-3, -6 and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 276, 7320–6CrossRefGoogle Scholar
Slingsby, C. and Bateman, O. A. (1990). Rapid separation of bovine beta-crystallin subunits βA3 and βA4. Exp. Eye Res. 51, 21–6CrossRefGoogle Scholar
Smith, B. S. (1989). Histochemical analysis of extracellular matrix material in embryonic trisomy 1 mouse eye. Dev. Genet. 10, 287–91CrossRefGoogle ScholarPubMed
Smith, F. J., Eady, R. A., Leigh, I. M., McMillan, J. R., Rugg, E. L., Kelsell, D. P., Bryant, S. P., Spurr, N. K., Geddes, J. F., Kirtschig, G., et al. (1996). Plectin deficiency results in muscular dystrophy with epidermolysis bullosa. Nat. Genet. 13, 450–7CrossRefGoogle ScholarPubMed
Smith, R. S., Hawes, N. L., Chang, B., Roderick, T. H., Akeson, E. C., Heckenlively, J. R., Gong, X., Wang, X. and Davisson, M. T. (2000). Lop12, a mutation in mouse Crygd causing lens opacity similar to human Coppock cataract. Genomics 63, 314–20CrossRefGoogle ScholarPubMed
Smolich, B. D., Tarkington, S. K., Saha, M. S. and Grainger, R. M. (1994). Xenopus g-crystallin gene expression: evidence that the g-crystallin gene family is transcribed in lens and non-lens tissues. Mol. Cell. Biol. 14, 1355–63CrossRefGoogle Scholar
Smulders, R. H., Boekel, M. A. and Jong, W. W. (1998). Mutations and modifications support a “pitted-flexiball” model for alpha-crystallin. Int. J. Biol. Macromol. 22, 187–96CrossRefGoogle ScholarPubMed
Somasundaram, T. and Bhat, S. P. (2000). Canonical heat shock element in the alpha B-crystallin gene shows tissue-specific and developmentally controlled interactions with heat shock factor. J. Biol. Chem. 275, 17154–9CrossRefGoogle ScholarPubMed
Song, S., Pitot, H. C. and Lambert, P. F. (1999). The human papillomavirus type 16 E6 gene alone is sufficient to induce carcinomas in transgenic animals. J. Virol. 73, 5887–93Google ScholarPubMed
Soriano, P. (1997). The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124, 2691–700Google ScholarPubMed
Spector, A., Chiesa, R., Sredy, J. and Garner, W. (1985). cAMP-dependent phosphorylation of bovine lens alpha-crystallin. Proc. Natl. Acad. Sci. USA 82, 4712–6CrossRefGoogle ScholarPubMed
Spemann, H. (1901). Ueber Corelationen in der Entwicklung des Auges. Verh. Anat. Ges. 15, 61–79Google Scholar
Spemann, H. (1907). Neue Tatsachen zum Linsenproblem. Zool. Anz. 31, 379–86Google Scholar
Spemann, H. (1912). Zur Entwicklung des Wirbeltierauges. Zool. Jahrb. 32, 1–98Google Scholar
Spemann, H. (1938). Embryonic Development and Induction. New York: Hafner
Spiewak Rinaudo, J. A. and Zelenka, P. S. (1992). Expression of c-fos and c-jun mRNA in the developing chicken lens: relationship to cell proliferation, quiescence, and differentiation. Exp. Cell Res. 199, 147–53CrossRefGoogle Scholar
Spivak-Kroizman, T., Lemmon, M. A., Dikic, I., Ladbury, J. E., Pinchasi, D., Huang, J., Jaye, M., Crumley, G., Schlessinger, J. and Lax, I. (1994). Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 79, 1015–24CrossRefGoogle ScholarPubMed
Srinivasan, Y., Lovicu, F. J. and Overbeek, P. A. (1998). Lens-specific expression of transforming growth factor beta1 in transgenic mice causes anterior subcapsular cataracts. J. Clin. Invest. 101, 625–34CrossRefGoogle ScholarPubMed
Stamer, W. D., Snyder, R. W., Smith, B. L., Agre, P. and Regan, J. W. (1994). Localization of aquaporin CHIP in the human eye: implications in the pathogenesis of glaucoma and other disorders of ocular fluid balance. Invest. Ophthalmol. Vis. Sci. 35, 3867–72Google ScholarPubMed
Steele, E. C., Kerscher, S., Lyon, M., Glenister, P. H., Favor, J., Wang, J. H. and Church, R. L. (1997). Identification of a mutation in the MP19 gene, Lim2, in the cataractous mouse mutant To3. Mol. Vis. 3, 5. Available at http://www.molvis.org/molvis/v3/steeleGoogle ScholarPubMed
Steele, E. C., Lyon, M. F., Favor, J., Guillot, P. V., Boyd, Y. and Church, R. L. (1998). A mutation in the connexin50 (Cx50) gene is a candidate for the No2 mouse cataract. Curr. Eye Res. 17, 883–9CrossRefGoogle Scholar
Steinert, P. M., Chou, Y. H., Prahlad, V., Parry, D. A., Marekov, L. N., Wu, K. C., Jang, S. I. and Goldman, R. D. (1999). A high molecular weight intermediate filament—associated protein in bHK-21 cells is nestin, a type VI intermediate filament protein: limited co-assembly in vitro to form heteropolymers with type III vimentin and type IV alpha-internexin. J. Biol. Chem. 274, 9881–90CrossRefGoogle ScholarPubMed
Steno, N. (1910). Opera Philosophica. Copenhagen: Christian Christensen
Stephan, D. A., Gillanders, E., Vanderveen, D., Freas-Lutz, D., Wistow, G., Baxevanis, A. D., Robbins, C. M., VanAuken, A., Quesenberry, M. I., Bailey-Wilson, J., et al. (1999). Progressive juvenile-onset punctate cataracts caused by mutation of the gammaD-crystallin gene. Proc. Natl. Acad. Sci. USA 96, 1008–12CrossRefGoogle ScholarPubMed
Stillman, B. (1996). Cell cycle control of DNA replication. Science 274, 1659–64CrossRefGoogle ScholarPubMed
Stolen, C. M. and Griep, A. E. (2000). Disruption of lens fiber cell differentiation and survival at multiple stages by region-specific expression of truncated FGF receptors. Dev. Biol. 217, 205–20CrossRefGoogle ScholarPubMed
Stolen, C. M., Jackson, M. W. and Griep, A. E. (1997). Overexpression of FGF-2 modulates fiber cell differentiation and survival in the mouse lens. Development 124, 4009–17Google ScholarPubMed
Stone, L. S. (1943). Factors controlling lens regeneration from the dorsal iris in de adult Triturus viridescens eye. Proc. Soc. Exp. Biol. Med. 54, 102–03CrossRefGoogle Scholar
Stone, L. S. (1952). An experimental study of the inhibition and release of lens regeneration in adults eyes of Triturus viridescens. J. Exp. Zool. 121, 181–23CrossRefGoogle Scholar
Stone, L. S. (1953). An experimental analysis of lens regeneration. Am. J. Ophthalmol. 36, 31–9CrossRefGoogle ScholarPubMed
Stone, L. S. (1954a). Further experiments on lens regeneration in eyes of the adult newt Triturus v. viridescens. Anat. Rec. 120, 599–624CrossRefGoogle Scholar
Stone, L. S. (1954b). Lens regeneration in secondary pupils experimentally produced in eyes of the adult newt Triturus v. viridescens. J. Exp. Zool. 127, 463–92CrossRefGoogle Scholar
Stone, L. S. (1958a). Lens regeneration in adult newt eyes related to retina pigment cells and the neural retina factor. J. Exp. Zool. 139, 69–84CrossRefGoogle Scholar
Stone, L. S. (1958b). Inhibition of lens regeneration in newt eyes by isolating the dorsal iris from the neural retina. Anat. Rec. 131, 151–72CrossRefGoogle Scholar
Stone, L. S. (1966). Experiments dealing with the inhibition and release of lens regeneration in eyes of adult newts. J. Exp. Zool. 161, 83–93CrossRefGoogle ScholarPubMed
Stone, L. S. (1967). An investigation recording all salamanders which can and cannot regenerate a lens from the dorsal iris. J. Exp. Zool. 164, 87–103CrossRefGoogle ScholarPubMed
Stone, L. S. and Steinitz, H. (1953). The regeneration of lenses in eyes with intact and regenerating retina in adult Triturus v. viridescens. J. Exp. Zool. 124, 435–67CrossRefGoogle Scholar
Stone, L. S. and Vultee, J. H. (1949). Inhibition and release of lens regenaration in the dorsal iris of Triturus v. viridescens. Anat. Rec. 103, 560Google Scholar
St-Onge, L., Sosa-Pineda, B., Chowdhury, K., Mansouri, A. and Gruss, P. (1997). Pax6 is required for differentiation of glucagon-producing α-cells in mouse pancreas. Nature 387, 406–9CrossRefGoogle ScholarPubMed
Straub, B. K., Boda, J., Kuhn, C., Schnoelzer, M., Korf, U., Kempf, T., Spring, H., Hatzfeld, M. and Franke, W. W. (2003). A novel cell-cell junction system: the cortex adhaerens mosaic of lens fiber cells. J. Cell Sci. 116, 4985–95CrossRefGoogle ScholarPubMed
Streeten, B. W. and Eshaghian, J. (1978). Human posterior subcapsular cataract: a gross and flat preparation study. Arch. Ophthalmol. 96, 1653–8CrossRefGoogle ScholarPubMed
Streuli, C. H., Bailey, N. and Bissell, M. J. (1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J. Cell Biol. 115, 1383–95CrossRefGoogle ScholarPubMed
Stump, R. J., Ang, S., Chen, Y., Bahr, T., Lovicu, F. J., Pinson, K., Iongh, R. U., Yamaguchi, T. P., Sassoon, D. A., and McAvoy, J. W. (2003).A role for Wnt/beta-catenin signaling in lens epithelial differentiation. Dev. Biol. 259, 48–61CrossRefGoogle ScholarPubMed
Sugimura, T., Fujimura, S. and Baba, T. (1970). Tumor production in the glandular stomach and alimentary tract of the rat by N-methyl-Nʹ-nitro-N-nitrosoguanidine. Cancer Res. 30, 455–65Google ScholarPubMed
Sullivan, C. H., Marker, P. C., Thorn, J. M. and Brown, J. D. (1998). Reliability of delta-crystallin as a marker for studies of chick lens induction. Differentiation 64, 1–9CrossRefGoogle ScholarPubMed
Sullivan, C. H., Norman, J. T., Borras, T. and Grainger, R. M. (1989). Developmental regulation of hypomethylation of delta-crystallin genes in chicken embryo lens cells. Mol. Cell. Biol. 9, 3132–5CrossRefGoogle ScholarPubMed
Sullivan, C. H., O'Farrell, S. and Grainger, R. M. (1991). Delta-crystallin gene expression and patterns of hypomethylation demonstrate two levels of regulation for the delta-crystallin genes in embryonic chick tissues. Dev. Biol. 145, 40–50CrossRefGoogle ScholarPubMed
Sveinsson, O. (1993). The ultrastructure of Elschnig's pearls in a pseudophakic eye. Acta Ophthalmol. (Copenhagen) 71, 95–8CrossRefGoogle Scholar
Svennevik, E. and Linser, P. J. (1993). The inhibitory effects of integrin antibodies and the RGD tripeptide on early eye development. Invest. Ophthalmol. Vis. Sci. 34, 1774–84Google ScholarPubMed
Svitkina, T. M., Verkhovsky, A. B. and Borisy, G. G. (1996). Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J. Cell Biol. 135, 991–1007CrossRefGoogle ScholarPubMed
Swamynathan, S. K., and Piatigorsky, J. (2002). Orientation-dependent influence of an intergenic enhancer on the promoter activity of the divergently transcribed mouse Shsp/alpha B-crystallin and Mkbp/HspB2 genes. J. Biol. Chem. 277, 49700–6CrossRefGoogle ScholarPubMed
Swenson, K. I., Jordan, J. R., Beyer, E. C. and Paul, D. L. (1989). Formation of gap junctions by expression of connexins in Xenopus oocyte pairs. Cell 57, 145–55CrossRefGoogle ScholarPubMed
Takagi, T., Moribe, H., Kondoh, H. and Higashi, Y. (1998). DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development 125, 21–31Google ScholarPubMed
Takahashi, Y., Hanaoka, K., Goto, K. and Kondoh, H. (1994). Lens-specific activity of the chicken delta 1-crystallin enhancer in the mouse. Int. J. Dev. Biol. 38, 365–8Google ScholarPubMed
Takano, K., Yamanaka, G. and Mikami, Y. (1958). Wolffian lens-regeneration in the eye containing a full brown lens in Triturus pyrrhogaster. Mie Med. J. 8, 177–82Google Scholar
Takata, C., Albright, J. F. and Yamada, T. (1964). Lens antigens in the lens-regenerating system studied by immunofluorescent technique. Dev. Biol. 9, 385–97CrossRefGoogle ScholarPubMed
Takata, C., Albright, J. F. and Yamada, T. (1966). Gamma-crystallins in Wolffian lens regeneration demonstrated by immunofluorescence. Dev. Biol. 14, 382–400CrossRefGoogle Scholar
Takeda, H., Nagafuchi, A., Yonemura, S., Tsukita, S., Behrens, J. and Birchmeier, W. (1995). V-src kinase shifts the cadherin-based cell adhesion from the strong to the weak state and beta catenin is not required for the shift. J. Cell Biol. 131, 1839–47CrossRefGoogle Scholar
Takei, K., Furuya, A., Hommura, S. and Yamaguchi, N. (2001). Ultrastructural fragility and type iv collagen abnormality of the anterior lens capsules in a patient with Alport syndrome. Jpn. J. Ophthalmol. 45, 103–4CrossRefGoogle Scholar
Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator [review]. Science 251, 1451–5CrossRefGoogle Scholar
Takeichi, M. (1995). Morphogenetic roles of classical cadherins. Curr. Opin. Cell Biol. 5, 806–11CrossRefGoogle Scholar
Tamm, E. R., Russell, P., Johnson, D. H. and Piatigorsky, J. (1996). Human and monkey trabecular meshwork accumulate alpha B-crystallin in response to heat shock and oxidative stress. Invest. Ophthalmol. Vis. Sci. 37, 2402–13Google ScholarPubMed
Tamura, R. N., Cooper, H. M., Collo, G. and Quaranta, V. (1991). Cell type specific integrin variants with alternative alpha chain cytoplasmic domains. Proc Nat. Acad. Sci. USA 88, 10183–7CrossRefGoogle ScholarPubMed
Tanaka, T., Tsujimura, T., Takeda, K., Sugihara, A., Maekawa, A., Terada, N., Yoshida, N. and Akira, S. (1998). Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres. Genes Cells 3, 801–10CrossRefGoogle ScholarPubMed
Tang, S.-S., Lin, C.-C. and Chang, G.-G. (1994). Isolation and characterization of octopus hepatopancreatic glutathione S-transferase: comparison of digestive gland enzyme with lens S-crystallin. J. Prot. Chem. 13, 609–18CrossRefGoogle ScholarPubMed
Tao, Q. F., Hollenberg, N. K. and Graves, S. W. (1999). Sodium pump inhibition and regional expression of sodium pump α-isoforms in the lens. Hypertension 34, 1168–74CrossRefGoogle Scholar
Tardieu, A. and Delaye, M. (1988). Eye lens proteins and transparency: from light transmission theory to solution X-ray structural analysis. Ann. Rev. Biophys. Biochem. 17, 47–70Google ScholarPubMed
Tardieu, A., Veretout, F., Krop, B. and Slingsby, C. (1992). Protein interactions in the calf eye lens: interactions between beta-crystallins are repulsive whereas in gamma-crystallins they are attractive. Eur. Biophys. J. 21, 1–12CrossRefGoogle ScholarPubMed
Taube, J. R., Gao, C. Y., Ueda, Y., Zelenka, P. S., David, L. L. and Duncan, M. K. (2002). General utility of the chicken betaB1-crystallin promoter to drive protein expression in lens fiber cells of transgenic mice. Transgenic Res. 11, 397–410CrossRefGoogle ScholarPubMed
Taylor, V., Welcher, A. A., Program, A. E. and Suter, U. (1995). Epithelial membrane protein-1, peripheral myelin protein 22, and lens membrane protein 20 define a novel gene family. J. Biol. Chem. 270, 28824–33CrossRefGoogle ScholarPubMed
Taylor, V. L., Al-Ghoul, K. J., Lane, C. W., Davis, V. A., Kuszak, J. R. and Costello, M. J. (1996). Morphology of the normal human lens. Invest. Ophthalmol. Visual Sci. 37, 1396–410Google ScholarPubMed
Taylor, V. L. and Costello, M. J. (1999). Fourier analysis of textural variations in human normal and cataractous lens nuclear fiber cell cytoplasm. Exp. Eye Res. 69, 163–74CrossRefGoogle ScholarPubMed
Tebar, M., Destree, O., Vree, W. J. and Ten Have-Opbroek, A. A. (2001). Expression of Tcf/Lef and sFrp and localization of beta-catenin in the developing mouse lung. Mech. Dev. 109, 437–40CrossRefGoogle ScholarPubMed
TenBroek, E. M., Louis, C. F. and Johnson, R. (1997). The differential effects of 12-O-tetradecanoylphorbol-13-acetate on the gap junctions and connexins of the developing mammalian lens. Dev. Biol. 191, 88–102CrossRefGoogle ScholarPubMed
Thiery, J. P., Delouvee, A., Gallin, W. J., Cunningham, B. A. and Edelman, G. M. (1984). Ontogenetic expression of cell adhesion molecules: L-CAM is found in epithelia derived from the three primary germ layers. Dev. Biol. 102, 61–78CrossRefGoogle ScholarPubMed
Thomas, G., Zelenka, P. S., Cuthbertson, R. A., Norman, B. L. and Piatigorsky, J. (1990). Differential expression of the two delta-crystallin/argininosuccinate lyase genes in lens, heart, and brain of chicken embryos. New Biol. 2, 903–14Google ScholarPubMed
Thomas, G. R., Duncan, G. and Sanderson, J. (1998). Acetylcholine-induced membrane potential oscillations in the intact lens. Invest. Ophthalmol. Vis. Sci. 39, 111–19Google ScholarPubMed
Thomson, I., Wilkinson, C. E., Burns, A. T. H., Truman, D. E. S. and Clayton, R. M. (1978). Characterization of chick lens soluble proteins and the control of their synthesis. Exp. Eye Res. 26, 351–62CrossRefGoogle ScholarPubMed
Thyagarajan, T. and Kulkarni, A. B. (2002). Transforming growth factor-betal negatively regulates crystallin expression in teeth. J. Bone. Miner. Res. 17, 1710–7CrossRefGoogle Scholar
Tini, M., Fraser, R. A. and Giguere, V. (1995). Functional interactions between retinoic acid receptor—related orphan nuclear receptor (ROR-α) and the retinoic acid receptors in the regulation of the γF-crystallin promoter. J. Biol. Chem. 270, 20156–61CrossRefGoogle Scholar
Tini, M., Otulakowski, G., Breitman, M. L., Tsui, L.-C. and Giguere, V. (1993). An everted repeat mediates retinoic acid induction of the γF-crystallin gene: evidence of a direct role for retinoids in lens development. Genes Devel. 7, 295–307CrossRefGoogle Scholar
Tini, M., Tsui, L.-C. and Giguere, V. (1994). Heterodimeric interaction of the retinoic acid and thyroid hormone receptors in transcriptional regulation on the γF-crystallin everted retinoic acid response element. Mol. Endocrinol. 8, 1494–506Google Scholar
Tomarev, S. I. (1997). Pax-6, eyes absent, and Prox 1 in eye development. Int. J. Dev. Biol. 41, 835–42Google ScholarPubMed
Tomarev, S. I., Callaerts, P., Kos, L., Zinovieva, R., Halder, G., Gehring, W. and Piatigorsky, J. (1997). Squid Pax-6 and eye development. Proc. Natl. Acad. Sci. USA 94, 2421–6CrossRefGoogle ScholarPubMed
Tomarev, S. I., Chung, S. and Piatigorsky, J. (1995). Glutathione S-transferase and S-crystallins of cephalopods: evolution from active enzyme to lens-refractive proteins. J. Mol. Evol. 41, 1048–56CrossRefGoogle ScholarPubMed
Tomarev, S. I., Duncan, M. K., Roth, H. J., Cvekl, A. and Piatigorsky, J. (1994). Convergent evolution of crystallin gene regulation in squid and chicken: the AP-1/ARE connection. J. Mol. Evol. 39, 134–43Google ScholarPubMed
Tomarev, S. I. and Piatigorsky, J. (1996). Lens crystallins of invertebrates: diversity and recruitment from detoxification enzymes and novel proteins. Eur. J. Biochem. 235, 449–65CrossRefGoogle ScholarPubMed
Tomarev, S. I., Sundin, O., Banerjeebasu, S., Duncan, M. K., Yang, J. M. and Piatigorsky, J. (1996). Chicken homeobox gene Prox1 related to Drosophila prospero is expressed in the developing lens and retina. Dev. Dyn. 206, 354–673.0.CO;2-H>CrossRefGoogle Scholar
Tomarev, S. I. and Zinovieva, R. D. (1988). Squid major lens polypeptides are homologous to glutathione S-transferase subunits. Nature 336, 86–8CrossRefGoogle Scholar
Tomarev, S. I., Zinovieva, R. D., Chang, B. and Hawes, N. L. (1998). Characterization of the mouse Prox1 gene. Biochem. Biophys. Res. Comm. 248, 684–9CrossRefGoogle ScholarPubMed
Tomarev, S. I., Zinovieva, R. D., Guo, K. and Piatigorsky, J. (1993). Squid glutathione S-transferase: relationships with other glutathione S-transferases and S-crystallins of cephalopods. J. Biol. Chem. 268, 4534–42Google ScholarPubMed
Tomarev, S. I., Zinovieva, R. D. and Piatigorsky, J. (1991). Crystallins of the octopus lens: recruitment from detoxification enzymes. J. Biol. Chem. 266, 24226–31Google ScholarPubMed
Tomarev, S. I., Zinovieva, R. D. and Piatigorsky, J. (1992). Characterization of squid crystallin genes: comparison with mammalian glutathione S-transferase genes. J. Biol. Chem. 267, 8604–12Google ScholarPubMed
Tomei, L. D., Cope, F. O. and Barr, P. J. (1994). Apoptosis: aging and phenotypic fidelity. In Apoptosis II: The Molecular Basis of Apoptosis in Disease, ed. L. D. Tomei and F. O. Cope. Plainview, New York: Cold Springs Harbor Laboratory Press, pp. 377–96
Ton, C. C. T., Hirvonen, H., Miwa, H., Weil, M. M., Monaghan, P., Jordan, T., Heyningen, V., Hastie, N. D., Meijers-Heijboer, H., Drechsler, M., et al. (1991). Positional cloning and characterization of a paired box- and homeobox-containing gene from aniridia region. Cell 67, 1059–74CrossRefGoogle ScholarPubMed
Topaloglu, H., Yetuk, M., Talim, B., Akcoren, Z. and Caglar, M. (1997). Merosin-positive congenital muscular dystrophy with mental retardation and cataracts: a new entity in two families. Eur. J. Paediatr. Neurol. 1, 127–31CrossRefGoogle ScholarPubMed
Torriglia, A., Chaudun, E., Chany-Fournier, F., Jeanny, J. C., Courtois, Y. and Counis, M. F. (1995). Involvement of DNase II in nuclear degeneration during lens cell differentiation. J. Biol. Chem. 270, 28579–85CrossRefGoogle ScholarPubMed
Toy, J. and Sundin, O. H. (1999). Expression of the Optx2 homeobox gene during mouse development. Mech. Dev. 83, 183–6CrossRefGoogle ScholarPubMed
Toy, J., Yang, J. M., Leppert, G. S. and Sundin, O. H. (1998). The Optx2 homeobox gene is expressed in early precursors of the eye and activates retina-specific genes. Proc. Natl. Acad. Sci. USA 95, 10643–8CrossRefGoogle ScholarPubMed
Trautman, M. S., Kimelman, J. and Bernfield, M. (1991). Developmental expression of syndecan, an integral membrane proteoglycan, correlates with cell differentiation. Development 111, 213–20Google ScholarPubMed
Treisman, J. (2001). Drosophila homologues of the transcriptional coactivation complex subunits TRAP240 and TRAP230 are required for identical processes in eye—antennal disc development. Development 128, 603–15Google ScholarPubMed
Treisman, J. and Lang, R. (2002). Development and evolution of the eye: Fondation des Treilles, September 2001. Mech. Dev. 112, 3–8CrossRefGoogle ScholarPubMed
Treisman, J. E. (1999). A conserved blueprint for the eye?BioEssays 21, 843–503.0.CO;2-J>CrossRefGoogle ScholarPubMed
Treton, J. A., Jacquemin, E. and Courtois, Y. (1988). Variation in the relative abundance of gamma-crystallin gene transcripts during development and ageing. Exp. Eye Res. 46, 405–13CrossRefGoogle ScholarPubMed
Treton, J. A., Jacquemin, E., Courtois, Y. and Jeanny, J. C. (1991). Differential localization by in situ hybridization of specific crystallin transcripts during mouse lens development. Differentiation 47, 143–7CrossRefGoogle ScholarPubMed
Treton, J. A., Jones, R. E., King, C. R. and Piatigorsky, J. (1984). Evidence against gamma-crystallin DNA or RNA sequences in the chicken. Exp. Eye Res. 39, 513–22CrossRefGoogle ScholarPubMed
Treton, J. A., Shinohara, T. and Piatigorsky, J. (1982). Degradation of delta-crystallin mRNA in the lens fiber cells of the chicken. Dev. Biol. 92, 60–5CrossRefGoogle ScholarPubMed
Trokel, S. (1962). The physical basis for transparency of the crystalline lens. Invest. Ophthalmol. 1, 493–501Google ScholarPubMed
Trusolino, L. and Comoglio, P. M. (2002). Scatter-factor and semaphorin receptors: cell signaling for invasive growth. Nat. Rev. Cancer 2, 289–300CrossRefGoogle ScholarPubMed
Tsai, K. Y., Hu, Y., Macleod, K. F., Crowley, D., Yamasaki, L. and Jacks, T. (1998). Mutation of E2F-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304CrossRefGoogle ScholarPubMed
Tsai, K. Y., MacPherson, D., Robinson, D. A., Crowley, D. and Jacks, T. (2002). ARF is not required for apoptosis in Rb mutant mouse embryos. Curr. Biol. 12, 159–63CrossRefGoogle Scholar
Tsonis, P. A. (2000). Regeneration in vertebrates. Dev. Biol. 221, 273–84CrossRefGoogle ScholarPubMed
Tsonis, P. A. (2001). Regeneration of the vertebrate lens and other eye structures. In Embryonic Encyclopedia of Life Sciences. London: Nature Publishing Group, pp. 1–6CrossRef
Tsonis, P. A., Jang, W., Del Rio-Tsonis, K. and Eguchi, G. (2001). A human pigment epithelium cell line as a model for lens transdifferentiation. Int. J. Dev. Biol. 45, 753–8Google Scholar
Tsonis, P. A., Tromblay, M. T., Rowland, T., Chanrdaratna, R. A. S. and Del Rio-Tsonis, K. (2000). Role of retinoic acid in lens regeneration. Dev. Dyn. 21, 588–933.0.CO;2-H>CrossRefGoogle Scholar
Tsonis, P. A., Tsavaris, M., Call, M. K., Chandraratna, R. A. S. and Del Rio-Tsonis, K. (2002). Expression and role of retinoic acid receptor alpha in lens regeneration. Dev. Growth Differ. 44, 391–4CrossRefGoogle ScholarPubMed
Tsujimoto, A., Nyunoya, H., Morita, T., Sato, T. and Shimotohno, K. (1991). Isolation of cDNAs for DNA-binding proteins which specifically bind to a tax-responsive enhancer element in the long terminal repeat of human T-cell leukemia virus type I. J. Virol. 65, 1420–6Google Scholar
Tucker, R. P. (1991). The distribution of J1/tenascin and its transcript during the development of the avian cornea. Differentiation 48, 59–66CrossRefGoogle ScholarPubMed
Tunstall, M. J., Eckert, R., Donaldson, P. J. and Kistler, J. (1999). Localised fibre cell swelling characteristic of diabetic cataract can be induced in normal rat lens using the chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid. Ophthalmic Res. 31, 317–20CrossRefGoogle ScholarPubMed
Turner, C. E. (1998). Paxillin. Int. J. Biochem. Cell. Biol. 30, 955–9CrossRefGoogle ScholarPubMed
Uchikawa, M., Kamachi, Y. and Kondoh, H. (1999). Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken. Mech. Dev. 84, 103–20CrossRefGoogle Scholar
Ueda, Y., Chamberlain, C. G., Satoh, K. and McAvoy, J. W. (2000). Inhibition of FGF-induced alphaA-crystallin promoter activity in lens epithelial explants by TGFbeta. Invest. Ophthalmol. Vis. Sci. 41, 1833–9Google ScholarPubMed
Ueda, Y., Duncan, M. K. and David, L. L. (2002). Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age. Invest. Ophthalmol. Vis. Sci. 43, 205–15Google ScholarPubMed
Uno, M. (1943). Zur Frage des Mechanismus der Wolffschen Linsenregeneration. Jpn. J. Med. Sci. I. Anat. 11, 75–100Google Scholar
Vallari, R. C. and Pietruszko, R. (1982). Human aldehyde dehydrogenase: mechanism of inhibition of disulfiram. Science 216: 637–9CrossRefGoogle ScholarPubMed
Vallejo, M., Ron, D., Miller, C. P. and Habener, J. F. (1993). C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. Proc. Natl. Acad. Sci. USA 90, 4679–83CrossRefGoogle ScholarPubMed
Heuvel, S. and Harlow, E. (1993). Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–4CrossRefGoogle ScholarPubMed
Oetelaar, P. J., Someren, P. F., Thomson, J. A., Siezen, R. J. and Hoenders, H. J. (1990). A dynamic quaternary structure of bovine alpha-crystallin as indicated from intermolecular exchange of subunits. Biochemistry 29, 3488–93CrossRefGoogle ScholarPubMed
Starre, H. (1977). Biochemical investigation of lens induction in vitro. I. Induction properties of the eye cup and ectodermal response. Acta Morphol. Neerl. Scand. 15, 275–86Google ScholarPubMed
Starre, H. (1978). Biochemical investigation of lens induction in vitro. II. Demonstration of the induction substance. Acta Morphol. Neerl. Scand. 16, 109–20Google Scholar
Deth, J. H. M. G. (1940). Induction et régénération du cristallin chez l'embryon de la poule. Acta Neerl. Morph. 3, 151–69Google Scholar
Heyningen, R. (1976). Experimental studies on cataract. Invest. Ophthalmol. Vis. Sci. 15, 685–97Google ScholarPubMed
Vanita, , Sarhadi, V., Reis, A., Jung, M., Singh, D., Sperling, K., Singh, J. R. and Burger, J. (2001). A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and its pseudogene. J. Med. Genet. 38, 392–6CrossRefGoogle ScholarPubMed
Kamp, G. J., Boudier, H. A. and Hoenders, H. J. (1974). Specific polypeptides in prenatal bovine alpha-crystallin. Int. J. Pept. Protein Res. 6, 75–8CrossRefGoogle ScholarPubMed
vanLeen, R. W., vanRoozendal, K. E. P., Lubsen, N. H. and Schoenmakers, J. G. G. (1987). Differential expression of crystallin genes during development of the rat eye lens. Dev. Biol. 120, 457–64CrossRefGoogle Scholar
Montfort, R. L., Bateman, O. A., Lubsen, N. H. and Slingsby, C. (2003). Crystal structure of truncated human betaB1-crystallin. Protein Sci. 12, 2606–12CrossRefGoogle ScholarPubMed
Noort, J. M., Sechel, A. C., Stipdonk, M. J. and Bajramovic, J. J. (1998). The small heat shock protein alpha B-crystallin as key autoantigen in multiple sclerosis. Prog. Brain Res. 117, 435–52CrossRefGoogle ScholarPubMed
Raamsdonk, C. D. and Tilghman, S. M. (2000). Dosage requirement and allelic expression of Pax6 during lens placode formation. Development 127, 5439–48Google ScholarPubMed
vanRens, G. L., deJong, W. W. and Bloemendal, H. (1991). One member of the gamma-crystallins, gamma Si is expressed in birds. Exp. Eye. Res. 53, 135–8CrossRefGoogle Scholar
vanRens, G. L. M., Driessen, H. P. C., Nalini, V., Slingsby, C., deJong, W. W. and Bloemendal, H. (1991). Isolation and characterization of cDNAs encoding βA2- and βA4-crystallins: heterologous interactions in the predicted βA4-βB2 heterodimer. Gene 102, 179–88CrossRefGoogle Scholar
Varadaraj, K., Kushmerick, C., Baldo, G. J., Bassnett, S., Shiels, A. and Mathias, R. T. (1999). The role of MIP in lens fiber cell membrane transport. J. Membr. Biol. 170, 191–203CrossRefGoogle ScholarPubMed
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al. (2001). The sequence of the human genome. Science 291, 1304–51CrossRefGoogle ScholarPubMed
Veretout, F., Delaye, M. and Tardieu, A. (1989). Molecular basis of eye lens transparency: osmotic pressure and X-ray analysis of alpha-crystallin solutions. J. Mol. Biol. 205, 713–28CrossRefGoogle ScholarPubMed
Vicart, P., Caron, A., Guicheney, P., Li, Z., Prevost, M. C., Faure, A., Chateau, D., Chapon, F., Tome, F., Dupret, J. M., et al. (1998). A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat. Genet. 20, 92–5CrossRefGoogle ScholarPubMed
Vogel-Höpker, A., Momose, T., Rohrer, H., Yasuda, K., Ishihara, L. and Rapaport, D. H. (2000). Multiple functions of fibrobalst growth factor-8 (FGF-8) in chick eye development. Mech. Dev. 94, 25–36CrossRefGoogle Scholar
Voges, D., Zwicki, P. and Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Ann. Rev. Biochem. 68, 1015–68CrossRefGoogle ScholarPubMed
Volberg, T., Geiger, B., Dror, R. and Zick, Y. (1991). Modulation of intercellular adherens-type junctions and tyrosine phosphorylation of their components in RSV-transformed cultured chick lens cells. Cell Regul. 2, 105–20CrossRefGoogle ScholarPubMed
Volk, T. and Geiger, B. (1986a). A-CAM: a 135-kD receptor of intercellular adherens junctions. I. Immunoelectron microscopic localization and biochemical studies. J. Cell Biol. 103, 1441–50CrossRefGoogle Scholar
Volk, T. and Geiger, B. (1986b). A-CAM: a 135-kD receptor of intercellular adherens junctions. II. Antibody-mediated modulation of junction formation. J. Cell Biol. 103, 1451–64CrossRefGoogle Scholar
Von, D. M. K. and Ocalan, M. (1989). Antagonistic effects of laminin and fibronectin on the expression of the myogenic phenotype. Differentiation 40, 150–7Google Scholar
Sallman, L. (1957). The lens epithelium in the pathogenesis of cataract. Amer. J. Ophthalmol. 44, 159–70CrossRefGoogle Scholar
Woellwarth, C. (1961). Die rolle des neuralleistenmaterials und der temperatur bei der determination der augenlinse. Embryologia 6, 219–42CrossRefGoogle Scholar
Voorter, C. E., Kistler, J., Gruijters, W. T. M., Mulders, J. W., Christie, D. and Jong, W. W. (1989). Curr. Eye Res. 8, 697–706CrossRef
Voorter, C. E., Mulders, J. W., Bloemendal, H. and Jong, W. W. (1986). Some aspects of the phosphorylation of alpha-crystallin A. Eur. J. Biochem. 160, 203–10CrossRefGoogle ScholarPubMed
Voorter, C. E. M., Bleomendal, H. and deJong, W. W. (1989). In vitro and in vivo phosphorylation of chicken βB3-crystallin. Curr. Eye Res. 8, 459–65CrossRefGoogle Scholar
Wachs, H. (1914). Neue Versuche sur Wolffschen Linsenregeneration. Wilhelm Roux Arch. Entwickl.-Mech. Org. 39, 384–451Google Scholar
Waddington, C. (1936). The origin of competence for lens formation in the amphibia. J. Exp. Biol. 13, 86–91Google Scholar
Waddington, C. H. (1932). Experiments on the development of chick and duck embryos, cultivated in vitro. Proc. Roy. Soc. Lond. B. 221, 179–230Google Scholar
Waddington, C. H. and Cohen, A. (1936). Experiments on the development of the head of the chick embryo. J. Exp. Biol. 13, 219–36Google Scholar
Wade, N. J. (1998a). Early studies of eye dominances. Laterality 3, 97–109CrossRefGoogle Scholar
Wade, N. J. (1998b). A Natural History of Vision. Cambridge, Massachusetts: The MIT press
Wagner, E., McCaffery, P. and Drager, U. C. (2000). Retinoic acid in the formation of the dorsoventral retina and its central projections. Dev. Biol. 222, 460–70CrossRefGoogle ScholarPubMed
Wakabayashi, Y., Kawahara, J., Iwasaki, T. and Usui, M. (1994). Retinoic acid transport to lens epithelium in human aqueous humor. Jpn. J. Ophthalmol. 38, 400–6Google ScholarPubMed
Walker, J. L. and Menko, A. S. (1999). Alpha6 integrin is regulated with lens cell differentiation by linkage to the cytoskeleton and isoform switching. Dev. Biol. 210, 497–511CrossRefGoogle ScholarPubMed
Walker, J. L., Zhang, L. and Menko, A. S. (2002a). A signaling role for the uncleaved form of α6 integrin in differentiating lens fiber cells. Dev. Biol. 251, 195–205CrossRefGoogle Scholar
Walker, J. L., Zhang, L. and Menko, A. S. (2002b). Transition between proliferation and differentiation for lens epithelial cells is regulated by Src family kinases. Dev. Dyn. 224, 361–72CrossRefGoogle Scholar
Walker, J. L., Zhang, L., Zhou, J., Woolkalis, M. J. and Menko, A. S. (2002c). Role for alpha6 integrin during lens development: evidence for signaling through IGF-IR and ERK. Dev. Dyn. 223, 273–84CrossRefGoogle Scholar
Wallace, P., Signer, E., Paton, I. R., Burt, D. and Quinlan, R. (1998). The chicken CP49 gene contains an extra exon compared to the human CP49 gene which identifies an important step in the evolution of the eye lens intermediate filament proteins. Gene 211, 19–27CrossRefGoogle ScholarPubMed
Wallis, D. E., Roessler, E., Hehr, U., Nanni, L., Wiltshire, T., Richieri-Costa, A., Gillessen-Kaesbach, G., Zackai, E. H., Rommens, J. and Muenke, M. (1999). Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat. Genet. 22, 196–8CrossRefGoogle ScholarPubMed
Walls, G. L., ed. (1963). The Vertebrate Eye and Its Adaptive Radiation. New York and London: Hafner
Walsh, F. S. and Doherty, P. (1997). Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu. Rev. Cell. Dev. Biol. 13, 425–56CrossRefGoogle ScholarPubMed
Walther, C. and Gruss, P. (1991). Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–49Google ScholarPubMed
Walther, C., Guenet, J. L., Simon, D., Deutsch, U., Jostes, B., Goulding, M. D., Plachov, D., Balling, R. and Gruss, P. (1991). Pax: a murine multigene family of paired box—containing genes. Genomics 11, 424–34CrossRefGoogle ScholarPubMed
Walton, J. and McAvoy, J. (1984). Sequential structural response of lens epithelium to retina-conditioned medium. Exp. Eye Res. 39, 217–29CrossRefGoogle ScholarPubMed
Wang, J. Y. (1997). Retinoblastoma protein in growth suppression and death protection. Curr. Opin. Genet. Dev. 7, 39–45CrossRefGoogle ScholarPubMed
Wang, K., Gawinowicz, M. A. and Spector, A. (2000). The effect of stress on the pattern of phosphorylation of alphaA and alphaB crystallin in the rat lens [in process citation]. Exp. Eye Res. 71, 385–93CrossRefGoogle Scholar
Wang, K. and Spector, A. (2000). Alpha-crystallin prevents irreversible protein denaturation and acts cooperatively with other heat-shock proteins to renature the stabilized partially denatured protein in an ATP-dependent manner. Eur. J. Biochem. 267, 4705–12CrossRefGoogle Scholar
Wang, L. F., Dhir, P., Bhatnagar, A. and Srivastava, S. K. (1997). Contribution of osmotic changes to disintegrative globulization of single cortical fibers isolated from rat lens. Exp. Eye Res. 65, 267–75CrossRefGoogle ScholarPubMed
Wang, S. Z. and Adler, R. (1994). A developmentally regulated basic-leucine zipper-like gene and its expression in embryonic retina and lens. Proc. Natl. Acad. Sci. USA 91, 1351–5CrossRefGoogle ScholarPubMed
Wang, Y., He, H., Zigler, J. S., Iwata, T., Ibaraki, N., Reddy, V. N. and Carper, D. (1999). bFGF suppresses serum-deprivation—induced apoptosis in a human lens epithelial cell line. Exp. Cell Res. 249, 123–30CrossRefGoogle Scholar
Wanko, T. and Gavin, M. A. (1959). EM of the lens. J. Biophys. Biochem. Cytol. 6, 97–102CrossRefGoogle Scholar
Wannemacher, C. F. and Spector, A. (1968). Protein synthesis in the core of calf lens. Exp. Eye Res. 7, 623–5CrossRefGoogle ScholarPubMed
Wary, K. K., Mainiero, F., Isakoff, S. J., Marcantonio, E. E. and Giancotti, F. G. (1996). The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87, 733–43CrossRefGoogle ScholarPubMed
Wary, K. K., Mariotti, A., Zurzolo, C. and Giancotti, F. G. (1998). A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625–34CrossRefGoogle ScholarPubMed
Watanabe, M., Kobayashi, H., Rutishauser, U., Katar, M., Alcala, J. and Maisel, H. (1989). NCAM in the differentiation of embryonic lens tissue. Dev. Biol. 135, 414–23CrossRefGoogle ScholarPubMed
Watanabe, M., Kobayashi, H., Yao, R. and Maisel, H. (1992). Adhesion and junction molecules in embryonic and adult lens cell differentiation. Acta Ophthalmol. Suppl. 107, 46–52Google Scholar
Waterman-Storer, C. M., Salmon, W. C. and Salmon, E. D. (2000). Feedback interactions between cell-cell adherens junctions and cytoskeletal dynamics in newt lung epithelial cells. Mol. Biol. Cell 11, 2471–83CrossRefGoogle ScholarPubMed
Watsky, M. A., Cooper, K. and Rae, J. L. (1991). Sodium channels in ocular epithelia. Pflügers Arch. 419, 454–9CrossRefGoogle ScholarPubMed
Wawersik, S. and Maas, R. L. (2000). Vertebrate eye development as modeled in Drosophila. Hum. Mol. Genet. 9, 917–25CrossRefGoogle ScholarPubMed
Wawersik, S., Purcell, P. and Maas, R. L. (2000). Pax6 and the genetic control of early eye development. Results Probl. Cell. Differ. 31, 15–36CrossRefGoogle ScholarPubMed
Wawersik, S., Purcell, P., Rauchman, M., Dudley, A. T., Robertson, E. J. and Maas, R. (1999). bMP7 acts in murine lens placode development. Dev. Biol. 207, 176–88CrossRefGoogle ScholarPubMed
Wawrousek, E. F., Chepelinsky, A. B., McDermott, J. B. and Piatigorsky, J. (1990). Regulation of the murine alpha A-crystallin promoter in transgenic mice. Dev. Biol. 137, 68–76CrossRefGoogle ScholarPubMed
Weaver, M. and Hogan, B. (2001). Powerful ideas driven by simple tools: lessons from experimental embryology. Nat. Cell. Biol. 3, E165–7CrossRefGoogle ScholarPubMed
Webster, E. H., Silver, A. F. and Gonsalves, N. I. (1983). Histochemical analysis of extracellular matrix material in embryonic mouse lens morphogenesis. Dev. Biol. 100, 147–57CrossRefGoogle ScholarPubMed
Webster, E. H. Jr. and Zwaan, J. (1984). The appearance of alpha, beta and gamma crystallins in an anophthalmic strain of mice. Differentiation 27, 53–8CrossRefGoogle Scholar
Wedlock, D. E. and McCallion, D. J. (1968). The question of lens regeneration from parts of the optic vesicle in the chick embryo. Experientia 24, 620–1CrossRefGoogle ScholarPubMed
Wegner, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucl. Acids Res. 27, 1409–20CrossRefGoogle ScholarPubMed
Wei, J., Shaw, L. M. and Mercurio, A. M. (1998). Regulation of mitogen-activated protein kinase activation by the cytoplasmic domain of the alpha6 integrin subunit. J. Biol. Chem. 273, 5903–7CrossRefGoogle ScholarPubMed
Weil, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., Walsh, J., Mburu, P., Varela, A., Levilliers, J., Weston, M. D., et al. (1995). Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374, 60–1CrossRefGoogle ScholarPubMed
Weinberg, R. A. (1995). The retinoblastoma protein and cell cycle control. Cell 81, 323–30CrossRefGoogle ScholarPubMed
Weis, V. M., Montgomery, M. K., and McFall-Ngai, M. J. (1993). Enhanced production of ALDH-like protein in the bacterial light organ of the Sepiolid squid Euprymna scolopes. Biol. Bull. 184, 309–21CrossRefGoogle ScholarPubMed
Weisblat, D., Sawyer, K. and Stent, G. (1978). Cell lineage analysis by intracellular injection of a tracer. Science 202, 1295–8CrossRefGoogle ScholarPubMed
Weisstein, E. W. (2003). “Alcmaeon of Croton (ca. 535-unknown BC).” Retrieved February 3, 2004 from Eric Weisstein's World of Biography Web site: http://scienceworld.wolfram.com/biography/Alcmaeon.html
Weitzer, G. and Wiche, G. (1987). Plectin from bovine lenses: chemical properties, structural analysis and initial identification of interaction partners. Eur. J. Biochem. 169, 41–52CrossRefGoogle ScholarPubMed
Welsh, M. J. and Gaestel, M. (1998). Small heat-shock protein family: function in health and disease. Ann. NY Acad. Sci. 851, 28–35CrossRefGoogle ScholarPubMed
Weng, J., Liang, Q., Mohan, R. R., Li, Q. and Wilson, S. E. (1997). Hepatocyte growth factor, keratinocyte growth factor, and other growth factor-receptor systems in the lens. Invest. Ophthalmol. Vis. Sci. 38, 1543–54Google ScholarPubMed
Werner, M. and Burley, S. K. (1997). Architectural transcription factors: proteins that remodel DNA. Cell 88, 733–6CrossRefGoogle ScholarPubMed
West, J. A., Sivak, J. G. and Doughty, M. J. (1995). Microscopic evaluation of the crystalline lens of the squid (Loligo opalescens) during embryonic development. Exp. Eye Res. 60, 19–35CrossRefGoogle Scholar
West, J. A., Sivak, J. G., Pasternak, J. and Piatigorsky, J. (1994). Immunolocalization of S-crystallin in the developing squid (Loligo opalescens) lens. Dev. Dyn. 199, 85–92CrossRefGoogle Scholar
West-Mays, J. A., Zhang, J., Nottoli, T., Hagopian-Donaldson, S., Libby, D., Strissel, K. J. and Williams, T. (1999). AP-2α transcription factor is required for early morphogenesis of the lens vesicle. Dev. Biol. 206, 46–62CrossRefGoogle ScholarPubMed
White, T. W., Bruzzone, R., Goodenough, D. A. and Paul, D. L. (1992). Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Mol. Biol. Cell 3, 711–20CrossRefGoogle ScholarPubMed
White, T. W., Bruzzone, R., Wolfram, S., Paul, D. L. and Goodenough, D. A. (1994). Selective interactions among multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins. J. Cell Biol. 125, 879–92CrossRefGoogle ScholarPubMed
White, T. W., Goodenough, D. A. and Paul, D. L. (1998). Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J. Cell Biol. 143, 815–25CrossRefGoogle ScholarPubMed
Widlak, P., Li, P., Wang, X. and Garrard, W. T. (2000). Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J. Biol. Chem. 275, 8226–32CrossRefGoogle ScholarPubMed
Wigle, J. T., Chowdhury, K., Gruss, P. and Oliver, G. (1999). Prox1 function is crucial for mouse lens-fibre elongation. Nat. Genet. 21, 318–22CrossRefGoogle ScholarPubMed
Willekens, B. and Vrensen, G. (1982). The three-dimensional organization of lens fibers in the rhesus monkey. Graefe's Arch. Clin. Exp. Ophthalmol. 219, 112–20CrossRefGoogle ScholarPubMed
Williams, B. O., Schmitt, E. M., Remington, L., Bronson, R. T., Albert, D. M., Weinberg, R. A. and Jacks, T. (1994). Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J. 13, 4251–9Google ScholarPubMed
Williams, L. A. and Higginbotham, L. T. (1975). The role of a normal lens in Wolffian lens regeneration. J. Exp. Zool. 191, 233–52CrossRefGoogle ScholarPubMed
Williams, M. R., Duncan, G., Riach, R. A. and Webb, S. F. (1993). Acetylcholine receptors are coupled to mobilization of intracellular calcium in cultured human lens cells. Exp. Eye Res. 57, 381–4CrossRefGoogle ScholarPubMed
Williams, S. C., Altmann, C. R., Chow, R. L., Hemmati-Brivanlou, A. and Lang, R. A. (1998). A highly conserved lens transcriptional control element from the Pax-6 gene. Mech. Dev. 73, 225–9CrossRefGoogle ScholarPubMed
Williams, T., Admon, A., Luscher, B. and Tjian, R. (1988). Cloning and expression of AP-2, a cell-type—specific transcription factor that activates inducible enhancer elements. Genes Dev. 2, 1557–69CrossRefGoogle ScholarPubMed
Williams, T. and Tjian, R. (1991). Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science 251, 1067–71CrossRefGoogle ScholarPubMed
Wilson, D., Sheng, G., Lecuit, T., Dostatni, N. and Desplan, C. (1993). Cooperative dimerization of paired class homeo domains on DNA. Genes Dev. 7, 2120–34CrossRefGoogle ScholarPubMed
Wilson, D. S., Guenther, B., Desplan, C. and Kuriyan, J. (1995). High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 82, 709–19CrossRefGoogle ScholarPubMed
Winchester, C. L., Ferrier, R. K., Sermoni, A., Clark, B. J. and Johnson, K. J. (1999). Characterization of the expression of DMPK and SIX5 in the human eye and implications for pathogenesis in myotonic dystrophy. Hum. Mol. Genet. 8, 481–92CrossRefGoogle ScholarPubMed
Wisniewski, T. and Goldman, J. E. (1998). Alpha B-crystallin is associated with intermediate filaments in astrocytoma cells. Neurochem. Res. 23, 385–92CrossRefGoogle ScholarPubMed
Wistow, G. (1990). Evolution of a protein superfamily: relationships between vertebrate lens crystallins and microoganism dormancy proteins. J. Mol. Evol. 30, 140–5CrossRefGoogle Scholar
Wistow, G. (1995). Peptide sequences for beta-crystallins of a teleost fish. Mol. Vis. 1, 1Google ScholarPubMed
Wistow, G. and Kim, H. (1991). Lens protein expression in mammals: taxon-specificity and the recruitment of crystallins. J. Mol. Evol. 32, 262–9CrossRefGoogle ScholarPubMed
Wistow, G., Mulders, J. W. M. and Jong, W. W. d. (1987). The enzyme lactate dehydrogenase as a structural protein in avian and crocodilian lenses. Nature 326, 622–4CrossRefGoogle ScholarPubMed
Wistow, G. and Piatigorsky, J. (1987). Recruitment of enzymes as lens structural proteins. Science 236, 1554–6CrossRefGoogle ScholarPubMed
Wistow, G. and Piatigorsky, J. (1988). Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Ann. Rev. Biochem. 57, 479–504CrossRefGoogle ScholarPubMed
Wistow, G., Roquemore, E. and Kim, H. S. (1991). Anomalous behavior of βB1-crystallin subunits from avian lenses. Curr. Eye Res. 10, 313–19CrossRefGoogle Scholar
Wistow, G., Sardarian, L., Gan, W. and Wyatt, M. K. (2000a). The human gene for gammaS-crystallin: alternative transcripts and expressed sequences from the first intron. Mol. Vis. 6, 79–84Google Scholar
Wistow, G., Wyatt, M. K., Sinha, D., Sardarian, L. and Lyon, M. (2000b). γS-crystallin: a key component of the adult lens. Exp. Eye Res. 71, (Suppl 1), S148Google Scholar
Wolff, G. (1895). Entwicklungsphysiologische Studien. I. Die Regeneration der Urodelenlinse. Wilhelm Roux Arch. Entwickl.-Mech. Org. 1, 380–90Google Scholar
Woo, M. K. and Fowler, V. M. (1994). Identification and characterization of tropomodulin and tropomyosin in the adult rat lens. J. Cell Sci. 107, 1359–67Google ScholarPubMed
Woo, M. K., Lee, A., Fischer, R. S., Moyer, J. and Fowler, V. M. (2000). The lens membrane skeleton contains structures preferentially enriched in spectrin-actin or tropomodulin-actin complexes. Cell Motil. Cytoskeleton 46, 257–683.0.CO;2-2>CrossRefGoogle ScholarPubMed
Worgul, B. V. (1982). Lens. In Ocular Anatomy, Embryology, and Teratology, ed. F. A. Jakobiec. Philadelphia: Harper & Row
Wormstone, I. M. (2002). Posterior capsule opacification: a cell biological perspective. Exp. Eye Res. 74, 337–47CrossRefGoogle ScholarPubMed
Wormstone, I. M., Tamiya, S., Marcantonio, J. M. and Reddan, J. R. (2000). Hepatocyte growth factor function and c-Met expression in human lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 41, 4216–22Google ScholarPubMed
Wride, M. A., Parker, E. and Sanders, E. J. (1999). Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation. Dev. Biol. 213, 142–56CrossRefGoogle ScholarPubMed
Wride, M. A. and Sanders, E. J. (1998). Nuclear degeneration in the developing lens and its regulation by TNFα. Exp. Eye Res. 66, 371–83CrossRefGoogle Scholar
Wright, N. A. and Appleton, D. R. (1980). The metaphase arrest technique: a critical review. Cell Tiss. Kinet. 13, 643–63Google ScholarPubMed
Wu, J. E. and Santoro, S. A. (1994). Complex patterns of expression suggest extensive roles for the alpha 2 beta 1 integrin in murine development. Dev. Dyn. 199, 292–341CrossRefGoogle Scholar
Wunderlich, K. and Knorr, M. (1994). Effect of platelet-derived growth factor PDGF on replication of cultivated bovine lens epithelial cells [in German]. Ophthalmologe 91, 98–102Google Scholar
Wunderlich, K., Pech, M., Eberle, A. N., Mihatsch, M., Flammer, J. and Meyer, P. (2000). Expression of connective tissue growth factor (CTGF) mRNA in plaques of human anterior subcapsular cataracts and membranes of posterior capsule opacification. Curr. Eye Res. 21, 627–36CrossRefGoogle ScholarPubMed
Xie, M. H., Holcomb, I., Deuel, B., Dowd, P., Huang, A., Vagts, A., Foster, J., Liang, J., Brush, J., Gu, Q., et al. (1999). FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine 11, 729–35CrossRefGoogle ScholarPubMed
Xiong, Y., Hannon, G. J., Zhang, H., Casso, D., Kobayashi, R. and Beach, D. (1993). p21 is a universal inhibitor of cyclin kinases. Nature 366, 701–4CrossRefGoogle ScholarPubMed
Xu, H. E., Rould, M. A., Xu, W. Q., Epstein, J. A., Maas, R. L. and Pabo, C. O. (1999a). Crystal structure of the human Pax6 paired domain—DNA complex reveals specific roles for the linker region and carboxy terminal subdomain in DNA binding. Genes Dev. 13, 1263–75CrossRefGoogle Scholar
Xu, L., Overbeek, P. A. and Reneker, L. W. (2002). Systematic analysis of E-, N- and P-cadherin expression in mouse eye development. Exp. Eye Res. 74, 753–60CrossRefGoogle Scholar
Xu, P. X., Adams, J., Peters, H., Brown, M. C., Heaney, S. and Maas, R. (1999b). Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat. Genet. 23, 113–17CrossRefGoogle Scholar
Xu, P. X., Cheng, J., Epstein, J. A. and Maas, R. L. (1997a). Mouse Eya genes are expressed during limb tendon development and encode a transcriptional activation function. Proc. Natl. Acad. Sci. USA 94, 11974–9CrossRefGoogle Scholar
Xu, P. X., Woo, I., Her, H., Beier, D. R. and Maas, R. L. (1997b). Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode. Development 124, 219–31Google Scholar
Xu, P. X., Zhang, X., Heaney, S., Yoon, A., Michelson, A. M. and Maas, R. L. (1999c). Regulation of Pax6 expression is conserved between mice and flies. Development 126, 383–95Google Scholar
Xu, Y., Baldassare, M., Fisher, P., Rathbun, G., Oltz, E. M., Yancopoulos, G. D., Jessell, T. M. and Alt, F. W. (1993). LH-2: a LIM/homeodomain gene expressed in developing lymphocytes and neural cells. Proc. Natl. Acad. Sci. USA 90, 227–31CrossRefGoogle ScholarPubMed
Yamada, T. (1966). Control of tissue specificity: the pattern of cellular synthetic activities in tissue transformation. Am. Zool. 6, 21–31CrossRefGoogle ScholarPubMed
Yamada, T. (1967). Cellular and subcellular events in Wolffian lens regeneration. Curr. Top. Dev. Biol. 2, 247–83CrossRefGoogle ScholarPubMed
Yamada, T. (1977). Control Mechanisms in Cell-Type Conversion in Newt Lens Regeneration. Basel: Karger. Monographs in Developmental Biology No. 13
Yamada, T. (1982). Transdifferentaitaion of lens cells and its regulation. In Cell Biology of the Eye, ed. D. S. McDevitt. New York: Academic Press, pp. 193–242CrossRef
Yamada, T. and Dumont, J. N. (1972). Macrophage activity in Wolffian lens regeneration. J. Morph. 136, 367–84CrossRefGoogle ScholarPubMed
Yamada, T. and Karasaki, S. (1963). Nuclear RNA synthesis in newt iris cells engaged in regenerative transformation into lens cells. Dev. Biol. 7, 595–604CrossRefGoogle Scholar
Yamada, T. and McDevitt, D. S. (1984). Conversion of iris epithelial cells as a model of differentiation control. Differentiation. 27, 1–12CrossRefGoogle ScholarPubMed
Yamada, T., Reese, D. H. and McDevitt, D. S. (1973). Transformation of iris into lens in vitro and its deependency on neural retina. Differentiation 1, 65–82CrossRefGoogle Scholar
Yamada, T. and Roesel, M. E. (1969). Activation of DNA replication in the iris epithelium by lens removal. J. Exp. Zool. 171, 425–31CrossRefGoogle ScholarPubMed
Yamada, T. and Roesel, M. E. (1971). Control of mitotic activity in Wolffian lens regeneration. J. Exp. Zool. 117, 119–28CrossRefGoogle Scholar
Yamamoto, Y. (1976). Growth of lens and ocular environment: role of neural retina in the growth of mouse lens as revealed by an implantation experiment. Dev. Growth Differ. 18, 273–8CrossRefGoogle Scholar
Yan, Q., Clark, J. I. and Sage, E. H. (2000). Expression and characterization of SPARC in human lens and in the aqueous and vitreous humors. Exp. Eye Res. 71, 81–90CrossRefGoogle ScholarPubMed
Yan, Q. and Sage, E. H. (1999). SPARC, a matricellular glycoprotein with important biological functions. J. Histochem. Cytochem. 47, 1495–506CrossRefGoogle ScholarPubMed
Yang, D. I. and Louis, C. F. (1996). Molecular cloning of sheep connexin49 and its identity with MP70. Curr. Eye Res. 15, 307–14CrossRefGoogle ScholarPubMed
Yang, H. Y., Lieska, N., Goldman, A. E. and Goldman, R. D. (1985). A 300,000-mol-wt intermediate filament—associated protein in baby hamster kidney (bHK-21) cells. J. Cell Biol. 100, 620–31CrossRefGoogle ScholarPubMed
Yang, J., Bian, W., Gao, X., Chen, L. and Jing, N. (2000). Nestin expression during mouse eye and lens development. Mech. Dev. 94, 287–91CrossRefGoogle ScholarPubMed
Yasuda, K. (1979). Transdifferentiation of “lentoid” structures in cultures derived from pigmented epithelium was inhibited by collagen. Dev. Biol. 68, 618–23CrossRefGoogle ScholarPubMed
Ye, X., Zhu, C. and Harper, J. W. (2001). A premature termination mutation in the Mus musculus cyclin-dependent kinase 3 gene. Proc. Natl. Acad. Sci. USA 98, 1682–6CrossRefGoogle ScholarPubMed
Yeaman, C., Grindstaff, K. K., Hansen, M. D. and Nelson, W. J. (1999). Cell polarity: versatile scaffolds keep things in place. Curr. Biol. 9, R515–7CrossRefGoogle ScholarPubMed
Yin, X., Jedrzejewski, P. T. and Jiang, J. X. (2000). Casein kinase II phosphorylates lens connexin 45.6 and is involved in its degradation. J. Biol. Chem. 275, 6850–6CrossRefGoogle ScholarPubMed
Yokohama, S. (2000). Molecular evolution of vertebrate visual pigments. Prog. Ret. Eye Res. 19, 385–419CrossRefGoogle Scholar
Yoshida, K., Imaki, J., Koyama, Y., Harada, T., Shinmei, Y., Oishi, C., Matsushima-Hibiya, Y., Matsuda, A., Nishi, S., Matsuda, H., et al. (1997). Differential expression of maf-1 and maf-2 genes in the developing rat lens. Invest. Ophthalmol. Vis. Sci. 38, 2679–83Google ScholarPubMed
Yoshida, T. and Yasuda, K. (2002). Characterization of the chicken L-Maf, MafB and c-Maf in crystallin gene regulation and lens differentiation. Genes Cells 7, 693–706CrossRefGoogle ScholarPubMed
Younan, C., Mitchell, P., Cumming, R. G., Panchapakesan, J., Rochtchina, E. and Hales, A. M. (2002). Hormone replacement therapy, reproductive factors and the incidence of cataract and cataract surgery: the Blue Mountain Eye Study. Am. J. Epidemiol. 155, 997–1006CrossRefGoogle Scholar
Young, M. A., Tunstall, M. J., Kistler, J. and Donaldson, P. J. (2000). Blocking chloride channels in the rat lens: localized changes in tissue hydration support the existence of a circulating chloride flux. Invest. Ophthalmol. Vis. Sci. 41, 3049–55Google ScholarPubMed
Young, R. W. and Ocumpaugh, D. E. (1966). Autoradiographic studies on the growth and development of the lens capsule in the rat. Invest. Ophthal. 5, 583–93Google ScholarPubMed
Yu, C. C.-K., Tsui, L.-C. and Breitman, M. L. (1990). Homologous and heterologous enhancers modulate spatial expression but not cell-type specificity of the murine γF-crystallin promoter. Development 110, 131–9Google ScholarPubMed
Zalik, S. E. and Meza, I. (1968). In vitro culture of the regenerating lens. Nature 217, 179–80CrossRefGoogle ScholarPubMed
Zalik, S. E. and Scott, V. (1971). Development of 3H-thymidine-labelled iris in the optic chamber of the lentectomized newts. Exp. Cell Res. 66, 446–8CrossRefGoogle ScholarPubMed
Zalik, S. E. and Scott, V. (1973). Sequential disappearance of cell surface components during lens dedifferentiation in lens regeneration. Nat. New Biol. 244, 212–14CrossRefGoogle ScholarPubMed
Zalokar, M. (1944). Contribution a l'etude de la regeneration du cristallin chez le Triton. Rev. Suisse Zool. 51, 443–521Google Scholar
Zampighi, G. A., Eskandari, S. and Kreman, M. (2000). Epithelial organization of the mammalian lens. Exper. Eye Res. 71, 415–35CrossRefGoogle ScholarPubMed
Zampighi, G. A., Hall, J. E., Ehring, G. R. and Simon, S. A. (1989). The structural organization and protein composition of the lens fiber junctions. J. Cell Biol. 108, 2255–75CrossRefGoogle ScholarPubMed
Zarina, S., Abbasi, A. and Zaidi, Z. H. (1992). Primary structure of bS-crystallin from human lens. Biochem. J. 287, 375–81CrossRefGoogle ScholarPubMed
Zelenka, P. (1978). Phospholipid composition and metabolism in the embryonic chick lens. Exp. Eye Res. 26, 267–74CrossRefGoogle ScholarPubMed
Zelenka, P. S. (1983). Phosphatidylcholine and phosphatidylethanolamine metabolism during lens fiber cell formation. Biochim. Biophys. Acta 752, 145–52CrossRefGoogle ScholarPubMed
Zelenka, P. S., Beebe, D. C. and Feagans, D. E. (1982). Transmethylation of phosphatidylethanolamine: an initial event in embryonic chicken lens fiber cell differentiation. Science 217, 1265–7CrossRefGoogle ScholarPubMed
Zenjari, C., Boilly, B., Hondermarck, H. and Boilly-Marer, Y. (1997). Nerve-blastema interactions induce fibroblast growth factor-1 release during limb regeneration in Pleurodeles waltl. Dev. Growth Differ. 39, 15–22CrossRefGoogle ScholarPubMed
Zhang, J., Hagopian-Donaldson, S., Serbedzija, G., Elsemore, J., Plehn-Dujowich, D., McMahon, A. P., Flavell, R. A. and Williams, T. (1996). Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381, 238–41CrossRefGoogle ScholarPubMed
Zhang, J. J. and Jacob, T. J. C. (1994). ATP-activated chloride channel inhibited by an antibody to p-glycoprotein. Am. J. Physiol.–Cell Physiol. 36, C1095–102CrossRefGoogle Scholar
Zhang, J. J. and Jacob, T. J. C. (1996). Volume regulation in the bovine lens and cataract: the involvement of chloride channels. J. Clin. Invest. 97, 971–8CrossRefGoogle ScholarPubMed
Zhang, J. J., Jacob, T. J. C., Valverde, M. A., Hardy, S. P., Mintenig, G. M., Sepulveda, F. V., Gill, D. R., Hyde, S. C., Trezise, A. E. O. and Higgins, C. F. (1994). Tamoxifen blocks chloride channels: a possible mechanism for cataract formation. J. Clin. Invest. 94, 1690–7CrossRefGoogle ScholarPubMed
Zhang, P., Liegeois, N. J., Wong, C., Finegold, M., Hou, H., Thompson, J. C., Silverman, A., Harper, J. W., DePinho, R. A. and Elledge, S. J. (1997). Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387, 151–8CrossRefGoogle ScholarPubMed
Zhang, P., Wong, C., DePinho, R. A., Harper, J. W. and Elledge, S. J. (1998). Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development. Genes Dev. 12, 3162–7CrossRefGoogle ScholarPubMed
Zhang, W. Z. and Augusteyn, R. C. (1995). Glucose supply and enzyme activities in the lens. Exp. Eye Res. 61, 633–5CrossRefGoogle ScholarPubMed
Zhang, X., Friedman, A., Heaney, S., Purcell, P. and Maas, R. L. (2002). Meis homeoproteins directly regulate Pax6 during vertebrate lens morphogenesis. Genes Dev. 16, 2097–107CrossRefGoogle ScholarPubMed
Zhang, Y., Xiong, Y. and Yarbrough, W. G. (1998b). ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both Rb and p53 tumor suppression pathways. Cell 92, 725–34CrossRefGoogle Scholar
Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., Yang, H. W., Terada, S., Nakata, T., Takei, Y., et al. (2001). Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587–97CrossRefGoogle Scholar
Zhao, J., Kennedy, B. K., Lawrence, B. D., Barbie, D. A., Matera, A. G., Fletcher, J. A. and Harlow, E. (2000). NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev. 14, 2283–97CrossRefGoogle ScholarPubMed
Zhao, S., Hung, F. C., Colvin, J. S., White, A., Dai, W., Lovicu, F. J., Ornitz, D. M. and Overbeek, P. A. (2001). Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development 128, 5051–60Google ScholarPubMed
Zhou, C., Agarwal, N. and Cammarata, P. R. (1994). Osmoregulatory alterations in myo-inositol uptake by bovine lens epithelial cells: cloning of a 626 bp cDNA portion of a Na+/myo-inositol cotransporter, an osmotic shock protein. Invest. Ophthalmol. Vis. Sci. 35, 1236–46Google ScholarPubMed
Zhou, Y., Ching, Y. P., Kok, K. H., Kung, H. F. and Jin, D. Y. (2002). Post-transcriptional suppression of gene expression in Xenopus embryos by small interfering RNA. Nucleic Acids Res. 30, 1664–9CrossRefGoogle ScholarPubMed
Ziebold, U., Reza, T., Caron, A. and Lees, J. A. (2001). E2F3 contributes both to the inappropriate proliferation and to apoptosis arising in Rb mutant embryos. Genes Dev. 15, 386–91CrossRefGoogle ScholarPubMed
Zimmerman, L. and Font, R. (1966). Congenital malformations of the eye: some recent advances in knowledge of the pathogenesis and histopathological characterstics. J. Am. Med. Assoc. 196, 684–92CrossRefGoogle Scholar
Zimmerman, L. B., Jesus-Escobar, J. M. and Harland, R. M. (1996). The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606CrossRefGoogle ScholarPubMed
Zindy, F. E. L., Chemivesse, X., Sobczak, J., Wang, J., Fesquet, D., Henglein, B. and Brechot, C. (1992). Cyclin A is required in S phase in normal epithelial cells. Biochem. Biophys. Res. Comm. 182, 1144–54CrossRefGoogle Scholar
Zinovieva, R. D., Tomarev, S. I. and Piatigorsky, J. (1993). Aldehyde dehydrogenase-derived O-crystallins of squid and octopus: specialization for lens expression. J. Biol. Chem. 268, 11449–55Google ScholarPubMed
Zuber, M. E., Perron, M., Philpott, A., Bang, A. and Harris, W. A. (1999). Giant eyes in Xenopus laevis by overexpression of XOptx2. Cell 98, 341–52CrossRefGoogle ScholarPubMed
Zuk, A. and Hay, E. D. (1994). Expression of beta 1 integrins changes during transformation of avian lens epithelium to mesenchyme in collagen gels. Dev. Dyn. 201, 378–93CrossRefGoogle Scholar
Zumbrunn, J., Kinoshita, K., Hyman, A. A. and Nathke, I. S. (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr. Biol. 11, 44–9CrossRefGoogle ScholarPubMed
Zutter, M. M., Santoro, S. A., Wu, J. E., Wakatsuki, T., Dickeson, S. K. and Elson, E. L. (1999). Collagen receptor control of epithelial morphogenesis and cell cycle progression. Am. J. Pathol. 155, 927–40CrossRefGoogle ScholarPubMed
Zwaan, J. (1968). Lens-specific antigens and cytodifferentiation in the developing lens. J. Cell. Physiol. 72 (Suppl 1), 47–71CrossRefGoogle ScholarPubMed
Zwaan, J. (1983). The appearance of alpha-crystallin in relation to cell cycle phase in the embryonic mouse lens. Dev. Biol. 96, 173–81CrossRefGoogle ScholarPubMed
Zwaan, J. and Kenyon, R. E. Jr. (1984). Cell replication and terminal differentiation in the embryonic chicken lens: normal and forced initiation of lens fibre formation. J. Embryol. Exp. Morphol. 84, 331–49Google ScholarPubMed
Zwaan, J. and Silver, J. (1983). Crystallin synthesis in the lens rudiment of a strain of mice with congenital anophthalmia. Exp. Eye Res. 36, 551–7CrossRefGoogle ScholarPubMed
Zwaan, J. and Webster, E. H. (1984). Histochemical analysis of extracellular matrix material during embryonic mouse lens morphogenesis in an aphakic strain of mice. Dev. Biol. 104, 380–9CrossRefGoogle Scholar
Zygar, C. A., Cook, T. L. Jr. and Grainger, R. M. (1998). Gene activation during early stages of lens induction in Xenopus.Development 125, 3509–19Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Edited by Frank J. Lovicu, University of Sydney, Michael L. Robinson, Ohio State University
  • Book: Development of the Ocular Lens
  • Online publication: 30 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529825.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Edited by Frank J. Lovicu, University of Sydney, Michael L. Robinson, Ohio State University
  • Book: Development of the Ocular Lens
  • Online publication: 30 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529825.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Edited by Frank J. Lovicu, University of Sydney, Michael L. Robinson, Ohio State University
  • Book: Development of the Ocular Lens
  • Online publication: 30 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529825.014
Available formats
×