Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T09:21:23.593Z Has data issue: false hasContentIssue false

3 - Melanoma cancer stem cells

from SECTION I - CHARACTERIZATION OF CANCER STEM CELLS

Published online by Cambridge University Press:  15 December 2009

Meenhard Herlyn
Affiliation:
The Wistar Institute
Get access

Summary

BACKGROUND AND DEFINITIONS

Cutaneous melanoma is among the most aggressive types of human cancer, and if untreated, virtually every melanoma has the potential to metastasize. While patients with locoregional disease and low tumor thickness can be cured in 90% of cases by surgery, the majority of patients with advanced disease die because of the inefficiency of current therapy regimens.

Cutaneous melanoma is historically defined as a malignant tumor derived from the transformation and proliferation of epidermal melanocytes, enabling a stepwise progression from common melanocytic nevus to radial growth phase melanoma, vertical growth phase melanoma, and finally, metastatic disease. However, recent data suggest that a considerable proportion – around 60% to 75% – of melanomas develop de novo, without any precursor lesions. On the basis of these observations and repeated findings on melanoma heterogeneity, an alternative hypothesis has been put forth in light of the emerging cancer stem cell (CSC) concept. Mounting evidence suggests that melanoma may arise from a multipotent CSC that is able to self-renew via asymmetric division, differentiate into diverse progenies, and drive continuous growth. In this context, the term melanoma stem cell represents an operational definition indicating a multipotent tumor-initiating cell subset that – although monoclonal in origin – can give rise to a three-dimensional, heterogeneous progeny that caricatures the tissue of origin. According to this, melanoma would become functionally heterogeneous as a result of gradual differentiation of cells and not due to the coexistence of multiple genetic subclones resulting from independent somatic mutations.

Type
Chapter
Information
Cancer Stem Cells , pp. 31 - 48
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

DeVita, V., Hellman, S., Rosenberg, S.A. (2005). Cancer: Principles and Practice of Oncology. Philadelphia: Lippincott Williams and Wilkins.Google Scholar
Balch, C.M., Buzaid, A.C., Soong, S.J., Atkins, M.B., Cascinelli, N., Coit, D.G., Fleming, I.D., Gershenwald, J.E., Houghton, A., Kirkwood, J.M., McMasters, K.M., Mihm, M.F., Morton, D.L., Reintgen, D.S., Ross, M.I., Sober, A., Thompson, J.A., and Thompson, J.F. (2001). Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol 19, 3635–3648.CrossRefGoogle ScholarPubMed
Clark, W.H., Elder, D.E., Guerry, D.T., Epstein, M.N., Greene, M.H., and Horn, M. (1984). A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 15, 1147–1165.CrossRefGoogle ScholarPubMed
Herlyn, M., Thurin, J., Balaban, G., Bennicelli, J.L., Herlyn, D., Elder, D.E., Bondi, E., Guerry, D., Nowell, P., Clark, W.H., and Koprowski, H. (1985). Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res 45, 5670–5676.Google ScholarPubMed
Hussein, M.R. (2004). Genetic pathways to melanoma tumorigenesis. J Clin Pathol 57, 797–801.CrossRefGoogle ScholarPubMed
Lucas, C.R., Sanders, L.L., Murray, J.C., Myers, S.A., Hall, R.P., and Grichnik, J.M. (2003). Early melanoma detection: nonuniform dermoscopic features and growth. J Am Acad Dermatol 48, 663–671.CrossRefGoogle Scholar
Roesch, A., Burgdorf, W., Stolz, W., Landthaler, M., and Vogt, T. (2006). Dermatoscopy of “dysplastic nevi”: a beacon in diagnostic darkness. Eur J Dermatol 16, 479–493.Google ScholarPubMed
Kath, R., Jambrosic, J.A., Holland, L., Rodeck, U., and Herlyn, M. (1991). Development of invasive and growth factor-independent cell variants from primary human melanomas. Cancer Res 51, 2205–2211.Google ScholarPubMed
Rasheed, S., Mao, Z., Chan, J.M., and Chan, L.S. (2005). Is melanoma a stem cell tumor? Identification of neurogenic proteins in trans-differentiated cells. J Transl Med 3, 14.CrossRefGoogle ScholarPubMed
Buac, K., and Pavan, W.J. (2007). Stem cells of the melanocyte lineage. Cancer Biomark 3, 203–209.CrossRefGoogle ScholarPubMed
Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105–111.CrossRefGoogle ScholarPubMed
Fang, D., Nguyen, T.K., Leishear, K., Finko, R., Kulp, A.N., Hotz, S., Belle, P.A., Xu, X., Elder, D.E., and Herlyn, M. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65, 9328–9337.CrossRefGoogle ScholarPubMed
Frank, N.Y., Margaryan, A., Huang, Y., Schatton, T., Waaga-Gasser, A.M., Gasser, M., Sayegh, M.H., Sadee, W., and Frank, M.H. (2005). ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65, 4320–4333.CrossRefGoogle ScholarPubMed
Grichnik, J.M., Burch, J.A., Schulteis, R.D., Shan, S., Liu, J., Darrow, T.L., Vervaert, C.E., and Seigler, H.F. (2006). Melanoma, a tumor based on a mutant stem cell?J Invest Dermatol 126, 142–153.CrossRefGoogle ScholarPubMed
Tan, B.T., Park, C.Y., Ailles, L.E., and Weissman, I.L. (2006). The cancer stem cell hypothesis: a work in progress. Lab Invest 86, 1203–1207.CrossRefGoogle ScholarPubMed
Dalerba, P., Cho, R.W., and Clarke, M.F. (2007). Cancer stem cells: models and concepts. Annu Rev Med 58, 267–284.CrossRefGoogle ScholarPubMed
Mayer, T.C. (1973). The migratory pathway of neural crest cells into the skin of mouse embryos. Dev Biol 34, 39–46.CrossRefGoogle ScholarPubMed
Wehrle-Haller, B., and Weston, J.A. (1995). Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development 121, 731–742.Google ScholarPubMed
Cramer, S.F. (1984). The neoplastic development of malignant melanoma: a biological rationale. Am J Dermatopathol 6(Suppl), 299–308.Google ScholarPubMed
Steingrimsson, E., Copeland, N.G., and Jenkins, N.A. (2005). Melanocyte stem cell maintenance and hair graying. Cell 121, 9–12.CrossRefGoogle ScholarPubMed
Nishimura, E.K., Jordan, S.A., Oshima, H., Yoshida, H., Osawa, M., Moriyama, M., Jackson, I.J., Barrandon, Y., Miyachi, Y., and Nishikawa, S. (2002). Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–860.CrossRefGoogle ScholarPubMed
Osawa, M., Egawa, G., Mak, S.S., Moriyama, M., Freter, R., Yonetani, S., Beermann, F., and Nishikawa, S. (2005). Molecular characterization of melanocyte stem cells in their niche. Development 132, 5589–5599.CrossRefGoogle ScholarPubMed
Yu, H., Fang, D., Kumar, S.M., Li, L., Nguyen, T.K., Acs, G., Herlyn, M., and Xu, X. (2006). Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 168, 1879–1888.CrossRefGoogle ScholarPubMed
Nishimura, E.K., Granter, S.R., and Fisher, D.E. (2005). Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307, 720–724.CrossRefGoogle ScholarPubMed
Toma, J.G., McKenzie, I.A., Bagli, D., and Miller, F.D. (2005). Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23, 727–737.CrossRefGoogle ScholarPubMed
Crigler, L., Kazhanie, A., Yoon, T.J., Zakhari, J., Anders, J., Taylor, B., and Virador, V.M. (2007). Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. Faseb J 21, 2050–2063.CrossRefGoogle ScholarPubMed
Yu, H.S. (2002). Melanocyte destruction and repigmentation in vitiligo: a model for nerve cell damage and regrowth. J Biomed Sci 9, 564–573.CrossRefGoogle ScholarPubMed
Hendrix, M.S.E., Seftor, E.A., Meltzer, P.S., Hess, A.R., Gruman, L.M., Nickoloff, B.J., Miele, L., Sheriff, D.D., Schatteman, G.C., Bourdon, M.A., and Sefotro, R.E.B. (2003). The stem cell plasticity of aggressive melanoma tumor cells. In Stem Cells Handbook, pp. 297–306 (Sell, S., ed). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
Hendrix, M.J., Seftor, E.A., Hess, A.R., and Seftor, R.E. (2003). Molecular plasticity of human melanoma cells. Oncogene 22, 3070–3075.CrossRefGoogle ScholarPubMed
Wiese, C., Rolletschek, A., Kania, G., Blyszczuk, P., Tarasov, K.V., Tarasova, Y., Wersto, R.P., Boheler, K.R., and Wobus, A.M. (2004). Nestin expression – a property of multi-lineage progenitor cells?Cell Mol Life Sci 61, 2510–2522.CrossRefGoogle ScholarPubMed
Brocker, E.B., Magiera, H., and Herlyn, M. (1991). Nerve growth and expression of receptors for nerve growth factor in tumors of melanocyte origin. J Invest Dermatol 96, 662–665.CrossRefGoogle ScholarPubMed
Weiss, S., Reynolds, B.A., Vescovi, A.L., Morshead, C., Craig, C.G., and Kooy, D. (1996). Is there a neural stem cell in the mammalian forebrain?Trends Neurosci 19, 387–393.CrossRefGoogle Scholar
Toma, J.G., Akhavan, M., Fernandes, K.J., Barnabe-Heider, F., Sadikot, A., Kaplan, D.R., and Miller, F.D. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3, 778–784.CrossRefGoogle ScholarPubMed
Dontu, G., Abdallah, W.M., Foley, J.M., Jackson, K.W., Clarke, M.F., Kawamura, M.J., and Wicha, M.S. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17, 1253–1270.CrossRefGoogle ScholarPubMed
Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., and Dirks, P.B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res 63, 5821–5828.Google ScholarPubMed
Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. Nature 432, 396–401.CrossRefGoogle ScholarPubMed
Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich, K., Beaudry, C., Berens, M., Alberts, D., and Sondak, V. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540.CrossRefGoogle ScholarPubMed
Coiffier, B., Lepage, E., Briere, J., Herbrecht, R., Tilly, H., Bouabdallah, R., Morel, P., Neste, E., Salles, G., Gaulard, P., Reyes, F., Lederlin, P., and Gisselbrecht, C. (2002). CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346, 235–242.CrossRefGoogle ScholarPubMed
Salmaggi, A., Boiardi, A., Gelati, M., Russo, A., Calatozzolo, C., Ciusani, E., Sciacca, F.L., Ottolina, A., Parati, E.A., Porta, C., Alessandri, G., Marras, C., Croci, D., and Rossi, M. (2006). Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54, 850–860.CrossRefGoogle ScholarPubMed
Neuzil, J., Stantic, M., Zobalova, R., Chladova, J., Wang, X., Prochazka, L., Dong, L., Andera, L., and Ralph, S.J. (2007). Tumour-initiating cells vs. cancer “stem” cells and CD133: what's in the name?Biochem Biophys Res Commun 355, 855–859.CrossRefGoogle ScholarPubMed
Klein, W.M., Wu, B.P., Zhao, S., Wu, H., Klein-Szanto, A.J., and Tahan, S.R. (2007). Increased expression of stem cell markers in malignant melanoma. Mod Pathol 20, 102–107.CrossRefGoogle ScholarPubMed
Monzani, E., Facchetti, F., Galmozzi, E., Corsini, E., Benetti, A., Cavazzin, C., Gritti, A., Piccinini, A., Porro, D., Santinami, M., Invernici, G., Parati, E., Alessandri, G., and Porta, C.A. (2007). Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43, 935–946.CrossRefGoogle ScholarPubMed
Goodell, M.A., Brose, K., Paradis, G., Conner, A.S., and Mulligan, R.C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183, 1797–1806.CrossRefGoogle ScholarPubMed
Wang, E., Voiculescu, S., Poole, I.C., El-Gamil, M., Li, X., Sabatino, M., Robbins, P.F., Nickoloff, B.J., and Marincola, F.M. (2006). Clonal persistence and evolution during a decade of recurrent melanoma. J Invest Dermatol 126, 1372–1377.CrossRefGoogle ScholarPubMed
Wiltshire, R.N., Duray, P., Bittner, M.L., Visakorpi, T., Meltzer, P.S., Tuthill, R.J., Liotta, L.A., and Trent, J.M. (1995). Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res 55, 3954–3957.Google ScholarPubMed
Bastian, B.C., LeBoit, P.E., Hamm, H., Brocker, E.B., and Pinkel, D. (1998). Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58, 2170–2175.Google ScholarPubMed
Wiltshire, R.N., Dennis, T.R., Sondak, V.K., Meltzer, P.S., and Trent, J.M. (2001). Application of molecular cytogenetic techniques in a case study of human cutaneous metastatic melanoma. Cancer Genet Cytogenet 131, 97–103.CrossRefGoogle Scholar
Tysnes, B.B., and Bjerkvig, R. (2007). Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim Biophys Acta 1775, 283–297.Google ScholarPubMed
Li, F., Tiede, B., Massague, J., and Kang, Y. (2007). Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17, 3–14.CrossRefGoogle Scholar
Horvitz, H.R., and Herskowitz, I. (1992). Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68, 237–255.CrossRefGoogle ScholarPubMed
Roegiers, F., and Jan, Y.N. (2004). Asymmetric cell division. Curr Opin Cell Biol 16, 195–205.CrossRefGoogle ScholarPubMed
Di Marcotullio, L., Ferretti, E., Greco, A., Smaele, E., Po, A., Sico, M.A., Alimandi, M., Giannini, G., Maroder, M., Screpanti, I., and Gulino, A. (2006). Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol 8, 1415–1423.CrossRefGoogle ScholarPubMed
Liu, Z.J., Xiao, M., Balint, K., Smalley, K.S., Brafford, P., Qiu, R., Pinnix, C.C., Li, X., and Herlyn, M. (2006). Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 66, 4182–4190.CrossRefGoogle ScholarPubMed
Balint, K., Xiao, M., Pinnix, C.C., Soma, A., Veres, I., Juhasz, I., Brown, E.J., Capobianco, A.J., Herlyn, M., and Liu, Z.J. (2005). Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest 115, 3166–3176.CrossRefGoogle ScholarPubMed
Pinnix, C.C., and Herlyn, M. (2007). The many faces of Notch signaling in skin-derived cells. Pigment Cell Res 20, 458–465.CrossRefGoogle ScholarPubMed
Moriyama, M., Osawa, M., Mak, S.S., Ohtsuka, T., Yamamoto, N., Han, H., Delmas, V., Kageyama, R., Beermann, F., Larue, L., and Nishikawa, S. (2006). Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 173, 333–339.CrossRefGoogle ScholarPubMed
Massi, D., Tarantini, F., Franchi, A., Paglierani, M., Di Serio, C., Pellerito, S., Leoncini, G., Cirino, G., Geppetti, P., and Santucci, M. (2006). Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod Pathol 19, 246–254.CrossRefGoogle ScholarPubMed
Dahmane, N., Lee, J., Robins, P., Heller, P., and Ruiz i Altaba, A. (1997). Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389, 876–881.Google ScholarPubMed
Douarin, N.M., and Dupin, E. (2003). Multipotentiality of the neural crest. Curr Opin Genet Dev 13, 529–536.CrossRefGoogle ScholarPubMed
Stecca, B., Mas, C., Clement, V., Zbinden, M., Correa, R., Piguet, V., Beermann, F., and Ruiz, I.A.A. (2007). Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci U S A 104, 5895–5900.CrossRefGoogle ScholarPubMed
Larue, L., and Delmas, V. (2006). The WNT/Beta-catenin pathway in melanoma. Front Biosci 11, 733–742.CrossRefGoogle ScholarPubMed
Neth, P., Ries, C., Karow, M., Egea, V., Ilmer, M., and Jochum, M. (2007). The Wnt signal transduction pathway in stem cells and cancer cells: influence on cellular invasion. Stem Cell Rev 3, 18–29.CrossRefGoogle ScholarPubMed
Miller, A.J., and Mihm, M.C. (2006). Melanoma. N Engl J Med 355, 51–65.CrossRefGoogle ScholarPubMed
Weeraratna, A.T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., and Trent, J.M. (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279–288.CrossRefGoogle ScholarPubMed
Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001). Stem cells find their niche. Nature 414, 98–104.CrossRefGoogle ScholarPubMed
Scadden, D.T. (2006). The stem-cell niche as an entity of action. Nature 441, 1075–1079.CrossRefGoogle Scholar
Gilbertson, R.J., and Rich, J.N. (2007). Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7, 733–736.CrossRefGoogle ScholarPubMed
Mitsiadis, T.A., Barrandon, O., Rochat, A., Barrandon, Y., and Bari, C. (2007). Stem cell niches in mammals. Exp Cell Res 313, 3377–3385.CrossRefGoogle ScholarPubMed
Kobielak, K., Pasolli, H.A., Alonso, L., Polak, L., and Fuchs, E. (2003). Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol 163, 609–623.CrossRefGoogle ScholarPubMed
Kobielak, K., Stokes, N., Cruz, J., Polak, L., and Fuchs, E. (2007). Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci U S A 104, 10063–10068.CrossRefGoogle Scholar
Rothhammer, T., Bataille, F., Spruss, T., Eissner, G., and Bosserhoff, A.K. (2007). Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene 26, 4158–4170.CrossRefGoogle ScholarPubMed
Rothhammer, T., Poser, I., Soncin, F., Bataille, F., Moser, M., and Bosserhoff, A.K. (2005). Bone morphogenic proteins are overexpressed in malignant melanoma and promote cell invasion and migration. Cancer Res 65, 448–456.Google ScholarPubMed
Topczewska, J.M., Postovit, L.M., Margaryan, N.V., Sam, A., Hess, A.R., Wheaton, W.W., Nickoloff, B.J., Topczewski, J., and Hendrix, M.J. (2006). Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12, 925–932.CrossRefGoogle ScholarPubMed
Hendrix, M.J., Seftor, E.A., Seftor, R.E., Kasemeier-Kulesa, J., Kulesa, P.M., and Postovit, L.M. (2007). Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7, 246–255.CrossRefGoogle ScholarPubMed
Lee, J.T., and Herlyn, M. (2006). Embryogenesis meets tumorigenesis. Nat Med 12, 882–884.CrossRefGoogle ScholarPubMed
Hendrix, M.J., Seftor, E.A., Hess, A.R., and Seftor, R.E. (2003). Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3, 411–421.CrossRefGoogle ScholarPubMed
Meier, F., Will, S., Ellwanger, U., Schlagenhauff, B., Schittek, B., Rassner, G., and Garbe, C. (2002). Metastatic pathways and time courses in the orderly progression of cutaneous melanoma. Br J Dermatol 147, 62–70.CrossRefGoogle ScholarPubMed
Bernards, R., and Weinberg, R.A. (2002). A progression puzzle. Nature 418, 823.CrossRefGoogle ScholarPubMed
van't Veer, L.J., Dai, H., Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., and Friend, S.H. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536.CrossRefGoogle Scholar
Ramaswamy, S., Ross, K.N., Lander, E.S., and Golub, T.R. (2003). A molecular signature of metastasis in primary solid tumors. Nat Genet 33, 49–54.CrossRefGoogle ScholarPubMed
Gupta, P.B., Kuperwasser, C., Brunet, J.P., Ramaswamy, S., Kuo, W.L., Gray, J.W., Naber, S.P., and Weinberg, R.A. (2005). The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 37, 1047–1054.CrossRefGoogle ScholarPubMed
Minn, A.J., Gupta, G.P., Siegel, P.M., Bos, P.D., Shu, W., Giri, D.D., Viale, A., Olshen, A.B., Gerald, W.L., and Massague, J. (2005). Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524.CrossRefGoogle ScholarPubMed
Mihic-Probst, D., Kuster, A., Kilgus, S., Bode-Lesniewska, B., Ingold-Heppner, B., Leung, C., Storz, M., Seifert, B., Marino, S., Schraml, P., Dummer, R., and Moch, H. (2007). Consistent expression of the stem cell renewal factor BMI-1 in primary and metastatic melanoma. Int J Cancer 121, 1764–1770.CrossRefGoogle ScholarPubMed
Lessard, J., Baban, S., and Sauvageau, G. (1998). Stage-specific expression of polycomb group genes in human bone marrow cells. Blood 91, 1216–1224.Google ScholarPubMed
Dimri, G.P., Martinez, J.L., Jacobs, J.J., Keblusek, P., Itahana, K., Lohuizen, M., Campisi, J., Wazer, D.E., and Band, V. (2002). The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62, 4736–4745.Google ScholarPubMed
Bissell, M.J., and Labarge, M.A. (2005). Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment?Cancer Cell 7, 17–23.Google ScholarPubMed
Townson, J.L., and Chambers, A.F. (2006). Dormancy of solitary metastatic cells. Cell Cycle 5, 1744–1750.CrossRefGoogle ScholarPubMed
Doyle, L.A., and Ross, D.D. (2003). Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22, 7340–7358.CrossRefGoogle Scholar
Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., Abdulkadir, I.R., Lu, L., Irvin, D., Black, K.L., and Yu, J.S. (2006). Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5, 67.CrossRefGoogle ScholarPubMed
Schatton, T., Murphy, G.F., Frank, N.Y., Yamaura, K., Waaga-Gasser, A.M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L.M., Weishaupt, C., Fuhlbrigge, R.C., Kupper, T.S., Sayegh, M.H., and Frank, M.H. (2008). Identification of cells initiating human melanomas. Nature 451, 345–349.CrossRefGoogle ScholarPubMed
Chaudhary, P.M., and Roninson, I.B. (1991). Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66, 85–94.CrossRefGoogle ScholarPubMed
Wulf, G.G., Wang, R.Y., Kuehnle, I., Weidner, D., Marini, F., Brenner, M.K., Andreeff, M., and Goodell, M.A. (2001). A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 98, 1166–1173.CrossRefGoogle ScholarPubMed
Zhou, S., Schuetz, J.D., Bunting, K.D., Colapietro, A.M., Sampath, J., Morris, J.J., Lagutina, I., Grosveld, G.C., Osawa, M., Nakauchi, H., and Sorrentino, B.P. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7, 1028–1034.CrossRefGoogle Scholar
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×